| Index: utils/matrix/matrix4.dart
|
| diff --git a/utils/matrix/matrix4.dart b/utils/matrix/matrix4.dart
|
| deleted file mode 100644
|
| index 4d829d4d455b924521a2acafd44eb412b5892e26..0000000000000000000000000000000000000000
|
| --- a/utils/matrix/matrix4.dart
|
| +++ /dev/null
|
| @@ -1,369 +0,0 @@
|
| -// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
|
| -// for details. All rights reserved. Use of this source code is governed by a
|
| -// BSD-style license that can be found in the LICENSE file.
|
| -
|
| -// based on code from
|
| -// http://code.google.com/p/closure-library/source/browse/trunk/closure/goog/vec/mat4.js
|
| -
|
| -/**
|
| - * Thrown if you attempt to normalize a zero length vector.
|
| - */
|
| -class ZeroLengthVectorException implements Exception {
|
| - ZeroLengthVectorException() {}
|
| -}
|
| -
|
| -/**
|
| - * Thrown if you attempt to invert a singular matrix. (A
|
| - * singular matrix has no inverse.)
|
| - */
|
| -class SingularMatrixException implements Exception {
|
| - SingularMatrixException() {}
|
| -}
|
| -
|
| -/**
|
| - * 3 dimensional vector.
|
| - */
|
| -class Vector3 {
|
| - final double x;
|
| - final double y;
|
| - final double z;
|
| -
|
| - // TODO - should be const, but cannot because of
|
| - // bug http://code.google.com/p/dart/issues/detail?id=777
|
| -
|
| - // TODO - switch to initializing formal syntax once we have type
|
| - // checking for this.x style constructors. See bug
|
| - // http://code.google.com/p/dart/issues/detail?id=464
|
| - Vector3(double x, double y, double z) : x = x, y = y, z = z;
|
| -
|
| - double magnitude() => Math.sqrt(x*x + y*y + z*z);
|
| -
|
| - Vector3 normalize() {
|
| - double len = magnitude();
|
| - if (len == 0.0) {
|
| - throw new ZeroLengthVectorException();
|
| - }
|
| - return new Vector3(x/len, y/len, z/len);
|
| - }
|
| -
|
| - Vector3 operator negate() {
|
| - return new Vector3(-x, -y, -z);
|
| - }
|
| -
|
| - Vector3 operator -(Vector3 other) {
|
| - return new Vector3(x - other.x, y - other.y, z - other.z);
|
| - }
|
| -
|
| - Vector3 cross(Vector3 other) {
|
| - double xResult = y * other.z - z * other.y;
|
| - double yResult = z * other.x - x * other.z;
|
| - double zResult = x * other.y - y * other.x;
|
| - return new Vector3(xResult, yResult, zResult);
|
| - }
|
| -
|
| - String toString() {
|
| - return "Vector3($x,$y,$z)";
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * A 4x4 transformation matrix (for use with webgl)
|
| - *
|
| - * We label the elements of the matrix as follows:
|
| - *
|
| - * m00 m01 m02 m03
|
| - * m10 m11 m12 m13
|
| - * m20 m21 m22 m23
|
| - * m30 m31 m32 m33
|
| - *
|
| - * These are stored in a 16 element [Float32Array], in column major
|
| - * order, so they are ordered like this:
|
| - *
|
| - * [ m00,m10,m20,m30, m11,m21,m31,m41, m02,m12,m22,m32, m03,m13,m23,m33 ]
|
| - * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
| - *
|
| - * We use column major order because that is what WebGL APIs expect.
|
| - *
|
| - */
|
| -class Matrix4 {
|
| - final Float32Array buf;
|
| -
|
| - /**
|
| - * Constructs a new Matrix4 with all entries initialized
|
| - * to zero.
|
| - */
|
| - Matrix4() : buf = new Float32Array(16);
|
| -
|
| - /**
|
| - * returns the index into [buf] for a given
|
| - * row and column.
|
| - */
|
| - static int rc(int row, int col) => row + col * 4;
|
| -
|
| - double get m00() => buf[rc(0, 0)];
|
| - double get m01() => buf[rc(0, 1)];
|
| - double get m02() => buf[rc(0, 2)];
|
| - double get m03() => buf[rc(0, 3)];
|
| - double get m10() => buf[rc(1, 0)];
|
| - double get m11() => buf[rc(1, 1)];
|
| - double get m12() => buf[rc(1, 2)];
|
| - double get m13() => buf[rc(1, 3)];
|
| - double get m20() => buf[rc(2, 0)];
|
| - double get m21() => buf[rc(2, 1)];
|
| - double get m22() => buf[rc(2, 2)];
|
| - double get m23() => buf[rc(2, 3)];
|
| - double get m30() => buf[rc(3, 0)];
|
| - double get m31() => buf[rc(3, 1)];
|
| - double get m32() => buf[rc(3, 2)];
|
| - double get m33() => buf[rc(3, 3)];
|
| -
|
| - void set m00(double m) { buf[rc(0, 0)] = m; }
|
| - void set m01(double m) { buf[rc(0, 1)] = m; }
|
| - void set m02(double m) { buf[rc(0, 2)] = m; }
|
| - void set m03(double m) { buf[rc(0, 3)] = m; }
|
| - void set m10(double m) { buf[rc(1, 0)] = m; }
|
| - void set m11(double m) { buf[rc(1, 1)] = m; }
|
| - void set m12(double m) { buf[rc(1, 2)] = m; }
|
| - void set m13(double m) { buf[rc(1, 3)] = m; }
|
| - void set m20(double m) { buf[rc(2, 0)] = m; }
|
| - void set m21(double m) { buf[rc(2, 1)] = m; }
|
| - void set m22(double m) { buf[rc(2, 2)] = m; }
|
| - void set m23(double m) { buf[rc(2, 3)] = m; }
|
| - void set m30(double m) { buf[rc(3, 0)] = m; }
|
| - void set m31(double m) { buf[rc(3, 1)] = m; }
|
| - void set m32(double m) { buf[rc(3, 2)] = m; }
|
| - void set m33(double m) { buf[rc(3, 3)] = m; }
|
| -
|
| - String toString() {
|
| - List<String> rows = new List();
|
| - for (int row = 0; row < 4; row++) {
|
| - List<String> items = new List();
|
| - for (int col = 0; col < 4; col++) {
|
| - double v = buf[rc(row, col)];
|
| - if (v.abs() < 1e-16) {
|
| - v = 0.0;
|
| - }
|
| - String display;
|
| - try {
|
| - display = v.toStringAsPrecision(4);
|
| - } catch (Object e) {
|
| - // TODO - remove this once toStringAsPrecision is implemented in vm
|
| - display = v.toString();
|
| - }
|
| - items.add(display);
|
| - }
|
| - rows.add("| ${Strings.join(items, ", ")} |");
|
| - }
|
| - return "Matrix4:\n${Strings.join(rows, '\n')}";
|
| - }
|
| -
|
| - /**
|
| - * Cosntructs a new Matrix4 that represents the identity transformation
|
| - * (all the diagonal entries are 1, and everything else is zero).
|
| - */
|
| - static Matrix4 identity() {
|
| - Matrix4 m = new Matrix4();
|
| - m.m00 = 1.0;
|
| - m.m11 = 1.0;
|
| - m.m22 = 1.0;
|
| - m.m33 = 1.0;
|
| - return m;
|
| - }
|
| -
|
| - /**
|
| - * Constructs a new Matrix4 that represents a rotation around an axis.
|
| - *
|
| - * [degrees] number of degrees to rotate
|
| - * [axis] direction of axis of rotation (must not be zero length)
|
| - */
|
| - static Matrix4 rotation(double degrees, Vector3 axis) {
|
| - double radians = degrees / 180.0 * Math.PI;
|
| - axis = axis.normalize();
|
| -
|
| - double x = axis.x;
|
| - double y = axis.y;
|
| - double z = axis.z;
|
| - double s = Math.sin(radians);
|
| - double c = Math.cos(radians);
|
| - double t = 1 - c;
|
| -
|
| - Matrix4 m = new Matrix4();
|
| - m.m00 = x * x * t + c;
|
| - m.m10 = x * y * t + z * s;
|
| - m.m20 = x * z * t - y * s;
|
| -
|
| - m.m01 = x * y * t - z * s;
|
| - m.m11 = y * y * t + c;
|
| - m.m21 = y * z * t + x * s;
|
| -
|
| - m.m02 = x * z * t + y * s;
|
| - m.m12 = y * z * t - x * s;
|
| - m.m22 = z * z * t + c;
|
| -
|
| - m.m33 = 1.0;
|
| - return m;
|
| - }
|
| -
|
| - /**
|
| - * Constructs a new Matrix4 that represents a translation.
|
| - *
|
| - * [v] vector representing which direction to move and how much to move
|
| - */
|
| - static Matrix4 translation(Vector3 v) {
|
| - Matrix4 m = identity();
|
| - m.m03 = v.x;
|
| - m.m13 = v.y;
|
| - m.m23 = v.z;
|
| - return m;
|
| - }
|
| -
|
| - /**
|
| - * returns the transpose of this matrix
|
| - */
|
| - Matrix4 transpose() {
|
| - Matrix4 m = new Matrix4();
|
| - for (int row = 0; row < 4; row++) {
|
| - for (int col = 0; col < 4; col++) {
|
| - m.buf[rc(col, row)] = this.buf[rc(row, col)];
|
| - }
|
| - }
|
| - return m;
|
| - }
|
| -
|
| - /**
|
| - * Returns result of multiplication of this matrix
|
| - * by another matrix.
|
| - *
|
| - * In this equation:
|
| - *
|
| - * C = A * B
|
| - *
|
| - * C is the result of multiplying A * B.
|
| - * A is this matrix
|
| - * B is another matrix
|
| - *
|
| - */
|
| - Matrix4 operator *(Matrix4 matrixB) {
|
| - Matrix4 matrixC = new Matrix4();
|
| - Float32Array bufA = this.buf;
|
| - Float32Array bufB = matrixB.buf;
|
| - Float32Array bufC = matrixC.buf;
|
| - for (int row = 0; row < 4; row++) {
|
| - for (int col = 0; col < 4; col++) {
|
| - for (int i = 0; i < 4; i++) {
|
| - bufC[rc(row, col)] += bufA[rc(row, i)] * bufB[rc(i, col)];
|
| - }
|
| - }
|
| - }
|
| - return matrixC;
|
| - }
|
| -
|
| - /**
|
| - * Constructs a 4x4 matrix matrix so that the eye is 'looking at' a
|
| - * given center point. (What this means is that the returned matrix can be
|
| - * used transform points from world coordinates to a new coordinate system
|
| - * where the eye is at the origin, and the negative z-axis of the new
|
| - * coordinate system goes from the eye towards the center point.)
|
| - *
|
| - * [eye] position of the eye (i.e. camera origin).
|
| - * [center] point to aim the camera at.
|
| - * [up] vector that identifies the up direction of the camera
|
| - */
|
| - static Matrix4 lookAt(Vector3 eye, Vector3 center, Vector3 up) {
|
| - // Compute the z basis vector. (The z-axis negative direction is
|
| - // from eye to center point.)
|
| - Vector3 zBasis = (eye - center).normalize();
|
| -
|
| - // Compute x basis. (The positive x-axis points right.)
|
| - Vector3 xBasis = up.cross(zBasis).normalize();
|
| -
|
| - // Compute the y basis. (The positive y-axis points approximately the same
|
| - // direction as the supplied [up] direction, and is perpendicular to z and
|
| - // x.)
|
| - Vector3 yBasis = zBasis.cross(xBasis);
|
| -
|
| - // We now have an orthonormal basis.
|
| - Matrix4 b = new Matrix4();
|
| - b.m00 = xBasis.x; b.m01 = xBasis.y; b.m02 = xBasis.z;
|
| - b.m10 = yBasis.x; b.m11 = yBasis.y; b.m12 = yBasis.z;
|
| - b.m20 = zBasis.x; b.m21 = zBasis.y; b.m22 = zBasis.z;
|
| - b.m33 = 1.0;
|
| -
|
| - // Before switching to the new basis, first translate by the negation
|
| - // of the eye point. (This will put the eye at the origin of the
|
| - // new coordinate system.)
|
| - return b * Matrix4.translation(-eye);
|
| - }
|
| -
|
| - /**
|
| - * Makse a 4x4 matrix perspective projection matrix given a field of view and
|
| - * aspect ratio.
|
| - *
|
| - * [fovyDegrees] field of view (in degrees) of the y-axis
|
| - * [aspectRatio] width to height aspect ratio.
|
| - * [zNear] distance to the near clipping plane.
|
| - * [zFar] distance to the far clipping plane.
|
| - */
|
| - static Matrix4 perspective(double fovyDegrees, double aspectRatio,
|
| - double zNear, double zFar) {
|
| - double yTop = Math.tan(fovyDegrees * Math.PI / 180.0 / 2.0) * zNear;
|
| - double xRight = aspectRatio * yTop;
|
| - double zDepth = zFar - zNear;
|
| -
|
| - Matrix4 m = new Matrix4();
|
| - m.m00 = zNear / xRight;
|
| - m.m11 = zNear / yTop;
|
| - m.m22 = -(zFar + zNear) / zDepth;
|
| - m.m23 = -(2 * zNear * zFar) / zDepth;
|
| - m.m32 = -1;
|
| - return m;
|
| - }
|
| -
|
| - /**
|
| - * Returns the inverse of this matrix.
|
| - */
|
| - Matrix4 inverse() {
|
| - double a0 = m00 * m11 - m10 * m01;
|
| - double a1 = m00 * m21 - m20 * m01;
|
| - double a2 = m00 * m31 - m30 * m01;
|
| - double a3 = m10 * m21 - m20 * m11;
|
| - double a4 = m10 * m31 - m30 * m11;
|
| - double a5 = m20 * m31 - m30 * m21;
|
| -
|
| - double b0 = m02 * m13 - m12 * m03;
|
| - double b1 = m02 * m23 - m22 * m03;
|
| - double b2 = m02 * m33 - m32 * m03;
|
| - double b3 = m12 * m23 - m22 * m13;
|
| - double b4 = m12 * m33 - m32 * m13;
|
| - double b5 = m22 * m33 - m32 * m23;
|
| -
|
| - // compute determinant
|
| - double det = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0;
|
| - if (det == 0) {
|
| - throw new SingularMatrixException();
|
| - }
|
| -
|
| - Matrix4 m = new Matrix4();
|
| - m.m00 = (m11 * b5 - m21 * b4 + m31 * b3) / det;
|
| - m.m10 = (-m10 * b5 + m20 * b4 - m30 * b3) / det;
|
| - m.m20 = (m13 * a5 - m23 * a4 + m33 * a3) / det;
|
| - m.m30 = (-m12 * a5 + m22 * a4 - m32 * a3) / det;
|
| -
|
| - m.m01 = (-m01 * b5 + m21 * b2 - m31 * b1) / det;
|
| - m.m11 = (m00 * b5 - m20 * b2 + m30 * b1) / det;
|
| - m.m21 = (-m03 * a5 + m23 * a2 - m33 * a1) / det;
|
| - m.m31 = (m02 * a5 - m22 * a2 + m32 * a1) / det;
|
| -
|
| - m.m02 = (m01 * b4 - m11 * b2 + m31 * b0) / det;
|
| - m.m12 = (-m00 * b4 + m10 * b2 - m30 * b0) / det;
|
| - m.m22 = (m03 * a4 - m13 * a2 + m33 * a0) / det;
|
| - m.m32 = (-m02 * a4 + m12 * a2 - m32 * a0) / det;
|
| -
|
| - m.m03 = (-m01 * b3 + m11 * b1 - m21 * b0) / det;
|
| - m.m13 = (m00 * b3 - m10 * b1 + m20 * b0) / det;
|
| - m.m23 = (-m03 * a3 + m13 * a1 - m23 * a0) / det;
|
| - m.m33 = (m02 * a3 - m12 * a1 + m22 * a0) / det;
|
| -
|
| - return m;
|
| - }
|
| -}
|
|
|