Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(151)

Side by Side Diff: src/assembler-arm.cc

Issue 92068: Move backend specific files to separate directories. (Closed)
Patch Set: Added CPPPATH flag and made all includes use same base path. Created 11 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/assembler-arm.h ('k') | src/assembler-arm-inl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2006-2008 the V8 project authors. All rights reserved.
36
37 #include "v8.h"
38
39 #include "assembler-arm-inl.h"
40 #include "serialize.h"
41
42 namespace v8 { namespace internal {
43
44 // -----------------------------------------------------------------------------
45 // Implementation of Register and CRegister
46
47 Register no_reg = { -1 };
48
49 Register r0 = { 0 };
50 Register r1 = { 1 };
51 Register r2 = { 2 };
52 Register r3 = { 3 };
53 Register r4 = { 4 };
54 Register r5 = { 5 };
55 Register r6 = { 6 };
56 Register r7 = { 7 };
57 Register r8 = { 8 };
58 Register r9 = { 9 };
59 Register r10 = { 10 };
60 Register fp = { 11 };
61 Register ip = { 12 };
62 Register sp = { 13 };
63 Register lr = { 14 };
64 Register pc = { 15 };
65
66
67 CRegister no_creg = { -1 };
68
69 CRegister cr0 = { 0 };
70 CRegister cr1 = { 1 };
71 CRegister cr2 = { 2 };
72 CRegister cr3 = { 3 };
73 CRegister cr4 = { 4 };
74 CRegister cr5 = { 5 };
75 CRegister cr6 = { 6 };
76 CRegister cr7 = { 7 };
77 CRegister cr8 = { 8 };
78 CRegister cr9 = { 9 };
79 CRegister cr10 = { 10 };
80 CRegister cr11 = { 11 };
81 CRegister cr12 = { 12 };
82 CRegister cr13 = { 13 };
83 CRegister cr14 = { 14 };
84 CRegister cr15 = { 15 };
85
86
87 // -----------------------------------------------------------------------------
88 // Implementation of RelocInfo
89
90 const int RelocInfo::kApplyMask = 0;
91
92
93 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
94 // Patch the code at the current address with the supplied instructions.
95 UNIMPLEMENTED();
96 }
97
98
99 // Patch the code at the current PC with a call to the target address.
100 // Additional guard instructions can be added if required.
101 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
102 // Patch the code at the current address with a call to the target.
103 UNIMPLEMENTED();
104 }
105
106
107 // -----------------------------------------------------------------------------
108 // Implementation of Operand and MemOperand
109 // See assembler-arm-inl.h for inlined constructors
110
111 Operand::Operand(Handle<Object> handle) {
112 rm_ = no_reg;
113 // Verify all Objects referred by code are NOT in new space.
114 Object* obj = *handle;
115 ASSERT(!Heap::InNewSpace(obj));
116 if (obj->IsHeapObject()) {
117 imm32_ = reinterpret_cast<intptr_t>(handle.location());
118 rmode_ = RelocInfo::EMBEDDED_OBJECT;
119 } else {
120 // no relocation needed
121 imm32_ = reinterpret_cast<intptr_t>(obj);
122 rmode_ = RelocInfo::NONE;
123 }
124 }
125
126
127 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
128 ASSERT(is_uint5(shift_imm));
129 ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it
130 rm_ = rm;
131 rs_ = no_reg;
132 shift_op_ = shift_op;
133 shift_imm_ = shift_imm & 31;
134 if (shift_op == RRX) {
135 // encoded as ROR with shift_imm == 0
136 ASSERT(shift_imm == 0);
137 shift_op_ = ROR;
138 shift_imm_ = 0;
139 }
140 }
141
142
143 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
144 ASSERT(shift_op != RRX);
145 rm_ = rm;
146 rs_ = no_reg;
147 shift_op_ = shift_op;
148 rs_ = rs;
149 }
150
151
152 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
153 rn_ = rn;
154 rm_ = no_reg;
155 offset_ = offset;
156 am_ = am;
157 }
158
159 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
160 rn_ = rn;
161 rm_ = rm;
162 shift_op_ = LSL;
163 shift_imm_ = 0;
164 am_ = am;
165 }
166
167
168 MemOperand::MemOperand(Register rn, Register rm,
169 ShiftOp shift_op, int shift_imm, AddrMode am) {
170 ASSERT(is_uint5(shift_imm));
171 rn_ = rn;
172 rm_ = rm;
173 shift_op_ = shift_op;
174 shift_imm_ = shift_imm & 31;
175 am_ = am;
176 }
177
178
179 // -----------------------------------------------------------------------------
180 // Implementation of Assembler
181
182 // Instruction encoding bits
183 enum {
184 H = 1 << 5, // halfword (or byte)
185 S6 = 1 << 6, // signed (or unsigned)
186 L = 1 << 20, // load (or store)
187 S = 1 << 20, // set condition code (or leave unchanged)
188 W = 1 << 21, // writeback base register (or leave unchanged)
189 A = 1 << 21, // accumulate in multiply instruction (or not)
190 B = 1 << 22, // unsigned byte (or word)
191 N = 1 << 22, // long (or short)
192 U = 1 << 23, // positive (or negative) offset/index
193 P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing)
194 I = 1 << 25, // immediate shifter operand (or not)
195
196 B4 = 1 << 4,
197 B5 = 1 << 5,
198 B7 = 1 << 7,
199 B8 = 1 << 8,
200 B12 = 1 << 12,
201 B16 = 1 << 16,
202 B20 = 1 << 20,
203 B21 = 1 << 21,
204 B22 = 1 << 22,
205 B23 = 1 << 23,
206 B24 = 1 << 24,
207 B25 = 1 << 25,
208 B26 = 1 << 26,
209 B27 = 1 << 27,
210
211 // Instruction bit masks
212 RdMask = 15 << 12, // in str instruction
213 CondMask = 15 << 28,
214 OpCodeMask = 15 << 21, // in data-processing instructions
215 Imm24Mask = (1 << 24) - 1,
216 Off12Mask = (1 << 12) - 1,
217 // Reserved condition
218 nv = 15 << 28
219 };
220
221
222 // add(sp, sp, 4) instruction (aka Pop())
223 static const Instr kPopInstruction =
224 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
225 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
226 // register r is not encoded.
227 static const Instr kPushRegPattern =
228 al | B26 | 4 | NegPreIndex | sp.code() * B16;
229 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
230 // register r is not encoded.
231 static const Instr kPopRegPattern =
232 al | B26 | L | 4 | PostIndex | sp.code() * B16;
233
234 // spare_buffer_
235 static const int kMinimalBufferSize = 4*KB;
236 static byte* spare_buffer_ = NULL;
237
238 Assembler::Assembler(void* buffer, int buffer_size) {
239 if (buffer == NULL) {
240 // do our own buffer management
241 if (buffer_size <= kMinimalBufferSize) {
242 buffer_size = kMinimalBufferSize;
243
244 if (spare_buffer_ != NULL) {
245 buffer = spare_buffer_;
246 spare_buffer_ = NULL;
247 }
248 }
249 if (buffer == NULL) {
250 buffer_ = NewArray<byte>(buffer_size);
251 } else {
252 buffer_ = static_cast<byte*>(buffer);
253 }
254 buffer_size_ = buffer_size;
255 own_buffer_ = true;
256
257 } else {
258 // use externally provided buffer instead
259 ASSERT(buffer_size > 0);
260 buffer_ = static_cast<byte*>(buffer);
261 buffer_size_ = buffer_size;
262 own_buffer_ = false;
263 }
264
265 // setup buffer pointers
266 ASSERT(buffer_ != NULL);
267 pc_ = buffer_;
268 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
269 num_prinfo_ = 0;
270 next_buffer_check_ = 0;
271 no_const_pool_before_ = 0;
272 last_const_pool_end_ = 0;
273 last_bound_pos_ = 0;
274 current_statement_position_ = RelocInfo::kNoPosition;
275 current_position_ = RelocInfo::kNoPosition;
276 written_statement_position_ = current_statement_position_;
277 written_position_ = current_position_;
278 }
279
280
281 Assembler::~Assembler() {
282 if (own_buffer_) {
283 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
284 spare_buffer_ = buffer_;
285 } else {
286 DeleteArray(buffer_);
287 }
288 }
289 }
290
291
292 void Assembler::GetCode(CodeDesc* desc) {
293 // emit constant pool if necessary
294 CheckConstPool(true, false);
295 ASSERT(num_prinfo_ == 0);
296
297 // setup desc
298 desc->buffer = buffer_;
299 desc->buffer_size = buffer_size_;
300 desc->instr_size = pc_offset();
301 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
302 }
303
304
305 void Assembler::Align(int m) {
306 ASSERT(m >= 4 && IsPowerOf2(m));
307 while ((pc_offset() & (m - 1)) != 0) {
308 nop();
309 }
310 }
311
312
313 // Labels refer to positions in the (to be) generated code.
314 // There are bound, linked, and unused labels.
315 //
316 // Bound labels refer to known positions in the already
317 // generated code. pos() is the position the label refers to.
318 //
319 // Linked labels refer to unknown positions in the code
320 // to be generated; pos() is the position of the last
321 // instruction using the label.
322
323
324 // The link chain is terminated by a negative code position (must be aligned)
325 const int kEndOfChain = -4;
326
327
328 int Assembler::target_at(int pos) {
329 Instr instr = instr_at(pos);
330 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
331 int imm26 = ((instr & Imm24Mask) << 8) >> 6;
332 if ((instr & CondMask) == nv && (instr & B24) != 0)
333 // blx uses bit 24 to encode bit 2 of imm26
334 imm26 += 2;
335
336 return pos + 8 + imm26;
337 }
338
339
340 void Assembler::target_at_put(int pos, int target_pos) {
341 int imm26 = target_pos - pos - 8;
342 Instr instr = instr_at(pos);
343 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
344 if ((instr & CondMask) == nv) {
345 // blx uses bit 24 to encode bit 2 of imm26
346 ASSERT((imm26 & 1) == 0);
347 instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24;
348 } else {
349 ASSERT((imm26 & 3) == 0);
350 instr &= ~Imm24Mask;
351 }
352 int imm24 = imm26 >> 2;
353 ASSERT(is_int24(imm24));
354 instr_at_put(pos, instr | (imm24 & Imm24Mask));
355 }
356
357
358 void Assembler::print(Label* L) {
359 if (L->is_unused()) {
360 PrintF("unused label\n");
361 } else if (L->is_bound()) {
362 PrintF("bound label to %d\n", L->pos());
363 } else if (L->is_linked()) {
364 Label l = *L;
365 PrintF("unbound label");
366 while (l.is_linked()) {
367 PrintF("@ %d ", l.pos());
368 Instr instr = instr_at(l.pos());
369 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx
370 int cond = instr & CondMask;
371 const char* b;
372 const char* c;
373 if (cond == nv) {
374 b = "blx";
375 c = "";
376 } else {
377 if ((instr & B24) != 0)
378 b = "bl";
379 else
380 b = "b";
381
382 switch (cond) {
383 case eq: c = "eq"; break;
384 case ne: c = "ne"; break;
385 case hs: c = "hs"; break;
386 case lo: c = "lo"; break;
387 case mi: c = "mi"; break;
388 case pl: c = "pl"; break;
389 case vs: c = "vs"; break;
390 case vc: c = "vc"; break;
391 case hi: c = "hi"; break;
392 case ls: c = "ls"; break;
393 case ge: c = "ge"; break;
394 case lt: c = "lt"; break;
395 case gt: c = "gt"; break;
396 case le: c = "le"; break;
397 case al: c = ""; break;
398 default:
399 c = "";
400 UNREACHABLE();
401 }
402 }
403 PrintF("%s%s\n", b, c);
404 next(&l);
405 }
406 } else {
407 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
408 }
409 }
410
411
412 void Assembler::bind_to(Label* L, int pos) {
413 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
414 while (L->is_linked()) {
415 int fixup_pos = L->pos();
416 next(L); // call next before overwriting link with target at fixup_pos
417 target_at_put(fixup_pos, pos);
418 }
419 L->bind_to(pos);
420
421 // Keep track of the last bound label so we don't eliminate any instructions
422 // before a bound label.
423 if (pos > last_bound_pos_)
424 last_bound_pos_ = pos;
425 }
426
427
428 void Assembler::link_to(Label* L, Label* appendix) {
429 if (appendix->is_linked()) {
430 if (L->is_linked()) {
431 // append appendix to L's list
432 int fixup_pos;
433 int link = L->pos();
434 do {
435 fixup_pos = link;
436 link = target_at(fixup_pos);
437 } while (link > 0);
438 ASSERT(link == kEndOfChain);
439 target_at_put(fixup_pos, appendix->pos());
440 } else {
441 // L is empty, simply use appendix
442 *L = *appendix;
443 }
444 }
445 appendix->Unuse(); // appendix should not be used anymore
446 }
447
448
449 void Assembler::bind(Label* L) {
450 ASSERT(!L->is_bound()); // label can only be bound once
451 bind_to(L, pc_offset());
452 }
453
454
455 void Assembler::next(Label* L) {
456 ASSERT(L->is_linked());
457 int link = target_at(L->pos());
458 if (link > 0) {
459 L->link_to(link);
460 } else {
461 ASSERT(link == kEndOfChain);
462 L->Unuse();
463 }
464 }
465
466
467 // Low-level code emission routines depending on the addressing mode
468 static bool fits_shifter(uint32_t imm32,
469 uint32_t* rotate_imm,
470 uint32_t* immed_8,
471 Instr* instr) {
472 // imm32 must be unsigned
473 for (int rot = 0; rot < 16; rot++) {
474 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
475 if ((imm8 <= 0xff)) {
476 *rotate_imm = rot;
477 *immed_8 = imm8;
478 return true;
479 }
480 }
481 // if the opcode is mov or mvn and if ~imm32 fits, change the opcode
482 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) {
483 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
484 *instr ^= 0x2*B21;
485 return true;
486 }
487 }
488 return false;
489 }
490
491
492 void Assembler::addrmod1(Instr instr,
493 Register rn,
494 Register rd,
495 const Operand& x) {
496 CheckBuffer();
497 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0);
498 if (!x.rm_.is_valid()) {
499 // immediate
500 uint32_t rotate_imm;
501 uint32_t immed_8;
502 if ((x.rmode_ != RelocInfo::NONE &&
503 x.rmode_ != RelocInfo::EXTERNAL_REFERENCE) ||
504 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
505 // The immediate operand cannot be encoded as a shifter operand, so load
506 // it first to register ip and change the original instruction to use ip.
507 // However, if the original instruction is a 'mov rd, x' (not setting the
508 // condition code), then replace it with a 'ldr rd, [pc]'
509 RecordRelocInfo(x.rmode_, x.imm32_);
510 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
511 Condition cond = static_cast<Condition>(instr & CondMask);
512 if ((instr & ~CondMask) == 13*B21) { // mov, S not set
513 ldr(rd, MemOperand(pc, 0), cond);
514 } else {
515 ldr(ip, MemOperand(pc, 0), cond);
516 addrmod1(instr, rn, rd, Operand(ip));
517 }
518 return;
519 }
520 instr |= I | rotate_imm*B8 | immed_8;
521 } else if (!x.rs_.is_valid()) {
522 // immediate shift
523 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
524 } else {
525 // register shift
526 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
527 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
528 }
529 emit(instr | rn.code()*B16 | rd.code()*B12);
530 if (rn.is(pc) || x.rm_.is(pc))
531 // block constant pool emission for one instruction after reading pc
532 BlockConstPoolBefore(pc_offset() + kInstrSize);
533 }
534
535
536 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
537 ASSERT((instr & ~(CondMask | B | L)) == B26);
538 int am = x.am_;
539 if (!x.rm_.is_valid()) {
540 // immediate offset
541 int offset_12 = x.offset_;
542 if (offset_12 < 0) {
543 offset_12 = -offset_12;
544 am ^= U;
545 }
546 if (!is_uint12(offset_12)) {
547 // immediate offset cannot be encoded, load it first to register ip
548 // rn (and rd in a load) should never be ip, or will be trashed
549 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
550 mov(ip, Operand(x.offset_), LeaveCC,
551 static_cast<Condition>(instr & CondMask));
552 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
553 return;
554 }
555 ASSERT(offset_12 >= 0); // no masking needed
556 instr |= offset_12;
557 } else {
558 // register offset (shift_imm_ and shift_op_ are 0) or scaled
559 // register offset the constructors make sure than both shift_imm_
560 // and shift_op_ are initialized
561 ASSERT(!x.rm_.is(pc));
562 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
563 }
564 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
565 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
566 }
567
568
569 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
570 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7));
571 ASSERT(x.rn_.is_valid());
572 int am = x.am_;
573 if (!x.rm_.is_valid()) {
574 // immediate offset
575 int offset_8 = x.offset_;
576 if (offset_8 < 0) {
577 offset_8 = -offset_8;
578 am ^= U;
579 }
580 if (!is_uint8(offset_8)) {
581 // immediate offset cannot be encoded, load it first to register ip
582 // rn (and rd in a load) should never be ip, or will be trashed
583 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
584 mov(ip, Operand(x.offset_), LeaveCC,
585 static_cast<Condition>(instr & CondMask));
586 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
587 return;
588 }
589 ASSERT(offset_8 >= 0); // no masking needed
590 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
591 } else if (x.shift_imm_ != 0) {
592 // scaled register offset not supported, load index first
593 // rn (and rd in a load) should never be ip, or will be trashed
594 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
595 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
596 static_cast<Condition>(instr & CondMask));
597 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
598 return;
599 } else {
600 // register offset
601 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
602 instr |= x.rm_.code();
603 }
604 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
605 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
606 }
607
608
609 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
610 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27);
611 ASSERT(rl != 0);
612 ASSERT(!rn.is(pc));
613 emit(instr | rn.code()*B16 | rl);
614 }
615
616
617 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
618 // unindexed addressing is not encoded by this function
619 ASSERT((instr & ~(CondMask | P | U | N | W | L)) == (B27 | B26));
620 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
621 int am = x.am_;
622 int offset_8 = x.offset_;
623 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset
624 offset_8 >>= 2;
625 if (offset_8 < 0) {
626 offset_8 = -offset_8;
627 am ^= U;
628 }
629 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte
630 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
631
632 // post-indexed addressing requires W == 1; different than in addrmod2/3
633 if ((am & P) == 0)
634 am |= W;
635
636 ASSERT(offset_8 >= 0); // no masking needed
637 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
638 }
639
640
641 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
642 int target_pos;
643 if (L->is_bound()) {
644 target_pos = L->pos();
645 } else {
646 if (L->is_linked()) {
647 target_pos = L->pos(); // L's link
648 } else {
649 target_pos = kEndOfChain;
650 }
651 L->link_to(pc_offset());
652 }
653
654 // Block the emission of the constant pool, since the branch instruction must
655 // be emitted at the pc offset recorded by the label
656 BlockConstPoolBefore(pc_offset() + kInstrSize);
657
658 return target_pos - pc_offset() - 8;
659 }
660
661
662 // Branch instructions
663 void Assembler::b(int branch_offset, Condition cond) {
664 ASSERT((branch_offset & 3) == 0);
665 int imm24 = branch_offset >> 2;
666 ASSERT(is_int24(imm24));
667 emit(cond | B27 | B25 | (imm24 & Imm24Mask));
668
669 if (cond == al)
670 // dead code is a good location to emit the constant pool
671 CheckConstPool(false, false);
672 }
673
674
675 void Assembler::bl(int branch_offset, Condition cond) {
676 ASSERT((branch_offset & 3) == 0);
677 int imm24 = branch_offset >> 2;
678 ASSERT(is_int24(imm24));
679 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask));
680 }
681
682
683 void Assembler::blx(int branch_offset) { // v5 and above
684 ASSERT((branch_offset & 1) == 0);
685 int h = ((branch_offset & 2) >> 1)*B24;
686 int imm24 = branch_offset >> 2;
687 ASSERT(is_int24(imm24));
688 emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask));
689 }
690
691
692 void Assembler::blx(Register target, Condition cond) { // v5 and above
693 ASSERT(!target.is(pc));
694 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code());
695 }
696
697
698 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
699 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged
700 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code());
701 }
702
703
704 // Data-processing instructions
705 void Assembler::and_(Register dst, Register src1, const Operand& src2,
706 SBit s, Condition cond) {
707 addrmod1(cond | 0*B21 | s, src1, dst, src2);
708 }
709
710
711 void Assembler::eor(Register dst, Register src1, const Operand& src2,
712 SBit s, Condition cond) {
713 addrmod1(cond | 1*B21 | s, src1, dst, src2);
714 }
715
716
717 void Assembler::sub(Register dst, Register src1, const Operand& src2,
718 SBit s, Condition cond) {
719 addrmod1(cond | 2*B21 | s, src1, dst, src2);
720 }
721
722
723 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
724 SBit s, Condition cond) {
725 addrmod1(cond | 3*B21 | s, src1, dst, src2);
726 }
727
728
729 void Assembler::add(Register dst, Register src1, const Operand& src2,
730 SBit s, Condition cond) {
731 addrmod1(cond | 4*B21 | s, src1, dst, src2);
732
733 // Eliminate pattern: push(r), pop()
734 // str(src, MemOperand(sp, 4, NegPreIndex), al);
735 // add(sp, sp, Operand(kPointerSize));
736 // Both instructions can be eliminated.
737 int pattern_size = 2 * kInstrSize;
738 if (FLAG_push_pop_elimination &&
739 last_bound_pos_ <= (pc_offset() - pattern_size) &&
740 reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
741 // pattern
742 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
743 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) {
744 pc_ -= 2 * kInstrSize;
745 if (FLAG_print_push_pop_elimination) {
746 PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
747 }
748 }
749 }
750
751
752 void Assembler::adc(Register dst, Register src1, const Operand& src2,
753 SBit s, Condition cond) {
754 addrmod1(cond | 5*B21 | s, src1, dst, src2);
755 }
756
757
758 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
759 SBit s, Condition cond) {
760 addrmod1(cond | 6*B21 | s, src1, dst, src2);
761 }
762
763
764 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
765 SBit s, Condition cond) {
766 addrmod1(cond | 7*B21 | s, src1, dst, src2);
767 }
768
769
770 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
771 addrmod1(cond | 8*B21 | S, src1, r0, src2);
772 }
773
774
775 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
776 addrmod1(cond | 9*B21 | S, src1, r0, src2);
777 }
778
779
780 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
781 addrmod1(cond | 10*B21 | S, src1, r0, src2);
782 }
783
784
785 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
786 addrmod1(cond | 11*B21 | S, src1, r0, src2);
787 }
788
789
790 void Assembler::orr(Register dst, Register src1, const Operand& src2,
791 SBit s, Condition cond) {
792 addrmod1(cond | 12*B21 | s, src1, dst, src2);
793 }
794
795
796 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
797 addrmod1(cond | 13*B21 | s, r0, dst, src);
798 }
799
800
801 void Assembler::bic(Register dst, Register src1, const Operand& src2,
802 SBit s, Condition cond) {
803 addrmod1(cond | 14*B21 | s, src1, dst, src2);
804 }
805
806
807 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
808 addrmod1(cond | 15*B21 | s, r0, dst, src);
809 }
810
811
812 // Multiply instructions
813 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
814 SBit s, Condition cond) {
815 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
816 ASSERT(!dst.is(src1));
817 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
818 src2.code()*B8 | B7 | B4 | src1.code());
819 }
820
821
822 void Assembler::mul(Register dst, Register src1, Register src2,
823 SBit s, Condition cond) {
824 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
825 ASSERT(!dst.is(src1));
826 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
827 }
828
829
830 void Assembler::smlal(Register dstL,
831 Register dstH,
832 Register src1,
833 Register src2,
834 SBit s,
835 Condition cond) {
836 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
837 ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL));
838 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
839 src2.code()*B8 | B7 | B4 | src1.code());
840 }
841
842
843 void Assembler::smull(Register dstL,
844 Register dstH,
845 Register src1,
846 Register src2,
847 SBit s,
848 Condition cond) {
849 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
850 ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL));
851 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
852 src2.code()*B8 | B7 | B4 | src1.code());
853 }
854
855
856 void Assembler::umlal(Register dstL,
857 Register dstH,
858 Register src1,
859 Register src2,
860 SBit s,
861 Condition cond) {
862 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
863 ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL));
864 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
865 src2.code()*B8 | B7 | B4 | src1.code());
866 }
867
868
869 void Assembler::umull(Register dstL,
870 Register dstH,
871 Register src1,
872 Register src2,
873 SBit s,
874 Condition cond) {
875 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
876 ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL));
877 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
878 src2.code()*B8 | B7 | B4 | src1.code());
879 }
880
881
882 // Miscellaneous arithmetic instructions
883 void Assembler::clz(Register dst, Register src, Condition cond) {
884 // v5 and above.
885 ASSERT(!dst.is(pc) && !src.is(pc));
886 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
887 15*B8 | B4 | src.code());
888 }
889
890
891 // Status register access instructions
892 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
893 ASSERT(!dst.is(pc));
894 emit(cond | B24 | s | 15*B16 | dst.code()*B12);
895 }
896
897
898 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
899 Condition cond) {
900 ASSERT(fields >= B16 && fields < B20); // at least one field set
901 Instr instr;
902 if (!src.rm_.is_valid()) {
903 // immediate
904 uint32_t rotate_imm;
905 uint32_t immed_8;
906 if ((src.rmode_ != RelocInfo::NONE &&
907 src.rmode_ != RelocInfo::EXTERNAL_REFERENCE)||
908 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
909 // immediate operand cannot be encoded, load it first to register ip
910 RecordRelocInfo(src.rmode_, src.imm32_);
911 ldr(ip, MemOperand(pc, 0), cond);
912 msr(fields, Operand(ip), cond);
913 return;
914 }
915 instr = I | rotate_imm*B8 | immed_8;
916 } else {
917 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
918 instr = src.rm_.code();
919 }
920 emit(cond | instr | B24 | B21 | fields | 15*B12);
921 }
922
923
924 // Load/Store instructions
925 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
926 addrmod2(cond | B26 | L, dst, src);
927
928 // Eliminate pattern: push(r), pop(r)
929 // str(r, MemOperand(sp, 4, NegPreIndex), al)
930 // ldr(r, MemOperand(sp, 4, PostIndex), al)
931 // Both instructions can be eliminated.
932 int pattern_size = 2 * kInstrSize;
933 if (FLAG_push_pop_elimination &&
934 last_bound_pos_ <= (pc_offset() - pattern_size) &&
935 reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
936 // pattern
937 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) &&
938 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) {
939 pc_ -= 2 * kInstrSize;
940 if (FLAG_print_push_pop_elimination) {
941 PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
942 }
943 }
944 }
945
946
947 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
948 addrmod2(cond | B26, src, dst);
949
950 // Eliminate pattern: pop(), push(r)
951 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al
952 // -> str r, [sp, 0], al
953 int pattern_size = 2 * kInstrSize;
954 if (FLAG_push_pop_elimination &&
955 last_bound_pos_ <= (pc_offset() - pattern_size) &&
956 reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
957 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) &&
958 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) {
959 pc_ -= 2 * kInstrSize;
960 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12);
961 if (FLAG_print_push_pop_elimination) {
962 PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
963 }
964 }
965 }
966
967
968 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
969 addrmod2(cond | B26 | B | L, dst, src);
970 }
971
972
973 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
974 addrmod2(cond | B26 | B, src, dst);
975 }
976
977
978 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
979 addrmod3(cond | L | B7 | H | B4, dst, src);
980 }
981
982
983 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
984 addrmod3(cond | B7 | H | B4, src, dst);
985 }
986
987
988 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
989 addrmod3(cond | L | B7 | S6 | B4, dst, src);
990 }
991
992
993 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
994 addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
995 }
996
997
998 // Load/Store multiple instructions
999 void Assembler::ldm(BlockAddrMode am,
1000 Register base,
1001 RegList dst,
1002 Condition cond) {
1003 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable
1004 ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
1005
1006 addrmod4(cond | B27 | am | L, base, dst);
1007
1008 // emit the constant pool after a function return implemented by ldm ..{..pc}
1009 if (cond == al && (dst & pc.bit()) != 0) {
1010 // There is a slight chance that the ldm instruction was actually a call,
1011 // in which case it would be wrong to return into the constant pool; we
1012 // recognize this case by checking if the emission of the pool was blocked
1013 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
1014 // the case, we emit a jump over the pool.
1015 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
1016 }
1017 }
1018
1019
1020 void Assembler::stm(BlockAddrMode am,
1021 Register base,
1022 RegList src,
1023 Condition cond) {
1024 addrmod4(cond | B27 | am, base, src);
1025 }
1026
1027
1028 // Semaphore instructions
1029 void Assembler::swp(Register dst, Register src, Register base, Condition cond) {
1030 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
1031 ASSERT(!dst.is(base) && !src.is(base));
1032 emit(cond | P | base.code()*B16 | dst.code()*B12 |
1033 B7 | B4 | src.code());
1034 }
1035
1036
1037 void Assembler::swpb(Register dst,
1038 Register src,
1039 Register base,
1040 Condition cond) {
1041 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
1042 ASSERT(!dst.is(base) && !src.is(base));
1043 emit(cond | P | B | base.code()*B16 | dst.code()*B12 |
1044 B7 | B4 | src.code());
1045 }
1046
1047
1048 // Exception-generating instructions and debugging support
1049 void Assembler::stop(const char* msg) {
1050 #if !defined(__arm__)
1051 // The simulator handles these special instructions and stops execution.
1052 emit(15 << 28 | ((intptr_t) msg));
1053 #else
1054 // Just issue a simple break instruction for now. Alternatively we could use
1055 // the swi(0x9f0001) instruction on Linux.
1056 bkpt(0);
1057 #endif
1058 }
1059
1060
1061 void Assembler::bkpt(uint32_t imm16) { // v5 and above
1062 ASSERT(is_uint16(imm16));
1063 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf));
1064 }
1065
1066
1067 void Assembler::swi(uint32_t imm24, Condition cond) {
1068 ASSERT(is_uint24(imm24));
1069 emit(cond | 15*B24 | imm24);
1070 }
1071
1072
1073 // Coprocessor instructions
1074 void Assembler::cdp(Coprocessor coproc,
1075 int opcode_1,
1076 CRegister crd,
1077 CRegister crn,
1078 CRegister crm,
1079 int opcode_2,
1080 Condition cond) {
1081 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
1082 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
1083 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
1084 }
1085
1086
1087 void Assembler::cdp2(Coprocessor coproc,
1088 int opcode_1,
1089 CRegister crd,
1090 CRegister crn,
1091 CRegister crm,
1092 int opcode_2) { // v5 and above
1093 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv));
1094 }
1095
1096
1097 void Assembler::mcr(Coprocessor coproc,
1098 int opcode_1,
1099 Register rd,
1100 CRegister crn,
1101 CRegister crm,
1102 int opcode_2,
1103 Condition cond) {
1104 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1105 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
1106 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1107 }
1108
1109
1110 void Assembler::mcr2(Coprocessor coproc,
1111 int opcode_1,
1112 Register rd,
1113 CRegister crn,
1114 CRegister crm,
1115 int opcode_2) { // v5 and above
1116 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
1117 }
1118
1119
1120 void Assembler::mrc(Coprocessor coproc,
1121 int opcode_1,
1122 Register rd,
1123 CRegister crn,
1124 CRegister crm,
1125 int opcode_2,
1126 Condition cond) {
1127 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1128 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
1129 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1130 }
1131
1132
1133 void Assembler::mrc2(Coprocessor coproc,
1134 int opcode_1,
1135 Register rd,
1136 CRegister crn,
1137 CRegister crm,
1138 int opcode_2) { // v5 and above
1139 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
1140 }
1141
1142
1143 void Assembler::ldc(Coprocessor coproc,
1144 CRegister crd,
1145 const MemOperand& src,
1146 LFlag l,
1147 Condition cond) {
1148 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
1149 }
1150
1151
1152 void Assembler::ldc(Coprocessor coproc,
1153 CRegister crd,
1154 Register rn,
1155 int option,
1156 LFlag l,
1157 Condition cond) {
1158 // unindexed addressing
1159 ASSERT(is_uint8(option));
1160 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
1161 coproc*B8 | (option & 255));
1162 }
1163
1164
1165 void Assembler::ldc2(Coprocessor coproc,
1166 CRegister crd,
1167 const MemOperand& src,
1168 LFlag l) { // v5 and above
1169 ldc(coproc, crd, src, l, static_cast<Condition>(nv));
1170 }
1171
1172
1173 void Assembler::ldc2(Coprocessor coproc,
1174 CRegister crd,
1175 Register rn,
1176 int option,
1177 LFlag l) { // v5 and above
1178 ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
1179 }
1180
1181
1182 void Assembler::stc(Coprocessor coproc,
1183 CRegister crd,
1184 const MemOperand& dst,
1185 LFlag l,
1186 Condition cond) {
1187 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst);
1188 }
1189
1190
1191 void Assembler::stc(Coprocessor coproc,
1192 CRegister crd,
1193 Register rn,
1194 int option,
1195 LFlag l,
1196 Condition cond) {
1197 // unindexed addressing
1198 ASSERT(is_uint8(option));
1199 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 |
1200 coproc*B8 | (option & 255));
1201 }
1202
1203
1204 void Assembler::stc2(Coprocessor
1205 coproc, CRegister crd,
1206 const MemOperand& dst,
1207 LFlag l) { // v5 and above
1208 stc(coproc, crd, dst, l, static_cast<Condition>(nv));
1209 }
1210
1211
1212 void Assembler::stc2(Coprocessor coproc,
1213 CRegister crd,
1214 Register rn,
1215 int option,
1216 LFlag l) { // v5 and above
1217 stc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
1218 }
1219
1220
1221 // Pseudo instructions
1222 void Assembler::lea(Register dst,
1223 const MemOperand& x,
1224 SBit s,
1225 Condition cond) {
1226 int am = x.am_;
1227 if (!x.rm_.is_valid()) {
1228 // immediate offset
1229 if ((am & P) == 0) // post indexing
1230 mov(dst, Operand(x.rn_), s, cond);
1231 else if ((am & U) == 0) // negative indexing
1232 sub(dst, x.rn_, Operand(x.offset_), s, cond);
1233 else
1234 add(dst, x.rn_, Operand(x.offset_), s, cond);
1235 } else {
1236 // Register offset (shift_imm_ and shift_op_ are 0) or scaled
1237 // register offset the constructors make sure than both shift_imm_
1238 // and shift_op_ are initialized.
1239 ASSERT(!x.rm_.is(pc));
1240 if ((am & P) == 0) // post indexing
1241 mov(dst, Operand(x.rn_), s, cond);
1242 else if ((am & U) == 0) // negative indexing
1243 sub(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
1244 else
1245 add(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
1246 }
1247 }
1248
1249
1250 // Debugging
1251 void Assembler::RecordComment(const char* msg) {
1252 if (FLAG_debug_code) {
1253 CheckBuffer();
1254 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
1255 }
1256 }
1257
1258
1259 void Assembler::RecordPosition(int pos) {
1260 if (pos == RelocInfo::kNoPosition) return;
1261 ASSERT(pos >= 0);
1262 current_position_ = pos;
1263 WriteRecordedPositions();
1264 }
1265
1266
1267 void Assembler::RecordStatementPosition(int pos) {
1268 if (pos == RelocInfo::kNoPosition) return;
1269 ASSERT(pos >= 0);
1270 current_statement_position_ = pos;
1271 WriteRecordedPositions();
1272 }
1273
1274
1275 void Assembler::WriteRecordedPositions() {
1276 // Write the statement position if it is different from what was written last
1277 // time.
1278 if (current_statement_position_ != written_statement_position_) {
1279 CheckBuffer();
1280 RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
1281 written_statement_position_ = current_statement_position_;
1282 }
1283
1284 // Write the position if it is different from what was written last time and
1285 // also different from the written statement position.
1286 if (current_position_ != written_position_ &&
1287 current_position_ != written_statement_position_) {
1288 CheckBuffer();
1289 RecordRelocInfo(RelocInfo::POSITION, current_position_);
1290 written_position_ = current_position_;
1291 }
1292 }
1293
1294
1295 void Assembler::GrowBuffer() {
1296 if (!own_buffer_) FATAL("external code buffer is too small");
1297
1298 // compute new buffer size
1299 CodeDesc desc; // the new buffer
1300 if (buffer_size_ < 4*KB) {
1301 desc.buffer_size = 4*KB;
1302 } else if (buffer_size_ < 1*MB) {
1303 desc.buffer_size = 2*buffer_size_;
1304 } else {
1305 desc.buffer_size = buffer_size_ + 1*MB;
1306 }
1307 CHECK_GT(desc.buffer_size, 0); // no overflow
1308
1309 // setup new buffer
1310 desc.buffer = NewArray<byte>(desc.buffer_size);
1311
1312 desc.instr_size = pc_offset();
1313 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
1314
1315 // copy the data
1316 int pc_delta = desc.buffer - buffer_;
1317 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
1318 memmove(desc.buffer, buffer_, desc.instr_size);
1319 memmove(reloc_info_writer.pos() + rc_delta,
1320 reloc_info_writer.pos(), desc.reloc_size);
1321
1322 // switch buffers
1323 DeleteArray(buffer_);
1324 buffer_ = desc.buffer;
1325 buffer_size_ = desc.buffer_size;
1326 pc_ += pc_delta;
1327 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
1328 reloc_info_writer.last_pc() + pc_delta);
1329
1330 // none of our relocation types are pc relative pointing outside the code
1331 // buffer nor pc absolute pointing inside the code buffer, so there is no need
1332 // to relocate any emitted relocation entries
1333
1334 // relocate pending relocation entries
1335 for (int i = 0; i < num_prinfo_; i++) {
1336 RelocInfo& rinfo = prinfo_[i];
1337 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
1338 rinfo.rmode() != RelocInfo::POSITION);
1339 rinfo.set_pc(rinfo.pc() + pc_delta);
1340 }
1341 }
1342
1343
1344 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
1345 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
1346 if (rmode >= RelocInfo::COMMENT && rmode <= RelocInfo::STATEMENT_POSITION) {
1347 // adjust code for new modes
1348 ASSERT(RelocInfo::IsComment(rmode) || RelocInfo::IsPosition(rmode));
1349 // these modes do not need an entry in the constant pool
1350 } else {
1351 ASSERT(num_prinfo_ < kMaxNumPRInfo);
1352 prinfo_[num_prinfo_++] = rinfo;
1353 // Make sure the constant pool is not emitted in place of the next
1354 // instruction for which we just recorded relocation info
1355 BlockConstPoolBefore(pc_offset() + kInstrSize);
1356 }
1357 if (rinfo.rmode() != RelocInfo::NONE) {
1358 // Don't record external references unless the heap will be serialized.
1359 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
1360 !Serializer::enabled() &&
1361 !FLAG_debug_code) {
1362 return;
1363 }
1364 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
1365 reloc_info_writer.Write(&rinfo);
1366 }
1367 }
1368
1369
1370 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
1371 // Calculate the offset of the next check. It will be overwritten
1372 // when a const pool is generated or when const pools are being
1373 // blocked for a specific range.
1374 next_buffer_check_ = pc_offset() + kCheckConstInterval;
1375
1376 // There is nothing to do if there are no pending relocation info entries
1377 if (num_prinfo_ == 0) return;
1378
1379 // We emit a constant pool at regular intervals of about kDistBetweenPools
1380 // or when requested by parameter force_emit (e.g. after each function).
1381 // We prefer not to emit a jump unless the max distance is reached or if we
1382 // are running low on slots, which can happen if a lot of constants are being
1383 // emitted (e.g. --debug-code and many static references).
1384 int dist = pc_offset() - last_const_pool_end_;
1385 if (!force_emit && dist < kMaxDistBetweenPools &&
1386 (require_jump || dist < kDistBetweenPools) &&
1387 // TODO(1236125): Cleanup the "magic" number below. We know that
1388 // the code generation will test every kCheckConstIntervalInst.
1389 // Thus we are safe as long as we generate less than 7 constant
1390 // entries per instruction.
1391 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
1392 return;
1393 }
1394
1395 // If we did not return by now, we need to emit the constant pool soon.
1396
1397 // However, some small sequences of instructions must not be broken up by the
1398 // insertion of a constant pool; such sequences are protected by setting
1399 // no_const_pool_before_, which is checked here. Also, recursive calls to
1400 // CheckConstPool are blocked by no_const_pool_before_.
1401 if (pc_offset() < no_const_pool_before_) {
1402 // Emission is currently blocked; make sure we try again as soon as possible
1403 next_buffer_check_ = no_const_pool_before_;
1404
1405 // Something is wrong if emission is forced and blocked at the same time
1406 ASSERT(!force_emit);
1407 return;
1408 }
1409
1410 int jump_instr = require_jump ? kInstrSize : 0;
1411
1412 // Check that the code buffer is large enough before emitting the constant
1413 // pool and relocation information (include the jump over the pool and the
1414 // constant pool marker).
1415 int max_needed_space =
1416 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
1417 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();
1418
1419 // Block recursive calls to CheckConstPool
1420 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
1421 num_prinfo_*kInstrSize);
1422 // Don't bother to check for the emit calls below.
1423 next_buffer_check_ = no_const_pool_before_;
1424
1425 // Emit jump over constant pool if necessary
1426 Label after_pool;
1427 if (require_jump) b(&after_pool);
1428
1429 RecordComment("[ Constant Pool");
1430
1431 // Put down constant pool marker
1432 // "Undefined instruction" as specified by A3.1 Instruction set encoding
1433 emit(0x03000000 | num_prinfo_);
1434
1435 // Emit constant pool entries
1436 for (int i = 0; i < num_prinfo_; i++) {
1437 RelocInfo& rinfo = prinfo_[i];
1438 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
1439 rinfo.rmode() != RelocInfo::POSITION &&
1440 rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
1441 Instr instr = instr_at(rinfo.pc());
1442 // Instruction to patch must be a ldr/str [pc, #offset]
1443 // P and U set, B and W clear, Rn == pc, offset12 still 0
1444 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) ==
1445 (2*B25 | P | U | pc.code()*B16));
1446 int delta = pc_ - rinfo.pc() - 8;
1447 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32
1448 if (delta < 0) {
1449 instr &= ~U;
1450 delta = -delta;
1451 }
1452 ASSERT(is_uint12(delta));
1453 instr_at_put(rinfo.pc(), instr + delta);
1454 emit(rinfo.data());
1455 }
1456 num_prinfo_ = 0;
1457 last_const_pool_end_ = pc_offset();
1458
1459 RecordComment("]");
1460
1461 if (after_pool.is_linked()) {
1462 bind(&after_pool);
1463 }
1464
1465 // Since a constant pool was just emitted, move the check offset forward by
1466 // the standard interval.
1467 next_buffer_check_ = pc_offset() + kCheckConstInterval;
1468 }
1469
1470
1471 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/assembler-arm.h ('k') | src/assembler-arm-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698