OLD | NEW |
| (Empty) |
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "app/gfx/icon_util.h" | |
6 | |
7 #include "app/win_util.h" | |
8 #include "base/file_util.h" | |
9 #include "base/gfx/size.h" | |
10 #include "base/logging.h" | |
11 #include "base/scoped_ptr.h" | |
12 #include "skia/ext/image_operations.h" | |
13 #include "third_party/skia/include/core/SkBitmap.h" | |
14 | |
15 // Defining the dimensions for the icon images. We store only one value because | |
16 // we always resize to a square image; that is, the value 48 means that we are | |
17 // going to resize the given bitmap to a 48 by 48 pixels bitmap. | |
18 // | |
19 // The icon images appear in the icon file in same order in which their | |
20 // corresponding dimensions appear in the |icon_dimensions_| array, so it is | |
21 // important to keep this array sorted. Also note that the maximum icon image | |
22 // size we can handle is 255 by 255. | |
23 const int IconUtil::icon_dimensions_[] = { | |
24 8, // Recommended by the MSDN as a nice to have icon size. | |
25 10, // Used by the Shell (e.g. for shortcuts). | |
26 14, // Recommended by the MSDN as a nice to have icon size. | |
27 16, // Toolbar, Application and Shell icon sizes. | |
28 22, // Recommended by the MSDN as a nice to have icon size. | |
29 24, // Used by the Shell (e.g. for shortcuts). | |
30 32, // Toolbar, Dialog and Wizard icon size. | |
31 40, // Quick Launch. | |
32 48, // Alt+Tab icon size. | |
33 64, // Recommended by the MSDN as a nice to have icon size. | |
34 96, // Recommended by the MSDN as a nice to have icon size. | |
35 128 // Used by the Shell (e.g. for shortcuts). | |
36 }; | |
37 | |
38 HICON IconUtil::CreateHICONFromSkBitmap(const SkBitmap& bitmap) { | |
39 // Only 32 bit ARGB bitmaps are supported. We also try to perform as many | |
40 // validations as we can on the bitmap. | |
41 SkAutoLockPixels bitmap_lock(bitmap); | |
42 if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) || | |
43 (bitmap.width() <= 0) || (bitmap.height() <= 0) || | |
44 (bitmap.getPixels() == NULL)) { | |
45 return NULL; | |
46 } | |
47 | |
48 // We start by creating a DIB which we'll use later on in order to create | |
49 // the HICON. We use BITMAPV5HEADER since the bitmap we are about to convert | |
50 // may contain an alpha channel and the V5 header allows us to specify the | |
51 // alpha mask for the DIB. | |
52 BITMAPV5HEADER bitmap_header; | |
53 InitializeBitmapHeader(&bitmap_header, bitmap.width(), bitmap.height()); | |
54 void* bits; | |
55 HDC hdc = ::GetDC(NULL); | |
56 HBITMAP dib; | |
57 dib = ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&bitmap_header), | |
58 DIB_RGB_COLORS, &bits, NULL, 0); | |
59 DCHECK(dib); | |
60 ::ReleaseDC(NULL, hdc); | |
61 memcpy(bits, bitmap.getPixels(), bitmap.width() * bitmap.height() * 4); | |
62 | |
63 // Icons are generally created using an AND and XOR masks where the AND | |
64 // specifies boolean transparency (the pixel is either opaque or | |
65 // transparent) and the XOR mask contains the actual image pixels. If the XOR | |
66 // mask bitmap has an alpha channel, the AND monochrome bitmap won't | |
67 // actually be used for computing the pixel transparency. Even though all our | |
68 // bitmap has an alpha channel, Windows might not agree when all alpha values | |
69 // are zero. So the monochrome bitmap is created with all pixels transparent | |
70 // for this case. Otherwise, it is created with all pixels opaque. | |
71 bool bitmap_has_alpha_channel = PixelsHaveAlpha( | |
72 static_cast<const uint32*>(bitmap.getPixels()), | |
73 bitmap.width() * bitmap.height()); | |
74 | |
75 scoped_array<uint8> mask_bits; | |
76 if (!bitmap_has_alpha_channel) { | |
77 // Bytes per line with paddings to make it word alignment. | |
78 size_t bytes_per_line = (bitmap.width() + 0xF) / 16 * 2; | |
79 size_t mask_bits_size = bytes_per_line * bitmap.height(); | |
80 | |
81 mask_bits.reset(new uint8[mask_bits_size]); | |
82 DCHECK(mask_bits.get()); | |
83 | |
84 // Make all pixels transparent. | |
85 memset(mask_bits.get(), 0xFF, mask_bits_size); | |
86 } | |
87 | |
88 HBITMAP mono_bitmap = ::CreateBitmap(bitmap.width(), bitmap.height(), 1, 1, | |
89 reinterpret_cast<LPVOID>(mask_bits.get())); | |
90 DCHECK(mono_bitmap); | |
91 | |
92 ICONINFO icon_info; | |
93 icon_info.fIcon = TRUE; | |
94 icon_info.xHotspot = 0; | |
95 icon_info.yHotspot = 0; | |
96 icon_info.hbmMask = mono_bitmap; | |
97 icon_info.hbmColor = dib; | |
98 HICON icon = ::CreateIconIndirect(&icon_info); | |
99 ::DeleteObject(dib); | |
100 ::DeleteObject(mono_bitmap); | |
101 return icon; | |
102 } | |
103 | |
104 SkBitmap* IconUtil::CreateSkBitmapFromHICON(HICON icon, const gfx::Size& s) { | |
105 // We start with validating parameters. | |
106 ICONINFO icon_info; | |
107 if (!icon || !(::GetIconInfo(icon, &icon_info)) || | |
108 !icon_info.fIcon || s.IsEmpty()) { | |
109 return NULL; | |
110 } | |
111 | |
112 // Allocating memory for the SkBitmap object. We are going to create an ARGB | |
113 // bitmap so we should set the configuration appropriately. | |
114 SkBitmap* bitmap = new SkBitmap; | |
115 DCHECK(bitmap); | |
116 bitmap->setConfig(SkBitmap::kARGB_8888_Config, s.width(), s.height()); | |
117 bitmap->allocPixels(); | |
118 bitmap->eraseARGB(0, 0, 0, 0); | |
119 SkAutoLockPixels bitmap_lock(*bitmap); | |
120 | |
121 // Now we should create a DIB so that we can use ::DrawIconEx in order to | |
122 // obtain the icon's image. | |
123 BITMAPV5HEADER h; | |
124 InitializeBitmapHeader(&h, s.width(), s.height()); | |
125 HDC dc = ::GetDC(NULL); | |
126 unsigned int* bits; | |
127 HBITMAP dib = ::CreateDIBSection(dc, | |
128 reinterpret_cast<BITMAPINFO*>(&h), | |
129 DIB_RGB_COLORS, | |
130 reinterpret_cast<void**>(&bits), | |
131 NULL, | |
132 0); | |
133 DCHECK(dib); | |
134 HDC dib_dc = CreateCompatibleDC(dc); | |
135 DCHECK(dib_dc); | |
136 ::SelectObject(dib_dc, dib); | |
137 | |
138 // Windows icons are defined using two different masks. The XOR mask, which | |
139 // represents the icon image and an AND mask which is a monochrome bitmap | |
140 // which indicates the transparency of each pixel. | |
141 // | |
142 // To make things more complex, the icon image itself can be an ARGB bitmap | |
143 // and therefore contain an alpha channel which specifies the transparency | |
144 // for each pixel. Unfortunately, there is no easy way to determine whether | |
145 // or not a bitmap has an alpha channel and therefore constructing the bitmap | |
146 // for the icon is nothing but straightforward. | |
147 // | |
148 // The idea is to read the AND mask but use it only if we know for sure that | |
149 // the icon image does not have an alpha channel. The only way to tell if the | |
150 // bitmap has an alpha channel is by looking through the pixels and checking | |
151 // whether there are non-zero alpha bytes. | |
152 // | |
153 // We start by drawing the AND mask into our DIB. | |
154 size_t num_pixels = s.GetArea(); | |
155 memset(bits, 0, num_pixels * 4); | |
156 ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_MASK); | |
157 | |
158 // Capture boolean opacity. We may not use it if we find out the bitmap has | |
159 // an alpha channel. | |
160 bool* opaque = new bool[num_pixels]; | |
161 DCHECK(opaque); | |
162 for (size_t i = 0; i < num_pixels; ++i) | |
163 opaque[i] = !bits[i]; | |
164 | |
165 // Then draw the image itself which is really the XOR mask. | |
166 memset(bits, 0, num_pixels * 4); | |
167 ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_NORMAL); | |
168 memcpy(bitmap->getPixels(), static_cast<void*>(bits), num_pixels * 4); | |
169 | |
170 // Finding out whether the bitmap has an alpha channel. | |
171 bool bitmap_has_alpha_channel = PixelsHaveAlpha( | |
172 static_cast<const uint32*>(bitmap->getPixels()), num_pixels); | |
173 | |
174 // If the bitmap does not have an alpha channel, we need to build it using | |
175 // the previously captured AND mask. Otherwise, we are done. | |
176 if (!bitmap_has_alpha_channel) { | |
177 unsigned int* p = static_cast<unsigned int*>(bitmap->getPixels()); | |
178 for (size_t i = 0; i < num_pixels; ++p, ++i) { | |
179 DCHECK_EQ((*p & 0xff000000), 0); | |
180 if (opaque[i]) | |
181 *p |= 0xff000000; | |
182 else | |
183 *p &= 0x00ffffff; | |
184 } | |
185 } | |
186 | |
187 delete [] opaque; | |
188 ::DeleteDC(dib_dc); | |
189 ::DeleteObject(dib); | |
190 ::ReleaseDC(NULL, dc); | |
191 | |
192 return bitmap; | |
193 } | |
194 | |
195 bool IconUtil::CreateIconFileFromSkBitmap(const SkBitmap& bitmap, | |
196 const std::wstring& icon_file_name) { | |
197 // Only 32 bit ARGB bitmaps are supported. We also make sure the bitmap has | |
198 // been properly initialized. | |
199 SkAutoLockPixels bitmap_lock(bitmap); | |
200 if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) || | |
201 (bitmap.height() <= 0) || (bitmap.width() <= 0) || | |
202 (bitmap.getPixels() == NULL)) { | |
203 return false; | |
204 } | |
205 | |
206 // We start by creating the file. | |
207 win_util::ScopedHandle icon_file(::CreateFile(icon_file_name.c_str(), | |
208 GENERIC_WRITE, | |
209 0, | |
210 NULL, | |
211 CREATE_ALWAYS, | |
212 FILE_ATTRIBUTE_NORMAL, | |
213 NULL)); | |
214 | |
215 if (icon_file.Get() == INVALID_HANDLE_VALUE) { | |
216 return false; | |
217 } | |
218 | |
219 // Creating a set of bitmaps corresponding to the icon images we'll end up | |
220 // storing in the icon file. Each bitmap is created by resizing the given | |
221 // bitmap to the desired size. | |
222 std::vector<SkBitmap> bitmaps; | |
223 CreateResizedBitmapSet(bitmap, &bitmaps); | |
224 int bitmap_count = static_cast<int>(bitmaps.size()); | |
225 DCHECK_GT(bitmap_count, 0); | |
226 | |
227 // Computing the total size of the buffer we need in order to store the | |
228 // images in the desired icon format. | |
229 int buffer_size = ComputeIconFileBufferSize(bitmaps); | |
230 unsigned char* buffer = new unsigned char[buffer_size]; | |
231 DCHECK_NE(buffer, static_cast<unsigned char*>(NULL)); | |
232 memset(buffer, 0, buffer_size); | |
233 | |
234 // Setting the information in the structures residing within the buffer. | |
235 // First, we set the information which doesn't require iterating through the | |
236 // bitmap set and then we set the bitmap specific structures. In the latter | |
237 // step we also copy the actual bits. | |
238 ICONDIR* icon_dir = reinterpret_cast<ICONDIR*>(buffer); | |
239 icon_dir->idType = kResourceTypeIcon; | |
240 icon_dir->idCount = bitmap_count; | |
241 int icon_dir_count = bitmap_count - 1; | |
242 int offset = sizeof(ICONDIR) + (sizeof(ICONDIRENTRY) * icon_dir_count); | |
243 for (int i = 0; i < bitmap_count; i++) { | |
244 ICONIMAGE* image = reinterpret_cast<ICONIMAGE*>(buffer + offset); | |
245 DCHECK_LT(offset, buffer_size); | |
246 int icon_image_size = 0; | |
247 SetSingleIconImageInformation(bitmaps[i], | |
248 i, | |
249 icon_dir, | |
250 image, | |
251 offset, | |
252 &icon_image_size); | |
253 DCHECK_GT(icon_image_size, 0); | |
254 offset += icon_image_size; | |
255 } | |
256 DCHECK_EQ(offset, buffer_size); | |
257 | |
258 // Finally, writing the data info the file. | |
259 DWORD bytes_written; | |
260 bool delete_file = false; | |
261 if (!WriteFile(icon_file.Get(), buffer, buffer_size, &bytes_written, NULL) || | |
262 bytes_written != buffer_size) { | |
263 delete_file = true; | |
264 } | |
265 | |
266 ::CloseHandle(icon_file.Take()); | |
267 delete [] buffer; | |
268 if (delete_file) { | |
269 bool success = file_util::Delete(icon_file_name, false); | |
270 DCHECK(success); | |
271 } | |
272 | |
273 return !delete_file; | |
274 } | |
275 | |
276 int IconUtil::GetIconDimensionCount() { | |
277 return sizeof(icon_dimensions_) / sizeof(icon_dimensions_[0]); | |
278 } | |
279 | |
280 bool IconUtil::PixelsHaveAlpha(const uint32* pixels, size_t num_pixels) { | |
281 for (const uint32* end = pixels + num_pixels; pixels != end; ++pixels) { | |
282 if ((*pixels & 0xff000000) != 0) { | |
283 return true; | |
284 } | |
285 } | |
286 | |
287 return false; | |
288 } | |
289 | |
290 void IconUtil::InitializeBitmapHeader(BITMAPV5HEADER* header, int width, | |
291 int height) { | |
292 DCHECK(header); | |
293 memset(header, 0, sizeof(BITMAPV5HEADER)); | |
294 header->bV5Size = sizeof(BITMAPV5HEADER); | |
295 | |
296 // Note that icons are created using top-down DIBs so we must negate the | |
297 // value used for the icon's height. | |
298 header->bV5Width = width; | |
299 header->bV5Height = -height; | |
300 header->bV5Planes = 1; | |
301 header->bV5Compression = BI_RGB; | |
302 | |
303 // Initializing the bitmap format to 32 bit ARGB. | |
304 header->bV5BitCount = 32; | |
305 header->bV5RedMask = 0x00FF0000; | |
306 header->bV5GreenMask = 0x0000FF00; | |
307 header->bV5BlueMask = 0x000000FF; | |
308 header->bV5AlphaMask = 0xFF000000; | |
309 | |
310 // Use the system color space. The default value is LCS_CALIBRATED_RGB, which | |
311 // causes us to crash if we don't specify the approprite gammas, etc. See | |
312 // <http://msdn.microsoft.com/en-us/library/ms536531(VS.85).aspx> and | |
313 // <http://b/1283121>. | |
314 header->bV5CSType = LCS_WINDOWS_COLOR_SPACE; | |
315 | |
316 // Use a valid value for bV5Intent as 0 is not a valid one. | |
317 // <http://msdn.microsoft.com/en-us/library/dd183381(VS.85).aspx> | |
318 header->bV5Intent = LCS_GM_IMAGES; | |
319 } | |
320 | |
321 void IconUtil::SetSingleIconImageInformation(const SkBitmap& bitmap, | |
322 int index, | |
323 ICONDIR* icon_dir, | |
324 ICONIMAGE* icon_image, | |
325 int image_offset, | |
326 int* image_byte_count) { | |
327 DCHECK_GE(index, 0); | |
328 DCHECK_NE(icon_dir, static_cast<ICONDIR*>(NULL)); | |
329 DCHECK_NE(icon_image, static_cast<ICONIMAGE*>(NULL)); | |
330 DCHECK_GT(image_offset, 0); | |
331 DCHECK_NE(image_byte_count, static_cast<int*>(NULL)); | |
332 | |
333 // We start by computing certain image values we'll use later on. | |
334 int xor_mask_size; | |
335 int and_mask_size; | |
336 int bytes_in_resource; | |
337 ComputeBitmapSizeComponents(bitmap, | |
338 &xor_mask_size, | |
339 &and_mask_size, | |
340 &bytes_in_resource); | |
341 | |
342 icon_dir->idEntries[index].bWidth = static_cast<BYTE>(bitmap.width()); | |
343 icon_dir->idEntries[index].bHeight = static_cast<BYTE>(bitmap.height()); | |
344 icon_dir->idEntries[index].wPlanes = 1; | |
345 icon_dir->idEntries[index].wBitCount = 32; | |
346 icon_dir->idEntries[index].dwBytesInRes = bytes_in_resource; | |
347 icon_dir->idEntries[index].dwImageOffset = image_offset; | |
348 icon_image->icHeader.biSize = sizeof(BITMAPINFOHEADER); | |
349 | |
350 // The width field in the BITMAPINFOHEADER structure accounts for the height | |
351 // of both the AND mask and the XOR mask so we need to multiply the bitmap's | |
352 // height by 2. The same does NOT apply to the width field. | |
353 icon_image->icHeader.biHeight = bitmap.height() * 2; | |
354 icon_image->icHeader.biWidth = bitmap.width(); | |
355 icon_image->icHeader.biPlanes = 1; | |
356 icon_image->icHeader.biBitCount = 32; | |
357 | |
358 // We use a helper function for copying to actual bits from the SkBitmap | |
359 // object into the appropriate space in the buffer. We use a helper function | |
360 // (rather than just copying the bits) because there is no way to specify the | |
361 // orientation (bottom-up vs. top-down) of a bitmap residing in a .ico file. | |
362 // Thus, if we just copy the bits, we'll end up with a bottom up bitmap in | |
363 // the .ico file which will result in the icon being displayed upside down. | |
364 // The helper function copies the image into the buffer one scanline at a | |
365 // time. | |
366 // | |
367 // Note that we don't need to initialize the AND mask since the memory | |
368 // allocated for the icon data buffer was initialized to zero. The icon we | |
369 // create will therefore use an AND mask containing only zeros, which is OK | |
370 // because the underlying image has an alpha channel. An AND mask containing | |
371 // only zeros essentially means we'll initially treat all the pixels as | |
372 // opaque. | |
373 unsigned char* image_addr = reinterpret_cast<unsigned char*>(icon_image); | |
374 unsigned char* xor_mask_addr = image_addr + sizeof(BITMAPINFOHEADER); | |
375 CopySkBitmapBitsIntoIconBuffer(bitmap, xor_mask_addr, xor_mask_size); | |
376 *image_byte_count = bytes_in_resource; | |
377 } | |
378 | |
379 void IconUtil::CopySkBitmapBitsIntoIconBuffer(const SkBitmap& bitmap, | |
380 unsigned char* buffer, | |
381 int buffer_size) { | |
382 SkAutoLockPixels bitmap_lock(bitmap); | |
383 unsigned char* bitmap_ptr = static_cast<unsigned char*>(bitmap.getPixels()); | |
384 int bitmap_size = bitmap.height() * bitmap.width() * 4; | |
385 DCHECK_EQ(buffer_size, bitmap_size); | |
386 for (int i = 0; i < bitmap_size; i += bitmap.width() * 4) { | |
387 memcpy(buffer + bitmap_size - bitmap.width() * 4 - i, | |
388 bitmap_ptr + i, | |
389 bitmap.width() * 4); | |
390 } | |
391 } | |
392 | |
393 void IconUtil::CreateResizedBitmapSet(const SkBitmap& bitmap_to_resize, | |
394 std::vector<SkBitmap>* bitmaps) { | |
395 DCHECK_NE(bitmaps, static_cast<std::vector<SkBitmap>* >(NULL)); | |
396 DCHECK_EQ(static_cast<int>(bitmaps->size()), 0); | |
397 | |
398 bool inserted_original_bitmap = false; | |
399 for (int i = 0; i < GetIconDimensionCount(); i++) { | |
400 // If the dimensions of the bitmap we are resizing are the same as the | |
401 // current dimensions, then we should insert the bitmap and not a resized | |
402 // bitmap. If the bitmap's dimensions are smaller, we insert our bitmap | |
403 // first so that the bitmaps we return in the vector are sorted based on | |
404 // their dimensions. | |
405 if (!inserted_original_bitmap) { | |
406 if ((bitmap_to_resize.width() == icon_dimensions_[i]) && | |
407 (bitmap_to_resize.height() == icon_dimensions_[i])) { | |
408 bitmaps->push_back(bitmap_to_resize); | |
409 inserted_original_bitmap = true; | |
410 continue; | |
411 } | |
412 | |
413 if ((bitmap_to_resize.width() < icon_dimensions_[i]) && | |
414 (bitmap_to_resize.height() < icon_dimensions_[i])) { | |
415 bitmaps->push_back(bitmap_to_resize); | |
416 inserted_original_bitmap = true; | |
417 } | |
418 } | |
419 bitmaps->push_back(skia::ImageOperations::Resize( | |
420 bitmap_to_resize, skia::ImageOperations::RESIZE_LANCZOS3, | |
421 icon_dimensions_[i], icon_dimensions_[i])); | |
422 } | |
423 | |
424 if (!inserted_original_bitmap) { | |
425 bitmaps->push_back(bitmap_to_resize); | |
426 } | |
427 } | |
428 | |
429 int IconUtil::ComputeIconFileBufferSize(const std::vector<SkBitmap>& set) { | |
430 // We start by counting the bytes for the structures that don't depend on the | |
431 // number of icon images. Note that sizeof(ICONDIR) already accounts for a | |
432 // single ICONDIRENTRY structure, which is why we subtract one from the | |
433 // number of bitmaps. | |
434 int total_buffer_size = 0; | |
435 total_buffer_size += sizeof(ICONDIR); | |
436 int bitmap_count = static_cast<int>(set.size()); | |
437 total_buffer_size += sizeof(ICONDIRENTRY) * (bitmap_count - 1); | |
438 int dimension_count = GetIconDimensionCount(); | |
439 DCHECK_GE(bitmap_count, dimension_count); | |
440 | |
441 // Add the bitmap specific structure sizes. | |
442 for (int i = 0; i < bitmap_count; i++) { | |
443 int xor_mask_size; | |
444 int and_mask_size; | |
445 int bytes_in_resource; | |
446 ComputeBitmapSizeComponents(set[i], | |
447 &xor_mask_size, | |
448 &and_mask_size, | |
449 &bytes_in_resource); | |
450 total_buffer_size += bytes_in_resource; | |
451 } | |
452 return total_buffer_size; | |
453 } | |
454 | |
455 void IconUtil::ComputeBitmapSizeComponents(const SkBitmap& bitmap, | |
456 int* xor_mask_size, | |
457 int* and_mask_size, | |
458 int* bytes_in_resource) { | |
459 // The XOR mask size is easy to calculate since we only deal with 32bpp | |
460 // images. | |
461 *xor_mask_size = bitmap.width() * bitmap.height() * 4; | |
462 | |
463 // Computing the AND mask is a little trickier since it is a monochrome | |
464 // bitmap (regardless of the number of bits per pixels used in the XOR mask). | |
465 // There are two things we must make sure we do when computing the AND mask | |
466 // size: | |
467 // | |
468 // 1. Make sure the right number of bytes is allocated for each AND mask | |
469 // scan line in case the number of pixels in the image is not divisible by | |
470 // 8. For example, in a 15X15 image, 15 / 8 is one byte short of | |
471 // containing the number of bits we need in order to describe a single | |
472 // image scan line so we need to add a byte. Thus, we need 2 bytes instead | |
473 // of 1 for each scan line. | |
474 // | |
475 // 2. Make sure each scan line in the AND mask is 4 byte aligned (so that the | |
476 // total icon image has a 4 byte alignment). In the 15X15 image example | |
477 // above, we can not use 2 bytes so we increase it to the next multiple of | |
478 // 4 which is 4. | |
479 // | |
480 // Once we compute the size for a singe AND mask scan line, we multiply that | |
481 // number by the image height in order to get the total number of bytes for | |
482 // the AND mask. Thus, for a 15X15 image, we need 15 * 4 which is 60 bytes | |
483 // for the monochrome bitmap representing the AND mask. | |
484 int and_line_length = (bitmap.width() + 7) >> 3; | |
485 and_line_length = (and_line_length + 3) & ~3; | |
486 *and_mask_size = and_line_length * bitmap.height(); | |
487 int masks_size = *xor_mask_size + *and_mask_size; | |
488 *bytes_in_resource = masks_size + sizeof(BITMAPINFOHEADER); | |
489 } | |
OLD | NEW |