Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1310)

Unified Diff: src/spaces.cc

Issue 9179012: Reduce boot-up memory use of V8. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: Created 8 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/spaces.cc
===================================================================
--- src/spaces.cc (revision 10407)
+++ src/spaces.cc (working copy)
@@ -31,6 +31,7 @@
#include "macro-assembler.h"
#include "mark-compact.h"
#include "platform.h"
+#include "snapshot.h"
namespace v8 {
namespace internal {
@@ -263,7 +264,7 @@
: isolate_(isolate),
capacity_(0),
capacity_executable_(0),
- size_(0),
+ memory_allocator_reserved_(0),
size_executable_(0) {
}
@@ -273,7 +274,7 @@
capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
ASSERT_GE(capacity_, capacity_executable_);
- size_ = 0;
+ memory_allocator_reserved_ = 0;
size_executable_ = 0;
return true;
@@ -282,7 +283,7 @@
void MemoryAllocator::TearDown() {
// Check that spaces were torn down before MemoryAllocator.
- ASSERT(size_ == 0);
+ CHECK_EQ(memory_allocator_reserved_, 0);
// TODO(gc) this will be true again when we fix FreeMemory.
// ASSERT(size_executable_ == 0);
capacity_ = 0;
@@ -295,8 +296,8 @@
// TODO(gc) make code_range part of memory allocator?
ASSERT(reservation->IsReserved());
size_t size = reservation->size();
- ASSERT(size_ >= size);
- size_ -= size;
+ ASSERT(memory_allocator_reserved_ >= size);
+ memory_allocator_reserved_ -= size;
isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
@@ -316,8 +317,8 @@
size_t size,
Executability executable) {
// TODO(gc) make code_range part of memory allocator?
- ASSERT(size_ >= size);
- size_ -= size;
+ ASSERT(memory_allocator_reserved_ >= size);
+ memory_allocator_reserved_ -= size;
isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
@@ -343,7 +344,7 @@
VirtualMemory reservation(size, alignment);
if (!reservation.IsReserved()) return NULL;
- size_ += reservation.size();
+ memory_allocator_reserved_ += reservation.size();
Address base = RoundUp(static_cast<Address>(reservation.address()),
alignment);
controller->TakeControl(&reservation);
@@ -352,11 +353,14 @@
Address MemoryAllocator::AllocateAlignedMemory(size_t size,
+ size_t reserved_size,
size_t alignment,
Executability executable,
VirtualMemory* controller) {
+ ASSERT(RoundUp(reserved_size, OS::CommitPageSize()) >=
+ RoundUp(size, OS::CommitPageSize()));
VirtualMemory reservation;
- Address base = ReserveAlignedMemory(size, alignment, &reservation);
+ Address base = ReserveAlignedMemory(reserved_size, alignment, &reservation);
if (base == NULL) return NULL;
if (!reservation.Commit(base,
size,
@@ -375,6 +379,53 @@
}
+void Page::CommitMore(intptr_t space_needed) {
+ intptr_t reserved_page_size = reservation_.IsReserved() ?
+ reservation_.size() :
+ Page::kPageSize;
+ ASSERT(size() < reserved_page_size);
+ intptr_t expand = Min(Max(size(), space_needed), reserved_page_size - size());
+ // At least double the page size (this also rounds to OS page size).
+ expand = Min(reserved_page_size - size(),
+ RoundUpToPowerOf2(size() + expand) - size());
+ ASSERT(expand <= kPageSize - size());
+ ASSERT(expand <= reserved_page_size - size());
+ Executability executable =
+ IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
+ Address old_end = ObjectAreaEnd();
+ if (!VirtualMemory::CommitRegion(old_end, expand, executable)) return;
+
+ set_size(size() + expand);
+
+ PagedSpace* paged_space = reinterpret_cast<PagedSpace*>(owner());
+ paged_space->heap()->isolate()->memory_allocator()->AllocationBookkeeping(
+ paged_space,
+ old_end,
+ 0, // No new memory was reserved.
+ expand, // New memory committed.
+ executable);
+ paged_space->IncreaseCapacity(expand);
+
+ // In map space we have to align the expanded area with the correct map
+ // alignment.
Vyacheslav Egorov (Chromium) 2012/01/16 17:02:54 Code below does not mention map space at all and i
Erik Corry 2012/01/17 11:37:22 Done.
+ uintptr_t end_int = old_end - ObjectAreaStart();
Vyacheslav Egorov (Chromium) 2012/01/16 17:20:53 variable name is wrong. it's size, not end.
Erik Corry 2012/01/17 11:37:22 Done.
+ uintptr_t aligned_end_int =
Vyacheslav Egorov (Chromium) 2012/01/16 17:20:53 ditto
Erik Corry 2012/01/17 11:37:22 Done.
+ end_int - end_int % paged_space->ObjectAlignment();
+ if (aligned_end_int < end_int) {
Vyacheslav Egorov (Chromium) 2012/01/16 17:20:53 != instead of < for readability
Erik Corry 2012/01/17 11:37:22 Done.
+ aligned_end_int += paged_space->ObjectAlignment();
+ }
+ Address new_area =
+ reinterpret_cast<Address>(ObjectAreaStart() + aligned_end_int);
+ // This will waste the space for one map per doubling of the page size until
Vyacheslav Egorov (Chromium) 2012/01/16 17:02:54 Code is generic and does not reference map space d
Erik Corry 2012/01/17 11:37:22 Done.
+ // the next GC.
+ paged_space->AddToFreeLists(old_end, new_area - old_end);
+
+ expand -= (new_area - old_end);
+
+ paged_space->AddToFreeLists(new_area, expand);
+}
+
+
NewSpacePage* NewSpacePage::Initialize(Heap* heap,
Address start,
SemiSpace* semi_space) {
@@ -460,9 +511,15 @@
MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size,
+ intptr_t committed_body_size,
Executability executable,
Space* owner) {
- size_t chunk_size = MemoryChunk::kObjectStartOffset + body_size;
+ ASSERT(body_size >= committed_body_size);
+ size_t chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + body_size,
+ OS::CommitPageSize());
+ intptr_t committed_chunk_size =
+ committed_body_size + MemoryChunk::kObjectStartOffset;
+ committed_chunk_size = RoundUp(committed_chunk_size, OS::CommitPageSize());
Heap* heap = isolate_->heap();
Address base = NULL;
VirtualMemory reservation;
@@ -482,20 +539,21 @@
ASSERT(IsAligned(reinterpret_cast<intptr_t>(base),
MemoryChunk::kAlignment));
if (base == NULL) return NULL;
- size_ += chunk_size;
- // Update executable memory size.
- size_executable_ += chunk_size;
+ // The AllocateAlignedMemory method will update the memory allocator
+ // memory used, but we are not using that if we have a code range, so
+ // we update it here.
+ memory_allocator_reserved_ += chunk_size;
} else {
- base = AllocateAlignedMemory(chunk_size,
+ base = AllocateAlignedMemory(committed_chunk_size,
+ chunk_size,
MemoryChunk::kAlignment,
executable,
&reservation);
if (base == NULL) return NULL;
- // Update executable memory size.
- size_executable_ += reservation.size();
}
} else {
- base = AllocateAlignedMemory(chunk_size,
+ base = AllocateAlignedMemory(committed_chunk_size,
+ chunk_size,
MemoryChunk::kAlignment,
executable,
&reservation);
@@ -503,21 +561,12 @@
if (base == NULL) return NULL;
}
-#ifdef DEBUG
- ZapBlock(base, chunk_size);
-#endif
- isolate_->counters()->memory_allocated()->
- Increment(static_cast<int>(chunk_size));
+ AllocationBookkeeping(
+ owner, base, chunk_size, committed_chunk_size, executable);
- LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
- if (owner != NULL) {
- ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
- PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
- }
-
MemoryChunk* result = MemoryChunk::Initialize(heap,
base,
- chunk_size,
+ committed_chunk_size,
executable,
owner);
result->set_reserved_memory(&reservation);
@@ -525,10 +574,39 @@
}
-Page* MemoryAllocator::AllocatePage(PagedSpace* owner,
+void MemoryAllocator::AllocationBookkeeping(Space* owner,
+ Address base,
+ intptr_t reserved_chunk_size,
+ intptr_t committed_chunk_size,
+ Executability executable) {
+ if (executable == EXECUTABLE) {
+ // Update executable memory size.
+ size_executable_ += reserved_chunk_size;
+ }
+
+#ifdef DEBUG
+ ZapBlock(base, committed_chunk_size);
+#endif
+ isolate_->counters()->memory_allocated()->
+ Increment(static_cast<int>(committed_chunk_size));
+
+ LOG(isolate_, NewEvent("MemoryChunk", base, committed_chunk_size));
+ if (owner != NULL) {
+ ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
+ PerformAllocationCallback(
+ space, kAllocationActionAllocate, committed_chunk_size);
+ }
+}
+
+
+Page* MemoryAllocator::AllocatePage(intptr_t object_area_size,
Vyacheslav Egorov (Chromium) 2012/01/16 17:02:54 object_area_size should really be comitted_object_
Erik Corry 2012/01/17 11:37:22 Done.
+ PagedSpace* owner,
Executability executable) {
- MemoryChunk* chunk = AllocateChunk(Page::kObjectAreaSize, executable, owner);
+ ASSERT(object_area_size <= Page::kObjectAreaSize);
+ MemoryChunk* chunk =
+ AllocateChunk(Page::kObjectAreaSize, object_area_size, executable, owner);
+
if (chunk == NULL) return NULL;
return Page::Initialize(isolate_->heap(), chunk, executable, owner);
@@ -538,7 +616,8 @@
LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size,
Executability executable,
Space* owner) {
- MemoryChunk* chunk = AllocateChunk(object_size, executable, owner);
+ MemoryChunk* chunk =
+ AllocateChunk(object_size, object_size, executable, owner);
if (chunk == NULL) return NULL;
return LargePage::Initialize(isolate_->heap(), chunk);
}
@@ -559,8 +638,12 @@
if (reservation->IsReserved()) {
FreeMemory(reservation, chunk->executable());
} else {
+ // When we do not have a reservation that is because this allocation
+ // is part of the huge reserved chunk of memory reserved for code on
+ // x64. In that case the size was rounded up to the page size on
+ // allocation so we do the same now when freeing.
FreeMemory(chunk->address(),
- chunk->size(),
+ RoundUp(chunk->size(), Page::kPageSize),
chunk->executable());
}
}
@@ -640,11 +723,12 @@
#ifdef DEBUG
void MemoryAllocator::ReportStatistics() {
- float pct = static_cast<float>(capacity_ - size_) / capacity_;
+ float pct =
+ static_cast<float>(capacity_ - memory_allocator_reserved_) / capacity_;
PrintF(" capacity: %" V8_PTR_PREFIX "d"
", used: %" V8_PTR_PREFIX "d"
", available: %%%d\n\n",
- capacity_, size_, static_cast<int>(pct*100));
+ capacity_, memory_allocator_reserved_, static_cast<int>(pct*100));
}
#endif
@@ -712,7 +796,6 @@
bool PagedSpace::CanExpand() {
ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
- ASSERT(Capacity() % Page::kObjectAreaSize == 0);
if (Capacity() == max_capacity_) return false;
@@ -724,11 +807,42 @@
return true;
}
-bool PagedSpace::Expand() {
+bool PagedSpace::Expand(intptr_t size_in_bytes) {
if (!CanExpand()) return false;
+ Page* last_page = anchor_.prev_page();
+ if (last_page != &anchor_) {
+ // We have have run out of linear allocation space. This may be because
+ // the most recently allocated page (stored last in the list) is a small
+ // one, that starts on a page aligned boundary, but has not a full kPageSize
+ // of committed memory. Let's commit more memory for the page.
+ intptr_t reserved_page_size = last_page->reserved_memory()->IsReserved() ?
+ last_page->reserved_memory()->size() :
+ Page::kPageSize;
+ if (last_page->size() < reserved_page_size &&
+ reserved_page_size - last_page->size() >= size_in_bytes &&
Vyacheslav Egorov (Chromium) 2012/01/16 17:02:54 I feel uncomfortable when arithmetic expression is
Erik Corry 2012/01/17 11:37:22 Done.
+ !last_page->IsEvacuationCandidate() &&
+ last_page->WasSwept()) {
+ last_page->CommitMore(size_in_bytes);
+ return true;
+ }
+ }
+
+ // We initially only commit a part of the page, but the deserialization
+ // of the initial snapshot makes the assumption that it can deserialize
+ // into linear memory of a certain size per space, so some of the spaces
+ // need to have a little more committed memory.
+ int initial = Max(OS::CommitPageSize(), kMinimumSpaceSizes[identity()]);
+
+ ASSERT(Page::kPageSize - initial < Page::kObjectAreaSize);
+
+ intptr_t expansion_size =
+ Max(initial,
+ RoundUpToPowerOf2(MemoryChunk::kObjectStartOffset + size_in_bytes)) -
+ MemoryChunk::kObjectStartOffset;
+
Page* p = heap()->isolate()->memory_allocator()->
- AllocatePage(this, executable());
+ AllocatePage(expansion_size, this, executable());
if (p == NULL) return false;
ASSERT(Capacity() <= max_capacity_);
@@ -771,6 +885,8 @@
allocation_info_.top = allocation_info_.limit = NULL;
}
+ intptr_t size = page->ObjectAreaEnd() - page->ObjectAreaStart();
+
page->Unlink();
if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) {
heap()->isolate()->memory_allocator()->Free(page);
@@ -779,8 +895,7 @@
}
ASSERT(Capacity() > 0);
- ASSERT(Capacity() % Page::kObjectAreaSize == 0);
- accounting_stats_.ShrinkSpace(Page::kObjectAreaSize);
+ accounting_stats_.ShrinkSpace(size);
}
@@ -1658,7 +1773,7 @@
// is big enough to be a FreeSpace with at least one extra word (the next
// pointer), we set its map to be the free space map and its size to an
// appropriate array length for the desired size from HeapObject::Size().
- // If the block is too small (eg, one or two words), to hold both a size
+ // If the block is too small (e.g. one or two words), to hold both a size
// field and a next pointer, we give it a filler map that gives it the
// correct size.
if (size_in_bytes > FreeSpace::kHeaderSize) {
@@ -1762,69 +1877,102 @@
}
-FreeListNode* FreeList::PickNodeFromList(FreeListNode** list, int* node_size) {
+FreeListNode* FreeList::PickNodeFromList(FreeListNode** list,
+ int* node_size,
+ int minimum_size) {
FreeListNode* node = *list;
if (node == NULL) return NULL;
+ ASSERT(node->map() == node->GetHeap()->raw_unchecked_free_space_map());
+
while (node != NULL &&
Page::FromAddress(node->address())->IsEvacuationCandidate()) {
available_ -= node->Size();
node = node->next();
}
- if (node != NULL) {
- *node_size = node->Size();
- *list = node->next();
- } else {
+ if (node == NULL) {
*list = NULL;
+ return NULL;
}
+ // Gets the size without checking the map. When we are booting we have
+ // a FreeListNode before we have created its map.
+ intptr_t size = reinterpret_cast<FreeSpace*>(node)->Size();
+
+ // We don't search the list for one that fits, preferring to look in the
+ // list of larger nodes, but we do check the first in the list, because
+ // if we had to expand the space or page we may have placed an entry that
+ // was just long enough at the head of one of the lists.
+ if (size < minimum_size) return NULL;
+
+ *node_size = size;
+ available_ -= size;
+ *list = node->next();
+
return node;
}
-FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) {
+FreeListNode* FreeList::FindAbuttingNode(
+ int size_in_bytes, int* node_size, Address limit, FreeListNode** list_head) {
+ FreeListNode* first_node = *list_head;
+ if (first_node != NULL &&
+ first_node->address() == limit &&
+ reinterpret_cast<FreeSpace*>(first_node)->Size() >= size_in_bytes &&
+ !Page::FromAddress(first_node->address())->IsEvacuationCandidate()) {
+ FreeListNode* answer = first_node;
+ int size = reinterpret_cast<FreeSpace*>(first_node)->Size();
+ available_ -= size;
+ *node_size = size;
+ *list_head = first_node->next();
+ ASSERT(IsVeryLong() || available_ == SumFreeLists());
+ return answer;
+ }
+ return NULL;
+}
+
+
+FreeListNode* FreeList::FindNodeFor(int size_in_bytes,
+ int* node_size,
+ Address limit) {
FreeListNode* node = NULL;
- if (size_in_bytes <= kSmallAllocationMax) {
- node = PickNodeFromList(&small_list_, node_size);
+ if (limit != NULL) {
+ // We may have a memory area at the head of the free list, which abuts the
+ // old linear allocation area. This happens if the linear allocation area
+ // has been shortened to allow an incremental marking step to be performed.
+ // In that case we prefer to return the free memory area that is contiguous
+ // with the old linear allocation area.
+ node = FindAbuttingNode(size_in_bytes, node_size, limit, &large_list_);
if (node != NULL) return node;
- }
-
- if (size_in_bytes <= kMediumAllocationMax) {
- node = PickNodeFromList(&medium_list_, node_size);
+ node = FindAbuttingNode(size_in_bytes, node_size, limit, &huge_list_);
if (node != NULL) return node;
}
- if (size_in_bytes <= kLargeAllocationMax) {
- node = PickNodeFromList(&large_list_, node_size);
- if (node != NULL) return node;
- }
+ node = PickNodeFromList(&small_list_, node_size, size_in_bytes);
+ ASSERT(IsVeryLong() || available_ == SumFreeLists());
+ if (node != NULL) return node;
+ node = PickNodeFromList(&medium_list_, node_size, size_in_bytes);
+ ASSERT(IsVeryLong() || available_ == SumFreeLists());
+ if (node != NULL) return node;
+
+ node = PickNodeFromList(&large_list_, node_size, size_in_bytes);
+ ASSERT(IsVeryLong() || available_ == SumFreeLists());
+ if (node != NULL) return node;
+
+ // The tricky third clause in this for statement is due to the fact that
+ // PickNodeFromList can cut pages out of the list if they are unavailable for
+ // new allocation (e.g. if they are on a page that has been scheduled for
+ // evacuation).
for (FreeListNode** cur = &huge_list_;
*cur != NULL;
- cur = (*cur)->next_address()) {
- FreeListNode* cur_node = *cur;
- while (cur_node != NULL &&
- Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) {
- available_ -= reinterpret_cast<FreeSpace*>(cur_node)->Size();
- cur_node = cur_node->next();
- }
-
- *cur = cur_node;
- if (cur_node == NULL) break;
-
- ASSERT((*cur)->map() == HEAP->raw_unchecked_free_space_map());
- FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur);
- int size = cur_as_free_space->Size();
- if (size >= size_in_bytes) {
- // Large enough node found. Unlink it from the list.
- node = *cur;
- *node_size = size;
- *cur = node->next();
- break;
- }
+ cur = (*cur) == NULL ? cur : (*cur)->next_address()) {
Vyacheslav Egorov (Chromium) 2012/01/16 17:02:54 *cur == NULL ? NULL : ... for better readability.
Erik Corry 2012/01/17 07:48:12 It may be more readable, but it will also crash :-
+ node = PickNodeFromList(cur, node_size, size_in_bytes);
+ ASSERT(IsVeryLong() || available_ == SumFreeLists());
+ if (node != NULL) return node;
}
return node;
@@ -1843,10 +1991,23 @@
ASSERT(owner_->limit() - owner_->top() < size_in_bytes);
int new_node_size = 0;
- FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size);
+ FreeListNode* new_node =
+ FindNodeFor(size_in_bytes, &new_node_size, owner_->limit());
if (new_node == NULL) return NULL;
- available_ -= new_node_size;
+ if (new_node->address() == owner_->limit()) {
+ // The new freelist node we were given is an extension of the one we had
+ // last. This is a common thing to happen when we extend a small page by
+ // committing more memory. In this case we just add the new node to the
+ // linear allocation area and recurse.
+ owner_->Allocate(new_node_size);
+ owner_->SetTop(owner_->top(), new_node->address() + new_node_size);
+ MaybeObject* allocation = owner_->AllocateRaw(size_in_bytes);
+ Object* answer;
+ if (!allocation->ToObject(&answer)) return NULL;
+ return HeapObject::cast(answer);
+ }
+
ASSERT(IsVeryLong() || available_ == SumFreeLists());
int bytes_left = new_node_size - size_in_bytes;
@@ -1856,7 +2017,9 @@
// Mark the old linear allocation area with a free space map so it can be
// skipped when scanning the heap. This also puts it back in the free list
// if it is big enough.
- owner_->Free(owner_->top(), old_linear_size);
+ if (old_linear_size != 0) {
+ owner_->AddToFreeLists(owner_->top(), old_linear_size);
+ }
#ifdef DEBUG
for (int i = 0; i < size_in_bytes / kPointerSize; i++) {
@@ -1885,8 +2048,8 @@
// We don't want to give too large linear areas to the allocator while
// incremental marking is going on, because we won't check again whether
// we want to do another increment until the linear area is used up.
- owner_->Free(new_node->address() + size_in_bytes + linear_size,
- new_node_size - size_in_bytes - linear_size);
+ owner_->AddToFreeLists(new_node->address() + size_in_bytes + linear_size,
+ new_node_size - size_in_bytes - linear_size);
owner_->SetTop(new_node->address() + size_in_bytes,
new_node->address() + size_in_bytes + linear_size);
} else if (bytes_left > 0) {
@@ -1895,6 +2058,7 @@
owner_->SetTop(new_node->address() + size_in_bytes,
new_node->address() + new_node_size);
} else {
+ ASSERT(bytes_left == 0);
// TODO(gc) Try not freeing linear allocation region when bytes_left
// are zero.
owner_->SetTop(NULL, NULL);
@@ -2027,7 +2191,9 @@
HeapObject* allocation = HeapObject::cast(object);
Address top = allocation_info_.top;
if ((top - bytes) == allocation->address()) {
- allocation_info_.top = allocation->address();
+ Address new_top = allocation->address();
+ ASSERT(new_top >= Page::FromAddress(new_top - 1)->ObjectAreaStart());
+ allocation_info_.top = new_top;
return true;
}
// There may be a borderline case here where the allocation succeeded, but
@@ -2042,7 +2208,7 @@
// Mark the old linear allocation area with a free space map so it can be
// skipped when scanning the heap.
int old_linear_size = static_cast<int>(limit() - top());
- Free(top(), old_linear_size);
+ AddToFreeLists(top(), old_linear_size);
SetTop(NULL, NULL);
// Stop lazy sweeping and clear marking bits for unswept pages.
@@ -2085,10 +2251,13 @@
// Mark the old linear allocation area with a free space so it can be
// skipped when scanning the heap. This also puts it back in the free list
// if it is big enough.
- Free(top(), old_linear_size);
+ AddToFreeLists(top(), old_linear_size);
SetTop(new_area->address(), new_area->address() + size_in_bytes);
- Allocate(size_in_bytes);
+ // The AddToFreeLists call above will reduce the size of the space in the
+ // allocation stats. We don't need to add this linear area to the size
+ // with an Allocate(size_in_bytes) call here, because the
+ // free_list_.Allocate() call above already accounted for this memory.
return true;
}
@@ -2169,7 +2338,7 @@
}
// Try to expand the space and allocate in the new next page.
- if (Expand()) {
+ if (Expand(size_in_bytes)) {
return free_list_.Allocate(size_in_bytes);
}
@@ -2530,6 +2699,7 @@
heap()->mark_compact_collector()->ReportDeleteIfNeeded(
object, heap()->isolate());
size_ -= static_cast<int>(page->size());
+ ASSERT(size_ >= 0);
objects_size_ -= object->Size();
page_count_--;

Powered by Google App Engine
This is Rietveld 408576698