| Index: src/ia32/codegen-ia32.cc
 | 
| diff --git a/src/ia32/codegen-ia32.cc b/src/ia32/codegen-ia32.cc
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..fb2f8bf26167288063b5d5ab4e3236f197183819
 | 
| --- /dev/null
 | 
| +++ b/src/ia32/codegen-ia32.cc
 | 
| @@ -0,0 +1,7128 @@
 | 
| +// Copyright 2006-2009 the V8 project authors. All rights reserved.
 | 
| +// Redistribution and use in source and binary forms, with or without
 | 
| +// modification, are permitted provided that the following conditions are
 | 
| +// met:
 | 
| +//
 | 
| +//     * Redistributions of source code must retain the above copyright
 | 
| +//       notice, this list of conditions and the following disclaimer.
 | 
| +//     * Redistributions in binary form must reproduce the above
 | 
| +//       copyright notice, this list of conditions and the following
 | 
| +//       disclaimer in the documentation and/or other materials provided
 | 
| +//       with the distribution.
 | 
| +//     * Neither the name of Google Inc. nor the names of its
 | 
| +//       contributors may be used to endorse or promote products derived
 | 
| +//       from this software without specific prior written permission.
 | 
| +//
 | 
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
| +
 | 
| +#include "v8.h"
 | 
| +
 | 
| +#include "bootstrapper.h"
 | 
| +#include "codegen-inl.h"
 | 
| +#include "debug.h"
 | 
| +#include "parser.h"
 | 
| +#include "register-allocator-inl.h"
 | 
| +#include "runtime.h"
 | 
| +#include "scopes.h"
 | 
| +
 | 
| +namespace v8 { namespace internal {
 | 
| +
 | 
| +#define __ ACCESS_MASM(masm_)
 | 
| +
 | 
| +// -------------------------------------------------------------------------
 | 
| +// CodeGenState implementation.
 | 
| +
 | 
| +CodeGenState::CodeGenState(CodeGenerator* owner)
 | 
| +    : owner_(owner),
 | 
| +      typeof_state_(NOT_INSIDE_TYPEOF),
 | 
| +      destination_(NULL),
 | 
| +      previous_(NULL) {
 | 
| +  owner_->set_state(this);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +CodeGenState::CodeGenState(CodeGenerator* owner,
 | 
| +                           TypeofState typeof_state,
 | 
| +                           ControlDestination* destination)
 | 
| +    : owner_(owner),
 | 
| +      typeof_state_(typeof_state),
 | 
| +      destination_(destination),
 | 
| +      previous_(owner->state()) {
 | 
| +  owner_->set_state(this);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +CodeGenState::~CodeGenState() {
 | 
| +  ASSERT(owner_->state() == this);
 | 
| +  owner_->set_state(previous_);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// -------------------------------------------------------------------------
 | 
| +// CodeGenerator implementation
 | 
| +
 | 
| +CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script,
 | 
| +                             bool is_eval)
 | 
| +    : is_eval_(is_eval),
 | 
| +      script_(script),
 | 
| +      deferred_(8),
 | 
| +      masm_(new MacroAssembler(NULL, buffer_size)),
 | 
| +      scope_(NULL),
 | 
| +      frame_(NULL),
 | 
| +      allocator_(NULL),
 | 
| +      state_(NULL),
 | 
| +      loop_nesting_(0),
 | 
| +      function_return_is_shadowed_(false),
 | 
| +      in_spilled_code_(false) {
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// Calling conventions:
 | 
| +// ebp: caller's frame pointer
 | 
| +// esp: stack pointer
 | 
| +// edi: called JS function
 | 
| +// esi: callee's context
 | 
| +
 | 
| +void CodeGenerator::GenCode(FunctionLiteral* fun) {
 | 
| +  // Record the position for debugging purposes.
 | 
| +  CodeForFunctionPosition(fun);
 | 
| +
 | 
| +  ZoneList<Statement*>* body = fun->body();
 | 
| +
 | 
| +  // Initialize state.
 | 
| +  ASSERT(scope_ == NULL);
 | 
| +  scope_ = fun->scope();
 | 
| +  ASSERT(allocator_ == NULL);
 | 
| +  RegisterAllocator register_allocator(this);
 | 
| +  allocator_ = ®ister_allocator;
 | 
| +  ASSERT(frame_ == NULL);
 | 
| +  frame_ = new VirtualFrame(this);
 | 
| +  set_in_spilled_code(false);
 | 
| +
 | 
| +  // Adjust for function-level loop nesting.
 | 
| +  loop_nesting_ += fun->loop_nesting();
 | 
| +
 | 
| +  {
 | 
| +    CodeGenState state(this);
 | 
| +
 | 
| +    // Entry:
 | 
| +    // Stack: receiver, arguments, return address.
 | 
| +    // ebp: caller's frame pointer
 | 
| +    // esp: stack pointer
 | 
| +    // edi: called JS function
 | 
| +    // esi: callee's context
 | 
| +    allocator_->Initialize();
 | 
| +    frame_->Enter();
 | 
| +
 | 
| +#ifdef DEBUG
 | 
| +    if (strlen(FLAG_stop_at) > 0 &&
 | 
| +        fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
 | 
| +      frame_->SpillAll();
 | 
| +      __ int3();
 | 
| +    }
 | 
| +#endif
 | 
| +
 | 
| +    // Allocate space for locals and initialize them.
 | 
| +    frame_->AllocateStackSlots(scope_->num_stack_slots());
 | 
| +    // Initialize the function return target after the locals are set
 | 
| +    // up, because it needs the expected frame height from the frame.
 | 
| +    function_return_.Initialize(this, JumpTarget::BIDIRECTIONAL);
 | 
| +    function_return_is_shadowed_ = false;
 | 
| +
 | 
| +    // Allocate the arguments object and copy the parameters into it.
 | 
| +    if (scope_->arguments() != NULL) {
 | 
| +      ASSERT(scope_->arguments_shadow() != NULL);
 | 
| +      Comment cmnt(masm_, "[ Allocate arguments object");
 | 
| +      ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
 | 
| +      frame_->PushFunction();
 | 
| +      frame_->PushReceiverSlotAddress();
 | 
| +      frame_->Push(Smi::FromInt(scope_->num_parameters()));
 | 
| +      Result answer = frame_->CallStub(&stub, 3);
 | 
| +      frame_->Push(&answer);
 | 
| +    }
 | 
| +
 | 
| +    if (scope_->num_heap_slots() > 0) {
 | 
| +      Comment cmnt(masm_, "[ allocate local context");
 | 
| +      // Allocate local context.
 | 
| +      // Get outer context and create a new context based on it.
 | 
| +      frame_->PushFunction();
 | 
| +      Result context = frame_->CallRuntime(Runtime::kNewContext, 1);
 | 
| +
 | 
| +      // Update context local.
 | 
| +      frame_->SaveContextRegister();
 | 
| +
 | 
| +      // Verify that the runtime call result and esi agree.
 | 
| +      if (FLAG_debug_code) {
 | 
| +        __ cmp(context.reg(), Operand(esi));
 | 
| +        __ Assert(equal, "Runtime::NewContext should end up in esi");
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    // TODO(1241774): Improve this code:
 | 
| +    // 1) only needed if we have a context
 | 
| +    // 2) no need to recompute context ptr every single time
 | 
| +    // 3) don't copy parameter operand code from SlotOperand!
 | 
| +    {
 | 
| +      Comment cmnt2(masm_, "[ copy context parameters into .context");
 | 
| +
 | 
| +      // Note that iteration order is relevant here! If we have the same
 | 
| +      // parameter twice (e.g., function (x, y, x)), and that parameter
 | 
| +      // needs to be copied into the context, it must be the last argument
 | 
| +      // passed to the parameter that needs to be copied. This is a rare
 | 
| +      // case so we don't check for it, instead we rely on the copying
 | 
| +      // order: such a parameter is copied repeatedly into the same
 | 
| +      // context location and thus the last value is what is seen inside
 | 
| +      // the function.
 | 
| +      for (int i = 0; i < scope_->num_parameters(); i++) {
 | 
| +        Variable* par = scope_->parameter(i);
 | 
| +        Slot* slot = par->slot();
 | 
| +        if (slot != NULL && slot->type() == Slot::CONTEXT) {
 | 
| +          // The use of SlotOperand below is safe in unspilled code
 | 
| +          // because the slot is guaranteed to be a context slot.
 | 
| +          //
 | 
| +          // There are no parameters in the global scope.
 | 
| +          ASSERT(!scope_->is_global_scope());
 | 
| +          frame_->PushParameterAt(i);
 | 
| +          Result value = frame_->Pop();
 | 
| +          value.ToRegister();
 | 
| +
 | 
| +          // SlotOperand loads context.reg() with the context object
 | 
| +          // stored to, used below in RecordWrite.
 | 
| +          Result context = allocator_->Allocate();
 | 
| +          ASSERT(context.is_valid());
 | 
| +          __ mov(SlotOperand(slot, context.reg()), value.reg());
 | 
| +          int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
 | 
| +          Result scratch = allocator_->Allocate();
 | 
| +          ASSERT(scratch.is_valid());
 | 
| +          frame_->Spill(context.reg());
 | 
| +          frame_->Spill(value.reg());
 | 
| +          __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg());
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    // This section stores the pointer to the arguments object that
 | 
| +    // was allocated and copied into above. If the address was not
 | 
| +    // saved to TOS, we push ecx onto the stack.
 | 
| +    //
 | 
| +    // Store the arguments object.  This must happen after context
 | 
| +    // initialization because the arguments object may be stored in the
 | 
| +    // context.
 | 
| +    if (scope_->arguments() != NULL) {
 | 
| +      Comment cmnt(masm_, "[ store arguments object");
 | 
| +      { Reference shadow_ref(this, scope_->arguments_shadow());
 | 
| +        ASSERT(shadow_ref.is_slot());
 | 
| +        { Reference arguments_ref(this, scope_->arguments());
 | 
| +          ASSERT(arguments_ref.is_slot());
 | 
| +          // Here we rely on the convenient property that references to slot
 | 
| +          // take up zero space in the frame (ie, it doesn't matter that the
 | 
| +          // stored value is actually below the reference on the frame).
 | 
| +          arguments_ref.SetValue(NOT_CONST_INIT);
 | 
| +        }
 | 
| +        shadow_ref.SetValue(NOT_CONST_INIT);
 | 
| +      }
 | 
| +      frame_->Drop();  // Value is no longer needed.
 | 
| +    }
 | 
| +
 | 
| +    // Generate code to 'execute' declarations and initialize functions
 | 
| +    // (source elements). In case of an illegal redeclaration we need to
 | 
| +    // handle that instead of processing the declarations.
 | 
| +    if (scope_->HasIllegalRedeclaration()) {
 | 
| +      Comment cmnt(masm_, "[ illegal redeclarations");
 | 
| +      scope_->VisitIllegalRedeclaration(this);
 | 
| +    } else {
 | 
| +      Comment cmnt(masm_, "[ declarations");
 | 
| +      ProcessDeclarations(scope_->declarations());
 | 
| +      // Bail out if a stack-overflow exception occurred when processing
 | 
| +      // declarations.
 | 
| +      if (HasStackOverflow()) return;
 | 
| +    }
 | 
| +
 | 
| +    if (FLAG_trace) {
 | 
| +      frame_->CallRuntime(Runtime::kTraceEnter, 0);
 | 
| +      // Ignore the return value.
 | 
| +    }
 | 
| +    CheckStack();
 | 
| +
 | 
| +    // Compile the body of the function in a vanilla state. Don't
 | 
| +    // bother compiling all the code if the scope has an illegal
 | 
| +    // redeclaration.
 | 
| +    if (!scope_->HasIllegalRedeclaration()) {
 | 
| +      Comment cmnt(masm_, "[ function body");
 | 
| +#ifdef DEBUG
 | 
| +      bool is_builtin = Bootstrapper::IsActive();
 | 
| +      bool should_trace =
 | 
| +          is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls;
 | 
| +      if (should_trace) {
 | 
| +        frame_->CallRuntime(Runtime::kDebugTrace, 0);
 | 
| +        // Ignore the return value.
 | 
| +      }
 | 
| +#endif
 | 
| +      VisitStatements(body);
 | 
| +
 | 
| +      // Handle the return from the function.
 | 
| +      if (has_valid_frame()) {
 | 
| +        // If there is a valid frame, control flow can fall off the end of
 | 
| +        // the body.  In that case there is an implicit return statement.
 | 
| +        ASSERT(!function_return_is_shadowed_);
 | 
| +        CodeForReturnPosition(fun);
 | 
| +        frame_->PrepareForReturn();
 | 
| +        Result undefined(Factory::undefined_value(), this);
 | 
| +        if (function_return_.is_bound()) {
 | 
| +          function_return_.Jump(&undefined);
 | 
| +        } else {
 | 
| +          // Though this is a (possibly) backward block, the frames
 | 
| +          // can only differ on their top element.
 | 
| +          function_return_.Bind(&undefined, 1);
 | 
| +          GenerateReturnSequence(&undefined);
 | 
| +        }
 | 
| +      } else if (function_return_.is_linked()) {
 | 
| +        // If the return target has dangling jumps to it, then we have not
 | 
| +        // yet generated the return sequence.  This can happen when (a)
 | 
| +        // control does not flow off the end of the body so we did not
 | 
| +        // compile an artificial return statement just above, and (b) there
 | 
| +        // are return statements in the body but (c) they are all shadowed.
 | 
| +        Result return_value(this);
 | 
| +        // Though this is a (possibly) backward block, the frames can
 | 
| +        // only differ on their top element.
 | 
| +        function_return_.Bind(&return_value, 1);
 | 
| +        GenerateReturnSequence(&return_value);
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  // Adjust for function-level loop nesting.
 | 
| +  loop_nesting_ -= fun->loop_nesting();
 | 
| +
 | 
| +  // Code generation state must be reset.
 | 
| +  ASSERT(state_ == NULL);
 | 
| +  ASSERT(loop_nesting() == 0);
 | 
| +  ASSERT(!function_return_is_shadowed_);
 | 
| +  function_return_.Unuse();
 | 
| +  DeleteFrame();
 | 
| +
 | 
| +  // Process any deferred code using the register allocator.
 | 
| +  if (HasStackOverflow()) {
 | 
| +    ClearDeferred();
 | 
| +  } else {
 | 
| +    ProcessDeferred();
 | 
| +  }
 | 
| +
 | 
| +  // There is no need to delete the register allocator, it is a
 | 
| +  // stack-allocated local.
 | 
| +  allocator_ = NULL;
 | 
| +  scope_ = NULL;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
 | 
| +  // Currently, this assertion will fail if we try to assign to
 | 
| +  // a constant variable that is constant because it is read-only
 | 
| +  // (such as the variable referring to a named function expression).
 | 
| +  // We need to implement assignments to read-only variables.
 | 
| +  // Ideally, we should do this during AST generation (by converting
 | 
| +  // such assignments into expression statements); however, in general
 | 
| +  // we may not be able to make the decision until past AST generation,
 | 
| +  // that is when the entire program is known.
 | 
| +  ASSERT(slot != NULL);
 | 
| +  int index = slot->index();
 | 
| +  switch (slot->type()) {
 | 
| +    case Slot::PARAMETER:
 | 
| +      return frame_->ParameterAt(index);
 | 
| +
 | 
| +    case Slot::LOCAL:
 | 
| +      return frame_->LocalAt(index);
 | 
| +
 | 
| +    case Slot::CONTEXT: {
 | 
| +      // Follow the context chain if necessary.
 | 
| +      ASSERT(!tmp.is(esi));  // do not overwrite context register
 | 
| +      Register context = esi;
 | 
| +      int chain_length = scope()->ContextChainLength(slot->var()->scope());
 | 
| +      for (int i = 0; i < chain_length; i++) {
 | 
| +        // Load the closure.
 | 
| +        // (All contexts, even 'with' contexts, have a closure,
 | 
| +        // and it is the same for all contexts inside a function.
 | 
| +        // There is no need to go to the function context first.)
 | 
| +        __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
 | 
| +        // Load the function context (which is the incoming, outer context).
 | 
| +        __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
 | 
| +        context = tmp;
 | 
| +      }
 | 
| +      // We may have a 'with' context now. Get the function context.
 | 
| +      // (In fact this mov may never be the needed, since the scope analysis
 | 
| +      // may not permit a direct context access in this case and thus we are
 | 
| +      // always at a function context. However it is safe to dereference be-
 | 
| +      // cause the function context of a function context is itself. Before
 | 
| +      // deleting this mov we should try to create a counter-example first,
 | 
| +      // though...)
 | 
| +      __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
 | 
| +      return ContextOperand(tmp, index);
 | 
| +    }
 | 
| +
 | 
| +    default:
 | 
| +      UNREACHABLE();
 | 
| +      return Operand(eax);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
 | 
| +                                                         Result tmp,
 | 
| +                                                         JumpTarget* slow) {
 | 
| +  ASSERT(slot->type() == Slot::CONTEXT);
 | 
| +  ASSERT(tmp.is_register());
 | 
| +  Result context(esi, this);
 | 
| +
 | 
| +  for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
 | 
| +    if (s->num_heap_slots() > 0) {
 | 
| +      if (s->calls_eval()) {
 | 
| +        // Check that extension is NULL.
 | 
| +        __ cmp(ContextOperand(context.reg(), Context::EXTENSION_INDEX),
 | 
| +               Immediate(0));
 | 
| +        slow->Branch(not_equal, not_taken);
 | 
| +      }
 | 
| +      __ mov(tmp.reg(), ContextOperand(context.reg(), Context::CLOSURE_INDEX));
 | 
| +      __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
 | 
| +      context = tmp;
 | 
| +    }
 | 
| +  }
 | 
| +  // Check that last extension is NULL.
 | 
| +  __ cmp(ContextOperand(context.reg(), Context::EXTENSION_INDEX),
 | 
| +         Immediate(0));
 | 
| +  slow->Branch(not_equal, not_taken);
 | 
| +  __ mov(tmp.reg(), ContextOperand(context.reg(), Context::FCONTEXT_INDEX));
 | 
| +  return ContextOperand(tmp.reg(), slot->index());
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// Emit code to load the value of an expression to the top of the
 | 
| +// frame. If the expression is boolean-valued it may be compiled (or
 | 
| +// partially compiled) into control flow to the control destination.
 | 
| +// If force_control is true, control flow is forced.
 | 
| +void CodeGenerator::LoadCondition(Expression* x,
 | 
| +                                  TypeofState typeof_state,
 | 
| +                                  ControlDestination* dest,
 | 
| +                                  bool force_control) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  int original_height = frame_->height();
 | 
| +
 | 
| +  { CodeGenState new_state(this, typeof_state, dest);
 | 
| +    Visit(x);
 | 
| +
 | 
| +    // If we hit a stack overflow, we may not have actually visited
 | 
| +    // the expression.  In that case, we ensure that we have a
 | 
| +    // valid-looking frame state because we will continue to generate
 | 
| +    // code as we unwind the C++ stack.
 | 
| +    //
 | 
| +    // It's possible to have both a stack overflow and a valid frame
 | 
| +    // state (eg, a subexpression overflowed, visiting it returned
 | 
| +    // with a dummied frame state, and visiting this expression
 | 
| +    // returned with a normal-looking state).
 | 
| +    if (HasStackOverflow() &&
 | 
| +        !dest->is_used() &&
 | 
| +        frame_->height() == original_height) {
 | 
| +      dest->Goto(true);
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  if (force_control && !dest->is_used()) {
 | 
| +    // Convert the TOS value into flow to the control destination.
 | 
| +    ToBoolean(dest);
 | 
| +  }
 | 
| +
 | 
| +  ASSERT(!(force_control && !dest->is_used()));
 | 
| +  ASSERT(dest->is_used() || frame_->height() == original_height + 1);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::LoadAndSpill(Expression* expression,
 | 
| +                                 TypeofState typeof_state) {
 | 
| +  ASSERT(in_spilled_code());
 | 
| +  set_in_spilled_code(false);
 | 
| +  Load(expression, typeof_state);
 | 
| +  frame_->SpillAll();
 | 
| +  set_in_spilled_code(true);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::Load(Expression* x, TypeofState typeof_state) {
 | 
| +#ifdef DEBUG
 | 
| +  int original_height = frame_->height();
 | 
| +#endif
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  JumpTarget true_target(this);
 | 
| +  JumpTarget false_target(this);
 | 
| +  ControlDestination dest(&true_target, &false_target, true);
 | 
| +  LoadCondition(x, typeof_state, &dest, false);
 | 
| +
 | 
| +  if (dest.false_was_fall_through()) {
 | 
| +    // The false target was just bound.
 | 
| +    JumpTarget loaded(this);
 | 
| +    frame_->Push(Factory::false_value());
 | 
| +    // There may be dangling jumps to the true target.
 | 
| +    if (true_target.is_linked()) {
 | 
| +      loaded.Jump();
 | 
| +      true_target.Bind();
 | 
| +      frame_->Push(Factory::true_value());
 | 
| +      loaded.Bind();
 | 
| +    }
 | 
| +
 | 
| +  } else if (dest.is_used()) {
 | 
| +    // There is true, and possibly false, control flow (with true as
 | 
| +    // the fall through).
 | 
| +    JumpTarget loaded(this);
 | 
| +    frame_->Push(Factory::true_value());
 | 
| +    if (false_target.is_linked()) {
 | 
| +      loaded.Jump();
 | 
| +      false_target.Bind();
 | 
| +      frame_->Push(Factory::false_value());
 | 
| +      loaded.Bind();
 | 
| +    }
 | 
| +
 | 
| +  } else {
 | 
| +    // We have a valid value on top of the frame, but we still may
 | 
| +    // have dangling jumps to the true and false targets from nested
 | 
| +    // subexpressions (eg, the left subexpressions of the
 | 
| +    // short-circuited boolean operators).
 | 
| +    ASSERT(has_valid_frame());
 | 
| +    if (true_target.is_linked() || false_target.is_linked()) {
 | 
| +      JumpTarget loaded(this);
 | 
| +      loaded.Jump();  // Don't lose the current TOS.
 | 
| +      if (true_target.is_linked()) {
 | 
| +        true_target.Bind();
 | 
| +        frame_->Push(Factory::true_value());
 | 
| +        if (false_target.is_linked()) {
 | 
| +          loaded.Jump();
 | 
| +        }
 | 
| +      }
 | 
| +      if (false_target.is_linked()) {
 | 
| +        false_target.Bind();
 | 
| +        frame_->Push(Factory::false_value());
 | 
| +      }
 | 
| +      loaded.Bind();
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  ASSERT(has_valid_frame());
 | 
| +  ASSERT(frame_->height() == original_height + 1);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::LoadGlobal() {
 | 
| +  if (in_spilled_code()) {
 | 
| +    frame_->EmitPush(GlobalObject());
 | 
| +  } else {
 | 
| +    Result temp = allocator_->Allocate();
 | 
| +    __ mov(temp.reg(), GlobalObject());
 | 
| +    frame_->Push(&temp);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::LoadGlobalReceiver() {
 | 
| +  Result temp = allocator_->Allocate();
 | 
| +  Register reg = temp.reg();
 | 
| +  __ mov(reg, GlobalObject());
 | 
| +  __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
 | 
| +  frame_->Push(&temp);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// TODO(1241834): Get rid of this function in favor of just using Load, now
 | 
| +// that we have the INSIDE_TYPEOF typeof state. => Need to handle global
 | 
| +// variables w/o reference errors elsewhere.
 | 
| +void CodeGenerator::LoadTypeofExpression(Expression* x) {
 | 
| +  Variable* variable = x->AsVariableProxy()->AsVariable();
 | 
| +  if (variable != NULL && !variable->is_this() && variable->is_global()) {
 | 
| +    // NOTE: This is somewhat nasty. We force the compiler to load
 | 
| +    // the variable as if through '<global>.<variable>' to make sure we
 | 
| +    // do not get reference errors.
 | 
| +    Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
 | 
| +    Literal key(variable->name());
 | 
| +    // TODO(1241834): Fetch the position from the variable instead of using
 | 
| +    // no position.
 | 
| +    Property property(&global, &key, RelocInfo::kNoPosition);
 | 
| +    Load(&property);
 | 
| +  } else {
 | 
| +    Load(x, INSIDE_TYPEOF);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +Reference::Reference(CodeGenerator* cgen, Expression* expression)
 | 
| +    : cgen_(cgen), expression_(expression), type_(ILLEGAL) {
 | 
| +  cgen->LoadReference(this);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +Reference::~Reference() {
 | 
| +  cgen_->UnloadReference(this);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::LoadReference(Reference* ref) {
 | 
| +  // References are loaded from both spilled and unspilled code.  Set the
 | 
| +  // state to unspilled to allow that (and explicitly spill after
 | 
| +  // construction at the construction sites).
 | 
| +  bool was_in_spilled_code = in_spilled_code_;
 | 
| +  in_spilled_code_ = false;
 | 
| +
 | 
| +  Comment cmnt(masm_, "[ LoadReference");
 | 
| +  Expression* e = ref->expression();
 | 
| +  Property* property = e->AsProperty();
 | 
| +  Variable* var = e->AsVariableProxy()->AsVariable();
 | 
| +
 | 
| +  if (property != NULL) {
 | 
| +    // The expression is either a property or a variable proxy that rewrites
 | 
| +    // to a property.
 | 
| +    Load(property->obj());
 | 
| +    // We use a named reference if the key is a literal symbol, unless it is
 | 
| +    // a string that can be legally parsed as an integer.  This is because
 | 
| +    // otherwise we will not get into the slow case code that handles [] on
 | 
| +    // String objects.
 | 
| +    Literal* literal = property->key()->AsLiteral();
 | 
| +    uint32_t dummy;
 | 
| +    if (literal != NULL &&
 | 
| +        literal->handle()->IsSymbol() &&
 | 
| +        !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) {
 | 
| +      ref->set_type(Reference::NAMED);
 | 
| +    } else {
 | 
| +      Load(property->key());
 | 
| +      ref->set_type(Reference::KEYED);
 | 
| +    }
 | 
| +  } else if (var != NULL) {
 | 
| +    // The expression is a variable proxy that does not rewrite to a
 | 
| +    // property.  Global variables are treated as named property references.
 | 
| +    if (var->is_global()) {
 | 
| +      LoadGlobal();
 | 
| +      ref->set_type(Reference::NAMED);
 | 
| +    } else {
 | 
| +      ASSERT(var->slot() != NULL);
 | 
| +      ref->set_type(Reference::SLOT);
 | 
| +    }
 | 
| +  } else {
 | 
| +    // Anything else is a runtime error.
 | 
| +    Load(e);
 | 
| +    frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
 | 
| +  }
 | 
| +
 | 
| +  in_spilled_code_ = was_in_spilled_code;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::UnloadReference(Reference* ref) {
 | 
| +  // Pop a reference from the stack while preserving TOS.
 | 
| +  Comment cmnt(masm_, "[ UnloadReference");
 | 
| +  frame_->Nip(ref->size());
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class ToBooleanStub: public CodeStub {
 | 
| + public:
 | 
| +  ToBooleanStub() { }
 | 
| +
 | 
| +  void Generate(MacroAssembler* masm);
 | 
| +
 | 
| + private:
 | 
| +  Major MajorKey() { return ToBoolean; }
 | 
| +  int MinorKey() { return 0; }
 | 
| +};
 | 
| +
 | 
| +
 | 
| +// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
 | 
| +// convert it to a boolean in the condition code register or jump to
 | 
| +// 'false_target'/'true_target' as appropriate.
 | 
| +void CodeGenerator::ToBoolean(ControlDestination* dest) {
 | 
| +  Comment cmnt(masm_, "[ ToBoolean");
 | 
| +
 | 
| +  // The value to convert should be popped from the frame.
 | 
| +  Result value = frame_->Pop();
 | 
| +  value.ToRegister();
 | 
| +  // Fast case checks.
 | 
| +
 | 
| +  // 'false' => false.
 | 
| +  __ cmp(value.reg(), Factory::false_value());
 | 
| +  dest->false_target()->Branch(equal);
 | 
| +
 | 
| +  // 'true' => true.
 | 
| +  __ cmp(value.reg(), Factory::true_value());
 | 
| +  dest->true_target()->Branch(equal);
 | 
| +
 | 
| +  // 'undefined' => false.
 | 
| +  __ cmp(value.reg(), Factory::undefined_value());
 | 
| +  dest->false_target()->Branch(equal);
 | 
| +
 | 
| +  // Smi => false iff zero.
 | 
| +  ASSERT(kSmiTag == 0);
 | 
| +  __ test(value.reg(), Operand(value.reg()));
 | 
| +  dest->false_target()->Branch(zero);
 | 
| +  __ test(value.reg(), Immediate(kSmiTagMask));
 | 
| +  dest->true_target()->Branch(zero);
 | 
| +
 | 
| +  // Call the stub for all other cases.
 | 
| +  frame_->Push(&value);  // Undo the Pop() from above.
 | 
| +  ToBooleanStub stub;
 | 
| +  Result temp = frame_->CallStub(&stub, 1);
 | 
| +  // Convert the result to a condition code.
 | 
| +  __ test(temp.reg(), Operand(temp.reg()));
 | 
| +  temp.Unuse();
 | 
| +  dest->Split(not_equal);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class FloatingPointHelper : public AllStatic {
 | 
| + public:
 | 
| +  // Code pattern for loading floating point values. Input values must
 | 
| +  // be either smi or heap number objects (fp values). Requirements:
 | 
| +  // operand_1 on TOS+1 , operand_2 on TOS+2; Returns operands as
 | 
| +  // floating point numbers on FPU stack.
 | 
| +  static void LoadFloatOperands(MacroAssembler* masm, Register scratch);
 | 
| +  // Test if operands are smi or number objects (fp). Requirements:
 | 
| +  // operand_1 in eax, operand_2 in edx; falls through on float
 | 
| +  // operands, jumps to the non_float label otherwise.
 | 
| +  static void CheckFloatOperands(MacroAssembler* masm,
 | 
| +                                 Label* non_float,
 | 
| +                                 Register scratch);
 | 
| +  // Allocate a heap number in new space with undefined value.
 | 
| +  // Returns tagged pointer in eax, or jumps to need_gc if new space is full.
 | 
| +  static void AllocateHeapNumber(MacroAssembler* masm,
 | 
| +                                 Label* need_gc,
 | 
| +                                 Register scratch1,
 | 
| +                                 Register scratch2);
 | 
| +};
 | 
| +
 | 
| +
 | 
| +// Flag that indicates whether or not the code that handles smi arguments
 | 
| +// should be placed in the stub, inlined, or omitted entirely.
 | 
| +enum GenericBinaryFlags {
 | 
| +  SMI_CODE_IN_STUB,
 | 
| +  SMI_CODE_INLINED
 | 
| +};
 | 
| +
 | 
| +
 | 
| +class GenericBinaryOpStub: public CodeStub {
 | 
| + public:
 | 
| +  GenericBinaryOpStub(Token::Value op,
 | 
| +                      OverwriteMode mode,
 | 
| +                      GenericBinaryFlags flags)
 | 
| +      : op_(op), mode_(mode), flags_(flags) {
 | 
| +    ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
 | 
| +  }
 | 
| +
 | 
| +  void GenerateSmiCode(MacroAssembler* masm, Label* slow);
 | 
| +
 | 
| + private:
 | 
| +  Token::Value op_;
 | 
| +  OverwriteMode mode_;
 | 
| +  GenericBinaryFlags flags_;
 | 
| +
 | 
| +  const char* GetName();
 | 
| +
 | 
| +#ifdef DEBUG
 | 
| +  void Print() {
 | 
| +    PrintF("GenericBinaryOpStub (op %s), (mode %d, flags %d)\n",
 | 
| +           Token::String(op_),
 | 
| +           static_cast<int>(mode_),
 | 
| +           static_cast<int>(flags_));
 | 
| +  }
 | 
| +#endif
 | 
| +
 | 
| +  // Minor key encoding in 16 bits FOOOOOOOOOOOOOMM.
 | 
| +  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
 | 
| +  class OpBits: public BitField<Token::Value, 2, 13> {};
 | 
| +  class FlagBits: public BitField<GenericBinaryFlags, 15, 1> {};
 | 
| +
 | 
| +  Major MajorKey() { return GenericBinaryOp; }
 | 
| +  int MinorKey() {
 | 
| +    // Encode the parameters in a unique 16 bit value.
 | 
| +    return OpBits::encode(op_)
 | 
| +           | ModeBits::encode(mode_)
 | 
| +           | FlagBits::encode(flags_);
 | 
| +  }
 | 
| +  void Generate(MacroAssembler* masm);
 | 
| +};
 | 
| +
 | 
| +
 | 
| +const char* GenericBinaryOpStub::GetName() {
 | 
| +  switch (op_) {
 | 
| +    case Token::ADD: return "GenericBinaryOpStub_ADD";
 | 
| +    case Token::SUB: return "GenericBinaryOpStub_SUB";
 | 
| +    case Token::MUL: return "GenericBinaryOpStub_MUL";
 | 
| +    case Token::DIV: return "GenericBinaryOpStub_DIV";
 | 
| +    case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR";
 | 
| +    case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND";
 | 
| +    case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR";
 | 
| +    case Token::SAR: return "GenericBinaryOpStub_SAR";
 | 
| +    case Token::SHL: return "GenericBinaryOpStub_SHL";
 | 
| +    case Token::SHR: return "GenericBinaryOpStub_SHR";
 | 
| +    default:         return "GenericBinaryOpStub";
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// A deferred code class implementing binary operations on likely smis.
 | 
| +// This class generates both inline code and deferred code.
 | 
| +// The fastest path is implemented inline.  Deferred code calls
 | 
| +// the GenericBinaryOpStub stub for slow cases.
 | 
| +class DeferredInlineBinaryOperation: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredInlineBinaryOperation(CodeGenerator* generator,
 | 
| +                                Token::Value op,
 | 
| +                                OverwriteMode mode,
 | 
| +                                GenericBinaryFlags flags)
 | 
| +      : DeferredCode(generator), stub_(op, mode, flags), op_(op) {
 | 
| +    set_comment("[ DeferredInlineBinaryOperation");
 | 
| +  }
 | 
| +
 | 
| +  // Consumes its arguments, left and right, leaving them invalid.
 | 
| +  Result GenerateInlineCode(Result* left, Result* right);
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  GenericBinaryOpStub stub_;
 | 
| +  Token::Value op_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredInlineBinaryOperation::Generate() {
 | 
| +  Result left(generator());
 | 
| +  Result right(generator());
 | 
| +  enter()->Bind(&left, &right);
 | 
| +  generator()->frame()->Push(&left);
 | 
| +  generator()->frame()->Push(&right);
 | 
| +  Result answer = generator()->frame()->CallStub(&stub_, 2);
 | 
| +  exit_.Jump(&answer);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenericBinaryOperation(Token::Value op,
 | 
| +                                           SmiAnalysis* type,
 | 
| +                                           OverwriteMode overwrite_mode) {
 | 
| +  Comment cmnt(masm_, "[ BinaryOperation");
 | 
| +  Comment cmnt_token(masm_, Token::String(op));
 | 
| +
 | 
| +  if (op == Token::COMMA) {
 | 
| +    // Simply discard left value.
 | 
| +    frame_->Nip(1);
 | 
| +    return;
 | 
| +  }
 | 
| +
 | 
| +  // Set the flags based on the operation, type and loop nesting level.
 | 
| +  GenericBinaryFlags flags;
 | 
| +  switch (op) {
 | 
| +    case Token::BIT_OR:
 | 
| +    case Token::BIT_AND:
 | 
| +    case Token::BIT_XOR:
 | 
| +    case Token::SHL:
 | 
| +    case Token::SHR:
 | 
| +    case Token::SAR:
 | 
| +      // Bit operations always assume they likely operate on Smis. Still only
 | 
| +      // generate the inline Smi check code if this operation is part of a loop.
 | 
| +      flags = (loop_nesting() > 0)
 | 
| +              ? SMI_CODE_INLINED
 | 
| +              : SMI_CODE_IN_STUB;
 | 
| +      break;
 | 
| +
 | 
| +    default:
 | 
| +      // By default only inline the Smi check code for likely smis if this
 | 
| +      // operation is part of a loop.
 | 
| +      flags = ((loop_nesting() > 0) && type->IsLikelySmi())
 | 
| +              ? SMI_CODE_INLINED
 | 
| +              : SMI_CODE_IN_STUB;
 | 
| +      break;
 | 
| +  }
 | 
| +
 | 
| +  Result right = frame_->Pop();
 | 
| +  Result left = frame_->Pop();
 | 
| +
 | 
| +  if (op == Token::ADD) {
 | 
| +    bool left_is_string = left.static_type().is_jsstring();
 | 
| +    bool right_is_string = right.static_type().is_jsstring();
 | 
| +    if (left_is_string || right_is_string) {
 | 
| +      frame_->Push(&left);
 | 
| +      frame_->Push(&right);
 | 
| +      Result answer(this);
 | 
| +      if (left_is_string) {
 | 
| +        if (right_is_string) {
 | 
| +          // TODO(lrn): if (left.is_constant() && right.is_constant())
 | 
| +          // -- do a compile time cons, if allocation during codegen is allowed.
 | 
| +          answer = frame_->CallRuntime(Runtime::kStringAdd, 2);
 | 
| +        } else {
 | 
| +          answer =
 | 
| +            frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
 | 
| +        }
 | 
| +      } else if (right_is_string) {
 | 
| +        answer =
 | 
| +          frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
 | 
| +      }
 | 
| +      answer.set_static_type(StaticType::jsstring());
 | 
| +      frame_->Push(&answer);
 | 
| +      return;
 | 
| +    }
 | 
| +    // Neither operand is known to be a string.
 | 
| +  }
 | 
| +
 | 
| +  bool left_is_smi = left.is_constant() && left.handle()->IsSmi();
 | 
| +  bool left_is_non_smi = left.is_constant() && !left.handle()->IsSmi();
 | 
| +  bool right_is_smi = right.is_constant() && right.handle()->IsSmi();
 | 
| +  bool right_is_non_smi = right.is_constant() && !right.handle()->IsSmi();
 | 
| +  bool generate_no_smi_code = false;  // No smi code at all, inline or in stub.
 | 
| +
 | 
| +  if (left_is_smi && right_is_smi) {
 | 
| +    // Compute the constant result at compile time, and leave it on the frame.
 | 
| +    int left_int = Smi::cast(*left.handle())->value();
 | 
| +    int right_int = Smi::cast(*right.handle())->value();
 | 
| +    if (FoldConstantSmis(op, left_int, right_int)) return;
 | 
| +  }
 | 
| +
 | 
| +  if (left_is_non_smi || right_is_non_smi) {
 | 
| +    // Set flag so that we go straight to the slow case, with no smi code.
 | 
| +    generate_no_smi_code = true;
 | 
| +  } else if (right_is_smi) {
 | 
| +    ConstantSmiBinaryOperation(op, &left, right.handle(),
 | 
| +                               type, false, overwrite_mode);
 | 
| +    return;
 | 
| +  } else if (left_is_smi) {
 | 
| +    ConstantSmiBinaryOperation(op, &right, left.handle(),
 | 
| +                               type, true, overwrite_mode);
 | 
| +    return;
 | 
| +  }
 | 
| +
 | 
| +  if (flags == SMI_CODE_INLINED && !generate_no_smi_code) {
 | 
| +    LikelySmiBinaryOperation(op, &left, &right, overwrite_mode);
 | 
| +  } else {
 | 
| +    frame_->Push(&left);
 | 
| +    frame_->Push(&right);
 | 
| +    // If we know the arguments aren't smis, use the binary operation stub
 | 
| +    // that does not check for the fast smi case.
 | 
| +    // The same stub is used for NO_SMI_CODE and SMI_CODE_INLINED.
 | 
| +    if (generate_no_smi_code) {
 | 
| +      flags = SMI_CODE_INLINED;
 | 
| +    }
 | 
| +    GenericBinaryOpStub stub(op, overwrite_mode, flags);
 | 
| +    Result answer = frame_->CallStub(&stub, 2);
 | 
| +    frame_->Push(&answer);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
 | 
| +  Object* answer_object = Heap::undefined_value();
 | 
| +  switch (op) {
 | 
| +    case Token::ADD:
 | 
| +      if (Smi::IsValid(left + right)) {
 | 
| +        answer_object = Smi::FromInt(left + right);
 | 
| +      }
 | 
| +      break;
 | 
| +    case Token::SUB:
 | 
| +      if (Smi::IsValid(left - right)) {
 | 
| +        answer_object = Smi::FromInt(left - right);
 | 
| +      }
 | 
| +      break;
 | 
| +    case Token::MUL: {
 | 
| +        double answer = static_cast<double>(left) * right;
 | 
| +        if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
 | 
| +          // If the product is zero and the non-zero factor is negative,
 | 
| +          // the spec requires us to return floating point negative zero.
 | 
| +          if (answer != 0 || (left >= 0 && right >= 0)) {
 | 
| +            answer_object = Smi::FromInt(static_cast<int>(answer));
 | 
| +          }
 | 
| +        }
 | 
| +      }
 | 
| +      break;
 | 
| +    case Token::DIV:
 | 
| +    case Token::MOD:
 | 
| +      break;
 | 
| +    case Token::BIT_OR:
 | 
| +      answer_object = Smi::FromInt(left | right);
 | 
| +      break;
 | 
| +    case Token::BIT_AND:
 | 
| +      answer_object = Smi::FromInt(left & right);
 | 
| +      break;
 | 
| +    case Token::BIT_XOR:
 | 
| +      answer_object = Smi::FromInt(left ^ right);
 | 
| +      break;
 | 
| +
 | 
| +    case Token::SHL: {
 | 
| +        int shift_amount = right & 0x1F;
 | 
| +        if (Smi::IsValid(left << shift_amount)) {
 | 
| +          answer_object = Smi::FromInt(left << shift_amount);
 | 
| +        }
 | 
| +        break;
 | 
| +      }
 | 
| +    case Token::SHR: {
 | 
| +        int shift_amount = right & 0x1F;
 | 
| +        unsigned int unsigned_left = left;
 | 
| +        unsigned_left >>= shift_amount;
 | 
| +        if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
 | 
| +          answer_object = Smi::FromInt(unsigned_left);
 | 
| +        }
 | 
| +        break;
 | 
| +      }
 | 
| +    case Token::SAR: {
 | 
| +        int shift_amount = right & 0x1F;
 | 
| +        unsigned int unsigned_left = left;
 | 
| +        if (left < 0) {
 | 
| +          // Perform arithmetic shift of a negative number by
 | 
| +          // complementing number, logical shifting, complementing again.
 | 
| +          unsigned_left = ~unsigned_left;
 | 
| +          unsigned_left >>= shift_amount;
 | 
| +          unsigned_left = ~unsigned_left;
 | 
| +        } else {
 | 
| +          unsigned_left >>= shift_amount;
 | 
| +        }
 | 
| +        ASSERT(Smi::IsValid(unsigned_left));  // Converted to signed.
 | 
| +        answer_object = Smi::FromInt(unsigned_left);  // Converted to signed.
 | 
| +        break;
 | 
| +      }
 | 
| +    default:
 | 
| +      UNREACHABLE();
 | 
| +      break;
 | 
| +  }
 | 
| +  if (answer_object == Heap::undefined_value()) {
 | 
| +    return false;
 | 
| +  }
 | 
| +  frame_->Push(Handle<Object>(answer_object));
 | 
| +  return true;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::LikelySmiBinaryOperation(Token::Value op,
 | 
| +                                             Result* left,
 | 
| +                                             Result* right,
 | 
| +                                             OverwriteMode overwrite_mode) {
 | 
| +  // Implements a binary operation using a deferred code object
 | 
| +  // and some inline code to operate on smis quickly.
 | 
| +  DeferredInlineBinaryOperation* deferred =
 | 
| +      new DeferredInlineBinaryOperation(this, op, overwrite_mode,
 | 
| +                                        SMI_CODE_INLINED);
 | 
| +  // Generate the inline code that handles some smi operations,
 | 
| +  // and jumps to the deferred code for everything else.
 | 
| +  Result answer = deferred->GenerateInlineCode(left, right);
 | 
| +  deferred->BindExit(&answer);
 | 
| +  frame_->Push(&answer);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class DeferredInlineSmiOperation: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredInlineSmiOperation(CodeGenerator* generator,
 | 
| +                             Token::Value op,
 | 
| +                             Smi* value,
 | 
| +                             OverwriteMode overwrite_mode)
 | 
| +      : DeferredCode(generator),
 | 
| +        op_(op),
 | 
| +        value_(value),
 | 
| +        overwrite_mode_(overwrite_mode) {
 | 
| +    set_comment("[ DeferredInlineSmiOperation");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  Token::Value op_;
 | 
| +  Smi* value_;
 | 
| +  OverwriteMode overwrite_mode_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredInlineSmiOperation::Generate() {
 | 
| +  Result left(generator());
 | 
| +  enter()->Bind(&left);
 | 
| +  generator()->frame()->Push(&left);
 | 
| +  generator()->frame()->Push(value_);
 | 
| +  GenericBinaryOpStub igostub(op_, overwrite_mode_, SMI_CODE_INLINED);
 | 
| +  Result answer = generator()->frame()->CallStub(&igostub, 2);
 | 
| +  exit_.Jump(&answer);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class DeferredInlineSmiOperationReversed: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredInlineSmiOperationReversed(CodeGenerator* generator,
 | 
| +                                     Token::Value op,
 | 
| +                                     Smi* value,
 | 
| +                                     OverwriteMode overwrite_mode)
 | 
| +      : DeferredCode(generator),
 | 
| +        op_(op),
 | 
| +        value_(value),
 | 
| +        overwrite_mode_(overwrite_mode) {
 | 
| +    set_comment("[ DeferredInlineSmiOperationReversed");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  Token::Value op_;
 | 
| +  Smi* value_;
 | 
| +  OverwriteMode overwrite_mode_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredInlineSmiOperationReversed::Generate() {
 | 
| +  Result right(generator());
 | 
| +  enter()->Bind(&right);
 | 
| +  generator()->frame()->Push(value_);
 | 
| +  generator()->frame()->Push(&right);
 | 
| +  GenericBinaryOpStub igostub(op_, overwrite_mode_, SMI_CODE_INLINED);
 | 
| +  Result answer = generator()->frame()->CallStub(&igostub, 2);
 | 
| +  exit_.Jump(&answer);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class DeferredInlineSmiAdd: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredInlineSmiAdd(CodeGenerator* generator,
 | 
| +                       Smi* value,
 | 
| +                       OverwriteMode overwrite_mode)
 | 
| +      : DeferredCode(generator),
 | 
| +        value_(value),
 | 
| +        overwrite_mode_(overwrite_mode) {
 | 
| +    set_comment("[ DeferredInlineSmiAdd");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  Smi* value_;
 | 
| +  OverwriteMode overwrite_mode_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredInlineSmiAdd::Generate() {
 | 
| +  // Undo the optimistic add operation and call the shared stub.
 | 
| +  Result left(generator());  // Initially left + value_.
 | 
| +  enter()->Bind(&left);
 | 
| +  left.ToRegister();
 | 
| +  generator()->frame()->Spill(left.reg());
 | 
| +  __ sub(Operand(left.reg()), Immediate(value_));
 | 
| +  generator()->frame()->Push(&left);
 | 
| +  generator()->frame()->Push(value_);
 | 
| +  GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, SMI_CODE_INLINED);
 | 
| +  Result answer = generator()->frame()->CallStub(&igostub, 2);
 | 
| +  exit_.Jump(&answer);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class DeferredInlineSmiAddReversed: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredInlineSmiAddReversed(CodeGenerator* generator,
 | 
| +                               Smi* value,
 | 
| +                               OverwriteMode overwrite_mode)
 | 
| +      : DeferredCode(generator),
 | 
| +        value_(value),
 | 
| +        overwrite_mode_(overwrite_mode) {
 | 
| +    set_comment("[ DeferredInlineSmiAddReversed");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  Smi* value_;
 | 
| +  OverwriteMode overwrite_mode_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredInlineSmiAddReversed::Generate() {
 | 
| +  // Undo the optimistic add operation and call the shared stub.
 | 
| +  Result right(generator());  // Initially value_ + right.
 | 
| +  enter()->Bind(&right);
 | 
| +  right.ToRegister();
 | 
| +  generator()->frame()->Spill(right.reg());
 | 
| +  __ sub(Operand(right.reg()), Immediate(value_));
 | 
| +  generator()->frame()->Push(value_);
 | 
| +  generator()->frame()->Push(&right);
 | 
| +  GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, SMI_CODE_INLINED);
 | 
| +  Result answer = generator()->frame()->CallStub(&igostub, 2);
 | 
| +  exit_.Jump(&answer);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class DeferredInlineSmiSub: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredInlineSmiSub(CodeGenerator* generator,
 | 
| +                       Smi* value,
 | 
| +                       OverwriteMode overwrite_mode)
 | 
| +      : DeferredCode(generator),
 | 
| +        value_(value),
 | 
| +        overwrite_mode_(overwrite_mode) {
 | 
| +    set_comment("[ DeferredInlineSmiSub");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  Smi* value_;
 | 
| +  OverwriteMode overwrite_mode_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredInlineSmiSub::Generate() {
 | 
| +  // Undo the optimistic sub operation and call the shared stub.
 | 
| +  Result left(generator());  // Initially left - value_.
 | 
| +  enter()->Bind(&left);
 | 
| +  left.ToRegister();
 | 
| +  generator()->frame()->Spill(left.reg());
 | 
| +  __ add(Operand(left.reg()), Immediate(value_));
 | 
| +  generator()->frame()->Push(&left);
 | 
| +  generator()->frame()->Push(value_);
 | 
| +  GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, SMI_CODE_INLINED);
 | 
| +  Result answer = generator()->frame()->CallStub(&igostub, 2);
 | 
| +  exit_.Jump(&answer);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class DeferredInlineSmiSubReversed: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredInlineSmiSubReversed(CodeGenerator* generator,
 | 
| +                               Smi* value,
 | 
| +                               OverwriteMode overwrite_mode)
 | 
| +      : DeferredCode(generator),
 | 
| +        value_(value),
 | 
| +        overwrite_mode_(overwrite_mode) {
 | 
| +    set_comment("[ DeferredInlineSmiSubReversed");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  Smi* value_;
 | 
| +  OverwriteMode overwrite_mode_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredInlineSmiSubReversed::Generate() {
 | 
| +  // Call the shared stub.
 | 
| +  Result right(generator());
 | 
| +  enter()->Bind(&right);
 | 
| +  generator()->frame()->Push(value_);
 | 
| +  generator()->frame()->Push(&right);
 | 
| +  GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, SMI_CODE_INLINED);
 | 
| +  Result answer = generator()->frame()->CallStub(&igostub, 2);
 | 
| +  exit_.Jump(&answer);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::ConstantSmiBinaryOperation(Token::Value op,
 | 
| +                                               Result* operand,
 | 
| +                                               Handle<Object> value,
 | 
| +                                               SmiAnalysis* type,
 | 
| +                                               bool reversed,
 | 
| +                                               OverwriteMode overwrite_mode) {
 | 
| +  // NOTE: This is an attempt to inline (a bit) more of the code for
 | 
| +  // some possible smi operations (like + and -) when (at least) one
 | 
| +  // of the operands is a constant smi.
 | 
| +  // Consumes the argument "operand".
 | 
| +
 | 
| +  // TODO(199): Optimize some special cases of operations involving a
 | 
| +  // smi literal (multiply by 2, shift by 0, etc.).
 | 
| +  if (IsUnsafeSmi(value)) {
 | 
| +    Result unsafe_operand(value, this);
 | 
| +    if (reversed) {
 | 
| +      LikelySmiBinaryOperation(op, &unsafe_operand, operand,
 | 
| +                               overwrite_mode);
 | 
| +    } else {
 | 
| +      LikelySmiBinaryOperation(op, operand, &unsafe_operand,
 | 
| +                               overwrite_mode);
 | 
| +    }
 | 
| +    ASSERT(!operand->is_valid());
 | 
| +    return;
 | 
| +  }
 | 
| +
 | 
| +  // Get the literal value.
 | 
| +  Smi* smi_value = Smi::cast(*value);
 | 
| +  int int_value = smi_value->value();
 | 
| +
 | 
| +  switch (op) {
 | 
| +    case Token::ADD: {
 | 
| +      DeferredCode* deferred = NULL;
 | 
| +      if (reversed) {
 | 
| +        deferred = new DeferredInlineSmiAddReversed(this, smi_value,
 | 
| +                                                    overwrite_mode);
 | 
| +      } else {
 | 
| +        deferred = new DeferredInlineSmiAdd(this, smi_value, overwrite_mode);
 | 
| +      }
 | 
| +      operand->ToRegister();
 | 
| +      frame_->Spill(operand->reg());
 | 
| +      __ add(Operand(operand->reg()), Immediate(value));
 | 
| +      deferred->enter()->Branch(overflow, operand, not_taken);
 | 
| +      __ test(operand->reg(), Immediate(kSmiTagMask));
 | 
| +      deferred->enter()->Branch(not_zero, operand, not_taken);
 | 
| +      deferred->BindExit(operand);
 | 
| +      frame_->Push(operand);
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case Token::SUB: {
 | 
| +      DeferredCode* deferred = NULL;
 | 
| +      Result answer(this);  // Only allocate a new register if reversed.
 | 
| +      if (reversed) {
 | 
| +        answer = allocator()->Allocate();
 | 
| +        ASSERT(answer.is_valid());
 | 
| +        deferred = new DeferredInlineSmiSubReversed(this,
 | 
| +                                                    smi_value,
 | 
| +                                                    overwrite_mode);
 | 
| +        __ Set(answer.reg(), Immediate(value));
 | 
| +        // We are in the reversed case so they can't both be Smi constants.
 | 
| +        ASSERT(operand->is_register());
 | 
| +        __ sub(answer.reg(), Operand(operand->reg()));
 | 
| +      } else {
 | 
| +        operand->ToRegister();
 | 
| +        frame_->Spill(operand->reg());
 | 
| +        deferred = new DeferredInlineSmiSub(this,
 | 
| +                                            smi_value,
 | 
| +                                            overwrite_mode);
 | 
| +        __ sub(Operand(operand->reg()), Immediate(value));
 | 
| +        answer = *operand;
 | 
| +      }
 | 
| +      deferred->enter()->Branch(overflow, operand, not_taken);
 | 
| +      __ test(answer.reg(), Immediate(kSmiTagMask));
 | 
| +      deferred->enter()->Branch(not_zero, operand, not_taken);
 | 
| +      operand->Unuse();
 | 
| +      deferred->BindExit(&answer);
 | 
| +      frame_->Push(&answer);
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case Token::SAR: {
 | 
| +      if (reversed) {
 | 
| +        Result constant_operand(value, this);
 | 
| +        LikelySmiBinaryOperation(op, &constant_operand, operand,
 | 
| +                                 overwrite_mode);
 | 
| +      } else {
 | 
| +        // Only the least significant 5 bits of the shift value are used.
 | 
| +        // In the slow case, this masking is done inside the runtime call.
 | 
| +        int shift_value = int_value & 0x1f;
 | 
| +        DeferredCode* deferred =
 | 
| +            new DeferredInlineSmiOperation(this, Token::SAR, smi_value,
 | 
| +                                           overwrite_mode);
 | 
| +        operand->ToRegister();
 | 
| +        __ test(operand->reg(), Immediate(kSmiTagMask));
 | 
| +        deferred->enter()->Branch(not_zero, operand, not_taken);
 | 
| +        if (shift_value > 0) {
 | 
| +          frame_->Spill(operand->reg());
 | 
| +          __ sar(operand->reg(), shift_value);
 | 
| +          __ and_(operand->reg(), ~kSmiTagMask);
 | 
| +        }
 | 
| +        deferred->BindExit(operand);
 | 
| +        frame_->Push(operand);
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case Token::SHR: {
 | 
| +      if (reversed) {
 | 
| +        Result constant_operand(value, this);
 | 
| +        LikelySmiBinaryOperation(op, &constant_operand, operand,
 | 
| +                                 overwrite_mode);
 | 
| +      } else {
 | 
| +        // Only the least significant 5 bits of the shift value are used.
 | 
| +        // In the slow case, this masking is done inside the runtime call.
 | 
| +        int shift_value = int_value & 0x1f;
 | 
| +        DeferredCode* deferred =
 | 
| +            new DeferredInlineSmiOperation(this, Token::SHR, smi_value,
 | 
| +                                           overwrite_mode);
 | 
| +        operand->ToRegister();
 | 
| +        __ test(operand->reg(), Immediate(kSmiTagMask));
 | 
| +        deferred->enter()->Branch(not_zero, operand, not_taken);
 | 
| +        Result answer = allocator()->Allocate();
 | 
| +        ASSERT(answer.is_valid());
 | 
| +        __ mov(answer.reg(), operand->reg());
 | 
| +        __ sar(answer.reg(), kSmiTagSize);
 | 
| +        __ shr(answer.reg(), shift_value);
 | 
| +        // A negative Smi shifted right two is in the positive Smi range.
 | 
| +        if (shift_value < 2) {
 | 
| +          __ test(answer.reg(), Immediate(0xc0000000));
 | 
| +          deferred->enter()->Branch(not_zero, operand, not_taken);
 | 
| +        }
 | 
| +        operand->Unuse();
 | 
| +        ASSERT(kSmiTagSize == times_2);  // Adjust the code if not true.
 | 
| +        __ lea(answer.reg(),
 | 
| +               Operand(answer.reg(), answer.reg(), times_1, kSmiTag));
 | 
| +        deferred->BindExit(&answer);
 | 
| +        frame_->Push(&answer);
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case Token::SHL: {
 | 
| +      if (reversed) {
 | 
| +        Result constant_operand(value, this);
 | 
| +        LikelySmiBinaryOperation(op, &constant_operand, operand,
 | 
| +                                 overwrite_mode);
 | 
| +      } else {
 | 
| +        // Only the least significant 5 bits of the shift value are used.
 | 
| +        // In the slow case, this masking is done inside the runtime call.
 | 
| +        int shift_value = int_value & 0x1f;
 | 
| +        DeferredCode* deferred =
 | 
| +            new DeferredInlineSmiOperation(this, Token::SHL, smi_value,
 | 
| +                                           overwrite_mode);
 | 
| +        operand->ToRegister();
 | 
| +        __ test(operand->reg(), Immediate(kSmiTagMask));
 | 
| +        deferred->enter()->Branch(not_zero, operand, not_taken);
 | 
| +        if (shift_value != 0) {
 | 
| +          Result answer = allocator()->Allocate();
 | 
| +          ASSERT(answer.is_valid());
 | 
| +          __ mov(answer.reg(), operand->reg());
 | 
| +          ASSERT(kSmiTag == 0);  // adjust code if not the case
 | 
| +          // We do no shifts, only the Smi conversion, if shift_value is 1.
 | 
| +          if (shift_value > 1) {
 | 
| +            __ shl(answer.reg(), shift_value - 1);
 | 
| +          }
 | 
| +          // Convert int result to Smi, checking that it is in int range.
 | 
| +          ASSERT(kSmiTagSize == times_2);  // adjust code if not the case
 | 
| +          __ add(answer.reg(), Operand(answer.reg()));
 | 
| +          deferred->enter()->Branch(overflow, operand, not_taken);
 | 
| +          operand->Unuse();
 | 
| +          deferred->BindExit(&answer);
 | 
| +          frame_->Push(&answer);
 | 
| +        } else {
 | 
| +          deferred->BindExit(operand);
 | 
| +          frame_->Push(operand);
 | 
| +        }
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case Token::BIT_OR:
 | 
| +    case Token::BIT_XOR:
 | 
| +    case Token::BIT_AND: {
 | 
| +      DeferredCode* deferred = NULL;
 | 
| +      if (reversed) {
 | 
| +        deferred = new DeferredInlineSmiOperationReversed(this, op, smi_value,
 | 
| +                                                          overwrite_mode);
 | 
| +      } else {
 | 
| +        deferred =  new DeferredInlineSmiOperation(this, op, smi_value,
 | 
| +                                                   overwrite_mode);
 | 
| +      }
 | 
| +      operand->ToRegister();
 | 
| +      __ test(operand->reg(), Immediate(kSmiTagMask));
 | 
| +      deferred->enter()->Branch(not_zero, operand, not_taken);
 | 
| +      frame_->Spill(operand->reg());
 | 
| +      if (op == Token::BIT_AND) {
 | 
| +        __ and_(Operand(operand->reg()), Immediate(value));
 | 
| +      } else if (op == Token::BIT_XOR) {
 | 
| +        if (int_value != 0) {
 | 
| +          __ xor_(Operand(operand->reg()), Immediate(value));
 | 
| +        }
 | 
| +      } else {
 | 
| +        ASSERT(op == Token::BIT_OR);
 | 
| +        if (int_value != 0) {
 | 
| +          __ or_(Operand(operand->reg()), Immediate(value));
 | 
| +        }
 | 
| +      }
 | 
| +      deferred->BindExit(operand);
 | 
| +      frame_->Push(operand);
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    default: {
 | 
| +      Result constant_operand(value, this);
 | 
| +      if (reversed) {
 | 
| +        LikelySmiBinaryOperation(op, &constant_operand, operand,
 | 
| +                                 overwrite_mode);
 | 
| +      } else {
 | 
| +        LikelySmiBinaryOperation(op, operand, &constant_operand,
 | 
| +                                 overwrite_mode);
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +  }
 | 
| +  ASSERT(!operand->is_valid());
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class CompareStub: public CodeStub {
 | 
| + public:
 | 
| +  CompareStub(Condition cc, bool strict) : cc_(cc), strict_(strict) { }
 | 
| +
 | 
| +  void Generate(MacroAssembler* masm);
 | 
| +
 | 
| + private:
 | 
| +  Condition cc_;
 | 
| +  bool strict_;
 | 
| +
 | 
| +  Major MajorKey() { return Compare; }
 | 
| +
 | 
| +  int MinorKey() {
 | 
| +    // Encode the three parameters in a unique 16 bit value.
 | 
| +    ASSERT(static_cast<int>(cc_) < (1 << 15));
 | 
| +    return (static_cast<int>(cc_) << 1) | (strict_ ? 1 : 0);
 | 
| +  }
 | 
| +
 | 
| +#ifdef DEBUG
 | 
| +  void Print() {
 | 
| +    PrintF("CompareStub (cc %d), (strict %s)\n",
 | 
| +           static_cast<int>(cc_),
 | 
| +           strict_ ? "true" : "false");
 | 
| +  }
 | 
| +#endif
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::Comparison(Condition cc,
 | 
| +                               bool strict,
 | 
| +                               ControlDestination* dest) {
 | 
| +  // Strict only makes sense for equality comparisons.
 | 
| +  ASSERT(!strict || cc == equal);
 | 
| +
 | 
| +  Result left_side(this);
 | 
| +  Result right_side(this);
 | 
| +  // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
 | 
| +  if (cc == greater || cc == less_equal) {
 | 
| +    cc = ReverseCondition(cc);
 | 
| +    left_side = frame_->Pop();
 | 
| +    right_side = frame_->Pop();
 | 
| +  } else {
 | 
| +    right_side = frame_->Pop();
 | 
| +    left_side = frame_->Pop();
 | 
| +  }
 | 
| +  ASSERT(cc == less || cc == equal || cc == greater_equal);
 | 
| +
 | 
| +  // If either side is a constant smi, optimize the comparison.
 | 
| +  bool left_side_constant_smi =
 | 
| +      left_side.is_constant() && left_side.handle()->IsSmi();
 | 
| +  bool right_side_constant_smi =
 | 
| +      right_side.is_constant() && right_side.handle()->IsSmi();
 | 
| +  bool left_side_constant_null =
 | 
| +      left_side.is_constant() && left_side.handle()->IsNull();
 | 
| +  bool right_side_constant_null =
 | 
| +      right_side.is_constant() && right_side.handle()->IsNull();
 | 
| +
 | 
| +  if (left_side_constant_smi || right_side_constant_smi) {
 | 
| +    if (left_side_constant_smi && right_side_constant_smi) {
 | 
| +      // Trivial case, comparing two constants.
 | 
| +      int left_value = Smi::cast(*left_side.handle())->value();
 | 
| +      int right_value = Smi::cast(*right_side.handle())->value();
 | 
| +      switch (cc) {
 | 
| +        case less:
 | 
| +          dest->Goto(left_value < right_value);
 | 
| +          break;
 | 
| +        case equal:
 | 
| +          dest->Goto(left_value == right_value);
 | 
| +          break;
 | 
| +        case greater_equal:
 | 
| +          dest->Goto(left_value >= right_value);
 | 
| +          break;
 | 
| +        default:
 | 
| +          UNREACHABLE();
 | 
| +      }
 | 
| +    } else {  // Only one side is a constant Smi.
 | 
| +      // If left side is a constant Smi, reverse the operands.
 | 
| +      // Since one side is a constant Smi, conversion order does not matter.
 | 
| +      if (left_side_constant_smi) {
 | 
| +        Result temp = left_side;
 | 
| +        left_side = right_side;
 | 
| +        right_side = temp;
 | 
| +        cc = ReverseCondition(cc);
 | 
| +        // This may reintroduce greater or less_equal as the value of cc.
 | 
| +        // CompareStub and the inline code both support all values of cc.
 | 
| +      }
 | 
| +      // Implement comparison against a constant Smi, inlining the case
 | 
| +      // where both sides are Smis.
 | 
| +      left_side.ToRegister();
 | 
| +      ASSERT(left_side.is_valid());
 | 
| +      JumpTarget is_smi(this);
 | 
| +      __ test(left_side.reg(), Immediate(kSmiTagMask));
 | 
| +      is_smi.Branch(zero, &left_side, &right_side, taken);
 | 
| +
 | 
| +      // Setup and call the compare stub, which expects its arguments
 | 
| +      // in registers.
 | 
| +      CompareStub stub(cc, strict);
 | 
| +      Result result = frame_->CallStub(&stub, &left_side, &right_side);
 | 
| +      result.ToRegister();
 | 
| +      __ cmp(result.reg(), 0);
 | 
| +      result.Unuse();
 | 
| +      dest->true_target()->Branch(cc);
 | 
| +      dest->false_target()->Jump();
 | 
| +
 | 
| +      is_smi.Bind(&left_side, &right_side);
 | 
| +      left_side.ToRegister();
 | 
| +      // Test smi equality and comparison by signed int comparison.
 | 
| +      if (IsUnsafeSmi(right_side.handle())) {
 | 
| +        right_side.ToRegister();
 | 
| +        ASSERT(right_side.is_valid());
 | 
| +        __ cmp(left_side.reg(), Operand(right_side.reg()));
 | 
| +      } else {
 | 
| +        __ cmp(Operand(left_side.reg()), Immediate(right_side.handle()));
 | 
| +      }
 | 
| +      left_side.Unuse();
 | 
| +      right_side.Unuse();
 | 
| +      dest->Split(cc);
 | 
| +    }
 | 
| +  } else if (cc == equal &&
 | 
| +             (left_side_constant_null || right_side_constant_null)) {
 | 
| +    // To make null checks efficient, we check if either the left side or
 | 
| +    // the right side is the constant 'null'.
 | 
| +    // If so, we optimize the code by inlining a null check instead of
 | 
| +    // calling the (very) general runtime routine for checking equality.
 | 
| +    Result operand = left_side_constant_null ? right_side : left_side;
 | 
| +    right_side.Unuse();
 | 
| +    left_side.Unuse();
 | 
| +    operand.ToRegister();
 | 
| +    __ cmp(operand.reg(), Factory::null_value());
 | 
| +    if (strict) {
 | 
| +      operand.Unuse();
 | 
| +      dest->Split(equal);
 | 
| +    } else {
 | 
| +      // The 'null' value is only equal to 'undefined' if using non-strict
 | 
| +      // comparisons.
 | 
| +      dest->true_target()->Branch(equal);
 | 
| +      __ cmp(operand.reg(), Factory::undefined_value());
 | 
| +      dest->true_target()->Branch(equal);
 | 
| +      __ test(operand.reg(), Immediate(kSmiTagMask));
 | 
| +      dest->false_target()->Branch(equal);
 | 
| +
 | 
| +      // It can be an undetectable object.
 | 
| +      // Use a scratch register in preference to spilling operand.reg().
 | 
| +      Result temp = allocator()->Allocate();
 | 
| +      ASSERT(temp.is_valid());
 | 
| +      __ mov(temp.reg(),
 | 
| +             FieldOperand(operand.reg(), HeapObject::kMapOffset));
 | 
| +      __ movzx_b(temp.reg(),
 | 
| +                 FieldOperand(temp.reg(), Map::kBitFieldOffset));
 | 
| +      __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable));
 | 
| +      temp.Unuse();
 | 
| +      operand.Unuse();
 | 
| +      dest->Split(not_zero);
 | 
| +    }
 | 
| +  } else {  // Neither side is a constant Smi or null.
 | 
| +    // If either side is a non-smi constant, skip the smi check.
 | 
| +    bool known_non_smi =
 | 
| +        (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
 | 
| +        (right_side.is_constant() && !right_side.handle()->IsSmi());
 | 
| +    left_side.ToRegister();
 | 
| +    right_side.ToRegister();
 | 
| +    JumpTarget is_smi(this);
 | 
| +    if (!known_non_smi) {
 | 
| +      // Check for the smi case.
 | 
| +      Result temp = allocator_->Allocate();
 | 
| +      ASSERT(temp.is_valid());
 | 
| +      __ mov(temp.reg(), left_side.reg());
 | 
| +      __ or_(temp.reg(), Operand(right_side.reg()));
 | 
| +      __ test(temp.reg(), Immediate(kSmiTagMask));
 | 
| +      temp.Unuse();
 | 
| +      is_smi.Branch(zero, &left_side, &right_side, taken);
 | 
| +    }
 | 
| +    // When non-smi, call out to the compare stub, which expects its
 | 
| +    // arguments in registers.
 | 
| +    CompareStub stub(cc, strict);
 | 
| +    Result answer = frame_->CallStub(&stub, &left_side, &right_side);
 | 
| +    if (cc == equal) {
 | 
| +      __ test(answer.reg(), Operand(answer.reg()));
 | 
| +    } else {
 | 
| +      __ cmp(answer.reg(), 0);
 | 
| +    }
 | 
| +    answer.Unuse();
 | 
| +    if (known_non_smi) {
 | 
| +      dest->Split(cc);
 | 
| +    } else {
 | 
| +      dest->true_target()->Branch(cc);
 | 
| +      dest->false_target()->Jump();
 | 
| +      is_smi.Bind(&left_side, &right_side);
 | 
| +      left_side.ToRegister();
 | 
| +      right_side.ToRegister();
 | 
| +      __ cmp(left_side.reg(), Operand(right_side.reg()));
 | 
| +      right_side.Unuse();
 | 
| +      left_side.Unuse();
 | 
| +      dest->Split(cc);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class CallFunctionStub: public CodeStub {
 | 
| + public:
 | 
| +  explicit CallFunctionStub(int argc) : argc_(argc) { }
 | 
| +
 | 
| +  void Generate(MacroAssembler* masm);
 | 
| +
 | 
| + private:
 | 
| +  int argc_;
 | 
| +
 | 
| +#ifdef DEBUG
 | 
| +  void Print() { PrintF("CallFunctionStub (args %d)\n", argc_); }
 | 
| +#endif
 | 
| +
 | 
| +  Major MajorKey() { return CallFunction; }
 | 
| +  int MinorKey() { return argc_; }
 | 
| +};
 | 
| +
 | 
| +
 | 
| +// Call the function just below TOS on the stack with the given
 | 
| +// arguments. The receiver is the TOS.
 | 
| +void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
 | 
| +                                      int position) {
 | 
| +  // Push the arguments ("left-to-right") on the stack.
 | 
| +  int arg_count = args->length();
 | 
| +  for (int i = 0; i < arg_count; i++) {
 | 
| +    Load(args->at(i));
 | 
| +  }
 | 
| +
 | 
| +  // Record the position for debugging purposes.
 | 
| +  CodeForSourcePosition(position);
 | 
| +
 | 
| +  // Use the shared code stub to call the function.
 | 
| +  CallFunctionStub call_function(arg_count);
 | 
| +  Result answer = frame_->CallStub(&call_function, arg_count + 1);
 | 
| +  // Restore context and replace function on the stack with the
 | 
| +  // result of the stub invocation.
 | 
| +  frame_->RestoreContextRegister();
 | 
| +  frame_->SetElementAt(0, &answer);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class DeferredStackCheck: public DeferredCode {
 | 
| + public:
 | 
| +  explicit DeferredStackCheck(CodeGenerator* generator)
 | 
| +      : DeferredCode(generator) {
 | 
| +    set_comment("[ DeferredStackCheck");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredStackCheck::Generate() {
 | 
| +  enter()->Bind();
 | 
| +  StackCheckStub stub;
 | 
| +  Result ignored = generator()->frame()->CallStub(&stub, 0);
 | 
| +  ignored.Unuse();
 | 
| +  exit_.Jump();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::CheckStack() {
 | 
| +  if (FLAG_check_stack) {
 | 
| +    DeferredStackCheck* deferred = new DeferredStackCheck(this);
 | 
| +    ExternalReference stack_guard_limit =
 | 
| +        ExternalReference::address_of_stack_guard_limit();
 | 
| +    __ cmp(esp, Operand::StaticVariable(stack_guard_limit));
 | 
| +    deferred->enter()->Branch(below, not_taken);
 | 
| +    deferred->BindExit();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitAndSpill(Statement* statement) {
 | 
| +  ASSERT(in_spilled_code());
 | 
| +  set_in_spilled_code(false);
 | 
| +  Visit(statement);
 | 
| +  if (frame_ != NULL) {
 | 
| +    frame_->SpillAll();
 | 
| +  }
 | 
| +  set_in_spilled_code(true);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) {
 | 
| +  ASSERT(in_spilled_code());
 | 
| +  set_in_spilled_code(false);
 | 
| +  VisitStatements(statements);
 | 
| +  if (frame_ != NULL) {
 | 
| +    frame_->SpillAll();
 | 
| +  }
 | 
| +  set_in_spilled_code(true);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  for (int i = 0; has_valid_frame() && i < statements->length(); i++) {
 | 
| +    Visit(statements->at(i));
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitBlock(Block* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ Block");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  node->break_target()->Initialize(this);
 | 
| +  VisitStatements(node->statements());
 | 
| +  if (node->break_target()->is_linked()) {
 | 
| +    node->break_target()->Bind();
 | 
| +  }
 | 
| +  node->break_target()->Unuse();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
 | 
| +  frame_->Push(pairs);
 | 
| +
 | 
| +  // Duplicate the context register.
 | 
| +  Result context(esi, this);
 | 
| +  frame_->Push(&context);
 | 
| +
 | 
| +  frame_->Push(Smi::FromInt(is_eval() ? 1 : 0));
 | 
| +  Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
 | 
| +  // Return value is ignored.
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitDeclaration(Declaration* node) {
 | 
| +  Comment cmnt(masm_, "[ Declaration");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  Variable* var = node->proxy()->var();
 | 
| +  ASSERT(var != NULL);  // must have been resolved
 | 
| +  Slot* slot = var->slot();
 | 
| +
 | 
| +  // If it was not possible to allocate the variable at compile time,
 | 
| +  // we need to "declare" it at runtime to make sure it actually
 | 
| +  // exists in the local context.
 | 
| +  if (slot != NULL && slot->type() == Slot::LOOKUP) {
 | 
| +    // Variables with a "LOOKUP" slot were introduced as non-locals
 | 
| +    // during variable resolution and must have mode DYNAMIC.
 | 
| +    ASSERT(var->is_dynamic());
 | 
| +    // For now, just do a runtime call.  Duplicate the context register.
 | 
| +    Result context(esi, this);
 | 
| +    frame_->Push(&context);
 | 
| +    frame_->Push(var->name());
 | 
| +    // Declaration nodes are always introduced in one of two modes.
 | 
| +    ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST);
 | 
| +    PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY;
 | 
| +    frame_->Push(Smi::FromInt(attr));
 | 
| +    // Push initial value, if any.
 | 
| +    // Note: For variables we must not push an initial value (such as
 | 
| +    // 'undefined') because we may have a (legal) redeclaration and we
 | 
| +    // must not destroy the current value.
 | 
| +    if (node->mode() == Variable::CONST) {
 | 
| +      frame_->Push(Factory::the_hole_value());
 | 
| +    } else if (node->fun() != NULL) {
 | 
| +      Load(node->fun());
 | 
| +    } else {
 | 
| +      frame_->Push(Smi::FromInt(0));  // no initial value!
 | 
| +    }
 | 
| +    Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4);
 | 
| +    // Ignore the return value (declarations are statements).
 | 
| +    return;
 | 
| +  }
 | 
| +
 | 
| +  ASSERT(!var->is_global());
 | 
| +
 | 
| +  // If we have a function or a constant, we need to initialize the variable.
 | 
| +  Expression* val = NULL;
 | 
| +  if (node->mode() == Variable::CONST) {
 | 
| +    val = new Literal(Factory::the_hole_value());
 | 
| +  } else {
 | 
| +    val = node->fun();  // NULL if we don't have a function
 | 
| +  }
 | 
| +
 | 
| +  if (val != NULL) {
 | 
| +    {
 | 
| +      // Set the initial value.
 | 
| +      Reference target(this, node->proxy());
 | 
| +      Load(val);
 | 
| +      target.SetValue(NOT_CONST_INIT);
 | 
| +      // The reference is removed from the stack (preserving TOS) when
 | 
| +      // it goes out of scope.
 | 
| +    }
 | 
| +    // Get rid of the assigned value (declarations are statements).
 | 
| +    frame_->Drop();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ ExpressionStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  Expression* expression = node->expression();
 | 
| +  expression->MarkAsStatement();
 | 
| +  Load(expression);
 | 
| +  // Remove the lingering expression result from the top of stack.
 | 
| +  frame_->Drop();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "// EmptyStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  // nothing to do
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitIfStatement(IfStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ IfStatement");
 | 
| +  // Generate different code depending on which parts of the if statement
 | 
| +  // are present or not.
 | 
| +  bool has_then_stm = node->HasThenStatement();
 | 
| +  bool has_else_stm = node->HasElseStatement();
 | 
| +
 | 
| +  CodeForStatementPosition(node);
 | 
| +  JumpTarget exit(this);
 | 
| +  if (has_then_stm && has_else_stm) {
 | 
| +    JumpTarget then(this);
 | 
| +    JumpTarget else_(this);
 | 
| +    ControlDestination dest(&then, &else_, true);
 | 
| +    LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
 | 
| +
 | 
| +    if (dest.false_was_fall_through()) {
 | 
| +      // The else target was bound, so we compile the else part first.
 | 
| +      Visit(node->else_statement());
 | 
| +
 | 
| +      // We may have dangling jumps to the then part.
 | 
| +      if (then.is_linked()) {
 | 
| +        if (has_valid_frame()) exit.Jump();
 | 
| +        then.Bind();
 | 
| +        Visit(node->then_statement());
 | 
| +      }
 | 
| +    } else {
 | 
| +      // The then target was bound, so we compile the then part first.
 | 
| +      Visit(node->then_statement());
 | 
| +
 | 
| +      if (else_.is_linked()) {
 | 
| +        if (has_valid_frame()) exit.Jump();
 | 
| +        else_.Bind();
 | 
| +        Visit(node->else_statement());
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +  } else if (has_then_stm) {
 | 
| +    ASSERT(!has_else_stm);
 | 
| +    JumpTarget then(this);
 | 
| +    ControlDestination dest(&then, &exit, true);
 | 
| +    LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
 | 
| +
 | 
| +    if (dest.false_was_fall_through()) {
 | 
| +      // The exit label was bound.  We may have dangling jumps to the
 | 
| +      // then part.
 | 
| +      if (then.is_linked()) {
 | 
| +        exit.Unuse();
 | 
| +        exit.Jump();
 | 
| +        then.Bind();
 | 
| +        Visit(node->then_statement());
 | 
| +      }
 | 
| +    } else {
 | 
| +      // The then label was bound.
 | 
| +      Visit(node->then_statement());
 | 
| +    }
 | 
| +
 | 
| +  } else if (has_else_stm) {
 | 
| +    ASSERT(!has_then_stm);
 | 
| +    JumpTarget else_(this);
 | 
| +    ControlDestination dest(&exit, &else_, false);
 | 
| +    LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
 | 
| +
 | 
| +    if (dest.true_was_fall_through()) {
 | 
| +      // The exit label was bound.  We may have dangling jumps to the
 | 
| +      // else part.
 | 
| +      if (else_.is_linked()) {
 | 
| +        exit.Unuse();
 | 
| +        exit.Jump();
 | 
| +        else_.Bind();
 | 
| +        Visit(node->else_statement());
 | 
| +      }
 | 
| +    } else {
 | 
| +      // The else label was bound.
 | 
| +      Visit(node->else_statement());
 | 
| +    }
 | 
| +
 | 
| +  } else {
 | 
| +    ASSERT(!has_then_stm && !has_else_stm);
 | 
| +    // We only care about the condition's side effects (not its value
 | 
| +    // or control flow effect).  LoadCondition is called without
 | 
| +    // forcing control flow.
 | 
| +    ControlDestination dest(&exit, &exit, true);
 | 
| +    LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, false);
 | 
| +    if (!dest.is_used()) {
 | 
| +      // We got a value on the frame rather than (or in addition to)
 | 
| +      // control flow.
 | 
| +      frame_->Drop();
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  if (exit.is_linked()) {
 | 
| +    exit.Bind();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitContinueStatement(ContinueStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ ContinueStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  node->target()->continue_target()->Jump();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitBreakStatement(BreakStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ BreakStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  node->target()->break_target()->Jump();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitReturnStatement(ReturnStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ ReturnStatement");
 | 
| +
 | 
| +  CodeForStatementPosition(node);
 | 
| +  Load(node->expression());
 | 
| +  Result return_value = frame_->Pop();
 | 
| +  if (function_return_is_shadowed_) {
 | 
| +    function_return_.Jump(&return_value);
 | 
| +  } else {
 | 
| +    frame_->PrepareForReturn();
 | 
| +    if (function_return_.is_bound()) {
 | 
| +      // If the function return label is already bound we reuse the
 | 
| +      // code by jumping to the return site.
 | 
| +      function_return_.Jump(&return_value);
 | 
| +    } else {
 | 
| +      // Though this is a (possibly) backward block, the frames can
 | 
| +      // only differ on their top element.
 | 
| +      function_return_.Bind(&return_value, 1);
 | 
| +      GenerateReturnSequence(&return_value);
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateReturnSequence(Result* return_value) {
 | 
| +  // The return value is a live (but not currently reference counted)
 | 
| +  // reference to eax.  This is safe because the current frame does not
 | 
| +  // contain a reference to eax (it is prepared for the return by spilling
 | 
| +  // all registers).
 | 
| +  if (FLAG_trace) {
 | 
| +    frame_->Push(return_value);
 | 
| +    *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
 | 
| +  }
 | 
| +  return_value->ToRegister(eax);
 | 
| +
 | 
| +  // Add a label for checking the size of the code used for returning.
 | 
| +  Label check_exit_codesize;
 | 
| +  masm_->bind(&check_exit_codesize);
 | 
| +
 | 
| +  // Leave the frame and return popping the arguments and the
 | 
| +  // receiver.
 | 
| +  frame_->Exit();
 | 
| +  masm_->ret((scope_->num_parameters() + 1) * kPointerSize);
 | 
| +  DeleteFrame();
 | 
| +
 | 
| +  // Check that the size of the code used for returning matches what is
 | 
| +  // expected by the debugger.
 | 
| +  ASSERT_EQ(Debug::kIa32JSReturnSequenceLength,
 | 
| +            masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ WithEnterStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  Load(node->expression());
 | 
| +  Result context(this);
 | 
| +  if (node->is_catch_block()) {
 | 
| +    context = frame_->CallRuntime(Runtime::kPushCatchContext, 1);
 | 
| +  } else {
 | 
| +    context = frame_->CallRuntime(Runtime::kPushContext, 1);
 | 
| +  }
 | 
| +
 | 
| +  // Update context local.
 | 
| +  frame_->SaveContextRegister();
 | 
| +
 | 
| +  // Verify that the runtime call result and esi agree.
 | 
| +  if (FLAG_debug_code) {
 | 
| +    __ cmp(context.reg(), Operand(esi));
 | 
| +    __ Assert(equal, "Runtime::NewContext should end up in esi");
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ WithExitStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  // Pop context.
 | 
| +  __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX));
 | 
| +  // Update context local.
 | 
| +  frame_->SaveContextRegister();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +int CodeGenerator::FastCaseSwitchMaxOverheadFactor() {
 | 
| +    return kFastSwitchMaxOverheadFactor;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +int CodeGenerator::FastCaseSwitchMinCaseCount() {
 | 
| +    return kFastSwitchMinCaseCount;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// Generate a computed jump to a switch case.
 | 
| +void CodeGenerator::GenerateFastCaseSwitchJumpTable(
 | 
| +    SwitchStatement* node,
 | 
| +    int min_index,
 | 
| +    int range,
 | 
| +    Label* default_label,
 | 
| +    Vector<Label*> case_targets,
 | 
| +    Vector<Label> case_labels) {
 | 
| +  // Notice: Internal references, used by both the jmp instruction and
 | 
| +  // the table entries, need to be relocated if the buffer grows. This
 | 
| +  // prevents the forward use of Labels, since a displacement cannot
 | 
| +  // survive relocation, and it also cannot safely be distinguished
 | 
| +  // from a real address.  Instead we put in zero-values as
 | 
| +  // placeholders, and fill in the addresses after the labels have been
 | 
| +  // bound.
 | 
| +
 | 
| +  JumpTarget setup_default(this);
 | 
| +  JumpTarget is_smi(this);
 | 
| +
 | 
| +  // A non-null default label pointer indicates a default case among
 | 
| +  // the case labels.  Otherwise we use the break target as a
 | 
| +  // "default".
 | 
| +  JumpTarget* default_target =
 | 
| +      (default_label == NULL) ? node->break_target() : &setup_default;
 | 
| +
 | 
| +  // Test whether input is a smi.
 | 
| +  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
 | 
| +  Result switch_value = frame_->Pop();
 | 
| +  switch_value.ToRegister();
 | 
| +  __ test(switch_value.reg(), Immediate(kSmiTagMask));
 | 
| +  is_smi.Branch(equal, &switch_value, taken);
 | 
| +
 | 
| +  // It's a heap object, not a smi or a failure.  Check if it is a
 | 
| +  // heap number.
 | 
| +  Result temp = allocator()->Allocate();
 | 
| +  ASSERT(temp.is_valid());
 | 
| +  __ CmpObjectType(switch_value.reg(), HEAP_NUMBER_TYPE, temp.reg());
 | 
| +  temp.Unuse();
 | 
| +  default_target->Branch(not_equal);
 | 
| +
 | 
| +  // The switch value is a heap number.  Convert it to a smi.
 | 
| +  frame_->Push(&switch_value);
 | 
| +  Result smi_value = frame_->CallRuntime(Runtime::kNumberToSmi, 1);
 | 
| +
 | 
| +  is_smi.Bind(&smi_value);
 | 
| +  smi_value.ToRegister();
 | 
| +  // Convert the switch value to a 0-based table index.
 | 
| +  if (min_index != 0) {
 | 
| +    frame_->Spill(smi_value.reg());
 | 
| +    __ sub(Operand(smi_value.reg()), Immediate(min_index << kSmiTagSize));
 | 
| +  }
 | 
| +  // Go to the default case if the table index is negative or not a smi.
 | 
| +  __ test(smi_value.reg(), Immediate(0x80000000 | kSmiTagMask));
 | 
| +  default_target->Branch(not_equal, not_taken);
 | 
| +  __ cmp(smi_value.reg(), range << kSmiTagSize);
 | 
| +  default_target->Branch(greater_equal, not_taken);
 | 
| +
 | 
| +  // The expected frame at all the case labels is a version of the
 | 
| +  // current one (the bidirectional entry frame, which an arbitrary
 | 
| +  // frame of the correct height can be merged to).  Keep a copy to
 | 
| +  // restore at the start of every label.  Create a jump target and
 | 
| +  // bind it to set its entry frame properly.
 | 
| +  JumpTarget entry_target(this, JumpTarget::BIDIRECTIONAL);
 | 
| +  entry_target.Bind(&smi_value);
 | 
| +  VirtualFrame* start_frame = new VirtualFrame(frame_);
 | 
| +
 | 
| +  // 0 is placeholder.
 | 
| +  // Jump to the address at table_address + 2 * smi_value.reg().
 | 
| +  // The target of the jump is read from table_address + 4 * switch_value.
 | 
| +  // The Smi encoding of smi_value.reg() is 2 * switch_value.
 | 
| +  smi_value.ToRegister();
 | 
| +  __ jmp(Operand(smi_value.reg(), smi_value.reg(),
 | 
| +                 times_1, 0x0, RelocInfo::INTERNAL_REFERENCE));
 | 
| +  smi_value.Unuse();
 | 
| +  // Calculate address to overwrite later with actual address of table.
 | 
| +  int32_t jump_table_ref = masm_->pc_offset() - sizeof(int32_t);
 | 
| +  __ Align(4);
 | 
| +  Label table_start;
 | 
| +  __ bind(&table_start);
 | 
| +  __ WriteInternalReference(jump_table_ref, table_start);
 | 
| +
 | 
| +  for (int i = 0; i < range; i++) {
 | 
| +    // These are the table entries. 0x0 is the placeholder for case address.
 | 
| +    __ dd(0x0, RelocInfo::INTERNAL_REFERENCE);
 | 
| +  }
 | 
| +
 | 
| +  GenerateFastCaseSwitchCases(node, case_labels, start_frame);
 | 
| +
 | 
| +  // If there was a default case, we need to emit the code to match it.
 | 
| +  if (default_label != NULL) {
 | 
| +    if (has_valid_frame()) {
 | 
| +      node->break_target()->Jump();
 | 
| +    }
 | 
| +    setup_default.Bind();
 | 
| +    frame_->MergeTo(start_frame);
 | 
| +    __ jmp(default_label);
 | 
| +    DeleteFrame();
 | 
| +  }
 | 
| +  if (node->break_target()->is_linked()) {
 | 
| +    node->break_target()->Bind();
 | 
| +  }
 | 
| +
 | 
| +  for (int i = 0, entry_pos = table_start.pos();
 | 
| +       i < range;
 | 
| +       i++, entry_pos += sizeof(uint32_t)) {
 | 
| +    if (case_targets[i] == NULL) {
 | 
| +      __ WriteInternalReference(entry_pos,
 | 
| +                                *node->break_target()->entry_label());
 | 
| +    } else {
 | 
| +      __ WriteInternalReference(entry_pos, *case_targets[i]);
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  delete start_frame;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ SwitchStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  node->break_target()->Initialize(this);
 | 
| +
 | 
| +  // Compile the switch value.
 | 
| +  Load(node->tag());
 | 
| +
 | 
| +  if (TryGenerateFastCaseSwitchStatement(node)) {
 | 
| +    return;
 | 
| +  }
 | 
| +
 | 
| +  ZoneList<CaseClause*>* cases = node->cases();
 | 
| +  int length = cases->length();
 | 
| +  CaseClause* default_clause = NULL;
 | 
| +
 | 
| +  JumpTarget next_test(this);
 | 
| +  // Compile the case label expressions and comparisons.  Exit early
 | 
| +  // if a comparison is unconditionally true.  The target next_test is
 | 
| +  // bound before the loop in order to indicate control flow to the
 | 
| +  // first comparison.
 | 
| +  next_test.Bind();
 | 
| +  for (int i = 0; i < length && !next_test.is_unused(); i++) {
 | 
| +    CaseClause* clause = cases->at(i);
 | 
| +    clause->body_target()->Initialize(this);
 | 
| +    // The default is not a test, but remember it for later.
 | 
| +    if (clause->is_default()) {
 | 
| +      default_clause = clause;
 | 
| +      continue;
 | 
| +    }
 | 
| +
 | 
| +    Comment cmnt(masm_, "[ Case comparison");
 | 
| +    // We recycle the same target next_test for each test.  Bind it if
 | 
| +    // the previous test has not done so and then unuse it for the
 | 
| +    // loop.
 | 
| +    if (next_test.is_linked()) {
 | 
| +      next_test.Bind();
 | 
| +    }
 | 
| +    next_test.Unuse();
 | 
| +
 | 
| +    // Duplicate the switch value.
 | 
| +    frame_->Dup();
 | 
| +
 | 
| +    // Compile the label expression.
 | 
| +    Load(clause->label());
 | 
| +
 | 
| +    // Compare and branch to the body if true or the next test if
 | 
| +    // false.  Prefer the next test as a fall through.
 | 
| +    ControlDestination dest(clause->body_target(), &next_test, false);
 | 
| +    Comparison(equal, true, &dest);
 | 
| +
 | 
| +    // If the comparison fell through to the true target, jump to the
 | 
| +    // actual body.
 | 
| +    if (dest.true_was_fall_through()) {
 | 
| +      clause->body_target()->Unuse();
 | 
| +      clause->body_target()->Jump();
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  // If there was control flow to a next test from the last one
 | 
| +  // compiled, compile a jump to the default or break target.
 | 
| +  if (!next_test.is_unused()) {
 | 
| +    if (next_test.is_linked()) {
 | 
| +      next_test.Bind();
 | 
| +    }
 | 
| +    // Drop the switch value.
 | 
| +    frame_->Drop();
 | 
| +    if (default_clause != NULL) {
 | 
| +      default_clause->body_target()->Jump();
 | 
| +    } else {
 | 
| +      node->break_target()->Jump();
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +
 | 
| +  // The last instruction emitted was a jump, either to the default
 | 
| +  // clause or the break target, or else to a case body from the loop
 | 
| +  // that compiles the tests.
 | 
| +  ASSERT(!has_valid_frame());
 | 
| +  // Compile case bodies as needed.
 | 
| +  for (int i = 0; i < length; i++) {
 | 
| +    CaseClause* clause = cases->at(i);
 | 
| +
 | 
| +    // There are two ways to reach the body: from the corresponding
 | 
| +    // test or as the fall through of the previous body.
 | 
| +    if (clause->body_target()->is_linked() || has_valid_frame()) {
 | 
| +      if (clause->body_target()->is_linked()) {
 | 
| +        if (has_valid_frame()) {
 | 
| +          // If we have both a jump to the test and a fall through, put
 | 
| +          // a jump on the fall through path to avoid the dropping of
 | 
| +          // the switch value on the test path.  The exception is the
 | 
| +          // default which has already had the switch value dropped.
 | 
| +          if (clause->is_default()) {
 | 
| +            clause->body_target()->Bind();
 | 
| +          } else {
 | 
| +            JumpTarget body(this);
 | 
| +            body.Jump();
 | 
| +            clause->body_target()->Bind();
 | 
| +            frame_->Drop();
 | 
| +            body.Bind();
 | 
| +          }
 | 
| +        } else {
 | 
| +          // No fall through to worry about.
 | 
| +          clause->body_target()->Bind();
 | 
| +          if (!clause->is_default()) {
 | 
| +            frame_->Drop();
 | 
| +          }
 | 
| +        }
 | 
| +      } else {
 | 
| +        // Otherwise, we have only fall through.
 | 
| +        ASSERT(has_valid_frame());
 | 
| +      }
 | 
| +
 | 
| +      // We are now prepared to compile the body.
 | 
| +      Comment cmnt(masm_, "[ Case body");
 | 
| +      VisitStatements(clause->statements());
 | 
| +    }
 | 
| +    clause->body_target()->Unuse();
 | 
| +  }
 | 
| +
 | 
| +  // We may not have a valid frame here so bind the break target only
 | 
| +  // if needed.
 | 
| +  if (node->break_target()->is_linked()) {
 | 
| +    node->break_target()->Bind();
 | 
| +  }
 | 
| +  node->break_target()->Unuse();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitLoopStatement(LoopStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ LoopStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +  node->break_target()->Initialize(this);
 | 
| +
 | 
| +  // Simple condition analysis.  ALWAYS_TRUE and ALWAYS_FALSE represent a
 | 
| +  // known result for the test expression, with no side effects.
 | 
| +  enum { ALWAYS_TRUE, ALWAYS_FALSE, DONT_KNOW } info = DONT_KNOW;
 | 
| +  if (node->cond() == NULL) {
 | 
| +    ASSERT(node->type() == LoopStatement::FOR_LOOP);
 | 
| +    info = ALWAYS_TRUE;
 | 
| +  } else {
 | 
| +    Literal* lit = node->cond()->AsLiteral();
 | 
| +    if (lit != NULL) {
 | 
| +      if (lit->IsTrue()) {
 | 
| +        info = ALWAYS_TRUE;
 | 
| +      } else if (lit->IsFalse()) {
 | 
| +        info = ALWAYS_FALSE;
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  switch (node->type()) {
 | 
| +    case LoopStatement::DO_LOOP: {
 | 
| +      JumpTarget body(this, JumpTarget::BIDIRECTIONAL);
 | 
| +      IncrementLoopNesting();
 | 
| +
 | 
| +      // Label the top of the loop for the backward jump if necessary.
 | 
| +      if (info == ALWAYS_TRUE) {
 | 
| +        // Use the continue target.
 | 
| +        node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
 | 
| +        node->continue_target()->Bind();
 | 
| +      } else if (info == ALWAYS_FALSE) {
 | 
| +        // No need to label it.
 | 
| +        node->continue_target()->Initialize(this);
 | 
| +      } else {
 | 
| +        // Continue is the test, so use the backward body target.
 | 
| +        ASSERT(info == DONT_KNOW);
 | 
| +        node->continue_target()->Initialize(this);
 | 
| +        body.Bind();
 | 
| +      }
 | 
| +
 | 
| +      CheckStack();  // TODO(1222600): ignore if body contains calls.
 | 
| +      Visit(node->body());
 | 
| +
 | 
| +      // Compile the test.
 | 
| +      if (info == ALWAYS_TRUE) {
 | 
| +        // If control flow can fall off the end of the body, jump back
 | 
| +        // to the top and bind the break target at the exit.
 | 
| +        if (has_valid_frame()) {
 | 
| +          node->continue_target()->Jump();
 | 
| +        }
 | 
| +        if (node->break_target()->is_linked()) {
 | 
| +          node->break_target()->Bind();
 | 
| +        }
 | 
| +
 | 
| +      } else if (info == ALWAYS_FALSE) {
 | 
| +        // We may have had continues or breaks in the body.
 | 
| +        if (node->continue_target()->is_linked()) {
 | 
| +          node->continue_target()->Bind();
 | 
| +        }
 | 
| +        if (node->break_target()->is_linked()) {
 | 
| +          node->break_target()->Bind();
 | 
| +        }
 | 
| +
 | 
| +      } else {
 | 
| +        ASSERT(info == DONT_KNOW);
 | 
| +        // We have to compile the test expression if it can be reached by
 | 
| +        // control flow falling out of the body or via continue.
 | 
| +        if (node->continue_target()->is_linked()) {
 | 
| +          node->continue_target()->Bind();
 | 
| +        }
 | 
| +        if (has_valid_frame()) {
 | 
| +          ControlDestination dest(&body, node->break_target(), false);
 | 
| +          LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
 | 
| +        }
 | 
| +        if (node->break_target()->is_linked()) {
 | 
| +          node->break_target()->Bind();
 | 
| +        }
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case LoopStatement::WHILE_LOOP: {
 | 
| +      // Do not duplicate conditions that may have function literal
 | 
| +      // subexpressions.  This can cause us to compile the function
 | 
| +      // literal twice.
 | 
| +      bool test_at_bottom = !node->may_have_function_literal();
 | 
| +
 | 
| +      IncrementLoopNesting();
 | 
| +
 | 
| +      // If the condition is always false and has no side effects, we
 | 
| +      // do not need to compile anything.
 | 
| +      if (info == ALWAYS_FALSE) break;
 | 
| +
 | 
| +      JumpTarget body;
 | 
| +      if (test_at_bottom) {
 | 
| +        body.Initialize(this, JumpTarget::BIDIRECTIONAL);
 | 
| +      } else {
 | 
| +        body.Initialize(this);
 | 
| +      }
 | 
| +
 | 
| +      // Based on the condition analysis, compile the test as necessary.
 | 
| +      if (info == ALWAYS_TRUE) {
 | 
| +        // We will not compile the test expression.  Label the top of
 | 
| +        // the loop with the continue target.
 | 
| +        node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
 | 
| +        node->continue_target()->Bind();
 | 
| +      } else {
 | 
| +        ASSERT(info == DONT_KNOW);  // ALWAYS_FALSE cannot reach here.
 | 
| +        if (test_at_bottom) {
 | 
| +          // Continue is the test at the bottom, no need to label the
 | 
| +          // test at the top.  The body is a backward target.
 | 
| +          node->continue_target()->Initialize(this);
 | 
| +        } else {
 | 
| +          // Label the test at the top as the continue target.  The
 | 
| +          // body is a forward-only target.
 | 
| +          node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
 | 
| +          node->continue_target()->Bind();
 | 
| +        }
 | 
| +        // Compile the test with the body as the true target and
 | 
| +        // preferred fall-through and with the break target as the
 | 
| +        // false target.
 | 
| +        ControlDestination dest(&body, node->break_target(), true);
 | 
| +        LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
 | 
| +
 | 
| +        if (dest.false_was_fall_through()) {
 | 
| +          // If we got the break target as fall-through, the test may
 | 
| +          // have been unconditionally false (if there are no jumps to
 | 
| +          // the body).
 | 
| +          if (!body.is_linked()) break;
 | 
| +
 | 
| +          // Otherwise, jump around the body on the fall through and
 | 
| +          // then bind the body target.
 | 
| +          node->break_target()->Unuse();
 | 
| +          node->break_target()->Jump();
 | 
| +          body.Bind();
 | 
| +        }
 | 
| +      }
 | 
| +
 | 
| +      CheckStack();  // TODO(1222600): ignore if body contains calls.
 | 
| +      Visit(node->body());
 | 
| +
 | 
| +      // Based on the condition analysis, compile the backward jump as
 | 
| +      // necessary.
 | 
| +      if (info == ALWAYS_TRUE) {
 | 
| +        // The loop body has been labeled with the continue target.
 | 
| +        if (has_valid_frame()) {
 | 
| +          node->continue_target()->Jump();
 | 
| +        }
 | 
| +      } else {
 | 
| +        ASSERT(info == DONT_KNOW);  // ALWAYS_FALSE cannot reach here.
 | 
| +        if (test_at_bottom) {
 | 
| +          // If we have chosen to recompile the test at the bottom,
 | 
| +          // then it is the continue target.
 | 
| +          if (node->continue_target()->is_linked()) {
 | 
| +            node->continue_target()->Bind();
 | 
| +          }
 | 
| +          if (has_valid_frame()) {
 | 
| +            // The break target is the fall-through (body is a backward
 | 
| +            // jump from here and thus an invalid fall-through).
 | 
| +            ControlDestination dest(&body, node->break_target(), false);
 | 
| +            LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
 | 
| +          }
 | 
| +        } else {
 | 
| +          // If we have chosen not to recompile the test at the
 | 
| +          // bottom, jump back to the one at the top.
 | 
| +          if (has_valid_frame()) {
 | 
| +            node->continue_target()->Jump();
 | 
| +          }
 | 
| +        }
 | 
| +      }
 | 
| +
 | 
| +      // The break target may be already bound (by the condition), or
 | 
| +      // there may not be a valid frame.  Bind it only if needed.
 | 
| +      if (node->break_target()->is_linked()) {
 | 
| +        node->break_target()->Bind();
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case LoopStatement::FOR_LOOP: {
 | 
| +      // Do not duplicate conditions that may have function literal
 | 
| +      // subexpressions.  This can cause us to compile the function
 | 
| +      // literal twice.
 | 
| +      bool test_at_bottom = !node->may_have_function_literal();
 | 
| +
 | 
| +      // Compile the init expression if present.
 | 
| +      if (node->init() != NULL) {
 | 
| +        Visit(node->init());
 | 
| +      }
 | 
| +
 | 
| +      IncrementLoopNesting();
 | 
| +
 | 
| +      // If the condition is always false and has no side effects, we
 | 
| +      // do not need to compile anything else.
 | 
| +      if (info == ALWAYS_FALSE) break;
 | 
| +
 | 
| +      // Target for backward edge if no test at the bottom, otherwise
 | 
| +      // unused.
 | 
| +      JumpTarget loop(this, JumpTarget::BIDIRECTIONAL);
 | 
| +
 | 
| +      // Target for backward edge if there is a test at the bottom,
 | 
| +      // otherwise used as target for test at the top.
 | 
| +      JumpTarget body;
 | 
| +      if (test_at_bottom) {
 | 
| +        body.Initialize(this, JumpTarget::BIDIRECTIONAL);
 | 
| +      } else {
 | 
| +        body.Initialize(this);
 | 
| +      }
 | 
| +
 | 
| +      // Based on the condition analysis, compile the test as necessary.
 | 
| +      if (info == ALWAYS_TRUE) {
 | 
| +        // We will not compile the test expression.  Label the top of
 | 
| +        // the loop.
 | 
| +        if (node->next() == NULL) {
 | 
| +          // Use the continue target if there is no update expression.
 | 
| +          node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
 | 
| +          node->continue_target()->Bind();
 | 
| +        } else {
 | 
| +          // Otherwise use the backward loop target.
 | 
| +          node->continue_target()->Initialize(this);
 | 
| +          loop.Bind();
 | 
| +        }
 | 
| +      } else {
 | 
| +        ASSERT(info == DONT_KNOW);
 | 
| +        if (test_at_bottom) {
 | 
| +          // Continue is either the update expression or the test at
 | 
| +          // the bottom, no need to label the test at the top.
 | 
| +          node->continue_target()->Initialize(this);
 | 
| +        } else if (node->next() == NULL) {
 | 
| +          // We are not recompiling the test at the bottom and there
 | 
| +          // is no update expression.
 | 
| +          node->continue_target()->Initialize(this, JumpTarget::BIDIRECTIONAL);
 | 
| +          node->continue_target()->Bind();
 | 
| +        } else {
 | 
| +          // We are not recompiling the test at the bottom and there
 | 
| +          // is an update expression.
 | 
| +          node->continue_target()->Initialize(this);
 | 
| +          loop.Bind();
 | 
| +        }
 | 
| +
 | 
| +        // Compile the test with the body as the true target and
 | 
| +        // preferred fall-through and with the break target as the
 | 
| +        // false target.
 | 
| +        ControlDestination dest(&body, node->break_target(), true);
 | 
| +        LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
 | 
| +
 | 
| +        if (dest.false_was_fall_through()) {
 | 
| +          // If we got the break target as fall-through, the test may
 | 
| +          // have been unconditionally false (if there are no jumps to
 | 
| +          // the body).
 | 
| +          if (!body.is_linked()) break;
 | 
| +
 | 
| +          // Otherwise, jump around the body on the fall through and
 | 
| +          // then bind the body target.
 | 
| +          node->break_target()->Unuse();
 | 
| +          node->break_target()->Jump();
 | 
| +          body.Bind();
 | 
| +        }
 | 
| +      }
 | 
| +
 | 
| +      CheckStack();  // TODO(1222600): ignore if body contains calls.
 | 
| +      Visit(node->body());
 | 
| +
 | 
| +      // If there is an update expression, compile it if necessary.
 | 
| +      if (node->next() != NULL) {
 | 
| +        if (node->continue_target()->is_linked()) {
 | 
| +          node->continue_target()->Bind();
 | 
| +        }
 | 
| +
 | 
| +        // Control can reach the update by falling out of the body or
 | 
| +        // by a continue.
 | 
| +        if (has_valid_frame()) {
 | 
| +          // Record the source position of the statement as this code
 | 
| +          // which is after the code for the body actually belongs to
 | 
| +          // the loop statement and not the body.
 | 
| +          CodeForStatementPosition(node);
 | 
| +          Visit(node->next());
 | 
| +        }
 | 
| +      }
 | 
| +
 | 
| +      // Based on the condition analysis, compile the backward jump as
 | 
| +      // necessary.
 | 
| +      if (info == ALWAYS_TRUE) {
 | 
| +        if (has_valid_frame()) {
 | 
| +          if (node->next() == NULL) {
 | 
| +            node->continue_target()->Jump();
 | 
| +          } else {
 | 
| +            loop.Jump();
 | 
| +          }
 | 
| +        }
 | 
| +      } else {
 | 
| +        ASSERT(info == DONT_KNOW);  // ALWAYS_FALSE cannot reach here.
 | 
| +        if (test_at_bottom) {
 | 
| +          if (node->continue_target()->is_linked()) {
 | 
| +            // We can have dangling jumps to the continue target if
 | 
| +            // there was no update expression.
 | 
| +            node->continue_target()->Bind();
 | 
| +          }
 | 
| +          // Control can reach the test at the bottom by falling out
 | 
| +          // of the body, by a continue in the body, or from the
 | 
| +          // update expression.
 | 
| +          if (has_valid_frame()) {
 | 
| +            // The break target is the fall-through (body is a
 | 
| +            // backward jump from here).
 | 
| +            ControlDestination dest(&body, node->break_target(), false);
 | 
| +            LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true);
 | 
| +          }
 | 
| +        } else {
 | 
| +          // Otherwise, jump back to the test at the top.
 | 
| +          if (has_valid_frame()) {
 | 
| +            if (node->next() == NULL) {
 | 
| +              node->continue_target()->Jump();
 | 
| +            } else {
 | 
| +              loop.Jump();
 | 
| +            }
 | 
| +          }
 | 
| +        }
 | 
| +      }
 | 
| +
 | 
| +      // The break target may be already bound (by the condition), or
 | 
| +      // there may not be a valid frame.  Bind it only if needed.
 | 
| +      if (node->break_target()->is_linked()) {
 | 
| +        node->break_target()->Bind();
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  DecrementLoopNesting();
 | 
| +  node->continue_target()->Unuse();
 | 
| +  node->break_target()->Unuse();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitForInStatement(ForInStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  VirtualFrame::SpilledScope spilled_scope(this);
 | 
| +  Comment cmnt(masm_, "[ ForInStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +
 | 
| +  JumpTarget primitive(this);
 | 
| +  JumpTarget jsobject(this);
 | 
| +  JumpTarget fixed_array(this);
 | 
| +  JumpTarget entry(this, JumpTarget::BIDIRECTIONAL);
 | 
| +  JumpTarget end_del_check(this);
 | 
| +  JumpTarget exit(this);
 | 
| +
 | 
| +  // Get the object to enumerate over (converted to JSObject).
 | 
| +  LoadAndSpill(node->enumerable());
 | 
| +
 | 
| +  // Both SpiderMonkey and kjs ignore null and undefined in contrast
 | 
| +  // to the specification.  12.6.4 mandates a call to ToObject.
 | 
| +  frame_->EmitPop(eax);
 | 
| +
 | 
| +  // eax: value to be iterated over
 | 
| +  __ cmp(eax, Factory::undefined_value());
 | 
| +  exit.Branch(equal);
 | 
| +  __ cmp(eax, Factory::null_value());
 | 
| +  exit.Branch(equal);
 | 
| +
 | 
| +  // Stack layout in body:
 | 
| +  // [iteration counter (smi)] <- slot 0
 | 
| +  // [length of array]         <- slot 1
 | 
| +  // [FixedArray]              <- slot 2
 | 
| +  // [Map or 0]                <- slot 3
 | 
| +  // [Object]                  <- slot 4
 | 
| +
 | 
| +  // Check if enumerable is already a JSObject
 | 
| +  // eax: value to be iterated over
 | 
| +  __ test(eax, Immediate(kSmiTagMask));
 | 
| +  primitive.Branch(zero);
 | 
| +  __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
 | 
| +  __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
 | 
| +  __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
 | 
| +  jsobject.Branch(above_equal);
 | 
| +
 | 
| +  primitive.Bind();
 | 
| +  frame_->EmitPush(eax);
 | 
| +  frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1);
 | 
| +  // function call returns the value in eax, which is where we want it below
 | 
| +
 | 
| +  jsobject.Bind();
 | 
| +  // Get the set of properties (as a FixedArray or Map).
 | 
| +  // eax: value to be iterated over
 | 
| +  frame_->EmitPush(eax);  // push the object being iterated over (slot 4)
 | 
| +
 | 
| +  frame_->EmitPush(eax);  // push the Object (slot 4) for the runtime call
 | 
| +  frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1);
 | 
| +
 | 
| +  // If we got a Map, we can do a fast modification check.
 | 
| +  // Otherwise, we got a FixedArray, and we have to do a slow check.
 | 
| +  // eax: map or fixed array (result from call to
 | 
| +  // Runtime::kGetPropertyNamesFast)
 | 
| +  __ mov(edx, Operand(eax));
 | 
| +  __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
 | 
| +  __ cmp(ecx, Factory::meta_map());
 | 
| +  fixed_array.Branch(not_equal);
 | 
| +
 | 
| +  // Get enum cache
 | 
| +  // eax: map (result from call to Runtime::kGetPropertyNamesFast)
 | 
| +  __ mov(ecx, Operand(eax));
 | 
| +  __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset));
 | 
| +  // Get the bridge array held in the enumeration index field.
 | 
| +  __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset));
 | 
| +  // Get the cache from the bridge array.
 | 
| +  __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
 | 
| +
 | 
| +  frame_->EmitPush(eax);  // <- slot 3
 | 
| +  frame_->EmitPush(edx);  // <- slot 2
 | 
| +  __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset));
 | 
| +  __ shl(eax, kSmiTagSize);
 | 
| +  frame_->EmitPush(eax);  // <- slot 1
 | 
| +  frame_->EmitPush(Immediate(Smi::FromInt(0)));  // <- slot 0
 | 
| +  entry.Jump();
 | 
| +
 | 
| +  fixed_array.Bind();
 | 
| +  // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast)
 | 
| +  frame_->EmitPush(Immediate(Smi::FromInt(0)));  // <- slot 3
 | 
| +  frame_->EmitPush(eax);  // <- slot 2
 | 
| +
 | 
| +  // Push the length of the array and the initial index onto the stack.
 | 
| +  __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
 | 
| +  __ shl(eax, kSmiTagSize);
 | 
| +  frame_->EmitPush(eax);  // <- slot 1
 | 
| +  frame_->EmitPush(Immediate(Smi::FromInt(0)));  // <- slot 0
 | 
| +
 | 
| +  // Condition.
 | 
| +  entry.Bind();
 | 
| +  // Grab the current frame's height for the break and continue
 | 
| +  // targets only after all the state is pushed on the frame.
 | 
| +  node->break_target()->Initialize(this);
 | 
| +  node->continue_target()->Initialize(this);
 | 
| +
 | 
| +  __ mov(eax, frame_->ElementAt(0));  // load the current count
 | 
| +  __ cmp(eax, frame_->ElementAt(1));  // compare to the array length
 | 
| +  node->break_target()->Branch(above_equal);
 | 
| +
 | 
| +  // Get the i'th entry of the array.
 | 
| +  __ mov(edx, frame_->ElementAt(2));
 | 
| +  __ mov(ebx, Operand(edx, eax, times_2,
 | 
| +                      FixedArray::kHeaderSize - kHeapObjectTag));
 | 
| +
 | 
| +  // Get the expected map from the stack or a zero map in the
 | 
| +  // permanent slow case eax: current iteration count ebx: i'th entry
 | 
| +  // of the enum cache
 | 
| +  __ mov(edx, frame_->ElementAt(3));
 | 
| +  // Check if the expected map still matches that of the enumerable.
 | 
| +  // If not, we have to filter the key.
 | 
| +  // eax: current iteration count
 | 
| +  // ebx: i'th entry of the enum cache
 | 
| +  // edx: expected map value
 | 
| +  __ mov(ecx, frame_->ElementAt(4));
 | 
| +  __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
 | 
| +  __ cmp(ecx, Operand(edx));
 | 
| +  end_del_check.Branch(equal);
 | 
| +
 | 
| +  // Convert the entry to a string (or null if it isn't a property anymore).
 | 
| +  frame_->EmitPush(frame_->ElementAt(4));  // push enumerable
 | 
| +  frame_->EmitPush(ebx);  // push entry
 | 
| +  frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2);
 | 
| +  __ mov(ebx, Operand(eax));
 | 
| +
 | 
| +  // If the property has been removed while iterating, we just skip it.
 | 
| +  __ cmp(ebx, Factory::null_value());
 | 
| +  node->continue_target()->Branch(equal);
 | 
| +
 | 
| +  end_del_check.Bind();
 | 
| +  // Store the entry in the 'each' expression and take another spin in the
 | 
| +  // loop.  edx: i'th entry of the enum cache (or string there of)
 | 
| +  frame_->EmitPush(ebx);
 | 
| +  { Reference each(this, node->each());
 | 
| +    // Loading a reference may leave the frame in an unspilled state.
 | 
| +    frame_->SpillAll();
 | 
| +    if (!each.is_illegal()) {
 | 
| +      if (each.size() > 0) {
 | 
| +        frame_->EmitPush(frame_->ElementAt(each.size()));
 | 
| +      }
 | 
| +      // If the reference was to a slot we rely on the convenient property
 | 
| +      // that it doesn't matter whether a value (eg, ebx pushed above) is
 | 
| +      // right on top of or right underneath a zero-sized reference.
 | 
| +      each.SetValue(NOT_CONST_INIT);
 | 
| +      if (each.size() > 0) {
 | 
| +        // It's safe to pop the value lying on top of the reference before
 | 
| +        // unloading the reference itself (which preserves the top of stack,
 | 
| +        // ie, now the topmost value of the non-zero sized reference), since
 | 
| +        // we will discard the top of stack after unloading the reference
 | 
| +        // anyway.
 | 
| +        frame_->Drop();
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +  // Unloading a reference may leave the frame in an unspilled state.
 | 
| +  frame_->SpillAll();
 | 
| +
 | 
| +  // Discard the i'th entry pushed above or else the remainder of the
 | 
| +  // reference, whichever is currently on top of the stack.
 | 
| +  frame_->Drop();
 | 
| +
 | 
| +  // Body.
 | 
| +  CheckStack();  // TODO(1222600): ignore if body contains calls.
 | 
| +  VisitAndSpill(node->body());
 | 
| +
 | 
| +  // Next.  Reestablish a spilled frame in case we are coming here via
 | 
| +  // a continue in the body.
 | 
| +  node->continue_target()->Bind();
 | 
| +  frame_->SpillAll();
 | 
| +  frame_->EmitPop(eax);
 | 
| +  __ add(Operand(eax), Immediate(Smi::FromInt(1)));
 | 
| +  frame_->EmitPush(eax);
 | 
| +  entry.Jump();
 | 
| +
 | 
| +  // Cleanup.  No need to spill because VirtualFrame::Drop is safe for
 | 
| +  // any frame.
 | 
| +  node->break_target()->Bind();
 | 
| +  frame_->Drop(5);
 | 
| +
 | 
| +  // Exit.
 | 
| +  exit.Bind();
 | 
| +
 | 
| +  node->continue_target()->Unuse();
 | 
| +  node->break_target()->Unuse();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitTryCatch(TryCatch* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  VirtualFrame::SpilledScope spilled_scope(this);
 | 
| +  Comment cmnt(masm_, "[ TryCatch");
 | 
| +  CodeForStatementPosition(node);
 | 
| +
 | 
| +  JumpTarget try_block(this);
 | 
| +  JumpTarget exit(this);
 | 
| +
 | 
| +  try_block.Call();
 | 
| +  // --- Catch block ---
 | 
| +  frame_->EmitPush(eax);
 | 
| +
 | 
| +  // Store the caught exception in the catch variable.
 | 
| +  { Reference ref(this, node->catch_var());
 | 
| +    ASSERT(ref.is_slot());
 | 
| +    // Load the exception to the top of the stack.  Here we make use of the
 | 
| +    // convenient property that it doesn't matter whether a value is
 | 
| +    // immediately on top of or underneath a zero-sized reference.
 | 
| +    ref.SetValue(NOT_CONST_INIT);
 | 
| +  }
 | 
| +
 | 
| +  // Remove the exception from the stack.
 | 
| +  frame_->Drop();
 | 
| +
 | 
| +  VisitStatementsAndSpill(node->catch_block()->statements());
 | 
| +  if (has_valid_frame()) {
 | 
| +    exit.Jump();
 | 
| +  }
 | 
| +
 | 
| +
 | 
| +  // --- Try block ---
 | 
| +  try_block.Bind();
 | 
| +
 | 
| +  frame_->PushTryHandler(TRY_CATCH_HANDLER);
 | 
| +  int handler_height = frame_->height();
 | 
| +
 | 
| +  // Shadow the jump targets for all escapes from the try block, including
 | 
| +  // returns.  During shadowing, the original target is hidden as the
 | 
| +  // ShadowTarget and operations on the original actually affect the
 | 
| +  // shadowing target.
 | 
| +  //
 | 
| +  // We should probably try to unify the escaping targets and the return
 | 
| +  // target.
 | 
| +  int nof_escapes = node->escaping_targets()->length();
 | 
| +  List<ShadowTarget*> shadows(1 + nof_escapes);
 | 
| +
 | 
| +  // Add the shadow target for the function return.
 | 
| +  static const int kReturnShadowIndex = 0;
 | 
| +  shadows.Add(new ShadowTarget(&function_return_));
 | 
| +  bool function_return_was_shadowed = function_return_is_shadowed_;
 | 
| +  function_return_is_shadowed_ = true;
 | 
| +  ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
 | 
| +
 | 
| +  // Add the remaining shadow targets.
 | 
| +  for (int i = 0; i < nof_escapes; i++) {
 | 
| +    shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
 | 
| +  }
 | 
| +
 | 
| +  // Generate code for the statements in the try block.
 | 
| +  VisitStatementsAndSpill(node->try_block()->statements());
 | 
| +
 | 
| +  // Stop the introduced shadowing and count the number of required unlinks.
 | 
| +  // After shadowing stops, the original targets are unshadowed and the
 | 
| +  // ShadowTargets represent the formerly shadowing targets.
 | 
| +  bool has_unlinks = false;
 | 
| +  for (int i = 0; i < shadows.length(); i++) {
 | 
| +    shadows[i]->StopShadowing();
 | 
| +    has_unlinks = has_unlinks || shadows[i]->is_linked();
 | 
| +  }
 | 
| +  function_return_is_shadowed_ = function_return_was_shadowed;
 | 
| +
 | 
| +  // Get an external reference to the handler address.
 | 
| +  ExternalReference handler_address(Top::k_handler_address);
 | 
| +
 | 
| +  // Make sure that there's nothing left on the stack above the
 | 
| +  // handler structure.
 | 
| +  if (FLAG_debug_code) {
 | 
| +    __ mov(eax, Operand::StaticVariable(handler_address));
 | 
| +    __ lea(eax, Operand(eax, StackHandlerConstants::kAddressDisplacement));
 | 
| +    __ cmp(esp, Operand(eax));
 | 
| +    __ Assert(equal, "stack pointer should point to top handler");
 | 
| +  }
 | 
| +
 | 
| +  // If we can fall off the end of the try block, unlink from try chain.
 | 
| +  if (has_valid_frame()) {
 | 
| +    // The next handler address is on top of the frame.  Unlink from
 | 
| +    // the handler list and drop the rest of this handler from the
 | 
| +    // frame.
 | 
| +    frame_->EmitPop(Operand::StaticVariable(handler_address));
 | 
| +    frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
 | 
| +    if (has_unlinks) {
 | 
| +      exit.Jump();
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  // Generate unlink code for the (formerly) shadowing targets that
 | 
| +  // have been jumped to.  Deallocate each shadow target.
 | 
| +  Result return_value(this);
 | 
| +  for (int i = 0; i < shadows.length(); i++) {
 | 
| +    if (shadows[i]->is_linked()) {
 | 
| +      // Unlink from try chain; be careful not to destroy the TOS if
 | 
| +      // there is one.
 | 
| +      if (i == kReturnShadowIndex) {
 | 
| +        shadows[i]->Bind(&return_value);
 | 
| +        return_value.ToRegister(eax);
 | 
| +      } else {
 | 
| +        shadows[i]->Bind();
 | 
| +      }
 | 
| +      // Because we can be jumping here (to spilled code) from
 | 
| +      // unspilled code, we need to reestablish a spilled frame at
 | 
| +      // this block.
 | 
| +      frame_->SpillAll();
 | 
| +
 | 
| +      // Reload sp from the top handler, because some statements that we
 | 
| +      // break from (eg, for...in) may have left stuff on the stack.
 | 
| +      __ mov(edx, Operand::StaticVariable(handler_address));
 | 
| +      const int kNextOffset = StackHandlerConstants::kNextOffset +
 | 
| +          StackHandlerConstants::kAddressDisplacement;
 | 
| +      __ lea(esp, Operand(edx, kNextOffset));
 | 
| +      frame_->Forget(frame_->height() - handler_height);
 | 
| +
 | 
| +      frame_->EmitPop(Operand::StaticVariable(handler_address));
 | 
| +      frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
 | 
| +      // next_sp popped.
 | 
| +
 | 
| +      if (i == kReturnShadowIndex) {
 | 
| +        if (!function_return_is_shadowed_) frame_->PrepareForReturn();
 | 
| +        shadows[i]->other_target()->Jump(&return_value);
 | 
| +      } else {
 | 
| +        shadows[i]->other_target()->Jump();
 | 
| +      }
 | 
| +    }
 | 
| +    delete shadows[i];
 | 
| +  }
 | 
| +
 | 
| +  exit.Bind();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitTryFinally(TryFinally* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  VirtualFrame::SpilledScope spilled_scope(this);
 | 
| +  Comment cmnt(masm_, "[ TryFinally");
 | 
| +  CodeForStatementPosition(node);
 | 
| +
 | 
| +  // State: Used to keep track of reason for entering the finally
 | 
| +  // block. Should probably be extended to hold information for
 | 
| +  // break/continue from within the try block.
 | 
| +  enum { FALLING, THROWING, JUMPING };
 | 
| +
 | 
| +  JumpTarget try_block(this);
 | 
| +  JumpTarget finally_block(this);
 | 
| +
 | 
| +  try_block.Call();
 | 
| +
 | 
| +  frame_->EmitPush(eax);
 | 
| +  // In case of thrown exceptions, this is where we continue.
 | 
| +  __ Set(ecx, Immediate(Smi::FromInt(THROWING)));
 | 
| +  finally_block.Jump();
 | 
| +
 | 
| +  // --- Try block ---
 | 
| +  try_block.Bind();
 | 
| +
 | 
| +  frame_->PushTryHandler(TRY_FINALLY_HANDLER);
 | 
| +  int handler_height = frame_->height();
 | 
| +
 | 
| +  // Shadow the jump targets for all escapes from the try block, including
 | 
| +  // returns.  During shadowing, the original target is hidden as the
 | 
| +  // ShadowTarget and operations on the original actually affect the
 | 
| +  // shadowing target.
 | 
| +  //
 | 
| +  // We should probably try to unify the escaping targets and the return
 | 
| +  // target.
 | 
| +  int nof_escapes = node->escaping_targets()->length();
 | 
| +  List<ShadowTarget*> shadows(1 + nof_escapes);
 | 
| +
 | 
| +  // Add the shadow target for the function return.
 | 
| +  static const int kReturnShadowIndex = 0;
 | 
| +  shadows.Add(new ShadowTarget(&function_return_));
 | 
| +  bool function_return_was_shadowed = function_return_is_shadowed_;
 | 
| +  function_return_is_shadowed_ = true;
 | 
| +  ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_);
 | 
| +
 | 
| +  // Add the remaining shadow targets.
 | 
| +  for (int i = 0; i < nof_escapes; i++) {
 | 
| +    shadows.Add(new ShadowTarget(node->escaping_targets()->at(i)));
 | 
| +  }
 | 
| +
 | 
| +  // Generate code for the statements in the try block.
 | 
| +  VisitStatementsAndSpill(node->try_block()->statements());
 | 
| +
 | 
| +  // Stop the introduced shadowing and count the number of required unlinks.
 | 
| +  // After shadowing stops, the original targets are unshadowed and the
 | 
| +  // ShadowTargets represent the formerly shadowing targets.
 | 
| +  int nof_unlinks = 0;
 | 
| +  for (int i = 0; i < shadows.length(); i++) {
 | 
| +    shadows[i]->StopShadowing();
 | 
| +    if (shadows[i]->is_linked()) nof_unlinks++;
 | 
| +  }
 | 
| +  function_return_is_shadowed_ = function_return_was_shadowed;
 | 
| +
 | 
| +  // Get an external reference to the handler address.
 | 
| +  ExternalReference handler_address(Top::k_handler_address);
 | 
| +
 | 
| +  // If we can fall off the end of the try block, unlink from the try
 | 
| +  // chain and set the state on the frame to FALLING.
 | 
| +  if (has_valid_frame()) {
 | 
| +    // The next handler address is on top of the frame.
 | 
| +    ASSERT(StackHandlerConstants::kNextOffset == 0);
 | 
| +    frame_->EmitPop(eax);
 | 
| +    __ mov(Operand::StaticVariable(handler_address), eax);
 | 
| +    frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
 | 
| +
 | 
| +    // Fake a top of stack value (unneeded when FALLING) and set the
 | 
| +    // state in ecx, then jump around the unlink blocks if any.
 | 
| +    frame_->EmitPush(Immediate(Factory::undefined_value()));
 | 
| +    __ Set(ecx, Immediate(Smi::FromInt(FALLING)));
 | 
| +    if (nof_unlinks > 0) {
 | 
| +      finally_block.Jump();
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  // Generate code to unlink and set the state for the (formerly)
 | 
| +  // shadowing targets that have been jumped to.
 | 
| +  for (int i = 0; i < shadows.length(); i++) {
 | 
| +    if (shadows[i]->is_linked()) {
 | 
| +      // If we have come from the shadowed return, the return value is
 | 
| +      // on the virtual frame.  We must preserve it until it is
 | 
| +      // pushed.
 | 
| +      if (i == kReturnShadowIndex) {
 | 
| +        Result return_value(this);
 | 
| +        shadows[i]->Bind(&return_value);
 | 
| +        return_value.ToRegister(eax);
 | 
| +      } else {
 | 
| +        shadows[i]->Bind();
 | 
| +      }
 | 
| +      // Because we can be jumping here (to spilled code) from
 | 
| +      // unspilled code, we need to reestablish a spilled frame at
 | 
| +      // this block.
 | 
| +      frame_->SpillAll();
 | 
| +
 | 
| +      // Reload sp from the top handler, because some statements that
 | 
| +      // we break from (eg, for...in) may have left stuff on the
 | 
| +      // stack.
 | 
| +      __ mov(edx, Operand::StaticVariable(handler_address));
 | 
| +      const int kNextOffset = StackHandlerConstants::kNextOffset +
 | 
| +          StackHandlerConstants::kAddressDisplacement;
 | 
| +      __ lea(esp, Operand(edx, kNextOffset));
 | 
| +      frame_->Forget(frame_->height() - handler_height);
 | 
| +
 | 
| +      // Unlink this handler and drop it from the frame.
 | 
| +      frame_->EmitPop(Operand::StaticVariable(handler_address));
 | 
| +      frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
 | 
| +
 | 
| +      if (i == kReturnShadowIndex) {
 | 
| +        // If this target shadowed the function return, materialize
 | 
| +        // the return value on the stack.
 | 
| +        frame_->EmitPush(eax);
 | 
| +      } else {
 | 
| +        // Fake TOS for targets that shadowed breaks and continues.
 | 
| +        frame_->EmitPush(Immediate(Factory::undefined_value()));
 | 
| +      }
 | 
| +      __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i)));
 | 
| +      if (--nof_unlinks > 0) {
 | 
| +        // If this is not the last unlink block, jump around the next.
 | 
| +        finally_block.Jump();
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  // --- Finally block ---
 | 
| +  finally_block.Bind();
 | 
| +
 | 
| +  // Push the state on the stack.
 | 
| +  frame_->EmitPush(ecx);
 | 
| +
 | 
| +  // We keep two elements on the stack - the (possibly faked) result
 | 
| +  // and the state - while evaluating the finally block.
 | 
| +  //
 | 
| +  // Generate code for the statements in the finally block.
 | 
| +  VisitStatementsAndSpill(node->finally_block()->statements());
 | 
| +
 | 
| +  if (has_valid_frame()) {
 | 
| +    // Restore state and return value or faked TOS.
 | 
| +    frame_->EmitPop(ecx);
 | 
| +    frame_->EmitPop(eax);
 | 
| +  }
 | 
| +
 | 
| +  // Generate code to jump to the right destination for all used
 | 
| +  // formerly shadowing targets.  Deallocate each shadow target.
 | 
| +  for (int i = 0; i < shadows.length(); i++) {
 | 
| +    if (has_valid_frame() && shadows[i]->is_bound()) {
 | 
| +      BreakTarget* original = shadows[i]->other_target();
 | 
| +      __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i)));
 | 
| +      if (i == kReturnShadowIndex) {
 | 
| +        // The return value is (already) in eax.
 | 
| +        Result return_value = allocator_->Allocate(eax);
 | 
| +        ASSERT(return_value.is_valid());
 | 
| +        if (function_return_is_shadowed_) {
 | 
| +          original->Branch(equal, &return_value);
 | 
| +        } else {
 | 
| +          // Branch around the preparation for return which may emit
 | 
| +          // code.
 | 
| +          JumpTarget skip(this);
 | 
| +          skip.Branch(not_equal);
 | 
| +          frame_->PrepareForReturn();
 | 
| +          original->Jump(&return_value);
 | 
| +          skip.Bind();
 | 
| +        }
 | 
| +      } else {
 | 
| +        original->Branch(equal);
 | 
| +      }
 | 
| +    }
 | 
| +    delete shadows[i];
 | 
| +  }
 | 
| +
 | 
| +  if (has_valid_frame()) {
 | 
| +    // Check if we need to rethrow the exception.
 | 
| +    JumpTarget exit(this);
 | 
| +    __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING)));
 | 
| +    exit.Branch(not_equal);
 | 
| +
 | 
| +    // Rethrow exception.
 | 
| +    frame_->EmitPush(eax);  // undo pop from above
 | 
| +    frame_->CallRuntime(Runtime::kReThrow, 1);
 | 
| +
 | 
| +    // Done.
 | 
| +    exit.Bind();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  Comment cmnt(masm_, "[ DebuggerStatement");
 | 
| +  CodeForStatementPosition(node);
 | 
| +#ifdef ENABLE_DEBUGGER_SUPPORT
 | 
| +  // Spill everything, even constants, to the frame.
 | 
| +  frame_->SpillAll();
 | 
| +  frame_->CallRuntime(Runtime::kDebugBreak, 0);
 | 
| +  // Ignore the return value.
 | 
| +#endif
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) {
 | 
| +  ASSERT(boilerplate->IsBoilerplate());
 | 
| +
 | 
| +  // Push the boilerplate on the stack.
 | 
| +  frame_->Push(boilerplate);
 | 
| +
 | 
| +  // Create a new closure.
 | 
| +  frame_->Push(esi);
 | 
| +  Result result = frame_->CallRuntime(Runtime::kNewClosure, 2);
 | 
| +  frame_->Push(&result);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) {
 | 
| +  Comment cmnt(masm_, "[ FunctionLiteral");
 | 
| +
 | 
| +  // Build the function boilerplate and instantiate it.
 | 
| +  Handle<JSFunction> boilerplate = BuildBoilerplate(node);
 | 
| +  // Check for stack-overflow exception.
 | 
| +  if (HasStackOverflow()) return;
 | 
| +  InstantiateBoilerplate(boilerplate);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitFunctionBoilerplateLiteral(
 | 
| +    FunctionBoilerplateLiteral* node) {
 | 
| +  Comment cmnt(masm_, "[ FunctionBoilerplateLiteral");
 | 
| +  InstantiateBoilerplate(node->boilerplate());
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitConditional(Conditional* node) {
 | 
| +  Comment cmnt(masm_, "[ Conditional");
 | 
| +  JumpTarget then(this);
 | 
| +  JumpTarget else_(this);
 | 
| +  JumpTarget exit(this);
 | 
| +  ControlDestination dest(&then, &else_, true);
 | 
| +  LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true);
 | 
| +
 | 
| +  if (dest.false_was_fall_through()) {
 | 
| +    // The else target was bound, so we compile the else part first.
 | 
| +    Load(node->else_expression(), typeof_state());
 | 
| +
 | 
| +    if (then.is_linked()) {
 | 
| +      exit.Jump();
 | 
| +      then.Bind();
 | 
| +      Load(node->then_expression(), typeof_state());
 | 
| +    }
 | 
| +  } else {
 | 
| +    // The then target was bound, so we compile the then part first.
 | 
| +    Load(node->then_expression(), typeof_state());
 | 
| +
 | 
| +    if (else_.is_linked()) {
 | 
| +      exit.Jump();
 | 
| +      else_.Bind();
 | 
| +      Load(node->else_expression(), typeof_state());
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  exit.Bind();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
 | 
| +  if (slot->type() == Slot::LOOKUP) {
 | 
| +    ASSERT(slot->var()->is_dynamic());
 | 
| +
 | 
| +    JumpTarget slow(this);
 | 
| +    JumpTarget done(this);
 | 
| +    Result value(this);
 | 
| +
 | 
| +    // Generate fast-case code for variables that might be shadowed by
 | 
| +    // eval-introduced variables.  Eval is used a lot without
 | 
| +    // introducing variables.  In those cases, we do not want to
 | 
| +    // perform a runtime call for all variables in the scope
 | 
| +    // containing the eval.
 | 
| +    if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
 | 
| +      value = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow);
 | 
| +      // If there was no control flow to slow, we can exit early.
 | 
| +      if (!slow.is_linked()) {
 | 
| +        frame_->Push(&value);
 | 
| +        return;
 | 
| +      }
 | 
| +
 | 
| +      done.Jump(&value);
 | 
| +
 | 
| +    } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
 | 
| +      Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
 | 
| +      // Only generate the fast case for locals that rewrite to slots.
 | 
| +      // This rules out argument loads.
 | 
| +      if (potential_slot != NULL) {
 | 
| +        // Allocate a fresh register to use as a temp in
 | 
| +        // ContextSlotOperandCheckExtensions and to hold the result
 | 
| +        // value.
 | 
| +        value = allocator_->Allocate();
 | 
| +        ASSERT(value.is_valid());
 | 
| +        __ mov(value.reg(),
 | 
| +               ContextSlotOperandCheckExtensions(potential_slot,
 | 
| +                                                 value,
 | 
| +                                                 &slow));
 | 
| +        if (potential_slot->var()->mode() == Variable::CONST) {
 | 
| +          __ cmp(value.reg(), Factory::the_hole_value());
 | 
| +          done.Branch(not_equal, &value);
 | 
| +          __ mov(value.reg(), Factory::undefined_value());
 | 
| +        }
 | 
| +        // There is always control flow to slow from
 | 
| +        // ContextSlotOperandCheckExtensions so we have to jump around
 | 
| +        // it.
 | 
| +        done.Jump(&value);
 | 
| +      }
 | 
| +    }
 | 
| +
 | 
| +    slow.Bind();
 | 
| +    frame_->Push(esi);
 | 
| +    frame_->Push(slot->var()->name());
 | 
| +    if (typeof_state == INSIDE_TYPEOF) {
 | 
| +      value =
 | 
| +          frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
 | 
| +    } else {
 | 
| +      value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
 | 
| +    }
 | 
| +
 | 
| +    done.Bind(&value);
 | 
| +    frame_->Push(&value);
 | 
| +
 | 
| +  } else if (slot->var()->mode() == Variable::CONST) {
 | 
| +    // Const slots may contain 'the hole' value (the constant hasn't been
 | 
| +    // initialized yet) which needs to be converted into the 'undefined'
 | 
| +    // value.
 | 
| +    //
 | 
| +    // We currently spill the virtual frame because constants use the
 | 
| +    // potentially unsafe direct-frame access of SlotOperand.
 | 
| +    VirtualFrame::SpilledScope spilled_scope(this);
 | 
| +    Comment cmnt(masm_, "[ Load const");
 | 
| +    JumpTarget exit(this);
 | 
| +    __ mov(ecx, SlotOperand(slot, ecx));
 | 
| +    __ cmp(ecx, Factory::the_hole_value());
 | 
| +    exit.Branch(not_equal);
 | 
| +    __ mov(ecx, Factory::undefined_value());
 | 
| +    exit.Bind();
 | 
| +    frame_->EmitPush(ecx);
 | 
| +
 | 
| +  } else if (slot->type() == Slot::PARAMETER) {
 | 
| +    frame_->PushParameterAt(slot->index());
 | 
| +
 | 
| +  } else if (slot->type() == Slot::LOCAL) {
 | 
| +    frame_->PushLocalAt(slot->index());
 | 
| +
 | 
| +  } else {
 | 
| +    // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
 | 
| +    // here.
 | 
| +    //
 | 
| +    // The use of SlotOperand below is safe for an unspilled frame
 | 
| +    // because it will always be a context slot.
 | 
| +    ASSERT(slot->type() == Slot::CONTEXT);
 | 
| +    Result temp = allocator_->Allocate();
 | 
| +    ASSERT(temp.is_valid());
 | 
| +    __ mov(temp.reg(), SlotOperand(slot, temp.reg()));
 | 
| +    frame_->Push(&temp);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
 | 
| +    Slot* slot,
 | 
| +    TypeofState typeof_state,
 | 
| +    JumpTarget* slow) {
 | 
| +  // Check that no extension objects have been created by calls to
 | 
| +  // eval from the current scope to the global scope.
 | 
| +  Result context(esi, this);
 | 
| +  Result tmp = allocator_->Allocate();
 | 
| +  ASSERT(tmp.is_valid());  // All non-reserved registers were available.
 | 
| +
 | 
| +  Scope* s = scope();
 | 
| +  while (s != NULL) {
 | 
| +    if (s->num_heap_slots() > 0) {
 | 
| +      if (s->calls_eval()) {
 | 
| +        // Check that extension is NULL.
 | 
| +        __ cmp(ContextOperand(context.reg(), Context::EXTENSION_INDEX),
 | 
| +               Immediate(0));
 | 
| +        slow->Branch(not_equal, not_taken);
 | 
| +      }
 | 
| +      // Load next context in chain.
 | 
| +      __ mov(tmp.reg(), ContextOperand(context.reg(), Context::CLOSURE_INDEX));
 | 
| +      __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
 | 
| +      context = tmp;
 | 
| +    }
 | 
| +    // If no outer scope calls eval, we do not need to check more
 | 
| +    // context extensions.  If we have reached an eval scope, we check
 | 
| +    // all extensions from this point.
 | 
| +    if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
 | 
| +    s = s->outer_scope();
 | 
| +  }
 | 
| +
 | 
| +  if (s->is_eval_scope()) {
 | 
| +    // Loop up the context chain.  There is no frame effect so it is
 | 
| +    // safe to use raw labels here.
 | 
| +    Label next, fast;
 | 
| +    if (!context.reg().is(tmp.reg())) {
 | 
| +      __ mov(tmp.reg(), context.reg());
 | 
| +    }
 | 
| +    __ bind(&next);
 | 
| +    // Terminate at global context.
 | 
| +    __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset),
 | 
| +           Immediate(Factory::global_context_map()));
 | 
| +    __ j(equal, &fast);
 | 
| +    // Check that extension is NULL.
 | 
| +    __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
 | 
| +    slow->Branch(not_equal, not_taken);
 | 
| +    // Load next context in chain.
 | 
| +    __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
 | 
| +    __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
 | 
| +    __ jmp(&next);
 | 
| +    __ bind(&fast);
 | 
| +  }
 | 
| +  context.Unuse();
 | 
| +  tmp.Unuse();
 | 
| +
 | 
| +  // All extension objects were empty and it is safe to use a global
 | 
| +  // load IC call.
 | 
| +  LoadGlobal();
 | 
| +  frame_->Push(slot->var()->name());
 | 
| +  RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
 | 
| +                         ? RelocInfo::CODE_TARGET
 | 
| +                         : RelocInfo::CODE_TARGET_CONTEXT;
 | 
| +  Result answer = frame_->CallLoadIC(mode);
 | 
| +
 | 
| +  // Discard the global object. The result is in answer.
 | 
| +  frame_->Drop();
 | 
| +  return answer;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
 | 
| +  if (slot->type() == Slot::LOOKUP) {
 | 
| +    ASSERT(slot->var()->is_dynamic());
 | 
| +
 | 
| +    // For now, just do a runtime call.
 | 
| +    frame_->Push(esi);
 | 
| +    frame_->Push(slot->var()->name());
 | 
| +
 | 
| +    Result value(this);
 | 
| +    if (init_state == CONST_INIT) {
 | 
| +      // Same as the case for a normal store, but ignores attribute
 | 
| +      // (e.g. READ_ONLY) of context slot so that we can initialize const
 | 
| +      // properties (introduced via eval("const foo = (some expr);")). Also,
 | 
| +      // uses the current function context instead of the top context.
 | 
| +      //
 | 
| +      // Note that we must declare the foo upon entry of eval(), via a
 | 
| +      // context slot declaration, but we cannot initialize it at the same
 | 
| +      // time, because the const declaration may be at the end of the eval
 | 
| +      // code (sigh...) and the const variable may have been used before
 | 
| +      // (where its value is 'undefined'). Thus, we can only do the
 | 
| +      // initialization when we actually encounter the expression and when
 | 
| +      // the expression operands are defined and valid, and thus we need the
 | 
| +      // split into 2 operations: declaration of the context slot followed
 | 
| +      // by initialization.
 | 
| +      value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
 | 
| +    } else {
 | 
| +      value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
 | 
| +    }
 | 
| +    // Storing a variable must keep the (new) value on the expression
 | 
| +    // stack. This is necessary for compiling chained assignment
 | 
| +    // expressions.
 | 
| +    frame_->Push(&value);
 | 
| +
 | 
| +  } else {
 | 
| +    ASSERT(!slot->var()->is_dynamic());
 | 
| +
 | 
| +    JumpTarget exit(this);
 | 
| +    if (init_state == CONST_INIT) {
 | 
| +      ASSERT(slot->var()->mode() == Variable::CONST);
 | 
| +      // Only the first const initialization must be executed (the slot
 | 
| +      // still contains 'the hole' value). When the assignment is executed,
 | 
| +      // the code is identical to a normal store (see below).
 | 
| +      //
 | 
| +      // We spill the frame in the code below because the direct-frame
 | 
| +      // access of SlotOperand is potentially unsafe with an unspilled
 | 
| +      // frame.
 | 
| +      VirtualFrame::SpilledScope spilled_scope(this);
 | 
| +      Comment cmnt(masm_, "[ Init const");
 | 
| +      __ mov(ecx, SlotOperand(slot, ecx));
 | 
| +      __ cmp(ecx, Factory::the_hole_value());
 | 
| +      exit.Branch(not_equal);
 | 
| +    }
 | 
| +
 | 
| +    // We must execute the store.  Storing a variable must keep the (new)
 | 
| +    // value on the stack. This is necessary for compiling assignment
 | 
| +    // expressions.
 | 
| +    //
 | 
| +    // Note: We will reach here even with slot->var()->mode() ==
 | 
| +    // Variable::CONST because of const declarations which will initialize
 | 
| +    // consts to 'the hole' value and by doing so, end up calling this code.
 | 
| +    if (slot->type() == Slot::PARAMETER) {
 | 
| +      frame_->StoreToParameterAt(slot->index());
 | 
| +    } else if (slot->type() == Slot::LOCAL) {
 | 
| +      frame_->StoreToLocalAt(slot->index());
 | 
| +    } else {
 | 
| +      // The other slot types (LOOKUP and GLOBAL) cannot reach here.
 | 
| +      //
 | 
| +      // The use of SlotOperand below is safe for an unspilled frame
 | 
| +      // because the slot is a context slot.
 | 
| +      ASSERT(slot->type() == Slot::CONTEXT);
 | 
| +      frame_->Dup();
 | 
| +      Result value = frame_->Pop();
 | 
| +      value.ToRegister();
 | 
| +      Result start = allocator_->Allocate();
 | 
| +      ASSERT(start.is_valid());
 | 
| +      __ mov(SlotOperand(slot, start.reg()), value.reg());
 | 
| +      // RecordWrite may destroy the value registers.
 | 
| +      //
 | 
| +      // TODO(204): Avoid actually spilling when the value is not
 | 
| +      // needed (probably the common case).
 | 
| +      frame_->Spill(value.reg());
 | 
| +      int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
 | 
| +      Result temp = allocator_->Allocate();
 | 
| +      ASSERT(temp.is_valid());
 | 
| +      __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
 | 
| +      // The results start, value, and temp are unused by going out of
 | 
| +      // scope.
 | 
| +    }
 | 
| +
 | 
| +    exit.Bind();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitSlot(Slot* node) {
 | 
| +  Comment cmnt(masm_, "[ Slot");
 | 
| +  LoadFromSlot(node, typeof_state());
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitVariableProxy(VariableProxy* node) {
 | 
| +  Comment cmnt(masm_, "[ VariableProxy");
 | 
| +  Variable* var = node->var();
 | 
| +  Expression* expr = var->rewrite();
 | 
| +  if (expr != NULL) {
 | 
| +    Visit(expr);
 | 
| +  } else {
 | 
| +    ASSERT(var->is_global());
 | 
| +    Reference ref(this, node);
 | 
| +    ref.GetValue(typeof_state());
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitLiteral(Literal* node) {
 | 
| +  Comment cmnt(masm_, "[ Literal");
 | 
| +  frame_->Push(node->handle());
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
 | 
| +  ASSERT(target.is_valid());
 | 
| +  ASSERT(value->IsSmi());
 | 
| +  int bits = reinterpret_cast<int>(*value);
 | 
| +  __ Set(target, Immediate(bits & 0x0000FFFF));
 | 
| +  __ xor_(target, bits & 0xFFFF0000);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
 | 
| +  if (!value->IsSmi()) return false;
 | 
| +  int int_value = Smi::cast(*value)->value();
 | 
| +  return !is_intn(int_value, kMaxSmiInlinedBits);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class DeferredRegExpLiteral: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredRegExpLiteral(CodeGenerator* generator, RegExpLiteral* node)
 | 
| +      : DeferredCode(generator), node_(node) {
 | 
| +    set_comment("[ DeferredRegExpLiteral");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  RegExpLiteral* node_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredRegExpLiteral::Generate() {
 | 
| +  Result literals(generator());
 | 
| +  enter()->Bind(&literals);
 | 
| +  // Since the entry is undefined we call the runtime system to
 | 
| +  // compute the literal.
 | 
| +
 | 
| +  VirtualFrame* frame = generator()->frame();
 | 
| +  // Literal array (0).
 | 
| +  frame->Push(&literals);
 | 
| +  // Literal index (1).
 | 
| +  frame->Push(Smi::FromInt(node_->literal_index()));
 | 
| +  // RegExp pattern (2).
 | 
| +  frame->Push(node_->pattern());
 | 
| +  // RegExp flags (3).
 | 
| +  frame->Push(node_->flags());
 | 
| +  Result boilerplate =
 | 
| +      frame->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
 | 
| +  exit_.Jump(&boilerplate);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) {
 | 
| +  Comment cmnt(masm_, "[ RegExp Literal");
 | 
| +  DeferredRegExpLiteral* deferred = new DeferredRegExpLiteral(this, node);
 | 
| +
 | 
| +  // Retrieve the literals array and check the allocated entry.  Begin
 | 
| +  // with a writable copy of the function of this activation in a
 | 
| +  // register.
 | 
| +  frame_->PushFunction();
 | 
| +  Result literals = frame_->Pop();
 | 
| +  literals.ToRegister();
 | 
| +  frame_->Spill(literals.reg());
 | 
| +
 | 
| +  // Load the literals array of the function.
 | 
| +  __ mov(literals.reg(),
 | 
| +         FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
 | 
| +
 | 
| +  // Load the literal at the ast saved index.
 | 
| +  int literal_offset =
 | 
| +      FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
 | 
| +  Result boilerplate = allocator_->Allocate();
 | 
| +  ASSERT(boilerplate.is_valid());
 | 
| +  __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
 | 
| +
 | 
| +  // Check whether we need to materialize the RegExp object.  If so,
 | 
| +  // jump to the deferred code passing the literals array.
 | 
| +  __ cmp(boilerplate.reg(), Factory::undefined_value());
 | 
| +  deferred->enter()->Branch(equal, &literals, not_taken);
 | 
| +
 | 
| +  literals.Unuse();
 | 
| +  // The deferred code returns the boilerplate object.
 | 
| +  deferred->BindExit(&boilerplate);
 | 
| +
 | 
| +  // Push the boilerplate object.
 | 
| +  frame_->Push(&boilerplate);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// This deferred code stub will be used for creating the boilerplate
 | 
| +// by calling Runtime_CreateObjectLiteral.
 | 
| +// Each created boilerplate is stored in the JSFunction and they are
 | 
| +// therefore context dependent.
 | 
| +class DeferredObjectLiteral: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredObjectLiteral(CodeGenerator* generator,
 | 
| +                        ObjectLiteral* node)
 | 
| +      : DeferredCode(generator), node_(node) {
 | 
| +    set_comment("[ DeferredObjectLiteral");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  ObjectLiteral* node_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredObjectLiteral::Generate() {
 | 
| +  Result literals(generator());
 | 
| +  enter()->Bind(&literals);
 | 
| +  // Since the entry is undefined we call the runtime system to
 | 
| +  // compute the literal.
 | 
| +
 | 
| +  VirtualFrame* frame = generator()->frame();
 | 
| +  // Literal array (0).
 | 
| +  frame->Push(&literals);
 | 
| +  // Literal index (1).
 | 
| +  frame->Push(Smi::FromInt(node_->literal_index()));
 | 
| +  // Constant properties (2).
 | 
| +  frame->Push(node_->constant_properties());
 | 
| +  Result boilerplate =
 | 
| +      frame->CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3);
 | 
| +  exit_.Jump(&boilerplate);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) {
 | 
| +  Comment cmnt(masm_, "[ ObjectLiteral");
 | 
| +  DeferredObjectLiteral* deferred = new DeferredObjectLiteral(this, node);
 | 
| +
 | 
| +  // Retrieve the literals array and check the allocated entry.  Begin
 | 
| +  // with a writable copy of the function of this activation in a
 | 
| +  // register.
 | 
| +  frame_->PushFunction();
 | 
| +  Result literals = frame_->Pop();
 | 
| +  literals.ToRegister();
 | 
| +  frame_->Spill(literals.reg());
 | 
| +
 | 
| +  // Load the literals array of the function.
 | 
| +  __ mov(literals.reg(),
 | 
| +         FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
 | 
| +
 | 
| +  // Load the literal at the ast saved index.
 | 
| +  int literal_offset =
 | 
| +      FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
 | 
| +  Result boilerplate = allocator_->Allocate();
 | 
| +  ASSERT(boilerplate.is_valid());
 | 
| +  __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
 | 
| +
 | 
| +  // Check whether we need to materialize the object literal boilerplate.
 | 
| +  // If so, jump to the deferred code passing the literals array.
 | 
| +  __ cmp(boilerplate.reg(), Factory::undefined_value());
 | 
| +  deferred->enter()->Branch(equal, &literals, not_taken);
 | 
| +
 | 
| +  literals.Unuse();
 | 
| +  // The deferred code returns the boilerplate object.
 | 
| +  deferred->BindExit(&boilerplate);
 | 
| +
 | 
| +  // Push the boilerplate object.
 | 
| +  frame_->Push(&boilerplate);
 | 
| +  // Clone the boilerplate object.
 | 
| +  Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
 | 
| +  if (node->depth() == 1) {
 | 
| +    clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
 | 
| +  }
 | 
| +  Result clone = frame_->CallRuntime(clone_function_id, 1);
 | 
| +  // Push the newly cloned literal object as the result.
 | 
| +  frame_->Push(&clone);
 | 
| +
 | 
| +  for (int i = 0; i < node->properties()->length(); i++) {
 | 
| +    ObjectLiteral::Property* property = node->properties()->at(i);
 | 
| +    switch (property->kind()) {
 | 
| +      case ObjectLiteral::Property::CONSTANT:
 | 
| +        break;
 | 
| +      case ObjectLiteral::Property::MATERIALIZED_LITERAL:
 | 
| +        if (CompileTimeValue::IsCompileTimeValue(property->value())) break;
 | 
| +        // else fall through.
 | 
| +      case ObjectLiteral::Property::COMPUTED: {
 | 
| +        Handle<Object> key(property->key()->handle());
 | 
| +        if (key->IsSymbol()) {
 | 
| +          // Duplicate the object as the IC receiver.
 | 
| +          frame_->Dup();
 | 
| +          Load(property->value());
 | 
| +          frame_->Push(key);
 | 
| +          Result ignored = frame_->CallStoreIC();
 | 
| +          // Drop the duplicated receiver and ignore the result.
 | 
| +          frame_->Drop();
 | 
| +          break;
 | 
| +        }
 | 
| +        // Fall through
 | 
| +      }
 | 
| +      case ObjectLiteral::Property::PROTOTYPE: {
 | 
| +        // Duplicate the object as an argument to the runtime call.
 | 
| +        frame_->Dup();
 | 
| +        Load(property->key());
 | 
| +        Load(property->value());
 | 
| +        Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3);
 | 
| +        // Ignore the result.
 | 
| +        break;
 | 
| +      }
 | 
| +      case ObjectLiteral::Property::SETTER: {
 | 
| +        // Duplicate the object as an argument to the runtime call.
 | 
| +        frame_->Dup();
 | 
| +        Load(property->key());
 | 
| +        frame_->Push(Smi::FromInt(1));
 | 
| +        Load(property->value());
 | 
| +        Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
 | 
| +        // Ignore the result.
 | 
| +        break;
 | 
| +      }
 | 
| +      case ObjectLiteral::Property::GETTER: {
 | 
| +        // Duplicate the object as an argument to the runtime call.
 | 
| +        frame_->Dup();
 | 
| +        Load(property->key());
 | 
| +        frame_->Push(Smi::FromInt(0));
 | 
| +        Load(property->value());
 | 
| +        Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4);
 | 
| +        // Ignore the result.
 | 
| +        break;
 | 
| +      }
 | 
| +      default: UNREACHABLE();
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// This deferred code stub will be used for creating the boilerplate
 | 
| +// by calling Runtime_CreateArrayLiteralBoilerplate.
 | 
| +// Each created boilerplate is stored in the JSFunction and they are
 | 
| +// therefore context dependent.
 | 
| +class DeferredArrayLiteral: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredArrayLiteral(CodeGenerator* generator,
 | 
| +                       ArrayLiteral* node)
 | 
| +      : DeferredCode(generator), node_(node) {
 | 
| +    set_comment("[ DeferredArrayLiteral");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  ArrayLiteral* node_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredArrayLiteral::Generate() {
 | 
| +  Result literals(generator());
 | 
| +  enter()->Bind(&literals);
 | 
| +  // Since the entry is undefined we call the runtime system to
 | 
| +  // compute the literal.
 | 
| +
 | 
| +  VirtualFrame* frame = generator()->frame();
 | 
| +  // Literal array (0).
 | 
| +  frame->Push(&literals);
 | 
| +  // Literal index (1).
 | 
| +  frame->Push(Smi::FromInt(node_->literal_index()));
 | 
| +  // Constant properties (2).
 | 
| +  frame->Push(node_->literals());
 | 
| +  Result boilerplate =
 | 
| +      frame->CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3);
 | 
| +  exit_.Jump(&boilerplate);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) {
 | 
| +  Comment cmnt(masm_, "[ ArrayLiteral");
 | 
| +  DeferredArrayLiteral* deferred = new DeferredArrayLiteral(this, node);
 | 
| +
 | 
| +  // Retrieve the literals array and check the allocated entry.  Begin
 | 
| +  // with a writable copy of the function of this activation in a
 | 
| +  // register.
 | 
| +  frame_->PushFunction();
 | 
| +  Result literals = frame_->Pop();
 | 
| +  literals.ToRegister();
 | 
| +  frame_->Spill(literals.reg());
 | 
| +
 | 
| +  // Load the literals array of the function.
 | 
| +  __ mov(literals.reg(),
 | 
| +         FieldOperand(literals.reg(), JSFunction::kLiteralsOffset));
 | 
| +
 | 
| +  // Load the literal at the ast saved index.
 | 
| +  int literal_offset =
 | 
| +      FixedArray::kHeaderSize + node->literal_index() * kPointerSize;
 | 
| +  Result boilerplate = allocator_->Allocate();
 | 
| +  ASSERT(boilerplate.is_valid());
 | 
| +  __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset));
 | 
| +
 | 
| +  // Check whether we need to materialize the object literal boilerplate.
 | 
| +  // If so, jump to the deferred code passing the literals array.
 | 
| +  __ cmp(boilerplate.reg(), Factory::undefined_value());
 | 
| +  deferred->enter()->Branch(equal, &literals, not_taken);
 | 
| +
 | 
| +  literals.Unuse();
 | 
| +  // The deferred code returns the boilerplate object.
 | 
| +  deferred->BindExit(&boilerplate);
 | 
| +
 | 
| +  // Push the resulting array literal on the stack.
 | 
| +  frame_->Push(&boilerplate);
 | 
| +
 | 
| +  // Clone the boilerplate object.
 | 
| +  Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate;
 | 
| +  if (node->depth() == 1) {
 | 
| +    clone_function_id = Runtime::kCloneShallowLiteralBoilerplate;
 | 
| +  }
 | 
| +  Result clone = frame_->CallRuntime(clone_function_id, 1);
 | 
| +  // Push the newly cloned literal object as the result.
 | 
| +  frame_->Push(&clone);
 | 
| +
 | 
| +  // Generate code to set the elements in the array that are not
 | 
| +  // literals.
 | 
| +  for (int i = 0; i < node->values()->length(); i++) {
 | 
| +    Expression* value = node->values()->at(i);
 | 
| +
 | 
| +    // If value is a literal the property value is already set in the
 | 
| +    // boilerplate object.
 | 
| +    if (value->AsLiteral() != NULL) continue;
 | 
| +    // If value is a materialized literal the property value is already set
 | 
| +    // in the boilerplate object if it is simple.
 | 
| +    if (CompileTimeValue::IsCompileTimeValue(value)) continue;
 | 
| +
 | 
| +    // The property must be set by generated code.
 | 
| +    Load(value);
 | 
| +
 | 
| +    // Get the property value off the stack.
 | 
| +    Result prop_value = frame_->Pop();
 | 
| +    prop_value.ToRegister();
 | 
| +
 | 
| +    // Fetch the array literal while leaving a copy on the stack and
 | 
| +    // use it to get the elements array.
 | 
| +    frame_->Dup();
 | 
| +    Result elements = frame_->Pop();
 | 
| +    elements.ToRegister();
 | 
| +    frame_->Spill(elements.reg());
 | 
| +    // Get the elements array.
 | 
| +    __ mov(elements.reg(),
 | 
| +           FieldOperand(elements.reg(), JSObject::kElementsOffset));
 | 
| +
 | 
| +    // Write to the indexed properties array.
 | 
| +    int offset = i * kPointerSize + Array::kHeaderSize;
 | 
| +    __ mov(FieldOperand(elements.reg(), offset), prop_value.reg());
 | 
| +
 | 
| +    // Update the write barrier for the array address.
 | 
| +    frame_->Spill(prop_value.reg());  // Overwritten by the write barrier.
 | 
| +    Result scratch = allocator_->Allocate();
 | 
| +    ASSERT(scratch.is_valid());
 | 
| +    __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg());
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) {
 | 
| +  ASSERT(!in_spilled_code());
 | 
| +  // Call runtime routine to allocate the catch extension object and
 | 
| +  // assign the exception value to the catch variable.
 | 
| +  Comment cmnt(masm_, "[ CatchExtensionObject");
 | 
| +  Load(node->key());
 | 
| +  Load(node->value());
 | 
| +  Result result =
 | 
| +      frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2);
 | 
| +  frame_->Push(&result);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitAssignment(Assignment* node) {
 | 
| +  Comment cmnt(masm_, "[ Assignment");
 | 
| +  CodeForStatementPosition(node);
 | 
| +
 | 
| +  { Reference target(this, node->target());
 | 
| +    if (target.is_illegal()) {
 | 
| +      // Fool the virtual frame into thinking that we left the assignment's
 | 
| +      // value on the frame.
 | 
| +      frame_->Push(Smi::FromInt(0));
 | 
| +      return;
 | 
| +    }
 | 
| +    Variable* var = node->target()->AsVariableProxy()->AsVariable();
 | 
| +
 | 
| +    if (node->starts_initialization_block()) {
 | 
| +      ASSERT(target.type() == Reference::NAMED ||
 | 
| +             target.type() == Reference::KEYED);
 | 
| +      // Change to slow case in the beginning of an initialization
 | 
| +      // block to avoid the quadratic behavior of repeatedly adding
 | 
| +      // fast properties.
 | 
| +
 | 
| +      // The receiver is the argument to the runtime call.  It is the
 | 
| +      // first value pushed when the reference was loaded to the
 | 
| +      // frame.
 | 
| +      frame_->PushElementAt(target.size() - 1);
 | 
| +      Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1);
 | 
| +    }
 | 
| +    if (node->op() == Token::ASSIGN ||
 | 
| +        node->op() == Token::INIT_VAR ||
 | 
| +        node->op() == Token::INIT_CONST) {
 | 
| +      Load(node->value());
 | 
| +
 | 
| +    } else {
 | 
| +      Literal* literal = node->value()->AsLiteral();
 | 
| +      bool overwrite_value =
 | 
| +          (node->value()->AsBinaryOperation() != NULL &&
 | 
| +           node->value()->AsBinaryOperation()->ResultOverwriteAllowed());
 | 
| +      Variable* right_var = node->value()->AsVariableProxy()->AsVariable();
 | 
| +      // There are two cases where the target is not read in the right hand
 | 
| +      // side, that are easy to test for: the right hand side is a literal,
 | 
| +      // or the right hand side is a different variable.  TakeValue invalidates
 | 
| +      // the target, with an implicit promise that it will be written to again
 | 
| +      // before it is read.
 | 
| +      if (literal != NULL || (right_var != NULL && right_var != var)) {
 | 
| +        target.TakeValue(NOT_INSIDE_TYPEOF);
 | 
| +      } else {
 | 
| +        target.GetValue(NOT_INSIDE_TYPEOF);
 | 
| +      }
 | 
| +      Load(node->value());
 | 
| +      GenericBinaryOperation(node->binary_op(),
 | 
| +                             node->type(),
 | 
| +                             overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE);
 | 
| +    }
 | 
| +
 | 
| +    if (var != NULL &&
 | 
| +        var->mode() == Variable::CONST &&
 | 
| +        node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) {
 | 
| +      // Assignment ignored - leave the value on the stack.
 | 
| +    } else {
 | 
| +      CodeForSourcePosition(node->position());
 | 
| +      if (node->op() == Token::INIT_CONST) {
 | 
| +        // Dynamic constant initializations must use the function context
 | 
| +        // and initialize the actual constant declared. Dynamic variable
 | 
| +        // initializations are simply assignments and use SetValue.
 | 
| +        target.SetValue(CONST_INIT);
 | 
| +      } else {
 | 
| +        target.SetValue(NOT_CONST_INIT);
 | 
| +      }
 | 
| +      if (node->ends_initialization_block()) {
 | 
| +        ASSERT(target.type() == Reference::NAMED ||
 | 
| +               target.type() == Reference::KEYED);
 | 
| +        // End of initialization block. Revert to fast case.  The
 | 
| +        // argument to the runtime call is the receiver, which is the
 | 
| +        // first value pushed as part of the reference, which is below
 | 
| +        // the lhs value.
 | 
| +        frame_->PushElementAt(target.size());
 | 
| +        Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1);
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitThrow(Throw* node) {
 | 
| +  Comment cmnt(masm_, "[ Throw");
 | 
| +  CodeForStatementPosition(node);
 | 
| +
 | 
| +  Load(node->exception());
 | 
| +  Result result = frame_->CallRuntime(Runtime::kThrow, 1);
 | 
| +  frame_->Push(&result);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitProperty(Property* node) {
 | 
| +  Comment cmnt(masm_, "[ Property");
 | 
| +  Reference property(this, node);
 | 
| +  property.GetValue(typeof_state());
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitCall(Call* node) {
 | 
| +  Comment cmnt(masm_, "[ Call");
 | 
| +
 | 
| +  ZoneList<Expression*>* args = node->arguments();
 | 
| +
 | 
| +  CodeForStatementPosition(node);
 | 
| +
 | 
| +  // Check if the function is a variable or a property.
 | 
| +  Expression* function = node->expression();
 | 
| +  Variable* var = function->AsVariableProxy()->AsVariable();
 | 
| +  Property* property = function->AsProperty();
 | 
| +
 | 
| +  // ------------------------------------------------------------------------
 | 
| +  // Fast-case: Use inline caching.
 | 
| +  // ---
 | 
| +  // According to ECMA-262, section 11.2.3, page 44, the function to call
 | 
| +  // must be resolved after the arguments have been evaluated. The IC code
 | 
| +  // automatically handles this by loading the arguments before the function
 | 
| +  // is resolved in cache misses (this also holds for megamorphic calls).
 | 
| +  // ------------------------------------------------------------------------
 | 
| +
 | 
| +  if (var != NULL && !var->is_this() && var->is_global()) {
 | 
| +    // ----------------------------------
 | 
| +    // JavaScript example: 'foo(1, 2, 3)'  // foo is global
 | 
| +    // ----------------------------------
 | 
| +
 | 
| +    // Push the name of the function and the receiver onto the stack.
 | 
| +    frame_->Push(var->name());
 | 
| +
 | 
| +    // Pass the global object as the receiver and let the IC stub
 | 
| +    // patch the stack to use the global proxy as 'this' in the
 | 
| +    // invoked function.
 | 
| +    LoadGlobal();
 | 
| +
 | 
| +    // Load the arguments.
 | 
| +    int arg_count = args->length();
 | 
| +    for (int i = 0; i < arg_count; i++) {
 | 
| +      Load(args->at(i));
 | 
| +    }
 | 
| +
 | 
| +    // Call the IC initialization code.
 | 
| +    CodeForSourcePosition(node->position());
 | 
| +    Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT,
 | 
| +                                       arg_count,
 | 
| +                                       loop_nesting());
 | 
| +    frame_->RestoreContextRegister();
 | 
| +    // Replace the function on the stack with the result.
 | 
| +    frame_->SetElementAt(0, &result);
 | 
| +
 | 
| +  } else if (var != NULL && var->slot() != NULL &&
 | 
| +             var->slot()->type() == Slot::LOOKUP) {
 | 
| +    // ----------------------------------
 | 
| +    // JavaScript example: 'with (obj) foo(1, 2, 3)'  // foo is in obj
 | 
| +    // ----------------------------------
 | 
| +
 | 
| +    // Load the function
 | 
| +    frame_->Push(esi);
 | 
| +    frame_->Push(var->name());
 | 
| +    frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
 | 
| +    // eax: slot value; edx: receiver
 | 
| +
 | 
| +    // Load the receiver.
 | 
| +    frame_->Push(eax);
 | 
| +    frame_->Push(edx);
 | 
| +
 | 
| +    // Call the function.
 | 
| +    CallWithArguments(args, node->position());
 | 
| +
 | 
| +  } else if (property != NULL) {
 | 
| +    // Check if the key is a literal string.
 | 
| +    Literal* literal = property->key()->AsLiteral();
 | 
| +
 | 
| +    if (literal != NULL && literal->handle()->IsSymbol()) {
 | 
| +      // ------------------------------------------------------------------
 | 
| +      // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)'
 | 
| +      // ------------------------------------------------------------------
 | 
| +
 | 
| +      // Push the name of the function and the receiver onto the stack.
 | 
| +      frame_->Push(literal->handle());
 | 
| +      Load(property->obj());
 | 
| +
 | 
| +      // Load the arguments.
 | 
| +      int arg_count = args->length();
 | 
| +      for (int i = 0; i < arg_count; i++) {
 | 
| +        Load(args->at(i));
 | 
| +      }
 | 
| +
 | 
| +      // Call the IC initialization code.
 | 
| +      CodeForSourcePosition(node->position());
 | 
| +      Result result =
 | 
| +          frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting());
 | 
| +      frame_->RestoreContextRegister();
 | 
| +      // Replace the function on the stack with the result.
 | 
| +      frame_->SetElementAt(0, &result);
 | 
| +
 | 
| +    } else {
 | 
| +      // -------------------------------------------
 | 
| +      // JavaScript example: 'array[index](1, 2, 3)'
 | 
| +      // -------------------------------------------
 | 
| +
 | 
| +      // Load the function to call from the property through a reference.
 | 
| +      Reference ref(this, property);
 | 
| +      ref.GetValue(NOT_INSIDE_TYPEOF);
 | 
| +
 | 
| +      // Pass receiver to called function.
 | 
| +      if (property->is_synthetic()) {
 | 
| +        // Use global object as receiver.
 | 
| +        LoadGlobalReceiver();
 | 
| +      } else {
 | 
| +        // The reference's size is non-negative.
 | 
| +        frame_->PushElementAt(ref.size());
 | 
| +      }
 | 
| +
 | 
| +      // Call the function.
 | 
| +      CallWithArguments(args, node->position());
 | 
| +    }
 | 
| +
 | 
| +  } else {
 | 
| +    // ----------------------------------
 | 
| +    // JavaScript example: 'foo(1, 2, 3)'  // foo is not global
 | 
| +    // ----------------------------------
 | 
| +
 | 
| +    // Load the function.
 | 
| +    Load(function);
 | 
| +
 | 
| +    // Pass the global proxy as the receiver.
 | 
| +    LoadGlobalReceiver();
 | 
| +
 | 
| +    // Call the function.
 | 
| +    CallWithArguments(args, node->position());
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitCallNew(CallNew* node) {
 | 
| +  Comment cmnt(masm_, "[ CallNew");
 | 
| +  CodeForStatementPosition(node);
 | 
| +
 | 
| +  // According to ECMA-262, section 11.2.2, page 44, the function
 | 
| +  // expression in new calls must be evaluated before the
 | 
| +  // arguments. This is different from ordinary calls, where the
 | 
| +  // actual function to call is resolved after the arguments have been
 | 
| +  // evaluated.
 | 
| +
 | 
| +  // Compute function to call and use the global object as the
 | 
| +  // receiver. There is no need to use the global proxy here because
 | 
| +  // it will always be replaced with a newly allocated object.
 | 
| +  Load(node->expression());
 | 
| +  LoadGlobal();
 | 
| +
 | 
| +  // Push the arguments ("left-to-right") on the stack.
 | 
| +  ZoneList<Expression*>* args = node->arguments();
 | 
| +  int arg_count = args->length();
 | 
| +  for (int i = 0; i < arg_count; i++) {
 | 
| +    Load(args->at(i));
 | 
| +  }
 | 
| +
 | 
| +  // Call the construct call builtin that handles allocation and
 | 
| +  // constructor invocation.
 | 
| +  CodeForSourcePosition(node->position());
 | 
| +  Result result = frame_->CallConstructor(arg_count);
 | 
| +  // Replace the function on the stack with the result.
 | 
| +  frame_->SetElementAt(0, &result);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitCallEval(CallEval* node) {
 | 
| +  Comment cmnt(masm_, "[ CallEval");
 | 
| +
 | 
| +  // In a call to eval, we first call %ResolvePossiblyDirectEval to resolve
 | 
| +  // the function we need to call and the receiver of the call.
 | 
| +  // Then we call the resolved function using the given arguments.
 | 
| +
 | 
| +  ZoneList<Expression*>* args = node->arguments();
 | 
| +  Expression* function = node->expression();
 | 
| +
 | 
| +  CodeForStatementPosition(node);
 | 
| +
 | 
| +  // Prepare the stack for the call to the resolved function.
 | 
| +  Load(function);
 | 
| +
 | 
| +  // Allocate a frame slot for the receiver.
 | 
| +  frame_->Push(Factory::undefined_value());
 | 
| +  int arg_count = args->length();
 | 
| +  for (int i = 0; i < arg_count; i++) {
 | 
| +    Load(args->at(i));
 | 
| +  }
 | 
| +
 | 
| +  // Prepare the stack for the call to ResolvePossiblyDirectEval.
 | 
| +  frame_->PushElementAt(arg_count + 1);
 | 
| +  if (arg_count > 0) {
 | 
| +    frame_->PushElementAt(arg_count);
 | 
| +  } else {
 | 
| +    frame_->Push(Factory::undefined_value());
 | 
| +  }
 | 
| +
 | 
| +  // Resolve the call.
 | 
| +  Result result =
 | 
| +      frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2);
 | 
| +
 | 
| +  // Touch up the stack with the right values for the function and the
 | 
| +  // receiver.  Use a scratch register to avoid destroying the result.
 | 
| +  Result scratch = allocator_->Allocate();
 | 
| +  ASSERT(scratch.is_valid());
 | 
| +  __ mov(scratch.reg(), FieldOperand(result.reg(), FixedArray::kHeaderSize));
 | 
| +  frame_->SetElementAt(arg_count + 1, &scratch);
 | 
| +
 | 
| +  // We can reuse the result register now.
 | 
| +  frame_->Spill(result.reg());
 | 
| +  __ mov(result.reg(),
 | 
| +         FieldOperand(result.reg(), FixedArray::kHeaderSize + kPointerSize));
 | 
| +  frame_->SetElementAt(arg_count, &result);
 | 
| +
 | 
| +  // Call the function.
 | 
| +  CodeForSourcePosition(node->position());
 | 
| +  CallFunctionStub call_function(arg_count);
 | 
| +  result = frame_->CallStub(&call_function, arg_count + 1);
 | 
| +
 | 
| +  // Restore the context and overwrite the function on the stack with
 | 
| +  // the result.
 | 
| +  frame_->RestoreContextRegister();
 | 
| +  frame_->SetElementAt(0, &result);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
 | 
| +  ASSERT(args->length() == 1);
 | 
| +  Load(args->at(0));
 | 
| +  Result value = frame_->Pop();
 | 
| +  value.ToRegister();
 | 
| +  ASSERT(value.is_valid());
 | 
| +  __ test(value.reg(), Immediate(kSmiTagMask));
 | 
| +  value.Unuse();
 | 
| +  destination()->Split(zero);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
 | 
| +  // Conditionally generate a log call.
 | 
| +  // Args:
 | 
| +  //   0 (literal string): The type of logging (corresponds to the flags).
 | 
| +  //     This is used to determine whether or not to generate the log call.
 | 
| +  //   1 (string): Format string.  Access the string at argument index 2
 | 
| +  //     with '%2s' (see Logger::LogRuntime for all the formats).
 | 
| +  //   2 (array): Arguments to the format string.
 | 
| +  ASSERT_EQ(args->length(), 3);
 | 
| +#ifdef ENABLE_LOGGING_AND_PROFILING
 | 
| +  if (ShouldGenerateLog(args->at(0))) {
 | 
| +    Load(args->at(1));
 | 
| +    Load(args->at(2));
 | 
| +    frame_->CallRuntime(Runtime::kLog, 2);
 | 
| +  }
 | 
| +#endif
 | 
| +  // Finally, we're expected to leave a value on the top of the stack.
 | 
| +  frame_->Push(Factory::undefined_value());
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
 | 
| +  ASSERT(args->length() == 1);
 | 
| +  Load(args->at(0));
 | 
| +  Result value = frame_->Pop();
 | 
| +  value.ToRegister();
 | 
| +  ASSERT(value.is_valid());
 | 
| +  __ test(value.reg(), Immediate(kSmiTagMask | 0x80000000));
 | 
| +  value.Unuse();
 | 
| +  destination()->Split(zero);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// This generates code that performs a charCodeAt() call or returns
 | 
| +// undefined in order to trigger the slow case, Runtime_StringCharCodeAt.
 | 
| +// It can handle flat and sliced strings, 8 and 16 bit characters and
 | 
| +// cons strings where the answer is found in the left hand branch of the
 | 
| +// cons.  The slow case will flatten the string, which will ensure that
 | 
| +// the answer is in the left hand side the next time around.
 | 
| +void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) {
 | 
| +  ASSERT(args->length() == 2);
 | 
| +
 | 
| +  JumpTarget slow_case(this);
 | 
| +  JumpTarget end(this);
 | 
| +  JumpTarget not_a_flat_string(this);
 | 
| +  JumpTarget a_cons_string(this);
 | 
| +  JumpTarget try_again_with_new_string(this, JumpTarget::BIDIRECTIONAL);
 | 
| +  JumpTarget ascii_string(this);
 | 
| +  JumpTarget got_char_code(this);
 | 
| +
 | 
| +  Load(args->at(0));
 | 
| +  Load(args->at(1));
 | 
| +  // Reserve register ecx, to use as shift amount later
 | 
| +  Result shift_amount = allocator()->Allocate(ecx);
 | 
| +  ASSERT(shift_amount.is_valid());
 | 
| +  Result index = frame_->Pop();
 | 
| +  index.ToRegister();
 | 
| +  Result object = frame_->Pop();
 | 
| +  object.ToRegister();
 | 
| +  // If the receiver is a smi return undefined.
 | 
| +  ASSERT(kSmiTag == 0);
 | 
| +  __ test(object.reg(), Immediate(kSmiTagMask));
 | 
| +  slow_case.Branch(zero, not_taken);
 | 
| +
 | 
| +  // Check for negative or non-smi index.
 | 
| +  ASSERT(kSmiTag == 0);
 | 
| +  __ test(index.reg(), Immediate(kSmiTagMask | 0x80000000));
 | 
| +  slow_case.Branch(not_zero, not_taken);
 | 
| +  // Get rid of the smi tag on the index.
 | 
| +  frame_->Spill(index.reg());
 | 
| +  __ sar(index.reg(), kSmiTagSize);
 | 
| +
 | 
| +  try_again_with_new_string.Bind(&object, &index, &shift_amount);
 | 
| +  // Get the type of the heap object.
 | 
| +  Result object_type = allocator()->Allocate();
 | 
| +  ASSERT(object_type.is_valid());
 | 
| +  __ mov(object_type.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset));
 | 
| +  __ movzx_b(object_type.reg(),
 | 
| +             FieldOperand(object_type.reg(), Map::kInstanceTypeOffset));
 | 
| +  // We don't handle non-strings.
 | 
| +  __ test(object_type.reg(), Immediate(kIsNotStringMask));
 | 
| +  slow_case.Branch(not_zero, not_taken);
 | 
| +
 | 
| +  // Here we make assumptions about the tag values and the shifts needed.
 | 
| +  // See the comment in objects.h.
 | 
| +  ASSERT(kLongStringTag == 0);
 | 
| +  ASSERT(kMediumStringTag + String::kLongLengthShift ==
 | 
| +         String::kMediumLengthShift);
 | 
| +  ASSERT(kShortStringTag + String::kLongLengthShift ==
 | 
| +         String::kShortLengthShift);
 | 
| +  __ mov(shift_amount.reg(), Operand(object_type.reg()));
 | 
| +  __ and_(shift_amount.reg(), kStringSizeMask);
 | 
| +  __ add(Operand(shift_amount.reg()), Immediate(String::kLongLengthShift));
 | 
| +  // Get the length field. Temporary register now used for length.
 | 
| +  Result length = object_type;
 | 
| +  __ mov(length.reg(), FieldOperand(object.reg(), String::kLengthOffset));
 | 
| +  __ shr(length.reg());  // shift_amount, in ecx, is implicit operand.
 | 
| +  // Check for index out of range.
 | 
| +  __ cmp(index.reg(), Operand(length.reg()));
 | 
| +  slow_case.Branch(greater_equal, not_taken);
 | 
| +  length.Unuse();
 | 
| +  // Load the object type into object_type again.
 | 
| +  // These two instructions are duplicated from above, to save a register.
 | 
| +  __ mov(object_type.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset));
 | 
| +  __ movzx_b(object_type.reg(),
 | 
| +             FieldOperand(object_type.reg(), Map::kInstanceTypeOffset));
 | 
| +
 | 
| +  // We need special handling for non-flat strings.
 | 
| +  ASSERT(kSeqStringTag == 0);
 | 
| +  __ test(object_type.reg(), Immediate(kStringRepresentationMask));
 | 
| +  not_a_flat_string.Branch(not_zero, &object, &index, &object_type,
 | 
| +                           &shift_amount, not_taken);
 | 
| +  shift_amount.Unuse();
 | 
| +  // Check for 1-byte or 2-byte string.
 | 
| +  __ test(object_type.reg(), Immediate(kStringEncodingMask));
 | 
| +  ascii_string.Branch(not_zero, &object, &index, &object_type, taken);
 | 
| +
 | 
| +  // 2-byte string.
 | 
| +  // Load the 2-byte character code.
 | 
| +  __ movzx_w(object_type.reg(), FieldOperand(object.reg(),
 | 
| +                                             index.reg(),
 | 
| +                                             times_2,
 | 
| +                                             SeqTwoByteString::kHeaderSize));
 | 
| +  object.Unuse();
 | 
| +  index.Unuse();
 | 
| +  got_char_code.Jump(&object_type);
 | 
| +
 | 
| +  // ASCII string.
 | 
| +  ascii_string.Bind(&object, &index, &object_type);
 | 
| +  // Load the byte.
 | 
| +  __ movzx_b(object_type.reg(), FieldOperand(object.reg(),
 | 
| +                                             index.reg(),
 | 
| +                                             times_1,
 | 
| +                                             SeqAsciiString::kHeaderSize));
 | 
| +  object.Unuse();
 | 
| +  index.Unuse();
 | 
| +  got_char_code.Bind(&object_type);
 | 
| +  ASSERT(kSmiTag == 0);
 | 
| +  __ shl(object_type.reg(), kSmiTagSize);
 | 
| +  frame_->Push(&object_type);
 | 
| +  end.Jump();
 | 
| +
 | 
| +  // Handle non-flat strings.
 | 
| +  not_a_flat_string.Bind(&object, &index, &object_type, &shift_amount);
 | 
| +  __ and_(object_type.reg(), kStringRepresentationMask);
 | 
| +  __ cmp(object_type.reg(), kConsStringTag);
 | 
| +  a_cons_string.Branch(equal, &object, &index, &shift_amount, taken);
 | 
| +  __ cmp(object_type.reg(), kSlicedStringTag);
 | 
| +  slow_case.Branch(not_equal, not_taken);
 | 
| +  object_type.Unuse();
 | 
| +
 | 
| +  // SlicedString.
 | 
| +  // Add the offset to the index.
 | 
| +  __ add(index.reg(), FieldOperand(object.reg(), SlicedString::kStartOffset));
 | 
| +  slow_case.Branch(overflow);
 | 
| +  // Getting the underlying string is done by running the cons string code.
 | 
| +
 | 
| +  // ConsString.
 | 
| +  a_cons_string.Bind(&object, &index, &shift_amount);
 | 
| +  // Get the first of the two strings.
 | 
| +  frame_->Spill(object.reg());
 | 
| +  // Both sliced and cons strings store their source string at the same place.
 | 
| +  ASSERT(SlicedString::kBufferOffset == ConsString::kFirstOffset);
 | 
| +  __ mov(object.reg(), FieldOperand(object.reg(), ConsString::kFirstOffset));
 | 
| +  try_again_with_new_string.Jump(&object, &index, &shift_amount);
 | 
| +
 | 
| +  // No results live at this point.
 | 
| +  slow_case.Bind();
 | 
| +  frame_->Push(Factory::undefined_value());
 | 
| +  end.Bind();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
 | 
| +  ASSERT(args->length() == 1);
 | 
| +  Load(args->at(0));
 | 
| +  Result value = frame_->Pop();
 | 
| +  value.ToRegister();
 | 
| +  ASSERT(value.is_valid());
 | 
| +  __ test(value.reg(), Immediate(kSmiTagMask));
 | 
| +  destination()->false_target()->Branch(equal);
 | 
| +  // It is a heap object - get map.
 | 
| +  Result temp = allocator()->Allocate();
 | 
| +  ASSERT(temp.is_valid());
 | 
| +  // Check if the object is a JS array or not.
 | 
| +  __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg());
 | 
| +  value.Unuse();
 | 
| +  temp.Unuse();
 | 
| +  destination()->Split(equal);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
 | 
| +  ASSERT(args->length() == 0);
 | 
| +  // ArgumentsAccessStub takes the parameter count as an input argument
 | 
| +  // in register eax.  Create a constant result for it.
 | 
| +  Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters())), this);
 | 
| +  // Call the shared stub to get to the arguments.length.
 | 
| +  ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH);
 | 
| +  Result result = frame_->CallStub(&stub, &count);
 | 
| +  frame_->Push(&result);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
 | 
| +  ASSERT(args->length() == 1);
 | 
| +  JumpTarget leave(this);
 | 
| +  Load(args->at(0));  // Load the object.
 | 
| +  frame_->Dup();
 | 
| +  Result object = frame_->Pop();
 | 
| +  object.ToRegister();
 | 
| +  ASSERT(object.is_valid());
 | 
| +  // if (object->IsSmi()) return object.
 | 
| +  __ test(object.reg(), Immediate(kSmiTagMask));
 | 
| +  leave.Branch(zero, taken);
 | 
| +  // It is a heap object - get map.
 | 
| +  Result temp = allocator()->Allocate();
 | 
| +  ASSERT(temp.is_valid());
 | 
| +  // if (!object->IsJSValue()) return object.
 | 
| +  __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
 | 
| +  leave.Branch(not_equal, not_taken);
 | 
| +  __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
 | 
| +  object.Unuse();
 | 
| +  frame_->SetElementAt(0, &temp);
 | 
| +  leave.Bind();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
 | 
| +  ASSERT(args->length() == 2);
 | 
| +  JumpTarget leave(this);
 | 
| +  Load(args->at(0));  // Load the object.
 | 
| +  Load(args->at(1));  // Load the value.
 | 
| +  Result value = frame_->Pop();
 | 
| +  Result object = frame_->Pop();
 | 
| +  value.ToRegister();
 | 
| +  object.ToRegister();
 | 
| +
 | 
| +  // if (object->IsSmi()) return value.
 | 
| +  __ test(object.reg(), Immediate(kSmiTagMask));
 | 
| +  leave.Branch(zero, &value, taken);
 | 
| +
 | 
| +  // It is a heap object - get its map.
 | 
| +  Result scratch = allocator_->Allocate();
 | 
| +  ASSERT(scratch.is_valid());
 | 
| +  // if (!object->IsJSValue()) return value.
 | 
| +  __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
 | 
| +  leave.Branch(not_equal, &value, not_taken);
 | 
| +
 | 
| +  // Store the value.
 | 
| +  __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
 | 
| +  // Update the write barrier.  Save the value as it will be
 | 
| +  // overwritten by the write barrier code and is needed afterward.
 | 
| +  Result duplicate_value = allocator_->Allocate();
 | 
| +  ASSERT(duplicate_value.is_valid());
 | 
| +  __ mov(duplicate_value.reg(), value.reg());
 | 
| +  // The object register is also overwritten by the write barrier and
 | 
| +  // possibly aliased in the frame.
 | 
| +  frame_->Spill(object.reg());
 | 
| +  __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
 | 
| +                 scratch.reg());
 | 
| +  object.Unuse();
 | 
| +  scratch.Unuse();
 | 
| +  duplicate_value.Unuse();
 | 
| +
 | 
| +  // Leave.
 | 
| +  leave.Bind(&value);
 | 
| +  frame_->Push(&value);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) {
 | 
| +  ASSERT(args->length() == 1);
 | 
| +
 | 
| +  // ArgumentsAccessStub expects the key in edx and the formal
 | 
| +  // parameter count in eax.
 | 
| +  Load(args->at(0));
 | 
| +  Result key = frame_->Pop();
 | 
| +  // Explicitly create a constant result.
 | 
| +  Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters())), this);
 | 
| +  // Call the shared stub to get to arguments[key].
 | 
| +  ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
 | 
| +  Result result = frame_->CallStub(&stub, &key, &count);
 | 
| +  frame_->Push(&result);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
 | 
| +  ASSERT(args->length() == 2);
 | 
| +
 | 
| +  // Load the two objects into registers and perform the comparison.
 | 
| +  Load(args->at(0));
 | 
| +  Load(args->at(1));
 | 
| +  Result right = frame_->Pop();
 | 
| +  Result left = frame_->Pop();
 | 
| +  right.ToRegister();
 | 
| +  left.ToRegister();
 | 
| +  __ cmp(right.reg(), Operand(left.reg()));
 | 
| +  right.Unuse();
 | 
| +  left.Unuse();
 | 
| +  destination()->Split(equal);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
 | 
| +  if (CheckForInlineRuntimeCall(node)) {
 | 
| +    return;
 | 
| +  }
 | 
| +
 | 
| +  ZoneList<Expression*>* args = node->arguments();
 | 
| +  Comment cmnt(masm_, "[ CallRuntime");
 | 
| +  Runtime::Function* function = node->function();
 | 
| +
 | 
| +  if (function == NULL) {
 | 
| +    // Prepare stack for calling JS runtime function.
 | 
| +    frame_->Push(node->name());
 | 
| +    // Push the builtins object found in the current global object.
 | 
| +    Result temp = allocator()->Allocate();
 | 
| +    ASSERT(temp.is_valid());
 | 
| +    __ mov(temp.reg(), GlobalObject());
 | 
| +    __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
 | 
| +    frame_->Push(&temp);
 | 
| +  }
 | 
| +
 | 
| +  // Push the arguments ("left-to-right").
 | 
| +  int arg_count = args->length();
 | 
| +  for (int i = 0; i < arg_count; i++) {
 | 
| +    Load(args->at(i));
 | 
| +  }
 | 
| +
 | 
| +  if (function == NULL) {
 | 
| +    // Call the JS runtime function.  Pass 0 as the loop nesting depth
 | 
| +    // because we do not handle runtime calls specially in loops.
 | 
| +    Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, 0);
 | 
| +    frame_->RestoreContextRegister();
 | 
| +    frame_->SetElementAt(0, &answer);
 | 
| +  } else {
 | 
| +    // Call the C runtime function.
 | 
| +    Result answer = frame_->CallRuntime(function, arg_count);
 | 
| +    frame_->Push(&answer);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
 | 
| +  // Note that because of NOT and an optimization in comparison of a typeof
 | 
| +  // expression to a literal string, this function can fail to leave a value
 | 
| +  // on top of the frame or in the cc register.
 | 
| +  Comment cmnt(masm_, "[ UnaryOperation");
 | 
| +
 | 
| +  Token::Value op = node->op();
 | 
| +
 | 
| +  if (op == Token::NOT) {
 | 
| +    // Swap the true and false targets but keep the same actual label
 | 
| +    // as the fall through.
 | 
| +    destination()->Invert();
 | 
| +    LoadCondition(node->expression(), NOT_INSIDE_TYPEOF, destination(), true);
 | 
| +    // Swap the labels back.
 | 
| +    destination()->Invert();
 | 
| +
 | 
| +  } else if (op == Token::DELETE) {
 | 
| +    Property* property = node->expression()->AsProperty();
 | 
| +    if (property != NULL) {
 | 
| +      Load(property->obj());
 | 
| +      Load(property->key());
 | 
| +      Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2);
 | 
| +      frame_->Push(&answer);
 | 
| +      return;
 | 
| +    }
 | 
| +
 | 
| +    Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
 | 
| +    if (variable != NULL) {
 | 
| +      Slot* slot = variable->slot();
 | 
| +      if (variable->is_global()) {
 | 
| +        LoadGlobal();
 | 
| +        frame_->Push(variable->name());
 | 
| +        Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
 | 
| +                                              CALL_FUNCTION, 2);
 | 
| +        frame_->Push(&answer);
 | 
| +        return;
 | 
| +
 | 
| +      } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
 | 
| +        // lookup the context holding the named variable
 | 
| +        frame_->Push(esi);
 | 
| +        frame_->Push(variable->name());
 | 
| +        Result context = frame_->CallRuntime(Runtime::kLookupContext, 2);
 | 
| +        frame_->Push(&context);
 | 
| +        frame_->Push(variable->name());
 | 
| +        Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
 | 
| +                                              CALL_FUNCTION, 2);
 | 
| +        frame_->Push(&answer);
 | 
| +        return;
 | 
| +      }
 | 
| +
 | 
| +      // Default: Result of deleting non-global, not dynamically
 | 
| +      // introduced variables is false.
 | 
| +      frame_->Push(Factory::false_value());
 | 
| +
 | 
| +    } else {
 | 
| +      // Default: Result of deleting expressions is true.
 | 
| +      Load(node->expression());  // may have side-effects
 | 
| +      frame_->SetElementAt(0, Factory::true_value());
 | 
| +    }
 | 
| +
 | 
| +  } else if (op == Token::TYPEOF) {
 | 
| +    // Special case for loading the typeof expression; see comment on
 | 
| +    // LoadTypeofExpression().
 | 
| +    LoadTypeofExpression(node->expression());
 | 
| +    Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
 | 
| +    frame_->Push(&answer);
 | 
| +
 | 
| +  } else if (op == Token::VOID) {
 | 
| +    Expression* expression = node->expression();
 | 
| +    if (expression && expression->AsLiteral() && (
 | 
| +        expression->AsLiteral()->IsTrue() ||
 | 
| +        expression->AsLiteral()->IsFalse() ||
 | 
| +        expression->AsLiteral()->handle()->IsNumber() ||
 | 
| +        expression->AsLiteral()->handle()->IsString() ||
 | 
| +        expression->AsLiteral()->handle()->IsJSRegExp() ||
 | 
| +        expression->AsLiteral()->IsNull())) {
 | 
| +      // Omit evaluating the value of the primitive literal.
 | 
| +      // It will be discarded anyway, and can have no side effect.
 | 
| +      frame_->Push(Factory::undefined_value());
 | 
| +    } else {
 | 
| +      Load(node->expression());
 | 
| +      frame_->SetElementAt(0, Factory::undefined_value());
 | 
| +    }
 | 
| +
 | 
| +  } else {
 | 
| +    Load(node->expression());
 | 
| +    switch (op) {
 | 
| +      case Token::NOT:
 | 
| +      case Token::DELETE:
 | 
| +      case Token::TYPEOF:
 | 
| +        UNREACHABLE();  // handled above
 | 
| +        break;
 | 
| +
 | 
| +      case Token::SUB: {
 | 
| +        UnarySubStub stub;
 | 
| +        // TODO(1222589): remove dependency of TOS being cached inside stub
 | 
| +        Result operand = frame_->Pop();
 | 
| +        Result answer = frame_->CallStub(&stub, &operand);
 | 
| +        frame_->Push(&answer);
 | 
| +        break;
 | 
| +      }
 | 
| +
 | 
| +      case Token::BIT_NOT: {
 | 
| +        // Smi check.
 | 
| +        JumpTarget smi_label(this);
 | 
| +        JumpTarget continue_label(this);
 | 
| +        Result operand = frame_->Pop();
 | 
| +        operand.ToRegister();
 | 
| +        __ test(operand.reg(), Immediate(kSmiTagMask));
 | 
| +        smi_label.Branch(zero, &operand, taken);
 | 
| +
 | 
| +        frame_->Push(&operand);  // undo popping of TOS
 | 
| +        Result answer = frame_->InvokeBuiltin(Builtins::BIT_NOT,
 | 
| +                                              CALL_FUNCTION, 1);
 | 
| +
 | 
| +        continue_label.Jump(&answer);
 | 
| +        smi_label.Bind(&answer);
 | 
| +        answer.ToRegister();
 | 
| +        frame_->Spill(answer.reg());
 | 
| +        __ not_(answer.reg());
 | 
| +        __ and_(answer.reg(), ~kSmiTagMask);  // Remove inverted smi-tag.
 | 
| +        continue_label.Bind(&answer);
 | 
| +        frame_->Push(&answer);
 | 
| +        break;
 | 
| +      }
 | 
| +
 | 
| +      case Token::ADD: {
 | 
| +        // Smi check.
 | 
| +        JumpTarget continue_label(this);
 | 
| +        Result operand = frame_->Pop();
 | 
| +        operand.ToRegister();
 | 
| +        __ test(operand.reg(), Immediate(kSmiTagMask));
 | 
| +        continue_label.Branch(zero, &operand, taken);
 | 
| +
 | 
| +        frame_->Push(&operand);
 | 
| +        Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
 | 
| +                                              CALL_FUNCTION, 1);
 | 
| +
 | 
| +        continue_label.Bind(&answer);
 | 
| +        frame_->Push(&answer);
 | 
| +        break;
 | 
| +      }
 | 
| +
 | 
| +      default:
 | 
| +        UNREACHABLE();
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class DeferredCountOperation: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredCountOperation(CodeGenerator* generator,
 | 
| +                         bool is_postfix,
 | 
| +                         bool is_increment,
 | 
| +                         int target_size)
 | 
| +      : DeferredCode(generator),
 | 
| +        is_postfix_(is_postfix),
 | 
| +        is_increment_(is_increment),
 | 
| +        target_size_(target_size) {
 | 
| +    set_comment("[ DeferredCountOperation");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| + private:
 | 
| +  bool is_postfix_;
 | 
| +  bool is_increment_;
 | 
| +  int target_size_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredCountOperation::Generate() {
 | 
| +  CodeGenerator* cgen = generator();
 | 
| +  Result value(cgen);
 | 
| +  enter()->Bind(&value);
 | 
| +  VirtualFrame* frame = cgen->frame();
 | 
| +  // Undo the optimistic smi operation.
 | 
| +  value.ToRegister();
 | 
| +  frame->Spill(value.reg());
 | 
| +  if (is_increment_) {
 | 
| +    __ sub(Operand(value.reg()), Immediate(Smi::FromInt(1)));
 | 
| +  } else {
 | 
| +    __ add(Operand(value.reg()), Immediate(Smi::FromInt(1)));
 | 
| +  }
 | 
| +  frame->Push(&value);
 | 
| +  value = frame->InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION, 1);
 | 
| +  frame->Push(&value);
 | 
| +  if (is_postfix_) {  // Fix up copy of old value with ToNumber(value).
 | 
| +    // This is only safe because VisitCountOperation makes this frame slot
 | 
| +    // beneath the reference a register, which is spilled at the above call.
 | 
| +    // We cannot safely write to constants or copies below the water line.
 | 
| +    frame->StoreToElementAt(target_size_ + 1);
 | 
| +  }
 | 
| +  frame->Push(Smi::FromInt(1));
 | 
| +  if (is_increment_) {
 | 
| +    value = frame->CallRuntime(Runtime::kNumberAdd, 2);
 | 
| +  } else {
 | 
| +    value = frame->CallRuntime(Runtime::kNumberSub, 2);
 | 
| +  }
 | 
| +  exit_.Jump(&value);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitCountOperation(CountOperation* node) {
 | 
| +  Comment cmnt(masm_, "[ CountOperation");
 | 
| +
 | 
| +  bool is_postfix = node->is_postfix();
 | 
| +  bool is_increment = node->op() == Token::INC;
 | 
| +
 | 
| +  Variable* var = node->expression()->AsVariableProxy()->AsVariable();
 | 
| +  bool is_const = (var != NULL && var->mode() == Variable::CONST);
 | 
| +
 | 
| +  // Postfix operators need a stack slot under the reference to hold
 | 
| +  // the old value while the new one is being stored.
 | 
| +  if (is_postfix) {
 | 
| +    frame_->Push(Smi::FromInt(0));
 | 
| +  }
 | 
| +
 | 
| +  { Reference target(this, node->expression());
 | 
| +    if (target.is_illegal()) {
 | 
| +      // Spoof the virtual frame to have the expected height (one higher
 | 
| +      // than on entry).
 | 
| +      if (!is_postfix) {
 | 
| +        frame_->Push(Smi::FromInt(0));
 | 
| +      }
 | 
| +      return;
 | 
| +    }
 | 
| +    target.TakeValue(NOT_INSIDE_TYPEOF);
 | 
| +
 | 
| +    DeferredCountOperation* deferred =
 | 
| +        new DeferredCountOperation(this, is_postfix,
 | 
| +                                   is_increment, target.size());
 | 
| +
 | 
| +    Result value = frame_->Pop();
 | 
| +    value.ToRegister();
 | 
| +
 | 
| +    // Postfix: Store the old value as the result.
 | 
| +    if (is_postfix) {
 | 
| +      // Explicitly back the slot for the old value with a new register.
 | 
| +      // This improves performance in some cases.
 | 
| +      Result old_value = allocator_->Allocate();
 | 
| +      ASSERT(old_value.is_valid());
 | 
| +      __ mov(old_value.reg(), value.reg());
 | 
| +      // SetElement must not create a constant element or a copy in this slot,
 | 
| +      // since we will write to it, below the waterline, in deferred code.
 | 
| +      frame_->SetElementAt(target.size(), &old_value);
 | 
| +    }
 | 
| +
 | 
| +    // Perform optimistic increment/decrement.  Ensure the value is
 | 
| +    // writable.
 | 
| +    frame_->Spill(value.reg());
 | 
| +    ASSERT(allocator_->count(value.reg()) == 1);
 | 
| +
 | 
| +    // In order to combine the overflow and the smi check, we need to
 | 
| +    // be able to allocate a byte register.  We attempt to do so
 | 
| +    // without spilling.  If we fail, we will generate separate
 | 
| +    // overflow and smi checks.
 | 
| +    //
 | 
| +    // We need to allocate and clear the temporary byte register
 | 
| +    // before performing the count operation since clearing the
 | 
| +    // register using xor will clear the overflow flag.
 | 
| +    Result tmp = allocator_->AllocateByteRegisterWithoutSpilling();
 | 
| +    if (tmp.is_valid()) {
 | 
| +      __ Set(tmp.reg(), Immediate(0));
 | 
| +    }
 | 
| +
 | 
| +    if (is_increment) {
 | 
| +      __ add(Operand(value.reg()), Immediate(Smi::FromInt(1)));
 | 
| +    } else {
 | 
| +      __ sub(Operand(value.reg()), Immediate(Smi::FromInt(1)));
 | 
| +    }
 | 
| +
 | 
| +    // If the count operation didn't overflow and the result is a
 | 
| +    // valid smi, we're done. Otherwise, we jump to the deferred
 | 
| +    // slow-case code.
 | 
| +    //
 | 
| +    // We combine the overflow and the smi check if we could
 | 
| +    // successfully allocate a temporary byte register.
 | 
| +    if (tmp.is_valid()) {
 | 
| +      __ setcc(overflow, tmp.reg());
 | 
| +      __ or_(Operand(value.reg()), tmp.reg());
 | 
| +      tmp.Unuse();
 | 
| +      __ test(value.reg(), Immediate(kSmiTagMask));
 | 
| +      deferred->enter()->Branch(not_zero, &value, not_taken);
 | 
| +    } else {  // Otherwise we test separately for overflow and smi check.
 | 
| +      deferred->enter()->Branch(overflow, &value, not_taken);
 | 
| +      __ test(value.reg(), Immediate(kSmiTagMask));
 | 
| +      deferred->enter()->Branch(not_zero, &value, not_taken);
 | 
| +    }
 | 
| +
 | 
| +    // Store the new value in the target if not const.
 | 
| +    deferred->BindExit(&value);
 | 
| +    frame_->Push(&value);
 | 
| +    if (!is_const) {
 | 
| +      target.SetValue(NOT_CONST_INIT);
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  // Postfix: Discard the new value and use the old.
 | 
| +  if (is_postfix) {
 | 
| +    frame_->Drop();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
 | 
| +  // Note that due to an optimization in comparison operations (typeof
 | 
| +  // compared to a string literal), we can evaluate a binary expression such
 | 
| +  // as AND or OR and not leave a value on the frame or in the cc register.
 | 
| +  Comment cmnt(masm_, "[ BinaryOperation");
 | 
| +  Token::Value op = node->op();
 | 
| +
 | 
| +  // According to ECMA-262 section 11.11, page 58, the binary logical
 | 
| +  // operators must yield the result of one of the two expressions
 | 
| +  // before any ToBoolean() conversions. This means that the value
 | 
| +  // produced by a && or || operator is not necessarily a boolean.
 | 
| +
 | 
| +  // NOTE: If the left hand side produces a materialized value (not
 | 
| +  // control flow), we force the right hand side to do the same. This
 | 
| +  // is necessary because we assume that if we get control flow on the
 | 
| +  // last path out of an expression we got it on all paths.
 | 
| +  if (op == Token::AND) {
 | 
| +    JumpTarget is_true(this);
 | 
| +    ControlDestination dest(&is_true, destination()->false_target(), true);
 | 
| +    LoadCondition(node->left(), NOT_INSIDE_TYPEOF, &dest, false);
 | 
| +
 | 
| +    if (dest.false_was_fall_through()) {
 | 
| +      // The current false target was used as the fall-through.  If
 | 
| +      // there are no dangling jumps to is_true then the left
 | 
| +      // subexpression was unconditionally false.  Otherwise we have
 | 
| +      // paths where we do have to evaluate the right subexpression.
 | 
| +      if (is_true.is_linked()) {
 | 
| +        // We need to compile the right subexpression.  If the jump to
 | 
| +        // the current false target was a forward jump then we have a
 | 
| +        // valid frame, we have just bound the false target, and we
 | 
| +        // have to jump around the code for the right subexpression.
 | 
| +        if (has_valid_frame()) {
 | 
| +          destination()->false_target()->Unuse();
 | 
| +          destination()->false_target()->Jump();
 | 
| +        }
 | 
| +        is_true.Bind();
 | 
| +        // The left subexpression compiled to control flow, so the
 | 
| +        // right one is free to do so as well.
 | 
| +        LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
 | 
| +      } else {
 | 
| +        // We have actually just jumped to or bound the current false
 | 
| +        // target but the current control destination is not marked as
 | 
| +        // used.
 | 
| +        destination()->Use(false);
 | 
| +      }
 | 
| +
 | 
| +    } else if (dest.is_used()) {
 | 
| +      // The left subexpression compiled to control flow (and is_true
 | 
| +      // was just bound), so the right is free to do so as well.
 | 
| +      LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
 | 
| +
 | 
| +    } else {
 | 
| +      // We have a materialized value on the frame, so we exit with
 | 
| +      // one on all paths.  There are possibly also jumps to is_true
 | 
| +      // from nested subexpressions.
 | 
| +      JumpTarget pop_and_continue(this);
 | 
| +      JumpTarget exit(this);
 | 
| +
 | 
| +      // Avoid popping the result if it converts to 'false' using the
 | 
| +      // standard ToBoolean() conversion as described in ECMA-262,
 | 
| +      // section 9.2, page 30.
 | 
| +      //
 | 
| +      // Duplicate the TOS value. The duplicate will be popped by
 | 
| +      // ToBoolean.
 | 
| +      frame_->Dup();
 | 
| +      ControlDestination dest(&pop_and_continue, &exit, true);
 | 
| +      ToBoolean(&dest);
 | 
| +
 | 
| +      // Pop the result of evaluating the first part.
 | 
| +      frame_->Drop();
 | 
| +
 | 
| +      // Compile right side expression.
 | 
| +      is_true.Bind();
 | 
| +      Load(node->right());
 | 
| +
 | 
| +      // Exit (always with a materialized value).
 | 
| +      exit.Bind();
 | 
| +    }
 | 
| +
 | 
| +  } else if (op == Token::OR) {
 | 
| +    JumpTarget is_false(this);
 | 
| +    ControlDestination dest(destination()->true_target(), &is_false, false);
 | 
| +    LoadCondition(node->left(), NOT_INSIDE_TYPEOF, &dest, false);
 | 
| +
 | 
| +    if (dest.true_was_fall_through()) {
 | 
| +      // The current true target was used as the fall-through.  If
 | 
| +      // there are no dangling jumps to is_false then the left
 | 
| +      // subexpression was unconditionally true.  Otherwise we have
 | 
| +      // paths where we do have to evaluate the right subexpression.
 | 
| +      if (is_false.is_linked()) {
 | 
| +        // We need to compile the right subexpression.  If the jump to
 | 
| +        // the current true target was a forward jump then we have a
 | 
| +        // valid frame, we have just bound the true target, and we
 | 
| +        // have to jump around the code for the right subexpression.
 | 
| +        if (has_valid_frame()) {
 | 
| +          destination()->true_target()->Unuse();
 | 
| +          destination()->true_target()->Jump();
 | 
| +        }
 | 
| +        is_false.Bind();
 | 
| +        // The left subexpression compiled to control flow, so the
 | 
| +        // right one is free to do so as well.
 | 
| +        LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
 | 
| +      } else {
 | 
| +        // We have just jumped to or bound the current true target but
 | 
| +        // the current control destination is not marked as used.
 | 
| +        destination()->Use(true);
 | 
| +      }
 | 
| +
 | 
| +    } else if (dest.is_used()) {
 | 
| +      // The left subexpression compiled to control flow (and is_false
 | 
| +      // was just bound), so the right is free to do so as well.
 | 
| +      LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false);
 | 
| +
 | 
| +    } else {
 | 
| +      // We have a materialized value on the frame, so we exit with
 | 
| +      // one on all paths.  There are possibly also jumps to is_false
 | 
| +      // from nested subexpressions.
 | 
| +      JumpTarget pop_and_continue(this);
 | 
| +      JumpTarget exit(this);
 | 
| +
 | 
| +      // Avoid popping the result if it converts to 'true' using the
 | 
| +      // standard ToBoolean() conversion as described in ECMA-262,
 | 
| +      // section 9.2, page 30.
 | 
| +      //
 | 
| +      // Duplicate the TOS value. The duplicate will be popped by
 | 
| +      // ToBoolean.
 | 
| +      frame_->Dup();
 | 
| +      ControlDestination dest(&exit, &pop_and_continue, false);
 | 
| +      ToBoolean(&dest);
 | 
| +
 | 
| +      // Pop the result of evaluating the first part.
 | 
| +      frame_->Drop();
 | 
| +
 | 
| +      // Compile right side expression.
 | 
| +      is_false.Bind();
 | 
| +      Load(node->right());
 | 
| +
 | 
| +      // Exit (always with a materialized value).
 | 
| +      exit.Bind();
 | 
| +    }
 | 
| +
 | 
| +  } else {
 | 
| +    // NOTE: The code below assumes that the slow cases (calls to runtime)
 | 
| +    // never return a constant/immutable object.
 | 
| +    OverwriteMode overwrite_mode = NO_OVERWRITE;
 | 
| +    if (node->left()->AsBinaryOperation() != NULL &&
 | 
| +        node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) {
 | 
| +      overwrite_mode = OVERWRITE_LEFT;
 | 
| +    } else if (node->right()->AsBinaryOperation() != NULL &&
 | 
| +               node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) {
 | 
| +      overwrite_mode = OVERWRITE_RIGHT;
 | 
| +    }
 | 
| +
 | 
| +    Load(node->left());
 | 
| +    Load(node->right());
 | 
| +    GenericBinaryOperation(node->op(), node->type(), overwrite_mode);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitThisFunction(ThisFunction* node) {
 | 
| +  frame_->PushFunction();
 | 
| +}
 | 
| +
 | 
| +
 | 
| +class InstanceofStub: public CodeStub {
 | 
| + public:
 | 
| +  InstanceofStub() { }
 | 
| +
 | 
| +  void Generate(MacroAssembler* masm);
 | 
| +
 | 
| + private:
 | 
| +  Major MajorKey() { return Instanceof; }
 | 
| +  int MinorKey() { return 0; }
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
 | 
| +  Comment cmnt(masm_, "[ CompareOperation");
 | 
| +
 | 
| +  // Get the expressions from the node.
 | 
| +  Expression* left = node->left();
 | 
| +  Expression* right = node->right();
 | 
| +  Token::Value op = node->op();
 | 
| +  // To make typeof testing for natives implemented in JavaScript really
 | 
| +  // efficient, we generate special code for expressions of the form:
 | 
| +  // 'typeof <expression> == <string>'.
 | 
| +  UnaryOperation* operation = left->AsUnaryOperation();
 | 
| +  if ((op == Token::EQ || op == Token::EQ_STRICT) &&
 | 
| +      (operation != NULL && operation->op() == Token::TYPEOF) &&
 | 
| +      (right->AsLiteral() != NULL &&
 | 
| +       right->AsLiteral()->handle()->IsString())) {
 | 
| +    Handle<String> check(String::cast(*right->AsLiteral()->handle()));
 | 
| +
 | 
| +    // Load the operand and move it to a register.
 | 
| +    LoadTypeofExpression(operation->expression());
 | 
| +    Result answer = frame_->Pop();
 | 
| +    answer.ToRegister();
 | 
| +
 | 
| +    if (check->Equals(Heap::number_symbol())) {
 | 
| +      __ test(answer.reg(), Immediate(kSmiTagMask));
 | 
| +      destination()->true_target()->Branch(zero);
 | 
| +      frame_->Spill(answer.reg());
 | 
| +      __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
 | 
| +      __ cmp(answer.reg(), Factory::heap_number_map());
 | 
| +      answer.Unuse();
 | 
| +      destination()->Split(equal);
 | 
| +
 | 
| +    } else if (check->Equals(Heap::string_symbol())) {
 | 
| +      __ test(answer.reg(), Immediate(kSmiTagMask));
 | 
| +      destination()->false_target()->Branch(zero);
 | 
| +
 | 
| +      // It can be an undetectable string object.
 | 
| +      Result temp = allocator()->Allocate();
 | 
| +      ASSERT(temp.is_valid());
 | 
| +      __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
 | 
| +      __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kBitFieldOffset));
 | 
| +      __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable));
 | 
| +      destination()->false_target()->Branch(not_zero);
 | 
| +      __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
 | 
| +      __ movzx_b(temp.reg(),
 | 
| +                 FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
 | 
| +      __ cmp(temp.reg(), FIRST_NONSTRING_TYPE);
 | 
| +      temp.Unuse();
 | 
| +      answer.Unuse();
 | 
| +      destination()->Split(less);
 | 
| +
 | 
| +    } else if (check->Equals(Heap::boolean_symbol())) {
 | 
| +      __ cmp(answer.reg(), Factory::true_value());
 | 
| +      destination()->true_target()->Branch(equal);
 | 
| +      __ cmp(answer.reg(), Factory::false_value());
 | 
| +      answer.Unuse();
 | 
| +      destination()->Split(equal);
 | 
| +
 | 
| +    } else if (check->Equals(Heap::undefined_symbol())) {
 | 
| +      __ cmp(answer.reg(), Factory::undefined_value());
 | 
| +      destination()->true_target()->Branch(equal);
 | 
| +
 | 
| +      __ test(answer.reg(), Immediate(kSmiTagMask));
 | 
| +      destination()->false_target()->Branch(zero);
 | 
| +
 | 
| +      // It can be an undetectable object.
 | 
| +      frame_->Spill(answer.reg());
 | 
| +      __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
 | 
| +      __ movzx_b(answer.reg(),
 | 
| +                 FieldOperand(answer.reg(), Map::kBitFieldOffset));
 | 
| +      __ test(answer.reg(), Immediate(1 << Map::kIsUndetectable));
 | 
| +      answer.Unuse();
 | 
| +      destination()->Split(not_zero);
 | 
| +
 | 
| +    } else if (check->Equals(Heap::function_symbol())) {
 | 
| +      __ test(answer.reg(), Immediate(kSmiTagMask));
 | 
| +      destination()->false_target()->Branch(zero);
 | 
| +      frame_->Spill(answer.reg());
 | 
| +      __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
 | 
| +      answer.Unuse();
 | 
| +      destination()->Split(equal);
 | 
| +
 | 
| +    } else if (check->Equals(Heap::object_symbol())) {
 | 
| +      __ test(answer.reg(), Immediate(kSmiTagMask));
 | 
| +      destination()->false_target()->Branch(zero);
 | 
| +      __ cmp(answer.reg(), Factory::null_value());
 | 
| +      destination()->true_target()->Branch(equal);
 | 
| +
 | 
| +      // It can be an undetectable object.
 | 
| +      Result map = allocator()->Allocate();
 | 
| +      ASSERT(map.is_valid());
 | 
| +      __ mov(map.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
 | 
| +      __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kBitFieldOffset));
 | 
| +      __ test(map.reg(), Immediate(1 << Map::kIsUndetectable));
 | 
| +      destination()->false_target()->Branch(not_zero);
 | 
| +      __ mov(map.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
 | 
| +      __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset));
 | 
| +      __ cmp(map.reg(), FIRST_JS_OBJECT_TYPE);
 | 
| +      destination()->false_target()->Branch(less);
 | 
| +      __ cmp(map.reg(), LAST_JS_OBJECT_TYPE);
 | 
| +      answer.Unuse();
 | 
| +      map.Unuse();
 | 
| +      destination()->Split(less_equal);
 | 
| +    } else {
 | 
| +      // Uncommon case: typeof testing against a string literal that is
 | 
| +      // never returned from the typeof operator.
 | 
| +      answer.Unuse();
 | 
| +      destination()->Goto(false);
 | 
| +    }
 | 
| +    return;
 | 
| +  }
 | 
| +
 | 
| +  Condition cc = no_condition;
 | 
| +  bool strict = false;
 | 
| +  switch (op) {
 | 
| +    case Token::EQ_STRICT:
 | 
| +      strict = true;
 | 
| +      // Fall through
 | 
| +    case Token::EQ:
 | 
| +      cc = equal;
 | 
| +      break;
 | 
| +    case Token::LT:
 | 
| +      cc = less;
 | 
| +      break;
 | 
| +    case Token::GT:
 | 
| +      cc = greater;
 | 
| +      break;
 | 
| +    case Token::LTE:
 | 
| +      cc = less_equal;
 | 
| +      break;
 | 
| +    case Token::GTE:
 | 
| +      cc = greater_equal;
 | 
| +      break;
 | 
| +    case Token::IN: {
 | 
| +      Load(left);
 | 
| +      Load(right);
 | 
| +      Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
 | 
| +      frame_->Push(&answer);  // push the result
 | 
| +      return;
 | 
| +    }
 | 
| +    case Token::INSTANCEOF: {
 | 
| +      Load(left);
 | 
| +      Load(right);
 | 
| +      InstanceofStub stub;
 | 
| +      Result answer = frame_->CallStub(&stub, 2);
 | 
| +      answer.ToRegister();
 | 
| +      __ test(answer.reg(), Operand(answer.reg()));
 | 
| +      answer.Unuse();
 | 
| +      destination()->Split(zero);
 | 
| +      return;
 | 
| +    }
 | 
| +    default:
 | 
| +      UNREACHABLE();
 | 
| +  }
 | 
| +  Load(left);
 | 
| +  Load(right);
 | 
| +  Comparison(cc, strict, destination());
 | 
| +}
 | 
| +
 | 
| +
 | 
| +#ifdef DEBUG
 | 
| +bool CodeGenerator::HasValidEntryRegisters() {
 | 
| +  return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0))
 | 
| +      && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0))
 | 
| +      && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0))
 | 
| +      && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0))
 | 
| +      && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0));
 | 
| +}
 | 
| +#endif
 | 
| +
 | 
| +
 | 
| +class DeferredReferenceGetKeyedValue: public DeferredCode {
 | 
| + public:
 | 
| +  DeferredReferenceGetKeyedValue(CodeGenerator* generator, bool is_global)
 | 
| +      : DeferredCode(generator), is_global_(is_global) {
 | 
| +    set_comment("[ DeferredReferenceGetKeyedValue");
 | 
| +  }
 | 
| +
 | 
| +  virtual void Generate();
 | 
| +
 | 
| +  Label* patch_site() { return &patch_site_; }
 | 
| +
 | 
| + private:
 | 
| +  Label patch_site_;
 | 
| +  bool is_global_;
 | 
| +};
 | 
| +
 | 
| +
 | 
| +void DeferredReferenceGetKeyedValue::Generate() {
 | 
| +  CodeGenerator* cgen = generator();
 | 
| +  Result receiver(cgen);
 | 
| +  Result key(cgen);
 | 
| +  enter()->Bind(&receiver, &key);
 | 
| +  cgen->frame()->Push(&receiver);  // First IC argument.
 | 
| +  cgen->frame()->Push(&key);       // Second IC argument.
 | 
| +
 | 
| +  // Calculate the delta from the IC call instruction to the map check
 | 
| +  // cmp instruction in the inlined version.  This delta is stored in
 | 
| +  // a test(eax, delta) instruction after the call so that we can find
 | 
| +  // it in the IC initialization code and patch the cmp instruction.
 | 
| +  // This means that we cannot allow test instructions after calls to
 | 
| +  // KeyedLoadIC stubs in other places.
 | 
| +  RelocInfo::Mode mode = is_global_
 | 
| +                         ? RelocInfo::CODE_TARGET_CONTEXT
 | 
| +                         : RelocInfo::CODE_TARGET;
 | 
| +  Result value = cgen->frame()->CallKeyedLoadIC(mode);
 | 
| +  // The result needs to be specifically the eax register because the
 | 
| +  // offset to the patch site will be expected in a test eax
 | 
| +  // instruction.
 | 
| +  ASSERT(value.is_register() && value.reg().is(eax));
 | 
| +  // The delta from the start of the map-compare instruction to the
 | 
| +  // test eax instruction.  We use masm_ directly here instead of the
 | 
| +  // double underscore macro because the macro sometimes uses macro
 | 
| +  // expansion to turn into something that can't return a value.  This
 | 
| +  // is encountered when doing generated code coverage tests.
 | 
| +  int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
 | 
| +  __ test(value.reg(), Immediate(-delta_to_patch_site));
 | 
| +  __ IncrementCounter(&Counters::keyed_load_inline_miss, 1);
 | 
| +
 | 
| +  // The receiver and key were spilled by the call, so their state as
 | 
| +  // constants or copies has been changed.  Thus, they need to be
 | 
| +  // "mergable" in the block at the exit label and are therefore
 | 
| +  // passed as return results here.
 | 
| +  key = cgen->frame()->Pop();
 | 
| +  receiver = cgen->frame()->Pop();
 | 
| +  exit_.Jump(&receiver, &key, &value);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +#undef __
 | 
| +#define __ ACCESS_MASM(masm)
 | 
| +
 | 
| +Handle<String> Reference::GetName() {
 | 
| +  ASSERT(type_ == NAMED);
 | 
| +  Property* property = expression_->AsProperty();
 | 
| +  if (property == NULL) {
 | 
| +    // Global variable reference treated as a named property reference.
 | 
| +    VariableProxy* proxy = expression_->AsVariableProxy();
 | 
| +    ASSERT(proxy->AsVariable() != NULL);
 | 
| +    ASSERT(proxy->AsVariable()->is_global());
 | 
| +    return proxy->name();
 | 
| +  } else {
 | 
| +    Literal* raw_name = property->key()->AsLiteral();
 | 
| +    ASSERT(raw_name != NULL);
 | 
| +    return Handle<String>(String::cast(*raw_name->handle()));
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void Reference::GetValue(TypeofState typeof_state) {
 | 
| +  ASSERT(!cgen_->in_spilled_code());
 | 
| +  ASSERT(cgen_->HasValidEntryRegisters());
 | 
| +  ASSERT(!is_illegal());
 | 
| +  MacroAssembler* masm = cgen_->masm();
 | 
| +  switch (type_) {
 | 
| +    case SLOT: {
 | 
| +      Comment cmnt(masm, "[ Load from Slot");
 | 
| +      Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
 | 
| +      ASSERT(slot != NULL);
 | 
| +      cgen_->LoadFromSlot(slot, typeof_state);
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case NAMED: {
 | 
| +      // TODO(1241834): Make sure that it is safe to ignore the
 | 
| +      // distinction between expressions in a typeof and not in a
 | 
| +      // typeof. If there is a chance that reference errors can be
 | 
| +      // thrown below, we must distinguish between the two kinds of
 | 
| +      // loads (typeof expression loads must not throw a reference
 | 
| +      // error).
 | 
| +      Comment cmnt(masm, "[ Load from named Property");
 | 
| +      cgen_->frame()->Push(GetName());
 | 
| +
 | 
| +      Variable* var = expression_->AsVariableProxy()->AsVariable();
 | 
| +      ASSERT(var == NULL || var->is_global());
 | 
| +      RelocInfo::Mode mode = (var == NULL)
 | 
| +                             ? RelocInfo::CODE_TARGET
 | 
| +                             : RelocInfo::CODE_TARGET_CONTEXT;
 | 
| +      Result answer = cgen_->frame()->CallLoadIC(mode);
 | 
| +      cgen_->frame()->Push(&answer);
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case KEYED: {
 | 
| +      // TODO(1241834): Make sure that this it is safe to ignore the
 | 
| +      // distinction between expressions in a typeof and not in a typeof.
 | 
| +      Comment cmnt(masm, "[ Load from keyed Property");
 | 
| +      Variable* var = expression_->AsVariableProxy()->AsVariable();
 | 
| +      bool is_global = var != NULL;
 | 
| +      ASSERT(!is_global || var->is_global());
 | 
| +      // Inline array load code if inside of a loop.  We do not know
 | 
| +      // the receiver map yet, so we initially generate the code with
 | 
| +      // a check against an invalid map.  In the inline cache code, we
 | 
| +      // patch the map check if appropriate.
 | 
| +      if (cgen_->loop_nesting() > 0) {
 | 
| +        Comment cmnt(masm, "[ Inlined array index load");
 | 
| +        DeferredReferenceGetKeyedValue* deferred =
 | 
| +            new DeferredReferenceGetKeyedValue(cgen_, is_global);
 | 
| +
 | 
| +        Result key = cgen_->frame()->Pop();
 | 
| +        Result receiver = cgen_->frame()->Pop();
 | 
| +        key.ToRegister();
 | 
| +        receiver.ToRegister();
 | 
| +
 | 
| +        // Check that the receiver is not a smi (only needed if this
 | 
| +        // is not a load from the global context) and that it has the
 | 
| +        // expected map.
 | 
| +        if (!is_global) {
 | 
| +          __ test(receiver.reg(), Immediate(kSmiTagMask));
 | 
| +          deferred->enter()->Branch(zero, &receiver, &key, not_taken);
 | 
| +        }
 | 
| +
 | 
| +        // Initially, use an invalid map. The map is patched in the IC
 | 
| +        // initialization code.
 | 
| +        __ bind(deferred->patch_site());
 | 
| +        // Use masm-> here instead of the double underscore macro since extra
 | 
| +        // coverage code can interfere with the patching.
 | 
| +        masm->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset),
 | 
| +               Immediate(Factory::null_value()));
 | 
| +        deferred->enter()->Branch(not_equal, &receiver, &key, not_taken);
 | 
| +
 | 
| +        // Check that the key is a smi.
 | 
| +        __ test(key.reg(), Immediate(kSmiTagMask));
 | 
| +        deferred->enter()->Branch(not_zero, &receiver, &key, not_taken);
 | 
| +
 | 
| +        // Get the elements array from the receiver and check that it
 | 
| +        // is not a dictionary.
 | 
| +        Result elements = cgen_->allocator()->Allocate();
 | 
| +        ASSERT(elements.is_valid());
 | 
| +        __ mov(elements.reg(),
 | 
| +               FieldOperand(receiver.reg(), JSObject::kElementsOffset));
 | 
| +        __ cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset),
 | 
| +               Immediate(Factory::hash_table_map()));
 | 
| +        deferred->enter()->Branch(equal, &receiver, &key, not_taken);
 | 
| +
 | 
| +        // Shift the key to get the actual index value and check that
 | 
| +        // it is within bounds.
 | 
| +        Result index = cgen_->allocator()->Allocate();
 | 
| +        ASSERT(index.is_valid());
 | 
| +        __ mov(index.reg(), key.reg());
 | 
| +        __ sar(index.reg(), kSmiTagSize);
 | 
| +        __ cmp(index.reg(),
 | 
| +               FieldOperand(elements.reg(), Array::kLengthOffset));
 | 
| +        deferred->enter()->Branch(above_equal, &receiver, &key, not_taken);
 | 
| +
 | 
| +        // Load and check that the result is not the hole.  We could
 | 
| +        // reuse the index or elements register for the value.
 | 
| +        //
 | 
| +        // TODO(206): Consider whether it makes sense to try some
 | 
| +        // heuristic about which register to reuse.  For example, if
 | 
| +        // one is eax, the we can reuse that one because the value
 | 
| +        // coming from the deferred code will be in eax.
 | 
| +        Result value = index;
 | 
| +        __ mov(value.reg(), Operand(elements.reg(),
 | 
| +                                    index.reg(),
 | 
| +                                    times_4,
 | 
| +                                    Array::kHeaderSize - kHeapObjectTag));
 | 
| +        elements.Unuse();
 | 
| +        index.Unuse();
 | 
| +        __ cmp(Operand(value.reg()), Immediate(Factory::the_hole_value()));
 | 
| +        deferred->enter()->Branch(equal, &receiver, &key, not_taken);
 | 
| +        __ IncrementCounter(&Counters::keyed_load_inline, 1);
 | 
| +
 | 
| +        // Restore the receiver and key to the frame and push the
 | 
| +        // result on top of it.
 | 
| +        deferred->BindExit(&receiver, &key, &value);
 | 
| +        cgen_->frame()->Push(&receiver);
 | 
| +        cgen_->frame()->Push(&key);
 | 
| +        cgen_->frame()->Push(&value);
 | 
| +
 | 
| +      } else {
 | 
| +        Comment cmnt(masm, "[ Load from keyed Property");
 | 
| +        RelocInfo::Mode mode = is_global
 | 
| +                               ? RelocInfo::CODE_TARGET_CONTEXT
 | 
| +                               : RelocInfo::CODE_TARGET;
 | 
| +        Result answer = cgen_->frame()->CallKeyedLoadIC(mode);
 | 
| +        // Make sure that we do not have a test instruction after the
 | 
| +        // call.  A test instruction after the call is used to
 | 
| +        // indicate that we have generated an inline version of the
 | 
| +        // keyed load.  The explicit nop instruction is here because
 | 
| +        // the push that follows might be peep-hole optimized away.
 | 
| +        __ nop();
 | 
| +        cgen_->frame()->Push(&answer);
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    default:
 | 
| +      UNREACHABLE();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void Reference::TakeValue(TypeofState typeof_state) {
 | 
| +  // For non-constant frame-allocated slots, we invalidate the value in the
 | 
| +  // slot.  For all others, we fall back on GetValue.
 | 
| +  ASSERT(!cgen_->in_spilled_code());
 | 
| +  ASSERT(!is_illegal());
 | 
| +  if (type_ != SLOT) {
 | 
| +    GetValue(typeof_state);
 | 
| +    return;
 | 
| +  }
 | 
| +
 | 
| +  Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
 | 
| +  ASSERT(slot != NULL);
 | 
| +  if (slot->type() == Slot::LOOKUP ||
 | 
| +      slot->type() == Slot::CONTEXT ||
 | 
| +      slot->var()->mode() == Variable::CONST) {
 | 
| +    GetValue(typeof_state);
 | 
| +    return;
 | 
| +  }
 | 
| +
 | 
| +  // Only non-constant, frame-allocated parameters and locals can reach
 | 
| +  // here.
 | 
| +  if (slot->type() == Slot::PARAMETER) {
 | 
| +    cgen_->frame()->TakeParameterAt(slot->index());
 | 
| +  } else {
 | 
| +    ASSERT(slot->type() == Slot::LOCAL);
 | 
| +    cgen_->frame()->TakeLocalAt(slot->index());
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void Reference::SetValue(InitState init_state) {
 | 
| +  ASSERT(cgen_->HasValidEntryRegisters());
 | 
| +  ASSERT(!is_illegal());
 | 
| +  switch (type_) {
 | 
| +    case SLOT: {
 | 
| +      Comment cmnt(cgen_->masm(), "[ Store to Slot");
 | 
| +      Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot();
 | 
| +      ASSERT(slot != NULL);
 | 
| +      cgen_->StoreToSlot(slot, init_state);
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case NAMED: {
 | 
| +      Comment cmnt(cgen_->masm(), "[ Store to named Property");
 | 
| +      cgen_->frame()->Push(GetName());
 | 
| +      Result answer = cgen_->frame()->CallStoreIC();
 | 
| +      cgen_->frame()->Push(&answer);
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case KEYED: {
 | 
| +      Comment cmnt(cgen_->masm(), "[ Store to keyed Property");
 | 
| +      Result answer = cgen_->frame()->CallKeyedStoreIC();
 | 
| +      cgen_->frame()->Push(&answer);
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    default:
 | 
| +      UNREACHABLE();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +// NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined).
 | 
| +void ToBooleanStub::Generate(MacroAssembler* masm) {
 | 
| +  Label false_result, true_result, not_string;
 | 
| +  __ mov(eax, Operand(esp, 1 * kPointerSize));
 | 
| +
 | 
| +  // 'null' => false.
 | 
| +  __ cmp(eax, Factory::null_value());
 | 
| +  __ j(equal, &false_result);
 | 
| +
 | 
| +  // Get the map and type of the heap object.
 | 
| +  __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
 | 
| +  __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset));
 | 
| +
 | 
| +  // Undetectable => false.
 | 
| +  __ movzx_b(ebx, FieldOperand(edx, Map::kBitFieldOffset));
 | 
| +  __ and_(ebx, 1 << Map::kIsUndetectable);
 | 
| +  __ j(not_zero, &false_result);
 | 
| +
 | 
| +  // JavaScript object => true.
 | 
| +  __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
 | 
| +  __ j(above_equal, &true_result);
 | 
| +
 | 
| +  // String value => false iff empty.
 | 
| +  __ cmp(ecx, FIRST_NONSTRING_TYPE);
 | 
| +  __ j(above_equal, ¬_string);
 | 
| +  __ and_(ecx, kStringSizeMask);
 | 
| +  __ cmp(ecx, kShortStringTag);
 | 
| +  __ j(not_equal, &true_result);  // Empty string is always short.
 | 
| +  __ mov(edx, FieldOperand(eax, String::kLengthOffset));
 | 
| +  __ shr(edx, String::kShortLengthShift);
 | 
| +  __ j(zero, &false_result);
 | 
| +  __ jmp(&true_result);
 | 
| +
 | 
| +  __ bind(¬_string);
 | 
| +  // HeapNumber => false iff +0, -0, or NaN.
 | 
| +  __ cmp(edx, Factory::heap_number_map());
 | 
| +  __ j(not_equal, &true_result);
 | 
| +  __ fldz();
 | 
| +  __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
 | 
| +  __ fucompp();
 | 
| +  __ push(eax);
 | 
| +  __ fnstsw_ax();
 | 
| +  __ sahf();
 | 
| +  __ pop(eax);
 | 
| +  __ j(zero, &false_result);
 | 
| +  // Fall through to |true_result|.
 | 
| +
 | 
| +  // Return 1/0 for true/false in eax.
 | 
| +  __ bind(&true_result);
 | 
| +  __ mov(eax, 1);
 | 
| +  __ ret(1 * kPointerSize);
 | 
| +  __ bind(&false_result);
 | 
| +  __ mov(eax, 0);
 | 
| +  __ ret(1 * kPointerSize);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +#undef __
 | 
| +#define __ ACCESS_MASM(masm_)
 | 
| +
 | 
| +Result DeferredInlineBinaryOperation::GenerateInlineCode(Result* left,
 | 
| +                                                         Result* right) {
 | 
| +  // Perform fast-case smi code for the operation (left <op> right) and
 | 
| +  // returns the result in a Result.
 | 
| +  // If any fast-case tests fail, it jumps to the slow-case deferred code,
 | 
| +  // which calls the binary operation stub, with the arguments (in registers)
 | 
| +  // on top of the frame.
 | 
| +  // Consumes its arguments (sets left and right to invalid and frees their
 | 
| +  // registers).
 | 
| +
 | 
| +  left->ToRegister();
 | 
| +  right->ToRegister();
 | 
| +  // A newly allocated register answer is used to hold the answer.
 | 
| +  // The registers containing left and right are not modified in
 | 
| +  // most cases, so they usually don't need to be spilled in the fast case.
 | 
| +  Result answer = generator()->allocator()->Allocate();
 | 
| +
 | 
| +  ASSERT(answer.is_valid());
 | 
| +  // Perform the smi check.
 | 
| +  if (left->reg().is(right->reg())) {
 | 
| +    __ test(left->reg(), Immediate(kSmiTagMask));
 | 
| +  } else {
 | 
| +    __ mov(answer.reg(), left->reg());
 | 
| +    __ or_(answer.reg(), Operand(right->reg()));
 | 
| +    ASSERT(kSmiTag == 0);  // adjust zero check if not the case
 | 
| +    __ test(answer.reg(), Immediate(kSmiTagMask));
 | 
| +  }
 | 
| +  enter()->Branch(not_zero, left, right, not_taken);
 | 
| +
 | 
| +  // All operations start by copying the left argument into answer.
 | 
| +  __ mov(answer.reg(), left->reg());
 | 
| +  switch (op_) {
 | 
| +    case Token::ADD:
 | 
| +      __ add(answer.reg(), Operand(right->reg()));  // add optimistically
 | 
| +      enter()->Branch(overflow, left, right, not_taken);
 | 
| +      break;
 | 
| +
 | 
| +    case Token::SUB:
 | 
| +      __ sub(answer.reg(), Operand(right->reg()));  // subtract optimistically
 | 
| +      enter()->Branch(overflow, left, right, not_taken);
 | 
| +      break;
 | 
| +
 | 
| +    case Token::MUL: {
 | 
| +      // If the smi tag is 0 we can just leave the tag on one operand.
 | 
| +      ASSERT(kSmiTag == 0);  // adjust code below if not the case
 | 
| +      // Remove tag from the left operand (but keep sign).
 | 
| +      // Left hand operand has been copied into answer.
 | 
| +      __ sar(answer.reg(), kSmiTagSize);
 | 
| +      // Do multiplication of smis, leaving result in answer.
 | 
| +      __ imul(answer.reg(), Operand(right->reg()));
 | 
| +      // Go slow on overflows.
 | 
| +      enter()->Branch(overflow, left, right, not_taken);
 | 
| +      // Check for negative zero result.  If product is zero,
 | 
| +      // and one argument is negative, go to slow case.
 | 
| +      // The frame is unchanged in this block, so local control flow can
 | 
| +      // use a Label rather than a JumpTarget.
 | 
| +      Label non_zero_result;
 | 
| +      __ test(answer.reg(), Operand(answer.reg()));
 | 
| +      __ j(not_zero, &non_zero_result, taken);
 | 
| +      __ mov(answer.reg(), left->reg());
 | 
| +      __ or_(answer.reg(), Operand(right->reg()));
 | 
| +      enter()->Branch(negative, left, right, not_taken);
 | 
| +      __ xor_(answer.reg(), Operand(answer.reg()));  // Positive 0 is correct.
 | 
| +      __ bind(&non_zero_result);
 | 
| +      break;
 | 
| +    }
 | 
| +
 | 
| +    case Token::DIV:  // Fall through.
 | 
| +    case Token::MOD: {
 | 
| +      // Div and mod use the registers eax and edx.  Left and right must
 | 
| +      // be preserved, because the original operands are needed if we switch
 | 
| +      // to the slow case.  Move them if either is in eax or edx.
 | 
| +      // The Result answer should be changed into an alias for eax.
 | 
| +      // Precondition:
 | 
| +      // The Results left and right are valid.  They may be the same register,
 | 
| +      // and may be unspilled.  The Result answer is valid and is distinct
 | 
| +      // from left and right, and is spilled.
 | 
| +      // The value in left is copied to answer.
 | 
| +
 | 
| +      Result reg_eax = generator()->allocator()->Allocate(eax);
 | 
| +      Result reg_edx = generator()->allocator()->Allocate(edx);
 | 
| +      // These allocations may have failed, if one of left, right, or answer
 | 
| +      // is in register eax or edx.
 | 
| +      bool left_copied_to_eax = false;  // We will make sure this becomes true.
 | 
| +
 | 
| +      // Part 1: Get eax
 | 
| +      if (answer.reg().is(eax)) {
 | 
| +        reg_eax = answer;
 | 
| +        left_copied_to_eax = true;
 | 
| +      } else if (right->reg().is(eax) || left->reg().is(eax)) {
 | 
| +        // We need a non-edx register to move one or both of left and right to.
 | 
| +        // We use answer if it is not edx, otherwise we allocate one.
 | 
| +        if (answer.reg().is(edx)) {
 | 
| +          reg_edx = answer;
 | 
| +          answer = generator()->allocator()->Allocate();
 | 
| +          ASSERT(answer.is_valid());
 | 
| +        }
 | 
| +
 | 
| +        if (left->reg().is(eax)) {
 | 
| +          reg_eax = *left;
 | 
| +          left_copied_to_eax = true;
 | 
| +          *left = answer;
 | 
| +        }
 | 
| +        if (right->reg().is(eax)) {
 | 
| +          reg_eax = *right;
 | 
| +          *right = answer;
 | 
| +        }
 | 
| +        __ mov(answer.reg(), eax);
 | 
| +      }
 | 
| +      // End of Part 1.
 | 
| +      // reg_eax is valid, and neither left nor right is in eax.
 | 
| +      ASSERT(reg_eax.is_valid());
 | 
| +      ASSERT(!left->reg().is(eax));
 | 
| +      ASSERT(!right->reg().is(eax));
 | 
| +
 | 
| +      // Part 2: Get edx
 | 
| +      // reg_edx is invalid if and only if either left, right,
 | 
| +      // or answer is in edx.  If edx is valid, then either edx
 | 
| +      // was free, or it was answer, but answer was reallocated.
 | 
| +      if (answer.reg().is(edx)) {
 | 
| +        reg_edx = answer;
 | 
| +      } else if (right->reg().is(edx) || left->reg().is(edx)) {
 | 
| +        // Is answer used?
 | 
| +        if (answer.reg().is(eax) || answer.reg().is(left->reg()) ||
 | 
| +            answer.reg().is(right->reg())) {
 | 
| +          answer = generator()->allocator()->Allocate();
 | 
| +          ASSERT(answer.is_valid());  // We cannot hit both Allocate() calls.
 | 
| +        }
 | 
| +        if (left->reg().is(edx)) {
 | 
| +          reg_edx = *left;
 | 
| +          *left = answer;
 | 
| +        }
 | 
| +        if (right->reg().is(edx)) {
 | 
| +          reg_edx = *right;
 | 
| +          *right = answer;
 | 
| +        }
 | 
| +        __ mov(answer.reg(), edx);
 | 
| +      }
 | 
| +      // End of Part 2
 | 
| +      ASSERT(reg_edx.is_valid());
 | 
| +      ASSERT(!left->reg().is(eax));
 | 
| +      ASSERT(!right->reg().is(eax));
 | 
| +
 | 
| +      answer = reg_eax;  // May free answer, if it was never used.
 | 
| +      generator()->frame()->Spill(eax);
 | 
| +      if (!left_copied_to_eax) {
 | 
| +        __ mov(eax, left->reg());
 | 
| +        left_copied_to_eax = true;
 | 
| +      }
 | 
| +      generator()->frame()->Spill(edx);
 | 
| +
 | 
| +      // Postcondition:
 | 
| +      // reg_eax, reg_edx are valid, correct, and spilled.
 | 
| +      // reg_eax contains the value originally in left
 | 
| +      // left and right are not eax or edx.  They may or may not be
 | 
| +      // spilled or distinct.
 | 
| +      // answer is an alias for reg_eax.
 | 
| +
 | 
| +      // Sign extend eax into edx:eax.
 | 
| +      __ cdq();
 | 
| +      // Check for 0 divisor.
 | 
| +      __ test(right->reg(), Operand(right->reg()));
 | 
| +      enter()->Branch(zero, left, right, not_taken);
 | 
| +      // Divide edx:eax by the right operand.
 | 
| +      __ idiv(right->reg());
 | 
| +      if (op_ == Token::DIV) {
 | 
| +        // Check for negative zero result.  If result is zero, and divisor
 | 
| +        // is negative, return a floating point negative zero.
 | 
| +        // The frame is unchanged in this block, so local control flow can
 | 
| +        // use a Label rather than a JumpTarget.
 | 
| +        Label non_zero_result;
 | 
| +        __ test(left->reg(), Operand(left->reg()));
 | 
| +        __ j(not_zero, &non_zero_result, taken);
 | 
| +        __ test(right->reg(), Operand(right->reg()));
 | 
| +        enter()->Branch(negative, left, right, not_taken);
 | 
| +        __ bind(&non_zero_result);
 | 
| +        // Check for the corner case of dividing the most negative smi
 | 
| +        // by -1. We cannot use the overflow flag, since it is not set
 | 
| +        // by idiv instruction.
 | 
| +        ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
 | 
| +        __ cmp(eax, 0x40000000);
 | 
| +        enter()->Branch(equal, left, right, not_taken);
 | 
| +        // Check that the remainder is zero.
 | 
| +        __ test(edx, Operand(edx));
 | 
| +        enter()->Branch(not_zero, left, right, not_taken);
 | 
| +        // Tag the result and store it in register temp.
 | 
| +        ASSERT(kSmiTagSize == times_2);  // adjust code if not the case
 | 
| +        __ lea(answer.reg(), Operand(eax, eax, times_1, kSmiTag));
 | 
| +      } else {
 | 
| +        ASSERT(op_ == Token::MOD);
 | 
| +        // Check for a negative zero result.  If the result is zero, and the
 | 
| +        // dividend is negative, return a floating point negative zero.
 | 
| +        // The frame is unchanged in this block, so local control flow can
 | 
| +        // use a Label rather than a JumpTarget.
 | 
| +        Label non_zero_result;
 | 
| +        __ test(edx, Operand(edx));
 | 
| +        __ j(not_zero, &non_zero_result, taken);
 | 
| +        __ test(left->reg(), Operand(left->reg()));
 | 
| +        enter()->Branch(negative, left, right, not_taken);
 | 
| +        __ bind(&non_zero_result);
 | 
| +        // The answer is in edx.
 | 
| +        answer = reg_edx;
 | 
| +      }
 | 
| +      break;
 | 
| +    }
 | 
| +    case Token::BIT_OR:
 | 
| +      __ or_(answer.reg(), Operand(right->reg()));
 | 
| +      break;
 | 
| +
 | 
| +    case Token::BIT_AND:
 | 
| +      __ and_(answer.reg(), Operand(right->reg()));
 | 
| +      break;
 | 
| +
 | 
| +    case Token::BIT_XOR:
 | 
| +      __ xor_(answer.reg(), Operand(right->reg()));
 | 
| +      break;
 | 
| +
 | 
| +    case Token::SHL:
 | 
| +    case Token::SHR:
 | 
| +    case Token::SAR:
 | 
| +      // Move right into ecx.
 | 
| +      // Left is in two registers already, so even if left or answer is ecx,
 | 
| +      // we can move right to it, and use the other one.
 | 
| +      // Right operand must be in register cl because x86 likes it that way.
 | 
| +      if (right->reg().is(ecx)) {
 | 
| +        // Right is already in the right place.  Left may be in the
 | 
| +        // same register, which causes problems.  Use answer instead.
 | 
| +        if (left->reg().is(ecx)) {
 | 
| +          *left = answer;
 | 
| +        }
 | 
| +      } else if (left->reg().is(ecx)) {
 | 
| +        generator()->frame()->Spill(left->reg());
 | 
| +        __ mov(left->reg(), right->reg());
 | 
| +        *right = *left;
 | 
| +        *left = answer;  // Use copy of left in answer as left.
 | 
| +      } else if (answer.reg().is(ecx)) {
 | 
| +        __ mov(answer.reg(), right->reg());
 | 
| +        *right = answer;
 | 
| +      } else {
 | 
| +        Result reg_ecx = generator()->allocator()->Allocate(ecx);
 | 
| +        ASSERT(reg_ecx.is_valid());
 | 
| +        __ mov(ecx, right->reg());
 | 
| +        *right = reg_ecx;
 | 
| +      }
 | 
| +      ASSERT(left->reg().is_valid());
 | 
| +      ASSERT(!left->reg().is(ecx));
 | 
| +      ASSERT(right->reg().is(ecx));
 | 
| +      answer.Unuse();  // Answer may now be being used for left or right.
 | 
| +      // We will modify left and right, which we do not do in any other
 | 
| +      // binary operation.  The exits to slow code need to restore the
 | 
| +      // original values of left and right, or at least values that give
 | 
| +      // the same answer.
 | 
| +
 | 
| +      // We are modifying left and right.  They must be spilled!
 | 
| +      generator()->frame()->Spill(left->reg());
 | 
| +      generator()->frame()->Spill(right->reg());
 | 
| +
 | 
| +      // Remove tags from operands (but keep sign).
 | 
| +      __ sar(left->reg(), kSmiTagSize);
 | 
| +      __ sar(ecx, kSmiTagSize);
 | 
| +      // Perform the operation.
 | 
| +      switch (op_) {
 | 
| +        case Token::SAR:
 | 
| +          __ sar(left->reg());
 | 
| +          // No checks of result necessary
 | 
| +          break;
 | 
| +        case Token::SHR: {
 | 
| +          __ shr(left->reg());
 | 
| +          // Check that the *unsigned* result fits in a smi.
 | 
| +          // Neither of the two high-order bits can be set:
 | 
| +          // - 0x80000000: high bit would be lost when smi tagging.
 | 
| +          // - 0x40000000: this number would convert to negative when
 | 
| +          // Smi tagging these two cases can only happen with shifts
 | 
| +          // by 0 or 1 when handed a valid smi.
 | 
| +          // If the answer cannot be represented by a SMI, restore
 | 
| +          // the left and right arguments, and jump to slow case.
 | 
| +          // The low bit of the left argument may be lost, but only
 | 
| +          // in a case where it is dropped anyway.
 | 
| +          JumpTarget result_ok(generator());
 | 
| +          __ test(left->reg(), Immediate(0xc0000000));
 | 
| +          result_ok.Branch(zero, left, taken);
 | 
| +          __ shl(left->reg());
 | 
| +          ASSERT(kSmiTag == 0);
 | 
| +          __ shl(left->reg(), kSmiTagSize);
 | 
| +          __ shl(right->reg(), kSmiTagSize);
 | 
| +          enter()->Jump(left, right);
 | 
| +          result_ok.Bind(left);
 | 
| +          break;
 | 
| +        }
 | 
| +        case Token::SHL: {
 | 
| +          __ shl(left->reg());
 | 
| +          // Check that the *signed* result fits in a smi.
 | 
| +          //
 | 
| +          // TODO(207): Can reduce registers from 4 to 3 by
 | 
| +          // preallocating ecx.
 | 
| +          JumpTarget result_ok(generator());
 | 
| +          Result smi_test_reg = generator()->allocator()->Allocate();
 | 
| +          ASSERT(smi_test_reg.is_valid());
 | 
| +          __ lea(smi_test_reg.reg(), Operand(left->reg(), 0x40000000));
 | 
| +          __ test(smi_test_reg.reg(), Immediate(0x80000000));
 | 
| +          smi_test_reg.Unuse();
 | 
| +          result_ok.Branch(zero, left, taken);
 | 
| +          __ shr(left->reg());
 | 
| +          ASSERT(kSmiTag == 0);
 | 
| +          __ shl(left->reg(), kSmiTagSize);
 | 
| +          __ shl(right->reg(), kSmiTagSize);
 | 
| +          enter()->Jump(left, right);
 | 
| +          result_ok.Bind(left);
 | 
| +          break;
 | 
| +        }
 | 
| +        default:
 | 
| +          UNREACHABLE();
 | 
| +      }
 | 
| +      // Smi-tag the result, in left, and make answer an alias for left->
 | 
| +      answer = *left;
 | 
| +      answer.ToRegister();
 | 
| +      ASSERT(kSmiTagSize == times_2);  // adjust code if not the case
 | 
| +      __ lea(answer.reg(),
 | 
| +             Operand(answer.reg(), answer.reg(), times_1, kSmiTag));
 | 
| +      break;
 | 
| +
 | 
| +    default:
 | 
| +      UNREACHABLE();
 | 
| +      break;
 | 
| +  }
 | 
| +  left->Unuse();
 | 
| +  right->Unuse();
 | 
| +  return answer;
 | 
| +}
 | 
| +
 | 
| +
 | 
| +#undef __
 | 
| +#define __ ACCESS_MASM(masm)
 | 
| +
 | 
| +void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
 | 
| +  // Perform fast-case smi code for the operation (eax <op> ebx) and
 | 
| +  // leave result in register eax.
 | 
| +
 | 
| +  // Prepare the smi check of both operands by or'ing them together
 | 
| +  // before checking against the smi mask.
 | 
| +  __ mov(ecx, Operand(ebx));
 | 
| +  __ or_(ecx, Operand(eax));
 | 
| +
 | 
| +  switch (op_) {
 | 
| +    case Token::ADD:
 | 
| +      __ add(eax, Operand(ebx));  // add optimistically
 | 
| +      __ j(overflow, slow, not_taken);
 | 
| +      break;
 | 
| +
 | 
| +    case Token::SUB:
 | 
| +      __ sub(eax, Operand(ebx));  // subtract optimistically
 | 
| +      __ j(overflow, slow, not_taken);
 | 
| +      break;
 | 
| +
 | 
| +    case Token::DIV:
 | 
| +    case Token::MOD:
 | 
| +      // Sign extend eax into edx:eax.
 | 
| +      __ cdq();
 | 
| +      // Check for 0 divisor.
 | 
| +      __ test(ebx, Operand(ebx));
 | 
| +      __ j(zero, slow, not_taken);
 | 
| +      break;
 | 
| +
 | 
| +    default:
 | 
| +      // Fall-through to smi check.
 | 
| +      break;
 | 
| +  }
 | 
| +
 | 
| +  // Perform the actual smi check.
 | 
| +  ASSERT(kSmiTag == 0);  // adjust zero check if not the case
 | 
| +  __ test(ecx, Immediate(kSmiTagMask));
 | 
| +  __ j(not_zero, slow, not_taken);
 | 
| +
 | 
| +  switch (op_) {
 | 
| +    case Token::ADD:
 | 
| +    case Token::SUB:
 | 
| +      // Do nothing here.
 | 
| +      break;
 | 
| +
 | 
| +    case Token::MUL:
 | 
| +      // If the smi tag is 0 we can just leave the tag on one operand.
 | 
| +      ASSERT(kSmiTag == 0);  // adjust code below if not the case
 | 
| +      // Remove tag from one of the operands (but keep sign).
 | 
| +      __ sar(eax, kSmiTagSize);
 | 
| +      // Do multiplication.
 | 
| +      __ imul(eax, Operand(ebx));  // multiplication of smis; result in eax
 | 
| +      // Go slow on overflows.
 | 
| +      __ j(overflow, slow, not_taken);
 | 
| +      // Check for negative zero result.
 | 
| +      __ NegativeZeroTest(eax, ecx, slow);  // use ecx = x | y
 | 
| +      break;
 | 
| +
 | 
| +    case Token::DIV:
 | 
| +      // Divide edx:eax by ebx.
 | 
| +      __ idiv(ebx);
 | 
| +      // Check for the corner case of dividing the most negative smi
 | 
| +      // by -1. We cannot use the overflow flag, since it is not set
 | 
| +      // by idiv instruction.
 | 
| +      ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
 | 
| +      __ cmp(eax, 0x40000000);
 | 
| +      __ j(equal, slow);
 | 
| +      // Check for negative zero result.
 | 
| +      __ NegativeZeroTest(eax, ecx, slow);  // use ecx = x | y
 | 
| +      // Check that the remainder is zero.
 | 
| +      __ test(edx, Operand(edx));
 | 
| +      __ j(not_zero, slow);
 | 
| +      // Tag the result and store it in register eax.
 | 
| +      ASSERT(kSmiTagSize == times_2);  // adjust code if not the case
 | 
| +      __ lea(eax, Operand(eax, eax, times_1, kSmiTag));
 | 
| +      break;
 | 
| +
 | 
| +    case Token::MOD:
 | 
| +      // Divide edx:eax by ebx.
 | 
| +      __ idiv(ebx);
 | 
| +      // Check for negative zero result.
 | 
| +      __ NegativeZeroTest(edx, ecx, slow);  // use ecx = x | y
 | 
| +      // Move remainder to register eax.
 | 
| +      __ mov(eax, Operand(edx));
 | 
| +      break;
 | 
| +
 | 
| +    case Token::BIT_OR:
 | 
| +      __ or_(eax, Operand(ebx));
 | 
| +      break;
 | 
| +
 | 
| +    case Token::BIT_AND:
 | 
| +      __ and_(eax, Operand(ebx));
 | 
| +      break;
 | 
| +
 | 
| +    case Token::BIT_XOR:
 | 
| +      __ xor_(eax, Operand(ebx));
 | 
| +      break;
 | 
| +
 | 
| +    case Token::SHL:
 | 
| +    case Token::SHR:
 | 
| +    case Token::SAR:
 | 
| +      // Move the second operand into register ecx.
 | 
| +      __ mov(ecx, Operand(ebx));
 | 
| +      // Remove tags from operands (but keep sign).
 | 
| +      __ sar(eax, kSmiTagSize);
 | 
| +      __ sar(ecx, kSmiTagSize);
 | 
| +      // Perform the operation.
 | 
| +      switch (op_) {
 | 
| +        case Token::SAR:
 | 
| +          __ sar(eax);
 | 
| +          // No checks of result necessary
 | 
| +          break;
 | 
| +        case Token::SHR:
 | 
| +          __ shr(eax);
 | 
| +          // Check that the *unsigned* result fits in a smi.
 | 
| +          // Neither of the two high-order bits can be set:
 | 
| +          // - 0x80000000: high bit would be lost when smi tagging.
 | 
| +          // - 0x40000000: this number would convert to negative when
 | 
| +          // Smi tagging these two cases can only happen with shifts
 | 
| +          // by 0 or 1 when handed a valid smi.
 | 
| +          __ test(eax, Immediate(0xc0000000));
 | 
| +          __ j(not_zero, slow, not_taken);
 | 
| +          break;
 | 
| +        case Token::SHL:
 | 
| +          __ shl(eax);
 | 
| +          // Check that the *signed* result fits in a smi.
 | 
| +          __ cmp(eax, 0xc0000000);
 | 
| +          __ j(sign, slow, not_taken);
 | 
| +          break;
 | 
| +        default:
 | 
| +          UNREACHABLE();
 | 
| +      }
 | 
| +      // Tag the result and store it in register eax.
 | 
| +      ASSERT(kSmiTagSize == times_2);  // adjust code if not the case
 | 
| +      __ lea(eax, Operand(eax, eax, times_1, kSmiTag));
 | 
| +      break;
 | 
| +
 | 
| +    default:
 | 
| +      UNREACHABLE();
 | 
| +      break;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
 | 
| +  Label call_runtime;
 | 
| +
 | 
| +  if (flags_ == SMI_CODE_IN_STUB) {
 | 
| +    // The fast case smi code wasn't inlined in the stub caller
 | 
| +    // code. Generate it here to speed up common operations.
 | 
| +    Label slow;
 | 
| +    __ mov(ebx, Operand(esp, 1 * kPointerSize));  // get y
 | 
| +    __ mov(eax, Operand(esp, 2 * kPointerSize));  // get x
 | 
| +    GenerateSmiCode(masm, &slow);
 | 
| +    __ ret(2 * kPointerSize);  // remove both operands
 | 
| +
 | 
| +    // Too bad. The fast case smi code didn't succeed.
 | 
| +    __ bind(&slow);
 | 
| +  }
 | 
| +
 | 
| +  // Setup registers.
 | 
| +  __ mov(eax, Operand(esp, 1 * kPointerSize));  // get y
 | 
| +  __ mov(edx, Operand(esp, 2 * kPointerSize));  // get x
 | 
| +
 | 
| +  // Floating point case.
 | 
| +  switch (op_) {
 | 
| +    case Token::ADD:
 | 
| +    case Token::SUB:
 | 
| +    case Token::MUL:
 | 
| +    case Token::DIV: {
 | 
| +      // eax: y
 | 
| +      // edx: x
 | 
| +      FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx);
 | 
| +      // Fast-case: Both operands are numbers.
 | 
| +      // Allocate a heap number, if needed.
 | 
| +      Label skip_allocation;
 | 
| +      switch (mode_) {
 | 
| +        case OVERWRITE_LEFT:
 | 
| +          __ mov(eax, Operand(edx));
 | 
| +          // Fall through!
 | 
| +        case OVERWRITE_RIGHT:
 | 
| +          // If the argument in eax is already an object, we skip the
 | 
| +          // allocation of a heap number.
 | 
| +          __ test(eax, Immediate(kSmiTagMask));
 | 
| +          __ j(not_zero, &skip_allocation, not_taken);
 | 
| +          // Fall through!
 | 
| +        case NO_OVERWRITE:
 | 
| +          FloatingPointHelper::AllocateHeapNumber(masm,
 | 
| +                                                  &call_runtime,
 | 
| +                                                  ecx,
 | 
| +                                                  edx);
 | 
| +          __ bind(&skip_allocation);
 | 
| +          break;
 | 
| +        default: UNREACHABLE();
 | 
| +      }
 | 
| +      FloatingPointHelper::LoadFloatOperands(masm, ecx);
 | 
| +
 | 
| +      switch (op_) {
 | 
| +        case Token::ADD: __ faddp(1); break;
 | 
| +        case Token::SUB: __ fsubp(1); break;
 | 
| +        case Token::MUL: __ fmulp(1); break;
 | 
| +        case Token::DIV: __ fdivp(1); break;
 | 
| +        default: UNREACHABLE();
 | 
| +      }
 | 
| +      __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
 | 
| +      __ ret(2 * kPointerSize);
 | 
| +    }
 | 
| +    case Token::MOD: {
 | 
| +      // For MOD we go directly to runtime in the non-smi case.
 | 
| +      break;
 | 
| +    }
 | 
| +    case Token::BIT_OR:
 | 
| +    case Token::BIT_AND:
 | 
| +    case Token::BIT_XOR:
 | 
| +    case Token::SAR:
 | 
| +    case Token::SHL:
 | 
| +    case Token::SHR: {
 | 
| +      FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx);
 | 
| +      FloatingPointHelper::LoadFloatOperands(masm, ecx);
 | 
| +
 | 
| +      Label skip_allocation, non_smi_result, operand_conversion_failure;
 | 
| +
 | 
| +      // Reserve space for converted numbers.
 | 
| +      __ sub(Operand(esp), Immediate(2 * kPointerSize));
 | 
| +
 | 
| +      bool use_sse3 = CpuFeatures::IsSupported(CpuFeatures::SSE3);
 | 
| +      if (use_sse3) {
 | 
| +        // Truncate the operands to 32-bit integers and check for
 | 
| +        // exceptions in doing so.
 | 
| +         CpuFeatures::Scope scope(CpuFeatures::SSE3);
 | 
| +        __ fisttp_s(Operand(esp, 0 * kPointerSize));
 | 
| +        __ fisttp_s(Operand(esp, 1 * kPointerSize));
 | 
| +        __ fnstsw_ax();
 | 
| +        __ test(eax, Immediate(1));
 | 
| +        __ j(not_zero, &operand_conversion_failure);
 | 
| +      } else {
 | 
| +        // Check if right operand is int32.
 | 
| +        __ fist_s(Operand(esp, 0 * kPointerSize));
 | 
| +        __ fild_s(Operand(esp, 0 * kPointerSize));
 | 
| +        __ fucompp();
 | 
| +        __ fnstsw_ax();
 | 
| +        __ sahf();
 | 
| +        __ j(not_zero, &operand_conversion_failure);
 | 
| +        __ j(parity_even, &operand_conversion_failure);
 | 
| +
 | 
| +        // Check if left operand is int32.
 | 
| +        __ fist_s(Operand(esp, 1 * kPointerSize));
 | 
| +        __ fild_s(Operand(esp, 1 * kPointerSize));
 | 
| +        __ fucompp();
 | 
| +        __ fnstsw_ax();
 | 
| +        __ sahf();
 | 
| +        __ j(not_zero, &operand_conversion_failure);
 | 
| +        __ j(parity_even, &operand_conversion_failure);
 | 
| +      }
 | 
| +
 | 
| +      // Get int32 operands and perform bitop.
 | 
| +      __ pop(ecx);
 | 
| +      __ pop(eax);
 | 
| +      switch (op_) {
 | 
| +        case Token::BIT_OR:  __ or_(eax, Operand(ecx)); break;
 | 
| +        case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
 | 
| +        case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
 | 
| +        case Token::SAR: __ sar(eax); break;
 | 
| +        case Token::SHL: __ shl(eax); break;
 | 
| +        case Token::SHR: __ shr(eax); break;
 | 
| +        default: UNREACHABLE();
 | 
| +      }
 | 
| +
 | 
| +      // Check if result is non-negative and fits in a smi.
 | 
| +      __ test(eax, Immediate(0xc0000000));
 | 
| +      __ j(not_zero, &non_smi_result);
 | 
| +
 | 
| +      // Tag smi result and return.
 | 
| +      ASSERT(kSmiTagSize == times_2);  // adjust code if not the case
 | 
| +      __ lea(eax, Operand(eax, eax, times_1, kSmiTag));
 | 
| +      __ ret(2 * kPointerSize);
 | 
| +
 | 
| +      // All ops except SHR return a signed int32 that we load in a HeapNumber.
 | 
| +      if (op_ != Token::SHR) {
 | 
| +        __ bind(&non_smi_result);
 | 
| +        // Allocate a heap number if needed.
 | 
| +        __ mov(ebx, Operand(eax));  // ebx: result
 | 
| +        switch (mode_) {
 | 
| +          case OVERWRITE_LEFT:
 | 
| +          case OVERWRITE_RIGHT:
 | 
| +            // If the operand was an object, we skip the
 | 
| +            // allocation of a heap number.
 | 
| +            __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
 | 
| +                                1 * kPointerSize : 2 * kPointerSize));
 | 
| +            __ test(eax, Immediate(kSmiTagMask));
 | 
| +            __ j(not_zero, &skip_allocation, not_taken);
 | 
| +            // Fall through!
 | 
| +          case NO_OVERWRITE:
 | 
| +            FloatingPointHelper::AllocateHeapNumber(masm, &call_runtime,
 | 
| +                                                    ecx, edx);
 | 
| +            __ bind(&skip_allocation);
 | 
| +            break;
 | 
| +          default: UNREACHABLE();
 | 
| +        }
 | 
| +        // Store the result in the HeapNumber and return.
 | 
| +        __ mov(Operand(esp, 1 * kPointerSize), ebx);
 | 
| +        __ fild_s(Operand(esp, 1 * kPointerSize));
 | 
| +        __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
 | 
| +        __ ret(2 * kPointerSize);
 | 
| +      }
 | 
| +
 | 
| +      // Clear the FPU exception flag and reset the stack before calling
 | 
| +      // the runtime system.
 | 
| +      __ bind(&operand_conversion_failure);
 | 
| +      __ add(Operand(esp), Immediate(2 * kPointerSize));
 | 
| +      if (use_sse3) {
 | 
| +        // If we've used the SSE3 instructions for truncating the
 | 
| +        // floating point values to integers and it failed, we have a
 | 
| +        // pending #IA exception. Clear it.
 | 
| +        __ fnclex();
 | 
| +      } else {
 | 
| +        // The non-SSE3 variant does early bailout if the right
 | 
| +        // operand isn't a 32-bit integer, so we may have a single
 | 
| +        // value on the FPU stack we need to get rid of.
 | 
| +        __ ffree(0);
 | 
| +      }
 | 
| +
 | 
| +      // SHR should return uint32 - go to runtime for non-smi/negative result.
 | 
| +      if (op_ == Token::SHR) {
 | 
| +        __ bind(&non_smi_result);
 | 
| +      }
 | 
| +      __ mov(eax, Operand(esp, 1 * kPointerSize));
 | 
| +      __ mov(edx, Operand(esp, 2 * kPointerSize));
 | 
| +      break;
 | 
| +    }
 | 
| +    default: UNREACHABLE(); break;
 | 
| +  }
 | 
| +
 | 
| +  // If all else fails, use the runtime system to get the correct
 | 
| +  // result.
 | 
| +  __ bind(&call_runtime);
 | 
| +  switch (op_) {
 | 
| +    case Token::ADD:
 | 
| +      __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    case Token::SUB:
 | 
| +      __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    case Token::MUL:
 | 
| +      __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
 | 
| +        break;
 | 
| +    case Token::DIV:
 | 
| +      __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    case Token::MOD:
 | 
| +      __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    case Token::BIT_OR:
 | 
| +      __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    case Token::BIT_AND:
 | 
| +      __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    case Token::BIT_XOR:
 | 
| +      __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    case Token::SAR:
 | 
| +      __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    case Token::SHL:
 | 
| +      __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    case Token::SHR:
 | 
| +      __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
 | 
| +      break;
 | 
| +    default:
 | 
| +      UNREACHABLE();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void FloatingPointHelper::AllocateHeapNumber(MacroAssembler* masm,
 | 
| +                                             Label* need_gc,
 | 
| +                                             Register scratch1,
 | 
| +                                             Register scratch2) {
 | 
| +  ExternalReference allocation_top =
 | 
| +      ExternalReference::new_space_allocation_top_address();
 | 
| +  ExternalReference allocation_limit =
 | 
| +      ExternalReference::new_space_allocation_limit_address();
 | 
| +  __ mov(Operand(scratch1), Immediate(allocation_top));
 | 
| +  __ mov(eax, Operand(scratch1, 0));
 | 
| +  __ lea(scratch2, Operand(eax, HeapNumber::kSize));  // scratch2: new top
 | 
| +  __ cmp(scratch2, Operand::StaticVariable(allocation_limit));
 | 
| +  __ j(above, need_gc, not_taken);
 | 
| +
 | 
| +  __ mov(Operand(scratch1, 0), scratch2);  // store new top
 | 
| +  __ mov(Operand(eax, HeapObject::kMapOffset),
 | 
| +         Immediate(Factory::heap_number_map()));
 | 
| +  // Tag old top and use as result.
 | 
| +  __ add(Operand(eax), Immediate(kHeapObjectTag));
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
 | 
| +                                            Register scratch) {
 | 
| +  Label load_smi_1, load_smi_2, done_load_1, done;
 | 
| +  __ mov(scratch, Operand(esp, 2 * kPointerSize));
 | 
| +  __ test(scratch, Immediate(kSmiTagMask));
 | 
| +  __ j(zero, &load_smi_1, not_taken);
 | 
| +  __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
 | 
| +  __ bind(&done_load_1);
 | 
| +
 | 
| +  __ mov(scratch, Operand(esp, 1 * kPointerSize));
 | 
| +  __ test(scratch, Immediate(kSmiTagMask));
 | 
| +  __ j(zero, &load_smi_2, not_taken);
 | 
| +  __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
 | 
| +  __ jmp(&done);
 | 
| +
 | 
| +  __ bind(&load_smi_1);
 | 
| +  __ sar(scratch, kSmiTagSize);
 | 
| +  __ push(scratch);
 | 
| +  __ fild_s(Operand(esp, 0));
 | 
| +  __ pop(scratch);
 | 
| +  __ jmp(&done_load_1);
 | 
| +
 | 
| +  __ bind(&load_smi_2);
 | 
| +  __ sar(scratch, kSmiTagSize);
 | 
| +  __ push(scratch);
 | 
| +  __ fild_s(Operand(esp, 0));
 | 
| +  __ pop(scratch);
 | 
| +
 | 
| +  __ bind(&done);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
 | 
| +                                             Label* non_float,
 | 
| +                                             Register scratch) {
 | 
| +  Label test_other, done;
 | 
| +  // Test if both operands are floats or smi -> scratch=k_is_float;
 | 
| +  // Otherwise scratch = k_not_float.
 | 
| +  __ test(edx, Immediate(kSmiTagMask));
 | 
| +  __ j(zero, &test_other, not_taken);  // argument in edx is OK
 | 
| +  __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
 | 
| +  __ cmp(scratch, Factory::heap_number_map());
 | 
| +  __ j(not_equal, non_float);  // argument in edx is not a number -> NaN
 | 
| +
 | 
| +  __ bind(&test_other);
 | 
| +  __ test(eax, Immediate(kSmiTagMask));
 | 
| +  __ j(zero, &done);  // argument in eax is OK
 | 
| +  __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
 | 
| +  __ cmp(scratch, Factory::heap_number_map());
 | 
| +  __ j(not_equal, non_float);  // argument in eax is not a number -> NaN
 | 
| +
 | 
| +  // Fall-through: Both operands are numbers.
 | 
| +  __ bind(&done);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void UnarySubStub::Generate(MacroAssembler* masm) {
 | 
| +  Label undo;
 | 
| +  Label slow;
 | 
| +  Label done;
 | 
| +  Label try_float;
 | 
| +
 | 
| +  // Check whether the value is a smi.
 | 
| +  __ test(eax, Immediate(kSmiTagMask));
 | 
| +  __ j(not_zero, &try_float, not_taken);
 | 
| +
 | 
| +  // Enter runtime system if the value of the expression is zero
 | 
| +  // to make sure that we switch between 0 and -0.
 | 
| +  __ test(eax, Operand(eax));
 | 
| +  __ j(zero, &slow, not_taken);
 | 
| +
 | 
| +  // The value of the expression is a smi that is not zero.  Try
 | 
| +  // optimistic subtraction '0 - value'.
 | 
| +  __ mov(edx, Operand(eax));
 | 
| +  __ Set(eax, Immediate(0));
 | 
| +  __ sub(eax, Operand(edx));
 | 
| +  __ j(overflow, &undo, not_taken);
 | 
| +
 | 
| +  // If result is a smi we are done.
 | 
| +  __ test(eax, Immediate(kSmiTagMask));
 | 
| +  __ j(zero, &done, taken);
 | 
| +
 | 
| +  // Restore eax and enter runtime system.
 | 
| +  __ bind(&undo);
 | 
| +  __ mov(eax, Operand(edx));
 | 
| +
 | 
| +  // Enter runtime system.
 | 
| +  __ bind(&slow);
 | 
| +  __ pop(ecx);  // pop return address
 | 
| +  __ push(eax);
 | 
| +  __ push(ecx);  // push return address
 | 
| +  __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
 | 
| +
 | 
| +  // Try floating point case.
 | 
| +  __ bind(&try_float);
 | 
| +  __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
 | 
| +  __ cmp(edx, Factory::heap_number_map());
 | 
| +  __ j(not_equal, &slow);
 | 
| +  __ mov(edx, Operand(eax));
 | 
| +  // edx: operand
 | 
| +  FloatingPointHelper::AllocateHeapNumber(masm, &undo, ebx, ecx);
 | 
| +  // eax: allocated 'empty' number
 | 
| +  __ fld_d(FieldOperand(edx, HeapNumber::kValueOffset));
 | 
| +  __ fchs();
 | 
| +  __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
 | 
| +
 | 
| +  __ bind(&done);
 | 
| +
 | 
| +  __ StubReturn(1);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) {
 | 
| +  // Check if the calling frame is an arguments adaptor frame.
 | 
| +  Label adaptor;
 | 
| +  __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
 | 
| +  __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
 | 
| +  __ cmp(ecx, ArgumentsAdaptorFrame::SENTINEL);
 | 
| +  __ j(equal, &adaptor);
 | 
| +
 | 
| +  // Nothing to do: The formal number of parameters has already been
 | 
| +  // passed in register eax by calling function. Just return it.
 | 
| +  __ ret(0);
 | 
| +
 | 
| +  // Arguments adaptor case: Read the arguments length from the
 | 
| +  // adaptor frame and return it.
 | 
| +  __ bind(&adaptor);
 | 
| +  __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
 | 
| +  __ ret(0);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
 | 
| +  // The key is in edx and the parameter count is in eax.
 | 
| +
 | 
| +  // The displacement is used for skipping the frame pointer on the
 | 
| +  // stack. It is the offset of the last parameter (if any) relative
 | 
| +  // to the frame pointer.
 | 
| +  static const int kDisplacement = 1 * kPointerSize;
 | 
| +
 | 
| +  // Check that the key is a smi.
 | 
| +  Label slow;
 | 
| +  __ test(edx, Immediate(kSmiTagMask));
 | 
| +  __ j(not_zero, &slow, not_taken);
 | 
| +
 | 
| +  // Check if the calling frame is an arguments adaptor frame.
 | 
| +  Label adaptor;
 | 
| +  __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
 | 
| +  __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
 | 
| +  __ cmp(ecx, ArgumentsAdaptorFrame::SENTINEL);
 | 
| +  __ j(equal, &adaptor);
 | 
| +
 | 
| +  // Check index against formal parameters count limit passed in
 | 
| +  // through register eax. Use unsigned comparison to get negative
 | 
| +  // check for free.
 | 
| +  __ cmp(edx, Operand(eax));
 | 
| +  __ j(above_equal, &slow, not_taken);
 | 
| +
 | 
| +  // Read the argument from the stack and return it.
 | 
| +  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);  // shifting code depends on this
 | 
| +  __ lea(ebx, Operand(ebp, eax, times_2, 0));
 | 
| +  __ neg(edx);
 | 
| +  __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
 | 
| +  __ ret(0);
 | 
| +
 | 
| +  // Arguments adaptor case: Check index against actual arguments
 | 
| +  // limit found in the arguments adaptor frame. Use unsigned
 | 
| +  // comparison to get negative check for free.
 | 
| +  __ bind(&adaptor);
 | 
| +  __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
 | 
| +  __ cmp(edx, Operand(ecx));
 | 
| +  __ j(above_equal, &slow, not_taken);
 | 
| +
 | 
| +  // Read the argument from the stack and return it.
 | 
| +  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);  // shifting code depends on this
 | 
| +  __ lea(ebx, Operand(ebx, ecx, times_2, 0));
 | 
| +  __ neg(edx);
 | 
| +  __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
 | 
| +  __ ret(0);
 | 
| +
 | 
| +  // Slow-case: Handle non-smi or out-of-bounds access to arguments
 | 
| +  // by calling the runtime system.
 | 
| +  __ bind(&slow);
 | 
| +  __ pop(ebx);  // Return address.
 | 
| +  __ push(edx);
 | 
| +  __ push(ebx);
 | 
| +  __ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
 | 
| +  // The displacement is used for skipping the return address and the
 | 
| +  // frame pointer on the stack. It is the offset of the last
 | 
| +  // parameter (if any) relative to the frame pointer.
 | 
| +  static const int kDisplacement = 2 * kPointerSize;
 | 
| +
 | 
| +  // Check if the calling frame is an arguments adaptor frame.
 | 
| +  Label runtime;
 | 
| +  __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
 | 
| +  __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
 | 
| +  __ cmp(ecx, ArgumentsAdaptorFrame::SENTINEL);
 | 
| +  __ j(not_equal, &runtime);
 | 
| +
 | 
| +  // Patch the arguments.length and the parameters pointer.
 | 
| +  __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
 | 
| +  __ mov(Operand(esp, 1 * kPointerSize), ecx);
 | 
| +  __ lea(edx, Operand(edx, ecx, times_2, kDisplacement));
 | 
| +  __ mov(Operand(esp, 2 * kPointerSize), edx);
 | 
| +
 | 
| +  // Do the runtime call to allocate the arguments object.
 | 
| +  __ bind(&runtime);
 | 
| +  __ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CompareStub::Generate(MacroAssembler* masm) {
 | 
| +  Label call_builtin, done;
 | 
| +
 | 
| +  // NOTICE! This code is only reached after a smi-fast-case check, so
 | 
| +  // it is certain that at least one operand isn't a smi.
 | 
| +
 | 
| +  if (cc_ == equal) {  // Both strict and non-strict.
 | 
| +    Label slow;  // Fallthrough label.
 | 
| +    // Equality is almost reflexive (everything but NaN), so start by testing
 | 
| +    // for "identity and not NaN".
 | 
| +    {
 | 
| +      Label not_identical;
 | 
| +      __ cmp(eax, Operand(edx));
 | 
| +      __ j(not_equal, ¬_identical);
 | 
| +      // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
 | 
| +      // so we do the second best thing - test it ourselves.
 | 
| +
 | 
| +      Label return_equal;
 | 
| +      Label heap_number;
 | 
| +      // If it's not a heap number, then return equal.
 | 
| +      __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
 | 
| +             Immediate(Factory::heap_number_map()));
 | 
| +      __ j(equal, &heap_number);
 | 
| +      __ bind(&return_equal);
 | 
| +      __ Set(eax, Immediate(0));
 | 
| +      __ ret(0);
 | 
| +
 | 
| +      __ bind(&heap_number);
 | 
| +      // It is a heap number, so return non-equal if it's NaN and equal if it's
 | 
| +      // not NaN.
 | 
| +      // The representation of NaN values has all exponent bits (52..62) set,
 | 
| +      // and not all mantissa bits (0..51) clear.
 | 
| +      // Read top bits of double representation (second word of value).
 | 
| +      __ mov(eax, FieldOperand(edx, HeapNumber::kValueOffset + kPointerSize));
 | 
| +      // Test that exponent bits are all set.
 | 
| +      __ not_(eax);
 | 
| +      __ test(eax, Immediate(0x7ff00000));
 | 
| +      __ j(not_zero, &return_equal);
 | 
| +      __ not_(eax);
 | 
| +
 | 
| +      // Shift out flag and all exponent bits, retaining only mantissa.
 | 
| +      __ shl(eax, 12);
 | 
| +      // Or with all low-bits of mantissa.
 | 
| +      __ or_(eax, FieldOperand(edx, HeapNumber::kValueOffset));
 | 
| +      // Return zero equal if all bits in mantissa is zero (it's an Infinity)
 | 
| +      // and non-zero if not (it's a NaN).
 | 
| +      __ ret(0);
 | 
| +
 | 
| +      __ bind(¬_identical);
 | 
| +    }
 | 
| +
 | 
| +    // If we're doing a strict equality comparison, we don't have to do
 | 
| +    // type conversion, so we generate code to do fast comparison for objects
 | 
| +    // and oddballs. Non-smi numbers and strings still go through the usual
 | 
| +    // slow-case code.
 | 
| +    if (strict_) {
 | 
| +      // If either is a Smi (we know that not both are), then they can only
 | 
| +      // be equal if the other is a HeapNumber. If so, use the slow case.
 | 
| +      {
 | 
| +        Label not_smis;
 | 
| +        ASSERT_EQ(0, kSmiTag);
 | 
| +        ASSERT_EQ(0, Smi::FromInt(0));
 | 
| +        __ mov(ecx, Immediate(kSmiTagMask));
 | 
| +        __ and_(ecx, Operand(eax));
 | 
| +        __ test(ecx, Operand(edx));
 | 
| +        __ j(not_zero, ¬_smis);
 | 
| +        // One operand is a smi.
 | 
| +
 | 
| +        // Check whether the non-smi is a heap number.
 | 
| +        ASSERT_EQ(1, kSmiTagMask);
 | 
| +        // ecx still holds eax & kSmiTag, which is either zero or one.
 | 
| +        __ sub(Operand(ecx), Immediate(0x01));
 | 
| +        __ mov(ebx, edx);
 | 
| +        __ xor_(ebx, Operand(eax));
 | 
| +        __ and_(ebx, Operand(ecx));  // ebx holds either 0 or eax ^ edx.
 | 
| +        __ xor_(ebx, Operand(eax));
 | 
| +        // if eax was smi, ebx is now edx, else eax.
 | 
| +
 | 
| +        // Check if the non-smi operand is a heap number.
 | 
| +        __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
 | 
| +               Immediate(Factory::heap_number_map()));
 | 
| +        // If heap number, handle it in the slow case.
 | 
| +        __ j(equal, &slow);
 | 
| +        // Return non-equal (ebx is not zero)
 | 
| +        __ mov(eax, ebx);
 | 
| +        __ ret(0);
 | 
| +
 | 
| +        __ bind(¬_smis);
 | 
| +      }
 | 
| +
 | 
| +      // If either operand is a JSObject or an oddball value, then they are not
 | 
| +      // equal since their pointers are different
 | 
| +      // There is no test for undetectability in strict equality.
 | 
| +
 | 
| +      // Get the type of the first operand.
 | 
| +      __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
 | 
| +      __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
 | 
| +
 | 
| +      // If the first object is a JS object, we have done pointer comparison.
 | 
| +      ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
 | 
| +      Label first_non_object;
 | 
| +      __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
 | 
| +      __ j(less, &first_non_object);
 | 
| +
 | 
| +      // Return non-zero (eax is not zero)
 | 
| +      Label return_not_equal;
 | 
| +      ASSERT(kHeapObjectTag != 0);
 | 
| +      __ bind(&return_not_equal);
 | 
| +      __ ret(0);
 | 
| +
 | 
| +      __ bind(&first_non_object);
 | 
| +      // Check for oddballs: true, false, null, undefined.
 | 
| +      __ cmp(ecx, ODDBALL_TYPE);
 | 
| +      __ j(equal, &return_not_equal);
 | 
| +
 | 
| +      __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
 | 
| +      __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
 | 
| +
 | 
| +      __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
 | 
| +      __ j(greater_equal, &return_not_equal);
 | 
| +
 | 
| +      // Check for oddballs: true, false, null, undefined.
 | 
| +      __ cmp(ecx, ODDBALL_TYPE);
 | 
| +      __ j(equal, &return_not_equal);
 | 
| +
 | 
| +      // Fall through to the general case.
 | 
| +    }
 | 
| +    __ bind(&slow);
 | 
| +  }
 | 
| +
 | 
| +  // Save the return address (and get it off the stack).
 | 
| +  __ pop(ecx);
 | 
| +
 | 
| +  // Push arguments.
 | 
| +  __ push(eax);
 | 
| +  __ push(edx);
 | 
| +  __ push(ecx);
 | 
| +
 | 
| +  // Inlined floating point compare.
 | 
| +  // Call builtin if operands are not floating point or smi.
 | 
| +  FloatingPointHelper::CheckFloatOperands(masm, &call_builtin, ebx);
 | 
| +  FloatingPointHelper::LoadFloatOperands(masm, ecx);
 | 
| +  __ FCmp();
 | 
| +
 | 
| +  // Jump to builtin for NaN.
 | 
| +  __ j(parity_even, &call_builtin, not_taken);
 | 
| +
 | 
| +  // TODO(1243847): Use cmov below once CpuFeatures are properly hooked up.
 | 
| +  Label below_lbl, above_lbl;
 | 
| +  // use edx, eax to convert unsigned to signed comparison
 | 
| +  __ j(below, &below_lbl, not_taken);
 | 
| +  __ j(above, &above_lbl, not_taken);
 | 
| +
 | 
| +  __ xor_(eax, Operand(eax));  // equal
 | 
| +  __ ret(2 * kPointerSize);
 | 
| +
 | 
| +  __ bind(&below_lbl);
 | 
| +  __ mov(eax, -1);
 | 
| +  __ ret(2 * kPointerSize);
 | 
| +
 | 
| +  __ bind(&above_lbl);
 | 
| +  __ mov(eax, 1);
 | 
| +  __ ret(2 * kPointerSize);  // eax, edx were pushed
 | 
| +
 | 
| +  __ bind(&call_builtin);
 | 
| +  // must swap argument order
 | 
| +  __ pop(ecx);
 | 
| +  __ pop(edx);
 | 
| +  __ pop(eax);
 | 
| +  __ push(edx);
 | 
| +  __ push(eax);
 | 
| +
 | 
| +  // Figure out which native to call and setup the arguments.
 | 
| +  Builtins::JavaScript builtin;
 | 
| +  if (cc_ == equal) {
 | 
| +    builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
 | 
| +  } else {
 | 
| +    builtin = Builtins::COMPARE;
 | 
| +    int ncr;  // NaN compare result
 | 
| +    if (cc_ == less || cc_ == less_equal) {
 | 
| +      ncr = GREATER;
 | 
| +    } else {
 | 
| +      ASSERT(cc_ == greater || cc_ == greater_equal);  // remaining cases
 | 
| +      ncr = LESS;
 | 
| +    }
 | 
| +    __ push(Immediate(Smi::FromInt(ncr)));
 | 
| +  }
 | 
| +
 | 
| +  // Restore return address on the stack.
 | 
| +  __ push(ecx);
 | 
| +
 | 
| +  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
 | 
| +  // tagged as a small integer.
 | 
| +  __ InvokeBuiltin(builtin, JUMP_FUNCTION);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void StackCheckStub::Generate(MacroAssembler* masm) {
 | 
| +  // Because builtins always remove the receiver from the stack, we
 | 
| +  // have to fake one to avoid underflowing the stack. The receiver
 | 
| +  // must be inserted below the return address on the stack so we
 | 
| +  // temporarily store that in a register.
 | 
| +  __ pop(eax);
 | 
| +  __ push(Immediate(Smi::FromInt(0)));
 | 
| +  __ push(eax);
 | 
| +
 | 
| +  // Do tail-call to runtime routine.
 | 
| +  __ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CallFunctionStub::Generate(MacroAssembler* masm) {
 | 
| +  Label slow;
 | 
| +
 | 
| +  // Get the function to call from the stack.
 | 
| +  // +2 ~ receiver, return address
 | 
| +  __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize));
 | 
| +
 | 
| +  // Check that the function really is a JavaScript function.
 | 
| +  __ test(edi, Immediate(kSmiTagMask));
 | 
| +  __ j(zero, &slow, not_taken);
 | 
| +  // Goto slow case if we do not have a function.
 | 
| +  __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
 | 
| +  __ j(not_equal, &slow, not_taken);
 | 
| +
 | 
| +  // Fast-case: Just invoke the function.
 | 
| +  ParameterCount actual(argc_);
 | 
| +  __ InvokeFunction(edi, actual, JUMP_FUNCTION);
 | 
| +
 | 
| +  // Slow-case: Non-function called.
 | 
| +  __ bind(&slow);
 | 
| +  __ Set(eax, Immediate(argc_));
 | 
| +  __ Set(ebx, Immediate(0));
 | 
| +  __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
 | 
| +  Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
 | 
| +  __ jmp(adaptor, RelocInfo::CODE_TARGET);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +
 | 
| +void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
 | 
| +  ASSERT(StackHandlerConstants::kSize == 6 * kPointerSize);  // adjust this code
 | 
| +  ExternalReference handler_address(Top::k_handler_address);
 | 
| +  __ mov(edx, Operand::StaticVariable(handler_address));
 | 
| +  __ mov(ecx, Operand(edx, -1 * kPointerSize));  // get next in chain
 | 
| +  __ mov(Operand::StaticVariable(handler_address), ecx);
 | 
| +  __ mov(esp, Operand(edx));
 | 
| +  __ pop(edi);
 | 
| +  __ pop(ebp);
 | 
| +  __ pop(edx);  // remove code pointer
 | 
| +  __ pop(edx);  // remove state
 | 
| +
 | 
| +  // Before returning we restore the context from the frame pointer if not NULL.
 | 
| +  // The frame pointer is NULL in the exception handler of a JS entry frame.
 | 
| +  __ xor_(esi, Operand(esi));  // tentatively set context pointer to NULL
 | 
| +  Label skip;
 | 
| +  __ cmp(ebp, 0);
 | 
| +  __ j(equal, &skip, not_taken);
 | 
| +  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
 | 
| +  __ bind(&skip);
 | 
| +
 | 
| +  __ ret(0);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CEntryStub::GenerateCore(MacroAssembler* masm,
 | 
| +                              Label* throw_normal_exception,
 | 
| +                              Label* throw_out_of_memory_exception,
 | 
| +                              StackFrame::Type frame_type,
 | 
| +                              bool do_gc,
 | 
| +                              bool always_allocate_scope) {
 | 
| +  // eax: result parameter for PerformGC, if any
 | 
| +  // ebx: pointer to C function  (C callee-saved)
 | 
| +  // ebp: frame pointer  (restored after C call)
 | 
| +  // esp: stack pointer  (restored after C call)
 | 
| +  // edi: number of arguments including receiver  (C callee-saved)
 | 
| +  // esi: pointer to the first argument (C callee-saved)
 | 
| +
 | 
| +  if (do_gc) {
 | 
| +    __ mov(Operand(esp, 0 * kPointerSize), eax);  // Result.
 | 
| +    __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
 | 
| +  }
 | 
| +
 | 
| +  ExternalReference scope_depth =
 | 
| +      ExternalReference::heap_always_allocate_scope_depth();
 | 
| +  if (always_allocate_scope) {
 | 
| +    __ inc(Operand::StaticVariable(scope_depth));
 | 
| +  }
 | 
| +
 | 
| +  // Call C function.
 | 
| +  __ mov(Operand(esp, 0 * kPointerSize), edi);  // argc.
 | 
| +  __ mov(Operand(esp, 1 * kPointerSize), esi);  // argv.
 | 
| +  __ call(Operand(ebx));
 | 
| +  // Result is in eax or edx:eax - do not destroy these registers!
 | 
| +
 | 
| +  if (always_allocate_scope) {
 | 
| +    __ dec(Operand::StaticVariable(scope_depth));
 | 
| +  }
 | 
| +
 | 
| +  // Check for failure result.
 | 
| +  Label failure_returned;
 | 
| +  ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
 | 
| +  __ lea(ecx, Operand(eax, 1));
 | 
| +  // Lower 2 bits of ecx are 0 iff eax has failure tag.
 | 
| +  __ test(ecx, Immediate(kFailureTagMask));
 | 
| +  __ j(zero, &failure_returned, not_taken);
 | 
| +
 | 
| +  // Exit the JavaScript to C++ exit frame.
 | 
| +  __ LeaveExitFrame(frame_type);
 | 
| +  __ ret(0);
 | 
| +
 | 
| +  // Handling of failure.
 | 
| +  __ bind(&failure_returned);
 | 
| +
 | 
| +  Label retry;
 | 
| +  // If the returned exception is RETRY_AFTER_GC continue at retry label
 | 
| +  ASSERT(Failure::RETRY_AFTER_GC == 0);
 | 
| +  __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
 | 
| +  __ j(zero, &retry, taken);
 | 
| +
 | 
| +  Label continue_exception;
 | 
| +  // If the returned failure is EXCEPTION then promote Top::pending_exception().
 | 
| +  __ cmp(eax, reinterpret_cast<int32_t>(Failure::Exception()));
 | 
| +  __ j(not_equal, &continue_exception);
 | 
| +
 | 
| +  // Retrieve the pending exception and clear the variable.
 | 
| +  ExternalReference pending_exception_address(Top::k_pending_exception_address);
 | 
| +  __ mov(eax, Operand::StaticVariable(pending_exception_address));
 | 
| +  __ mov(edx,
 | 
| +         Operand::StaticVariable(ExternalReference::the_hole_value_location()));
 | 
| +  __ mov(Operand::StaticVariable(pending_exception_address), edx);
 | 
| +
 | 
| +  __ bind(&continue_exception);
 | 
| +  // Special handling of out of memory exception.
 | 
| +  __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
 | 
| +  __ j(equal, throw_out_of_memory_exception);
 | 
| +
 | 
| +  // Handle normal exception.
 | 
| +  __ jmp(throw_normal_exception);
 | 
| +
 | 
| +  // Retry.
 | 
| +  __ bind(&retry);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CEntryStub::GenerateThrowOutOfMemory(MacroAssembler* masm) {
 | 
| +  // Fetch top stack handler.
 | 
| +  ExternalReference handler_address(Top::k_handler_address);
 | 
| +  __ mov(edx, Operand::StaticVariable(handler_address));
 | 
| +
 | 
| +  // Unwind the handlers until the ENTRY handler is found.
 | 
| +  Label loop, done;
 | 
| +  __ bind(&loop);
 | 
| +  // Load the type of the current stack handler.
 | 
| +  const int kStateOffset = StackHandlerConstants::kAddressDisplacement +
 | 
| +      StackHandlerConstants::kStateOffset;
 | 
| +  __ cmp(Operand(edx, kStateOffset), Immediate(StackHandler::ENTRY));
 | 
| +  __ j(equal, &done);
 | 
| +  // Fetch the next handler in the list.
 | 
| +  const int kNextOffset = StackHandlerConstants::kAddressDisplacement +
 | 
| +      StackHandlerConstants::kNextOffset;
 | 
| +  __ mov(edx, Operand(edx, kNextOffset));
 | 
| +  __ jmp(&loop);
 | 
| +  __ bind(&done);
 | 
| +
 | 
| +  // Set the top handler address to next handler past the current ENTRY handler.
 | 
| +  __ mov(eax, Operand(edx, kNextOffset));
 | 
| +  __ mov(Operand::StaticVariable(handler_address), eax);
 | 
| +
 | 
| +  // Set external caught exception to false.
 | 
| +  __ mov(eax, false);
 | 
| +  ExternalReference external_caught(Top::k_external_caught_exception_address);
 | 
| +  __ mov(Operand::StaticVariable(external_caught), eax);
 | 
| +
 | 
| +  // Set pending exception and eax to out of memory exception.
 | 
| +  __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
 | 
| +  ExternalReference pending_exception(Top::k_pending_exception_address);
 | 
| +  __ mov(Operand::StaticVariable(pending_exception), eax);
 | 
| +
 | 
| +  // Restore the stack to the address of the ENTRY handler
 | 
| +  __ mov(esp, Operand(edx));
 | 
| +
 | 
| +  // Clear the context pointer;
 | 
| +  __ xor_(esi, Operand(esi));
 | 
| +
 | 
| +  // Restore registers from handler.
 | 
| +  __ pop(edi);  // PP
 | 
| +  __ pop(ebp);  // FP
 | 
| +  __ pop(edx);  // Code
 | 
| +  __ pop(edx);  // State
 | 
| +
 | 
| +  __ ret(0);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) {
 | 
| +  // eax: number of arguments including receiver
 | 
| +  // ebx: pointer to C function  (C callee-saved)
 | 
| +  // ebp: frame pointer  (restored after C call)
 | 
| +  // esp: stack pointer  (restored after C call)
 | 
| +  // esi: current context (C callee-saved)
 | 
| +  // edi: caller's parameter pointer pp  (C callee-saved)
 | 
| +
 | 
| +  // NOTE: Invocations of builtins may return failure objects
 | 
| +  // instead of a proper result. The builtin entry handles
 | 
| +  // this by performing a garbage collection and retrying the
 | 
| +  // builtin once.
 | 
| +
 | 
| +  StackFrame::Type frame_type = is_debug_break ?
 | 
| +      StackFrame::EXIT_DEBUG :
 | 
| +      StackFrame::EXIT;
 | 
| +
 | 
| +  // Enter the exit frame that transitions from JavaScript to C++.
 | 
| +  __ EnterExitFrame(frame_type);
 | 
| +
 | 
| +  // eax: result parameter for PerformGC, if any (setup below)
 | 
| +  // ebx: pointer to builtin function  (C callee-saved)
 | 
| +  // ebp: frame pointer  (restored after C call)
 | 
| +  // esp: stack pointer  (restored after C call)
 | 
| +  // edi: number of arguments including receiver (C callee-saved)
 | 
| +  // esi: argv pointer (C callee-saved)
 | 
| +
 | 
| +  Label throw_out_of_memory_exception;
 | 
| +  Label throw_normal_exception;
 | 
| +
 | 
| +  // Call into the runtime system. Collect garbage before the call if
 | 
| +  // running with --gc-greedy set.
 | 
| +  if (FLAG_gc_greedy) {
 | 
| +    Failure* failure = Failure::RetryAfterGC(0);
 | 
| +    __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure)));
 | 
| +  }
 | 
| +  GenerateCore(masm, &throw_normal_exception,
 | 
| +               &throw_out_of_memory_exception,
 | 
| +               frame_type,
 | 
| +               FLAG_gc_greedy,
 | 
| +               false);
 | 
| +
 | 
| +  // Do space-specific GC and retry runtime call.
 | 
| +  GenerateCore(masm,
 | 
| +               &throw_normal_exception,
 | 
| +               &throw_out_of_memory_exception,
 | 
| +               frame_type,
 | 
| +               true,
 | 
| +               false);
 | 
| +
 | 
| +  // Do full GC and retry runtime call one final time.
 | 
| +  Failure* failure = Failure::InternalError();
 | 
| +  __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure)));
 | 
| +  GenerateCore(masm,
 | 
| +               &throw_normal_exception,
 | 
| +               &throw_out_of_memory_exception,
 | 
| +               frame_type,
 | 
| +               true,
 | 
| +               true);
 | 
| +
 | 
| +  __ bind(&throw_out_of_memory_exception);
 | 
| +  GenerateThrowOutOfMemory(masm);
 | 
| +  // control flow for generated will not return.
 | 
| +
 | 
| +  __ bind(&throw_normal_exception);
 | 
| +  GenerateThrowTOS(masm);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
 | 
| +  Label invoke, exit;
 | 
| +
 | 
| +  // Setup frame.
 | 
| +  __ push(ebp);
 | 
| +  __ mov(ebp, Operand(esp));
 | 
| +
 | 
| +  // Save callee-saved registers (C calling conventions).
 | 
| +  int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
 | 
| +  // Push something that is not an arguments adaptor.
 | 
| +  __ push(Immediate(~ArgumentsAdaptorFrame::SENTINEL));
 | 
| +  __ push(Immediate(Smi::FromInt(marker)));  // @ function offset
 | 
| +  __ push(edi);
 | 
| +  __ push(esi);
 | 
| +  __ push(ebx);
 | 
| +
 | 
| +  // Save copies of the top frame descriptor on the stack.
 | 
| +  ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
 | 
| +  __ push(Operand::StaticVariable(c_entry_fp));
 | 
| +
 | 
| +  // Call a faked try-block that does the invoke.
 | 
| +  __ call(&invoke);
 | 
| +
 | 
| +  // Caught exception: Store result (exception) in the pending
 | 
| +  // exception field in the JSEnv and return a failure sentinel.
 | 
| +  ExternalReference pending_exception(Top::k_pending_exception_address);
 | 
| +  __ mov(Operand::StaticVariable(pending_exception), eax);
 | 
| +  __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception()));
 | 
| +  __ jmp(&exit);
 | 
| +
 | 
| +  // Invoke: Link this frame into the handler chain.
 | 
| +  __ bind(&invoke);
 | 
| +  __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
 | 
| +  __ push(eax);  // flush TOS
 | 
| +
 | 
| +  // Clear any pending exceptions.
 | 
| +  __ mov(edx,
 | 
| +         Operand::StaticVariable(ExternalReference::the_hole_value_location()));
 | 
| +  __ mov(Operand::StaticVariable(pending_exception), edx);
 | 
| +
 | 
| +  // Fake a receiver (NULL).
 | 
| +  __ push(Immediate(0));  // receiver
 | 
| +
 | 
| +  // Invoke the function by calling through JS entry trampoline
 | 
| +  // builtin and pop the faked function when we return. Notice that we
 | 
| +  // cannot store a reference to the trampoline code directly in this
 | 
| +  // stub, because the builtin stubs may not have been generated yet.
 | 
| +  if (is_construct) {
 | 
| +    ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
 | 
| +    __ mov(edx, Immediate(construct_entry));
 | 
| +  } else {
 | 
| +    ExternalReference entry(Builtins::JSEntryTrampoline);
 | 
| +    __ mov(edx, Immediate(entry));
 | 
| +  }
 | 
| +  __ mov(edx, Operand(edx, 0));  // deref address
 | 
| +  __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
 | 
| +  __ call(Operand(edx));
 | 
| +
 | 
| +  // Unlink this frame from the handler chain.
 | 
| +  __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address)));
 | 
| +  // Pop next_sp.
 | 
| +  __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize));
 | 
| +
 | 
| +  // Restore the top frame descriptor from the stack.
 | 
| +  __ bind(&exit);
 | 
| +  __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address)));
 | 
| +
 | 
| +  // Restore callee-saved registers (C calling conventions).
 | 
| +  __ pop(ebx);
 | 
| +  __ pop(esi);
 | 
| +  __ pop(edi);
 | 
| +  __ add(Operand(esp), Immediate(2 * kPointerSize));  // remove markers
 | 
| +
 | 
| +  // Restore frame pointer and return.
 | 
| +  __ pop(ebp);
 | 
| +  __ ret(0);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +void InstanceofStub::Generate(MacroAssembler* masm) {
 | 
| +  // Get the object - go slow case if it's a smi.
 | 
| +  Label slow;
 | 
| +  __ mov(eax, Operand(esp, 2 * kPointerSize));  // 2 ~ return address, function
 | 
| +  __ test(eax, Immediate(kSmiTagMask));
 | 
| +  __ j(zero, &slow, not_taken);
 | 
| +
 | 
| +  // Check that the left hand is a JS object.
 | 
| +  __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));  // ebx - object map
 | 
| +  __ movzx_b(ecx, FieldOperand(eax, Map::kInstanceTypeOffset));  // ecx - type
 | 
| +  __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
 | 
| +  __ j(less, &slow, not_taken);
 | 
| +  __ cmp(ecx, LAST_JS_OBJECT_TYPE);
 | 
| +  __ j(greater, &slow, not_taken);
 | 
| +
 | 
| +  // Get the prototype of the function.
 | 
| +  __ mov(edx, Operand(esp, 1 * kPointerSize));  // 1 ~ return address
 | 
| +  __ TryGetFunctionPrototype(edx, ebx, ecx, &slow);
 | 
| +
 | 
| +  // Check that the function prototype is a JS object.
 | 
| +  __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
 | 
| +  __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
 | 
| +  __ cmp(ecx, FIRST_JS_OBJECT_TYPE);
 | 
| +  __ j(less, &slow, not_taken);
 | 
| +  __ cmp(ecx, LAST_JS_OBJECT_TYPE);
 | 
| +  __ j(greater, &slow, not_taken);
 | 
| +
 | 
| +  // Register mapping: eax is object map and ebx is function prototype.
 | 
| +  __ mov(ecx, FieldOperand(eax, Map::kPrototypeOffset));
 | 
| +
 | 
| +  // Loop through the prototype chain looking for the function prototype.
 | 
| +  Label loop, is_instance, is_not_instance;
 | 
| +  __ bind(&loop);
 | 
| +  __ cmp(ecx, Operand(ebx));
 | 
| +  __ j(equal, &is_instance);
 | 
| +  __ cmp(Operand(ecx), Immediate(Factory::null_value()));
 | 
| +  __ j(equal, &is_not_instance);
 | 
| +  __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
 | 
| +  __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset));
 | 
| +  __ jmp(&loop);
 | 
| +
 | 
| +  __ bind(&is_instance);
 | 
| +  __ Set(eax, Immediate(0));
 | 
| +  __ ret(2 * kPointerSize);
 | 
| +
 | 
| +  __ bind(&is_not_instance);
 | 
| +  __ Set(eax, Immediate(Smi::FromInt(1)));
 | 
| +  __ ret(2 * kPointerSize);
 | 
| +
 | 
| +  // Slow-case: Go through the JavaScript implementation.
 | 
| +  __ bind(&slow);
 | 
| +  __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
 | 
| +}
 | 
| +
 | 
| +
 | 
| +#undef __
 | 
| +
 | 
| +} }  // namespace v8::internal
 | 
| 
 |