Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(457)

Side by Side Diff: base/memory/scoped_ptr.h

Issue 8931008: Revert of "Redo r113722 - Add Pass(), which implements move semantics, to scoped_ptr, scoped_ar..." (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: rebased Created 9 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « base/callback_internal.h ('k') | base/memory/scoped_ptr_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 // Scopers help you manage ownership of a pointer, helping you easily manage the 5 // Scopers help you manage ownership of a pointer, helping you easily manage the
6 // a pointer within a scope, and automatically destroying the pointer at the 6 // a pointer within a scope, and automatically destroying the pointer at the
7 // end of a scope. There are two main classes you will use, which correspond 7 // end of a scope. There are two main classes you will use, which correspond
8 // to the operators new/delete and new[]/delete[]. 8 // to the operators new/delete and new[]/delete[].
9 // 9 //
10 // Example usage (scoped_ptr): 10 // Example usage (scoped_ptr):
(...skipping 14 matching lines...) Expand all
25 // foo.reset(); // Foo("wee4") destroyed, foo no longer 25 // foo.reset(); // Foo("wee4") destroyed, foo no longer
26 // // manages a pointer. 26 // // manages a pointer.
27 // } // foo wasn't managing a pointer, so nothing was destroyed. 27 // } // foo wasn't managing a pointer, so nothing was destroyed.
28 // 28 //
29 // Example usage (scoped_array): 29 // Example usage (scoped_array):
30 // { 30 // {
31 // scoped_array<Foo> foo(new Foo[100]); 31 // scoped_array<Foo> foo(new Foo[100]);
32 // foo.get()->Method(); // Foo::Method on the 0th element. 32 // foo.get()->Method(); // Foo::Method on the 0th element.
33 // foo[10].Method(); // Foo::Method on the 10th element. 33 // foo[10].Method(); // Foo::Method on the 10th element.
34 // } 34 // }
35 //
36 // These scopers also implement part of the functionality of C++11 unique_ptr
37 // in that they are "movable but not copyable." You can use the scopers in
38 // the parameter and return types of functions to signify ownership transfer
39 // in to and out of a function. When calling a function that has a scoper
40 // as the argument type, it must be called with the result of an analogous
41 // scoper's Pass() function or another function that generates a temporary;
42 // passing by copy will NOT work. Here is an example using scoped_ptr:
43 //
44 // void TakesOwnership(scoped_ptr<Foo> arg) {
45 // // Do something with arg
46 // }
47 // scoped_ptr<Foo> CreateFoo() {
48 // // No need for calling Pass() because we are constructing a temporary
49 // // for the return value.
50 // return scoped_ptr<Foo>(new Foo("new"));
51 // }
52 // scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
53 // return arg.Pass();
54 // }
55 //
56 // {
57 // scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay)"
58 // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
59 // scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
60 // scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
61 // PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL.
62 // }
63 //
64 // Notice that if you do not call Pass() when returning from PassThru(), or
65 // when invoking TakesOwnership(), the code will not compile because scopers
66 // are not copyable; they only implement move semantics which require calling
67 // the Pass() function to signify a destructive transfer of state. CreateFoo()
68 // is different though because we are constructing a temporary on the return
69 // line and thus can avoid needing to call Pass().
70 35
71 #ifndef BASE_MEMORY_SCOPED_PTR_H_ 36 #ifndef BASE_MEMORY_SCOPED_PTR_H_
72 #define BASE_MEMORY_SCOPED_PTR_H_ 37 #define BASE_MEMORY_SCOPED_PTR_H_
73 #pragma once 38 #pragma once
74 39
75 // This is an implementation designed to match the anticipated future TR2 40 // This is an implementation designed to match the anticipated future TR2
76 // implementation of the scoped_ptr class, and its closely-related brethren, 41 // implementation of the scoped_ptr class, and its closely-related brethren,
77 // scoped_array, scoped_ptr_malloc. 42 // scoped_array, scoped_ptr_malloc.
78 43
79 #include <assert.h> 44 #include <assert.h>
80 #include <stddef.h> 45 #include <stddef.h>
81 #include <stdlib.h> 46 #include <stdlib.h>
82 47
83 #include "base/compiler_specific.h" 48 #include "base/compiler_specific.h"
84 49
85 // Macro with the boilerplate C++03 move emulation for a class.
86 //
87 // In C++11, this is done via rvalue references. Here, we use C++03 move
88 // emulation to fake an rvalue reference. For a more thorough explanation
89 // of the technique, see:
90 //
91 // http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
92 //
93 #define CPP_03_MOVE_EMULATION(scoper, field) \
94 private: \
95 struct RValue { \
96 explicit RValue(scoper& obj) : obj_(obj) {} \
97 scoper& obj_; \
98 }; \
99 public: \
100 operator RValue() { return RValue(*this); } \
101 scoper(RValue proxy) : field(proxy.obj_.release()) { } \
102 scoper& operator=(RValue proxy) { \
103 swap(proxy.obj_); \
104 return *this; \
105 } \
106 scoper Pass() { return scoper(RValue(*this)); }
107
108 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> 50 // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
109 // automatically deletes the pointer it holds (if any). 51 // automatically deletes the pointer it holds (if any).
110 // That is, scoped_ptr<T> owns the T object that it points to. 52 // That is, scoped_ptr<T> owns the T object that it points to.
111 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. 53 // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
112 // Also like T*, scoped_ptr<T> is thread-compatible, and once you 54 // Also like T*, scoped_ptr<T> is thread-compatible, and once you
113 // dereference it, you get the thread safety guarantees of T. 55 // dereference it, you get the threadsafety guarantees of T.
114 // 56 //
115 // The size of a scoped_ptr is small: 57 // The size of a scoped_ptr is small:
116 // sizeof(scoped_ptr<C>) == sizeof(C*) 58 // sizeof(scoped_ptr<C>) == sizeof(C*)
117 template <class C> 59 template <class C>
118 class scoped_ptr { 60 class scoped_ptr {
119 public: 61 public:
120 62
121 // The element type 63 // The element type
122 typedef C element_type; 64 typedef C element_type;
123 65
(...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after
173 // The return value is the current pointer held by this object. 115 // The return value is the current pointer held by this object.
174 // If this object holds a NULL pointer, the return value is NULL. 116 // If this object holds a NULL pointer, the return value is NULL.
175 // After this operation, this object will hold a NULL pointer, 117 // After this operation, this object will hold a NULL pointer,
176 // and will not own the object any more. 118 // and will not own the object any more.
177 C* release() WARN_UNUSED_RESULT { 119 C* release() WARN_UNUSED_RESULT {
178 C* retVal = ptr_; 120 C* retVal = ptr_;
179 ptr_ = NULL; 121 ptr_ = NULL;
180 return retVal; 122 return retVal;
181 } 123 }
182 124
183 CPP_03_MOVE_EMULATION(scoped_ptr, ptr_);
184
185 private: 125 private:
186 C* ptr_; 126 C* ptr_;
187 127
188 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't 128 // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
189 // make sense, and if C2 == C, it still doesn't make sense because you should 129 // make sense, and if C2 == C, it still doesn't make sense because you should
190 // never have the same object owned by two different scoped_ptrs. 130 // never have the same object owned by two different scoped_ptrs.
191 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; 131 template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
192 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; 132 template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
193 133
194 // Disallow evil constructors. Note that MUST NOT take a const& because we 134 // Disallow evil constructors
195 // are implementing move semantics. See the CPP_03_MOVE_EMULATION macro. 135 scoped_ptr(const scoped_ptr&);
196 scoped_ptr(scoped_ptr&); 136 void operator=(const scoped_ptr&);
197 void operator=(scoped_ptr&);
198 }; 137 };
199 138
200 // Free functions 139 // Free functions
201 template <class C> 140 template <class C>
202 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { 141 void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
203 p1.swap(p2); 142 p1.swap(p2);
204 } 143 }
205 144
206 template <class C> 145 template <class C>
207 bool operator==(C* p1, const scoped_ptr<C>& p2) { 146 bool operator==(C* p1, const scoped_ptr<C>& p2) {
208 return p1 == p2.get(); 147 return p1 == p2.get();
209 } 148 }
210 149
211 template <class C> 150 template <class C>
212 bool operator!=(C* p1, const scoped_ptr<C>& p2) { 151 bool operator!=(C* p1, const scoped_ptr<C>& p2) {
213 return p1 != p2.get(); 152 return p1 != p2.get();
214 } 153 }
215 154
216 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate 155 // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
217 // with new [] and the destructor deletes objects with delete []. 156 // with new [] and the destructor deletes objects with delete [].
218 // 157 //
219 // As with scoped_ptr<C>, a scoped_array<C> either points to an object 158 // As with scoped_ptr<C>, a scoped_array<C> either points to an object
220 // or is NULL. A scoped_array<C> owns the object that it points to. 159 // or is NULL. A scoped_array<C> owns the object that it points to.
221 // scoped_array<T> is thread-compatible, and once you index into it, 160 // scoped_array<T> is thread-compatible, and once you index into it,
222 // the returned objects have only the thread safety guarantees of T. 161 // the returned objects have only the threadsafety guarantees of T.
223 // 162 //
224 // Size: sizeof(scoped_array<C>) == sizeof(C*) 163 // Size: sizeof(scoped_array<C>) == sizeof(C*)
225 template <class C> 164 template <class C>
226 class scoped_array { 165 class scoped_array {
227 public: 166 public:
228 167
229 // The element type 168 // The element type
230 typedef C element_type; 169 typedef C element_type;
231 170
232 // Constructor. Defaults to initializing with NULL. 171 // Constructor. Defaults to intializing with NULL.
233 // There is no way to create an uninitialized scoped_array. 172 // There is no way to create an uninitialized scoped_array.
234 // The input parameter must be allocated with new []. 173 // The input parameter must be allocated with new [].
235 explicit scoped_array(C* p = NULL) : array_(p) { } 174 explicit scoped_array(C* p = NULL) : array_(p) { }
236 175
237 // Destructor. If there is a C object, delete it. 176 // Destructor. If there is a C object, delete it.
238 // We don't need to test ptr_ == NULL because C++ does that for us. 177 // We don't need to test ptr_ == NULL because C++ does that for us.
239 ~scoped_array() { 178 ~scoped_array() {
240 enum { type_must_be_complete = sizeof(C) }; 179 enum { type_must_be_complete = sizeof(C) };
241 delete[] array_; 180 delete[] array_;
242 } 181 }
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
283 // The return value is the current pointer held by this object. 222 // The return value is the current pointer held by this object.
284 // If this object holds a NULL pointer, the return value is NULL. 223 // If this object holds a NULL pointer, the return value is NULL.
285 // After this operation, this object will hold a NULL pointer, 224 // After this operation, this object will hold a NULL pointer,
286 // and will not own the object any more. 225 // and will not own the object any more.
287 C* release() WARN_UNUSED_RESULT { 226 C* release() WARN_UNUSED_RESULT {
288 C* retVal = array_; 227 C* retVal = array_;
289 array_ = NULL; 228 array_ = NULL;
290 return retVal; 229 return retVal;
291 } 230 }
292 231
293 CPP_03_MOVE_EMULATION(scoped_array, array_);
294
295 private: 232 private:
296 C* array_; 233 C* array_;
297 234
298 // Forbid comparison of different scoped_array types. 235 // Forbid comparison of different scoped_array types.
299 template <class C2> bool operator==(scoped_array<C2> const& p2) const; 236 template <class C2> bool operator==(scoped_array<C2> const& p2) const;
300 template <class C2> bool operator!=(scoped_array<C2> const& p2) const; 237 template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
301 238
302 // Disallow evil constructors. Note that MUST NOT take a const& because we 239 // Disallow evil constructors
303 // are implementing move semantics. See the CPP_03_MOVE_EMULATION macro. 240 scoped_array(const scoped_array&);
304 scoped_array(scoped_array&); 241 void operator=(const scoped_array&);
305 void operator=(scoped_array&);
306 }; 242 };
307 243
308 // Free functions 244 // Free functions
309 template <class C> 245 template <class C>
310 void swap(scoped_array<C>& p1, scoped_array<C>& p2) { 246 void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
311 p1.swap(p2); 247 p1.swap(p2);
312 } 248 }
313 249
314 template <class C> 250 template <class C>
315 bool operator==(C* p1, const scoped_array<C>& p2) { 251 bool operator==(C* p1, const scoped_array<C>& p2) {
(...skipping 88 matching lines...) Expand 10 before | Expand all | Expand 10 after
404 // The return value is the current pointer held by this object. 340 // The return value is the current pointer held by this object.
405 // If this object holds a NULL pointer, the return value is NULL. 341 // If this object holds a NULL pointer, the return value is NULL.
406 // After this operation, this object will hold a NULL pointer, 342 // After this operation, this object will hold a NULL pointer,
407 // and will not own the object any more. 343 // and will not own the object any more.
408 C* release() WARN_UNUSED_RESULT { 344 C* release() WARN_UNUSED_RESULT {
409 C* tmp = ptr_; 345 C* tmp = ptr_;
410 ptr_ = NULL; 346 ptr_ = NULL;
411 return tmp; 347 return tmp;
412 } 348 }
413 349
414 CPP_03_MOVE_EMULATION(scoped_ptr_malloc, ptr_);
415
416 private: 350 private:
417 C* ptr_; 351 C* ptr_;
418 352
419 // no reason to use these: each scoped_ptr_malloc should have its own object 353 // no reason to use these: each scoped_ptr_malloc should have its own object
420 template <class C2, class GP> 354 template <class C2, class GP>
421 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const; 355 bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
422 template <class C2, class GP> 356 template <class C2, class GP>
423 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const; 357 bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
424 358
425 // Disallow evil constructors. Note that MUST NOT take a const& because we 359 // Disallow evil constructors
426 // are implementing move semantics. See the CPP_03_MOVE_EMULATION macro. 360 scoped_ptr_malloc(const scoped_ptr_malloc&);
427 scoped_ptr_malloc(scoped_ptr_malloc&); 361 void operator=(const scoped_ptr_malloc&);
428 void operator=(scoped_ptr_malloc&);
429 }; 362 };
430 363
431 #undef CPP_03_MOVE_EMULATION
432
433 template<class C, class FP> inline 364 template<class C, class FP> inline
434 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) { 365 void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
435 a.swap(b); 366 a.swap(b);
436 } 367 }
437 368
438 template<class C, class FP> inline 369 template<class C, class FP> inline
439 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) { 370 bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
440 return p == b.get(); 371 return p == b.get();
441 } 372 }
442 373
443 template<class C, class FP> inline 374 template<class C, class FP> inline
444 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) { 375 bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
445 return p != b.get(); 376 return p != b.get();
446 } 377 }
447 378
448 #endif // BASE_MEMORY_SCOPED_PTR_H_ 379 #endif // BASE_MEMORY_SCOPED_PTR_H_
OLDNEW
« no previous file with comments | « base/callback_internal.h ('k') | base/memory/scoped_ptr_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698