Index: openssl/crypto/bn/asm/via-mont.pl |
=================================================================== |
--- openssl/crypto/bn/asm/via-mont.pl (revision 0) |
+++ openssl/crypto/bn/asm/via-mont.pl (revision 0) |
@@ -0,0 +1,242 @@ |
+#!/usr/bin/env perl |
+# |
+# ==================================================================== |
+# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL |
+# project. The module is, however, dual licensed under OpenSSL and |
+# CRYPTOGAMS licenses depending on where you obtain it. For further |
+# details see http://www.openssl.org/~appro/cryptogams/. |
+# ==================================================================== |
+# |
+# Wrapper around 'rep montmul', VIA-specific instruction accessing |
+# PadLock Montgomery Multiplier. The wrapper is designed as drop-in |
+# replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9]. |
+# |
+# Below are interleaved outputs from 'openssl speed rsa dsa' for 4 |
+# different software configurations on 1.5GHz VIA Esther processor. |
+# Lines marked with "software integer" denote performance of hand- |
+# coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2" |
+# refers to hand-coded SSE2 Montgomery multiplication procedure found |
+# OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from |
+# Padlock SDK 2.0.1 available for download from VIA, which naturally |
+# utilizes the magic 'repz montmul' instruction. And finally "hardware |
+# this" refers to *this* implementation which also uses 'repz montmul' |
+# |
+# sign verify sign/s verify/s |
+# rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer |
+# rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2 |
+# rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK |
+# rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this |
+# |
+# rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer |
+# rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2 |
+# rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK |
+# rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this |
+# |
+# rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer |
+# rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2 |
+# rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK |
+# rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this |
+# |
+# rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer |
+# rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2 |
+# rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK |
+# rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this |
+# |
+# dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer |
+# dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2 |
+# dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK |
+# dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this |
+# |
+# dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer |
+# dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2 |
+# dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK |
+# dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this |
+# |
+# dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer |
+# dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2 |
+# dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK |
+# dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this |
+# |
+# To give you some other reference point here is output for 2.4GHz P4 |
+# running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software |
+# SSE2" in above terms. |
+# |
+# rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0 |
+# rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0 |
+# rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9 |
+# rsa 4096 bits 0.109770s 0.002379s 9.1 420.3 |
+# dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1 |
+# dsa 1024 bits 0.001346s 0.001595s 742.7 627.0 |
+# dsa 2048 bits 0.004745s 0.005582s 210.7 179.1 |
+# |
+# Conclusions: |
+# - VIA SDK leaves a *lot* of room for improvement (which this |
+# implementation successfully fills:-); |
+# - 'rep montmul' gives up to >3x performance improvement depending on |
+# key length; |
+# - in terms of absolute performance it delivers approximately as much |
+# as modern out-of-order 32-bit cores [again, for longer keys]. |
+ |
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
+push(@INC,"${dir}","${dir}../../perlasm"); |
+require "x86asm.pl"; |
+ |
+&asm_init($ARGV[0],"via-mont.pl"); |
+ |
+# int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num); |
+$func="bn_mul_mont_padlock"; |
+ |
+$pad=16*1; # amount of reserved bytes on top of every vector |
+ |
+# stack layout |
+$mZeroPrime=&DWP(0,"esp"); # these are specified by VIA |
+$A=&DWP(4,"esp"); |
+$B=&DWP(8,"esp"); |
+$T=&DWP(12,"esp"); |
+$M=&DWP(16,"esp"); |
+$scratch=&DWP(20,"esp"); |
+$rp=&DWP(24,"esp"); # these are mine |
+$sp=&DWP(28,"esp"); |
+# &DWP(32,"esp") # 32 byte scratch area |
+# &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num] |
+# &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num] |
+# &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num] |
+# &DWP(64+(4*$num+$pad)*3,"esp") # padded copy of np[num] |
+# Note that SDK suggests to unconditionally allocate 2K per vector. This |
+# has quite an impact on performance. It naturally depends on key length, |
+# but to give an example 1024 bit private RSA key operations suffer >30% |
+# penalty. I allocate only as much as actually required... |
+ |
+&function_begin($func); |
+ &xor ("eax","eax"); |
+ &mov ("ecx",&wparam(5)); # num |
+ # meet VIA's limitations for num [note that the specification |
+ # expresses them in bits, while we work with amount of 32-bit words] |
+ &test ("ecx",3); |
+ &jnz (&label("leave")); # num % 4 != 0 |
+ &cmp ("ecx",8); |
+ &jb (&label("leave")); # num < 8 |
+ &cmp ("ecx",1024); |
+ &ja (&label("leave")); # num > 1024 |
+ |
+ &pushf (); |
+ &cld (); |
+ |
+ &mov ("edi",&wparam(0)); # rp |
+ &mov ("eax",&wparam(1)); # ap |
+ &mov ("ebx",&wparam(2)); # bp |
+ &mov ("edx",&wparam(3)); # np |
+ &mov ("esi",&wparam(4)); # n0 |
+ &mov ("esi",&DWP(0,"esi")); # *n0 |
+ |
+ &lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes |
+ &lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes |
+ &neg ("ebp"); |
+ &add ("ebp","esp"); |
+ &and ("ebp",-64); # align to cache-line |
+ &xchg ("ebp","esp"); # alloca |
+ |
+ &mov ($rp,"edi"); # save rp |
+ &mov ($sp,"ebp"); # save esp |
+ |
+ &mov ($mZeroPrime,"esi"); |
+ &lea ("esi",&DWP(64,"esp")); # tp |
+ &mov ($T,"esi"); |
+ &lea ("edi",&DWP(32,"esp")); # scratch area |
+ &mov ($scratch,"edi"); |
+ &mov ("esi","eax"); |
+ |
+ &lea ("ebp",&DWP(-$pad,"ecx")); |
+ &shr ("ebp",2); # restore original num value in ebp |
+ |
+ &xor ("eax","eax"); |
+ |
+ &mov ("ecx","ebp"); |
+ &lea ("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch |
+ &data_byte(0xf3,0xab); # rep stosl, bzero |
+ |
+ &mov ("ecx","ebp"); |
+ &lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy |
+ &mov ($A,"edi"); |
+ &data_byte(0xf3,0xa5); # rep movsl, memcpy |
+ &mov ("ecx",$pad/4); |
+ &data_byte(0xf3,0xab); # rep stosl, bzero pad |
+ # edi points at the end of padded ap copy... |
+ |
+ &mov ("ecx","ebp"); |
+ &mov ("esi","ebx"); |
+ &mov ($B,"edi"); |
+ &data_byte(0xf3,0xa5); # rep movsl, memcpy |
+ &mov ("ecx",$pad/4); |
+ &data_byte(0xf3,0xab); # rep stosl, bzero pad |
+ # edi points at the end of padded bp copy... |
+ |
+ &mov ("ecx","ebp"); |
+ &mov ("esi","edx"); |
+ &mov ($M,"edi"); |
+ &data_byte(0xf3,0xa5); # rep movsl, memcpy |
+ &mov ("ecx",$pad/4); |
+ &data_byte(0xf3,0xab); # rep stosl, bzero pad |
+ # edi points at the end of padded np copy... |
+ |
+ # let magic happen... |
+ &mov ("ecx","ebp"); |
+ &mov ("esi","esp"); |
+ &shl ("ecx",5); # convert word counter to bit counter |
+ &align (4); |
+ &data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul |
+ |
+ &mov ("ecx","ebp"); |
+ &lea ("esi",&DWP(64,"esp")); # tp |
+ # edi still points at the end of padded np copy... |
+ &neg ("ebp"); |
+ &lea ("ebp",&DWP(-$pad,"edi","ebp",4)); # so just "rewind" |
+ &mov ("edi",$rp); # restore rp |
+ &xor ("edx","edx"); # i=0 and clear CF |
+ |
+&set_label("sub",8); |
+ &mov ("eax",&DWP(0,"esi","edx",4)); |
+ &sbb ("eax",&DWP(0,"ebp","edx",4)); |
+ &mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i] |
+ &lea ("edx",&DWP(1,"edx")); # i++ |
+ &loop (&label("sub")); # doesn't affect CF! |
+ |
+ &mov ("eax",&DWP(0,"esi","edx",4)); # upmost overflow bit |
+ &sbb ("eax",0); |
+ &and ("esi","eax"); |
+ ¬ ("eax"); |
+ &mov ("ebp","edi"); |
+ &and ("ebp","eax"); |
+ &or ("esi","ebp"); # tp=carry?tp:rp |
+ |
+ &mov ("ecx","edx"); # num |
+ &xor ("edx","edx"); # i=0 |
+ |
+&set_label("copy",8); |
+ &mov ("eax",&DWP(0,"esi","edx",4)); |
+ &mov (&DWP(64,"esp","edx",4),"ecx"); # zap tp |
+ &mov (&DWP(0,"edi","edx",4),"eax"); |
+ &lea ("edx",&DWP(1,"edx")); # i++ |
+ &loop (&label("copy")); |
+ |
+ &mov ("ebp",$sp); |
+ &xor ("eax","eax"); |
+ |
+ &mov ("ecx",64/4); |
+ &mov ("edi","esp"); # zap frame including scratch area |
+ &data_byte(0xf3,0xab); # rep stosl, bzero |
+ |
+ # zap copies of ap, bp and np |
+ &lea ("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap |
+ &lea ("ecx",&DWP(3*$pad/4,"edx","edx",2)); |
+ &data_byte(0xf3,0xab); # rep stosl, bzero |
+ |
+ &mov ("esp","ebp"); |
+ &inc ("eax"); # signal "done" |
+ &popf (); |
+&set_label("leave"); |
+&function_end($func); |
+ |
+&asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by <appro\@openssl.org>"); |
+ |
+&asm_finish(); |