| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE file. | |
| 4 | |
| 5 // based on code from | |
| 6 // http://code.google.com/p/closure-library/source/browse/trunk/closure/goog/vec
/mat4.js | |
| 7 | |
| 8 /** | |
| 9 * Thrown if you attempt to normalize a zero length vector. | |
| 10 */ | |
| 11 class ZeroLengthVectorException implements Exception { | |
| 12 ZeroLengthVectorException() {} | |
| 13 } | |
| 14 | |
| 15 /** | |
| 16 * Thrown if you attempt to invert a singular matrix. (A | |
| 17 * singular matrix has no inverse.) | |
| 18 */ | |
| 19 class SingularMatrixException implements Exception { | |
| 20 SingularMatrixException() {} | |
| 21 } | |
| 22 | |
| 23 /** | |
| 24 * 3 dimensional vector. | |
| 25 */ | |
| 26 class Vector3 { | |
| 27 final double x; | |
| 28 final double y; | |
| 29 final double z; | |
| 30 | |
| 31 // TODO - should be const, but cannot because of | |
| 32 // bug http://code.google.com/p/dart/issues/detail?id=777 | |
| 33 | |
| 34 // TODO - switch to initializing formal syntax once we have type | |
| 35 // checking for this.x style constructors. See bug | |
| 36 // http://code.google.com/p/dart/issues/detail?id=464 | |
| 37 Vector3(double x, double y, double z) : x = x, y = y, z = z; | |
| 38 | |
| 39 double magnitude() => Math.sqrt(x*x + y*y + z*z); | |
| 40 | |
| 41 Vector3 normalize() { | |
| 42 double len = magnitude(); | |
| 43 if (len == 0.0) { | |
| 44 throw new ZeroLengthVectorException(); | |
| 45 } | |
| 46 return new Vector3(x/len, y/len, z/len); | |
| 47 } | |
| 48 | |
| 49 Vector3 operator negate() { | |
| 50 return new Vector3(-x, -y, -z); | |
| 51 } | |
| 52 | |
| 53 Vector3 operator -(Vector3 other) { | |
| 54 return new Vector3(x - other.x, y - other.y, z - other.z); | |
| 55 } | |
| 56 | |
| 57 Vector3 cross(Vector3 other) { | |
| 58 double xResult = y * other.z - z * other.y; | |
| 59 double yResult = z * other.x - x * other.z; | |
| 60 double zResult = x * other.y - y * other.x; | |
| 61 return new Vector3(xResult, yResult, zResult); | |
| 62 } | |
| 63 | |
| 64 String toString() { | |
| 65 return "Vector3($x,$y,$z)"; | |
| 66 } | |
| 67 } | |
| 68 | |
| 69 /** | |
| 70 * A 4x4 transformation matrix (for use with webgl) | |
| 71 * | |
| 72 * We label the elements of the matrix as follows: | |
| 73 * | |
| 74 * m00 m01 m02 m03 | |
| 75 * m10 m11 m12 m13 | |
| 76 * m20 m21 m22 m23 | |
| 77 * m30 m31 m32 m33 | |
| 78 * | |
| 79 * These are stored in a 16 element [Float32Array], in column major | |
| 80 * order, so they are ordered like this: | |
| 81 * | |
| 82 * [ m00,m10,m20,m30, m11,m21,m31,m41, m02,m12,m22,m32, m03,m13,m23,m33 ] | |
| 83 * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | |
| 84 * | |
| 85 * We use column major order because that is what WebGL APIs expect. | |
| 86 * | |
| 87 */ | |
| 88 class Matrix4 { | |
| 89 final Float32Array buf; | |
| 90 | |
| 91 /** | |
| 92 * Constructs a new Matrix4 with all entries initialized | |
| 93 * to zero. | |
| 94 */ | |
| 95 Matrix4() : buf = new Float32Array(16); | |
| 96 | |
| 97 /** | |
| 98 * returns the index into [buf] for a given | |
| 99 * row and column. | |
| 100 */ | |
| 101 static int rc(int row, int col) => row + col * 4; | |
| 102 | |
| 103 double get m00() => buf[rc(0, 0)]; | |
| 104 double get m01() => buf[rc(0, 1)]; | |
| 105 double get m02() => buf[rc(0, 2)]; | |
| 106 double get m03() => buf[rc(0, 3)]; | |
| 107 double get m10() => buf[rc(1, 0)]; | |
| 108 double get m11() => buf[rc(1, 1)]; | |
| 109 double get m12() => buf[rc(1, 2)]; | |
| 110 double get m13() => buf[rc(1, 3)]; | |
| 111 double get m20() => buf[rc(2, 0)]; | |
| 112 double get m21() => buf[rc(2, 1)]; | |
| 113 double get m22() => buf[rc(2, 2)]; | |
| 114 double get m23() => buf[rc(2, 3)]; | |
| 115 double get m30() => buf[rc(3, 0)]; | |
| 116 double get m31() => buf[rc(3, 1)]; | |
| 117 double get m32() => buf[rc(3, 2)]; | |
| 118 double get m33() => buf[rc(3, 3)]; | |
| 119 | |
| 120 void set m00(double m) { buf[rc(0, 0)] = m; } | |
| 121 void set m01(double m) { buf[rc(0, 1)] = m; } | |
| 122 void set m02(double m) { buf[rc(0, 2)] = m; } | |
| 123 void set m03(double m) { buf[rc(0, 3)] = m; } | |
| 124 void set m10(double m) { buf[rc(1, 0)] = m; } | |
| 125 void set m11(double m) { buf[rc(1, 1)] = m; } | |
| 126 void set m12(double m) { buf[rc(1, 2)] = m; } | |
| 127 void set m13(double m) { buf[rc(1, 3)] = m; } | |
| 128 void set m20(double m) { buf[rc(2, 0)] = m; } | |
| 129 void set m21(double m) { buf[rc(2, 1)] = m; } | |
| 130 void set m22(double m) { buf[rc(2, 2)] = m; } | |
| 131 void set m23(double m) { buf[rc(2, 3)] = m; } | |
| 132 void set m30(double m) { buf[rc(3, 0)] = m; } | |
| 133 void set m31(double m) { buf[rc(3, 1)] = m; } | |
| 134 void set m32(double m) { buf[rc(3, 2)] = m; } | |
| 135 void set m33(double m) { buf[rc(3, 3)] = m; } | |
| 136 | |
| 137 String toString() { | |
| 138 List<String> rows = new List(); | |
| 139 for (int row = 0; row < 4; row++) { | |
| 140 List<String> items = new List(); | |
| 141 for (int col = 0; col < 4; col++) { | |
| 142 double v = buf[rc(row, col)]; | |
| 143 if (v.abs() < 1e-16) { | |
| 144 v = 0.0; | |
| 145 } | |
| 146 String display; | |
| 147 try { | |
| 148 display = v.toStringAsPrecision(4); | |
| 149 } catch (Object e) { | |
| 150 // TODO - remove this once toStringAsPrecision is implemented in vm | |
| 151 display = v.toString(); | |
| 152 } | |
| 153 items.add(display); | |
| 154 } | |
| 155 rows.add("| ${Strings.join(items, ", ")} |"); | |
| 156 } | |
| 157 return "Matrix4:\n${Strings.join(rows, '\n')}"; | |
| 158 } | |
| 159 | |
| 160 /** | |
| 161 * Cosntructs a new Matrix4 that represents the identity transformation | |
| 162 * (all the diagonal entries are 1, and everything else is zero). | |
| 163 */ | |
| 164 static Matrix4 identity() { | |
| 165 Matrix4 m = new Matrix4(); | |
| 166 m.m00 = 1.0; | |
| 167 m.m11 = 1.0; | |
| 168 m.m22 = 1.0; | |
| 169 m.m33 = 1.0; | |
| 170 return m; | |
| 171 } | |
| 172 | |
| 173 /** | |
| 174 * Constructs a new Matrix4 that represents a rotation around an axis. | |
| 175 * | |
| 176 * [degrees] number of degrees to rotate | |
| 177 * [axis] direction of axis of rotation (must not be zero length) | |
| 178 */ | |
| 179 static Matrix4 rotation(double degrees, Vector3 axis) { | |
| 180 double radians = degrees / 180.0 * Math.PI; | |
| 181 axis = axis.normalize(); | |
| 182 | |
| 183 double x = axis.x; | |
| 184 double y = axis.y; | |
| 185 double z = axis.z; | |
| 186 double s = Math.sin(radians); | |
| 187 double c = Math.cos(radians); | |
| 188 double t = 1 - c; | |
| 189 | |
| 190 Matrix4 m = new Matrix4(); | |
| 191 m.m00 = x * x * t + c; | |
| 192 m.m10 = x * y * t + z * s; | |
| 193 m.m20 = x * z * t - y * s; | |
| 194 | |
| 195 m.m01 = x * y * t - z * s; | |
| 196 m.m11 = y * y * t + c; | |
| 197 m.m21 = y * z * t + x * s; | |
| 198 | |
| 199 m.m02 = x * z * t + y * s; | |
| 200 m.m12 = y * z * t - x * s; | |
| 201 m.m22 = z * z * t + c; | |
| 202 | |
| 203 m.m33 = 1.0; | |
| 204 return m; | |
| 205 } | |
| 206 | |
| 207 /** | |
| 208 * Constructs a new Matrix4 that represents a translation. | |
| 209 * | |
| 210 * [v] vector representing which direction to move and how much to move | |
| 211 */ | |
| 212 static Matrix4 translation(Vector3 v) { | |
| 213 Matrix4 m = identity(); | |
| 214 m.m03 = v.x; | |
| 215 m.m13 = v.y; | |
| 216 m.m23 = v.z; | |
| 217 return m; | |
| 218 } | |
| 219 | |
| 220 /** | |
| 221 * returns the transpose of this matrix | |
| 222 */ | |
| 223 Matrix4 transpose() { | |
| 224 Matrix4 m = new Matrix4(); | |
| 225 for (int row = 0; row < 4; row++) { | |
| 226 for (int col = 0; col < 4; col++) { | |
| 227 m.buf[rc(col, row)] = this.buf[rc(row, col)]; | |
| 228 } | |
| 229 } | |
| 230 return m; | |
| 231 } | |
| 232 | |
| 233 /** | |
| 234 * Returns result of multiplication of this matrix | |
| 235 * by another matrix. | |
| 236 * | |
| 237 * In this equation: | |
| 238 * | |
| 239 * C = A * B | |
| 240 * | |
| 241 * C is the result of multiplying A * B. | |
| 242 * A is this matrix | |
| 243 * B is another matrix | |
| 244 * | |
| 245 */ | |
| 246 Matrix4 operator *(Matrix4 matrixB) { | |
| 247 Matrix4 matrixC = new Matrix4(); | |
| 248 Float32Array bufA = this.buf; | |
| 249 Float32Array bufB = matrixB.buf; | |
| 250 Float32Array bufC = matrixC.buf; | |
| 251 for (int row = 0; row < 4; row++) { | |
| 252 for (int col = 0; col < 4; col++) { | |
| 253 for (int i = 0; i < 4; i++) { | |
| 254 bufC[rc(row, col)] += bufA[rc(row, i)] * bufB[rc(i, col)]; | |
| 255 } | |
| 256 } | |
| 257 } | |
| 258 return matrixC; | |
| 259 } | |
| 260 | |
| 261 /** | |
| 262 * Constructs a 4x4 matrix matrix so that the eye is 'looking at' a | |
| 263 * given center point. (What this means is that the returned matrix can be | |
| 264 * used transform points from world coordinates to a new coordinate system | |
| 265 * where the eye is at the origin, and the negative z-axis of the new | |
| 266 * coordinate system goes from the eye towards the center point.) | |
| 267 * | |
| 268 * [eye] position of the eye (i.e. camera origin). | |
| 269 * [center] point to aim the camera at. | |
| 270 * [up] vector that identifies the up direction of the camera | |
| 271 */ | |
| 272 static Matrix4 lookAt(Vector3 eye, Vector3 center, Vector3 up) { | |
| 273 // Compute the z basis vector. (The z-axis negative direction is | |
| 274 // from eye to center point.) | |
| 275 Vector3 zBasis = (eye - center).normalize(); | |
| 276 | |
| 277 // Compute x basis. (The positive x-axis points right.) | |
| 278 Vector3 xBasis = up.cross(zBasis).normalize(); | |
| 279 | |
| 280 // Compute the y basis. (The positive y-axis points approximately the same | |
| 281 // direction as the supplied [up] direction, and is perpendicular to z and | |
| 282 // x.) | |
| 283 Vector3 yBasis = zBasis.cross(xBasis); | |
| 284 | |
| 285 // We now have an orthonormal basis. | |
| 286 Matrix4 b = new Matrix4(); | |
| 287 b.m00 = xBasis.x; b.m01 = xBasis.y; b.m02 = xBasis.z; | |
| 288 b.m10 = yBasis.x; b.m11 = yBasis.y; b.m12 = yBasis.z; | |
| 289 b.m20 = zBasis.x; b.m21 = zBasis.y; b.m22 = zBasis.z; | |
| 290 b.m33 = 1.0; | |
| 291 | |
| 292 // Before switching to the new basis, first translate by the negation | |
| 293 // of the eye point. (This will put the eye at the origin of the | |
| 294 // new coordinate system.) | |
| 295 return b * Matrix4.translation(-eye); | |
| 296 } | |
| 297 | |
| 298 /** | |
| 299 * Makse a 4x4 matrix perspective projection matrix given a field of view and | |
| 300 * aspect ratio. | |
| 301 * | |
| 302 * [fovyDegrees] field of view (in degrees) of the y-axis | |
| 303 * [aspectRatio] width to height aspect ratio. | |
| 304 * [zNear] distance to the near clipping plane. | |
| 305 * [zFar] distance to the far clipping plane. | |
| 306 */ | |
| 307 static Matrix4 perspective(double fovyDegrees, double aspectRatio, | |
| 308 double zNear, double zFar) { | |
| 309 double yTop = Math.tan(fovyDegrees * Math.PI / 180.0 / 2.0) * zNear; | |
| 310 double xRight = aspectRatio * yTop; | |
| 311 double zDepth = zFar - zNear; | |
| 312 | |
| 313 Matrix4 m = new Matrix4(); | |
| 314 m.m00 = zNear / xRight; | |
| 315 m.m11 = zNear / yTop; | |
| 316 m.m22 = -(zFar + zNear) / zDepth; | |
| 317 m.m23 = -(2 * zNear * zFar) / zDepth; | |
| 318 m.m32 = -1; | |
| 319 return m; | |
| 320 } | |
| 321 | |
| 322 /** | |
| 323 * Returns the inverse of this matrix. | |
| 324 */ | |
| 325 Matrix4 inverse() { | |
| 326 double a0 = m00 * m11 - m10 * m01; | |
| 327 double a1 = m00 * m21 - m20 * m01; | |
| 328 double a2 = m00 * m31 - m30 * m01; | |
| 329 double a3 = m10 * m21 - m20 * m11; | |
| 330 double a4 = m10 * m31 - m30 * m11; | |
| 331 double a5 = m20 * m31 - m30 * m21; | |
| 332 | |
| 333 double b0 = m02 * m13 - m12 * m03; | |
| 334 double b1 = m02 * m23 - m22 * m03; | |
| 335 double b2 = m02 * m33 - m32 * m03; | |
| 336 double b3 = m12 * m23 - m22 * m13; | |
| 337 double b4 = m12 * m33 - m32 * m13; | |
| 338 double b5 = m22 * m33 - m32 * m23; | |
| 339 | |
| 340 // compute determinant | |
| 341 double det = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0; | |
| 342 if (det == 0) { | |
| 343 throw new SingularMatrixException(); | |
| 344 } | |
| 345 | |
| 346 Matrix4 m = new Matrix4(); | |
| 347 m.m00 = (m11 * b5 - m21 * b4 + m31 * b3) / det; | |
| 348 m.m10 = (-m10 * b5 + m20 * b4 - m30 * b3) / det; | |
| 349 m.m20 = (m13 * a5 - m23 * a4 + m33 * a3) / det; | |
| 350 m.m30 = (-m12 * a5 + m22 * a4 - m32 * a3) / det; | |
| 351 | |
| 352 m.m01 = (-m01 * b5 + m21 * b2 - m31 * b1) / det; | |
| 353 m.m11 = (m00 * b5 - m20 * b2 + m30 * b1) / det; | |
| 354 m.m21 = (-m03 * a5 + m23 * a2 - m33 * a1) / det; | |
| 355 m.m31 = (m02 * a5 - m22 * a2 + m32 * a1) / det; | |
| 356 | |
| 357 m.m02 = (m01 * b4 - m11 * b2 + m31 * b0) / det; | |
| 358 m.m12 = (-m00 * b4 + m10 * b2 - m30 * b0) / det; | |
| 359 m.m22 = (m03 * a4 - m13 * a2 + m33 * a0) / det; | |
| 360 m.m32 = (-m02 * a4 + m12 * a2 - m32 * a0) / det; | |
| 361 | |
| 362 m.m03 = (-m01 * b3 + m11 * b1 - m21 * b0) / det; | |
| 363 m.m13 = (m00 * b3 - m10 * b1 + m20 * b0) / det; | |
| 364 m.m23 = (-m03 * a3 + m13 * a1 - m23 * a0) / det; | |
| 365 m.m33 = (m02 * a3 - m12 * a1 + m22 * a0) / det; | |
| 366 | |
| 367 return m; | |
| 368 } | |
| 369 } | |
| OLD | NEW |