Index: utils/matrix/matrix4.dart |
diff --git a/utils/matrix/matrix4.dart b/utils/matrix/matrix4.dart |
new file mode 100644 |
index 0000000000000000000000000000000000000000..4d829d4d455b924521a2acafd44eb412b5892e26 |
--- /dev/null |
+++ b/utils/matrix/matrix4.dart |
@@ -0,0 +1,369 @@ |
+// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+// based on code from |
+// http://code.google.com/p/closure-library/source/browse/trunk/closure/goog/vec/mat4.js |
+ |
+/** |
+ * Thrown if you attempt to normalize a zero length vector. |
+ */ |
+class ZeroLengthVectorException implements Exception { |
+ ZeroLengthVectorException() {} |
+} |
+ |
+/** |
+ * Thrown if you attempt to invert a singular matrix. (A |
+ * singular matrix has no inverse.) |
+ */ |
+class SingularMatrixException implements Exception { |
+ SingularMatrixException() {} |
+} |
+ |
+/** |
+ * 3 dimensional vector. |
+ */ |
+class Vector3 { |
+ final double x; |
+ final double y; |
+ final double z; |
+ |
+ // TODO - should be const, but cannot because of |
+ // bug http://code.google.com/p/dart/issues/detail?id=777 |
+ |
+ // TODO - switch to initializing formal syntax once we have type |
+ // checking for this.x style constructors. See bug |
+ // http://code.google.com/p/dart/issues/detail?id=464 |
+ Vector3(double x, double y, double z) : x = x, y = y, z = z; |
+ |
+ double magnitude() => Math.sqrt(x*x + y*y + z*z); |
+ |
+ Vector3 normalize() { |
+ double len = magnitude(); |
+ if (len == 0.0) { |
+ throw new ZeroLengthVectorException(); |
+ } |
+ return new Vector3(x/len, y/len, z/len); |
+ } |
+ |
+ Vector3 operator negate() { |
+ return new Vector3(-x, -y, -z); |
+ } |
+ |
+ Vector3 operator -(Vector3 other) { |
+ return new Vector3(x - other.x, y - other.y, z - other.z); |
+ } |
+ |
+ Vector3 cross(Vector3 other) { |
+ double xResult = y * other.z - z * other.y; |
+ double yResult = z * other.x - x * other.z; |
+ double zResult = x * other.y - y * other.x; |
+ return new Vector3(xResult, yResult, zResult); |
+ } |
+ |
+ String toString() { |
+ return "Vector3($x,$y,$z)"; |
+ } |
+} |
+ |
+/** |
+ * A 4x4 transformation matrix (for use with webgl) |
+ * |
+ * We label the elements of the matrix as follows: |
+ * |
+ * m00 m01 m02 m03 |
+ * m10 m11 m12 m13 |
+ * m20 m21 m22 m23 |
+ * m30 m31 m32 m33 |
+ * |
+ * These are stored in a 16 element [Float32Array], in column major |
+ * order, so they are ordered like this: |
+ * |
+ * [ m00,m10,m20,m30, m11,m21,m31,m41, m02,m12,m22,m32, m03,m13,m23,m33 ] |
+ * 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
+ * |
+ * We use column major order because that is what WebGL APIs expect. |
+ * |
+ */ |
+class Matrix4 { |
+ final Float32Array buf; |
+ |
+ /** |
+ * Constructs a new Matrix4 with all entries initialized |
+ * to zero. |
+ */ |
+ Matrix4() : buf = new Float32Array(16); |
+ |
+ /** |
+ * returns the index into [buf] for a given |
+ * row and column. |
+ */ |
+ static int rc(int row, int col) => row + col * 4; |
+ |
+ double get m00() => buf[rc(0, 0)]; |
+ double get m01() => buf[rc(0, 1)]; |
+ double get m02() => buf[rc(0, 2)]; |
+ double get m03() => buf[rc(0, 3)]; |
+ double get m10() => buf[rc(1, 0)]; |
+ double get m11() => buf[rc(1, 1)]; |
+ double get m12() => buf[rc(1, 2)]; |
+ double get m13() => buf[rc(1, 3)]; |
+ double get m20() => buf[rc(2, 0)]; |
+ double get m21() => buf[rc(2, 1)]; |
+ double get m22() => buf[rc(2, 2)]; |
+ double get m23() => buf[rc(2, 3)]; |
+ double get m30() => buf[rc(3, 0)]; |
+ double get m31() => buf[rc(3, 1)]; |
+ double get m32() => buf[rc(3, 2)]; |
+ double get m33() => buf[rc(3, 3)]; |
+ |
+ void set m00(double m) { buf[rc(0, 0)] = m; } |
+ void set m01(double m) { buf[rc(0, 1)] = m; } |
+ void set m02(double m) { buf[rc(0, 2)] = m; } |
+ void set m03(double m) { buf[rc(0, 3)] = m; } |
+ void set m10(double m) { buf[rc(1, 0)] = m; } |
+ void set m11(double m) { buf[rc(1, 1)] = m; } |
+ void set m12(double m) { buf[rc(1, 2)] = m; } |
+ void set m13(double m) { buf[rc(1, 3)] = m; } |
+ void set m20(double m) { buf[rc(2, 0)] = m; } |
+ void set m21(double m) { buf[rc(2, 1)] = m; } |
+ void set m22(double m) { buf[rc(2, 2)] = m; } |
+ void set m23(double m) { buf[rc(2, 3)] = m; } |
+ void set m30(double m) { buf[rc(3, 0)] = m; } |
+ void set m31(double m) { buf[rc(3, 1)] = m; } |
+ void set m32(double m) { buf[rc(3, 2)] = m; } |
+ void set m33(double m) { buf[rc(3, 3)] = m; } |
+ |
+ String toString() { |
+ List<String> rows = new List(); |
+ for (int row = 0; row < 4; row++) { |
+ List<String> items = new List(); |
+ for (int col = 0; col < 4; col++) { |
+ double v = buf[rc(row, col)]; |
+ if (v.abs() < 1e-16) { |
+ v = 0.0; |
+ } |
+ String display; |
+ try { |
+ display = v.toStringAsPrecision(4); |
+ } catch (Object e) { |
+ // TODO - remove this once toStringAsPrecision is implemented in vm |
+ display = v.toString(); |
+ } |
+ items.add(display); |
+ } |
+ rows.add("| ${Strings.join(items, ", ")} |"); |
+ } |
+ return "Matrix4:\n${Strings.join(rows, '\n')}"; |
+ } |
+ |
+ /** |
+ * Cosntructs a new Matrix4 that represents the identity transformation |
+ * (all the diagonal entries are 1, and everything else is zero). |
+ */ |
+ static Matrix4 identity() { |
+ Matrix4 m = new Matrix4(); |
+ m.m00 = 1.0; |
+ m.m11 = 1.0; |
+ m.m22 = 1.0; |
+ m.m33 = 1.0; |
+ return m; |
+ } |
+ |
+ /** |
+ * Constructs a new Matrix4 that represents a rotation around an axis. |
+ * |
+ * [degrees] number of degrees to rotate |
+ * [axis] direction of axis of rotation (must not be zero length) |
+ */ |
+ static Matrix4 rotation(double degrees, Vector3 axis) { |
+ double radians = degrees / 180.0 * Math.PI; |
+ axis = axis.normalize(); |
+ |
+ double x = axis.x; |
+ double y = axis.y; |
+ double z = axis.z; |
+ double s = Math.sin(radians); |
+ double c = Math.cos(radians); |
+ double t = 1 - c; |
+ |
+ Matrix4 m = new Matrix4(); |
+ m.m00 = x * x * t + c; |
+ m.m10 = x * y * t + z * s; |
+ m.m20 = x * z * t - y * s; |
+ |
+ m.m01 = x * y * t - z * s; |
+ m.m11 = y * y * t + c; |
+ m.m21 = y * z * t + x * s; |
+ |
+ m.m02 = x * z * t + y * s; |
+ m.m12 = y * z * t - x * s; |
+ m.m22 = z * z * t + c; |
+ |
+ m.m33 = 1.0; |
+ return m; |
+ } |
+ |
+ /** |
+ * Constructs a new Matrix4 that represents a translation. |
+ * |
+ * [v] vector representing which direction to move and how much to move |
+ */ |
+ static Matrix4 translation(Vector3 v) { |
+ Matrix4 m = identity(); |
+ m.m03 = v.x; |
+ m.m13 = v.y; |
+ m.m23 = v.z; |
+ return m; |
+ } |
+ |
+ /** |
+ * returns the transpose of this matrix |
+ */ |
+ Matrix4 transpose() { |
+ Matrix4 m = new Matrix4(); |
+ for (int row = 0; row < 4; row++) { |
+ for (int col = 0; col < 4; col++) { |
+ m.buf[rc(col, row)] = this.buf[rc(row, col)]; |
+ } |
+ } |
+ return m; |
+ } |
+ |
+ /** |
+ * Returns result of multiplication of this matrix |
+ * by another matrix. |
+ * |
+ * In this equation: |
+ * |
+ * C = A * B |
+ * |
+ * C is the result of multiplying A * B. |
+ * A is this matrix |
+ * B is another matrix |
+ * |
+ */ |
+ Matrix4 operator *(Matrix4 matrixB) { |
+ Matrix4 matrixC = new Matrix4(); |
+ Float32Array bufA = this.buf; |
+ Float32Array bufB = matrixB.buf; |
+ Float32Array bufC = matrixC.buf; |
+ for (int row = 0; row < 4; row++) { |
+ for (int col = 0; col < 4; col++) { |
+ for (int i = 0; i < 4; i++) { |
+ bufC[rc(row, col)] += bufA[rc(row, i)] * bufB[rc(i, col)]; |
+ } |
+ } |
+ } |
+ return matrixC; |
+ } |
+ |
+ /** |
+ * Constructs a 4x4 matrix matrix so that the eye is 'looking at' a |
+ * given center point. (What this means is that the returned matrix can be |
+ * used transform points from world coordinates to a new coordinate system |
+ * where the eye is at the origin, and the negative z-axis of the new |
+ * coordinate system goes from the eye towards the center point.) |
+ * |
+ * [eye] position of the eye (i.e. camera origin). |
+ * [center] point to aim the camera at. |
+ * [up] vector that identifies the up direction of the camera |
+ */ |
+ static Matrix4 lookAt(Vector3 eye, Vector3 center, Vector3 up) { |
+ // Compute the z basis vector. (The z-axis negative direction is |
+ // from eye to center point.) |
+ Vector3 zBasis = (eye - center).normalize(); |
+ |
+ // Compute x basis. (The positive x-axis points right.) |
+ Vector3 xBasis = up.cross(zBasis).normalize(); |
+ |
+ // Compute the y basis. (The positive y-axis points approximately the same |
+ // direction as the supplied [up] direction, and is perpendicular to z and |
+ // x.) |
+ Vector3 yBasis = zBasis.cross(xBasis); |
+ |
+ // We now have an orthonormal basis. |
+ Matrix4 b = new Matrix4(); |
+ b.m00 = xBasis.x; b.m01 = xBasis.y; b.m02 = xBasis.z; |
+ b.m10 = yBasis.x; b.m11 = yBasis.y; b.m12 = yBasis.z; |
+ b.m20 = zBasis.x; b.m21 = zBasis.y; b.m22 = zBasis.z; |
+ b.m33 = 1.0; |
+ |
+ // Before switching to the new basis, first translate by the negation |
+ // of the eye point. (This will put the eye at the origin of the |
+ // new coordinate system.) |
+ return b * Matrix4.translation(-eye); |
+ } |
+ |
+ /** |
+ * Makse a 4x4 matrix perspective projection matrix given a field of view and |
+ * aspect ratio. |
+ * |
+ * [fovyDegrees] field of view (in degrees) of the y-axis |
+ * [aspectRatio] width to height aspect ratio. |
+ * [zNear] distance to the near clipping plane. |
+ * [zFar] distance to the far clipping plane. |
+ */ |
+ static Matrix4 perspective(double fovyDegrees, double aspectRatio, |
+ double zNear, double zFar) { |
+ double yTop = Math.tan(fovyDegrees * Math.PI / 180.0 / 2.0) * zNear; |
+ double xRight = aspectRatio * yTop; |
+ double zDepth = zFar - zNear; |
+ |
+ Matrix4 m = new Matrix4(); |
+ m.m00 = zNear / xRight; |
+ m.m11 = zNear / yTop; |
+ m.m22 = -(zFar + zNear) / zDepth; |
+ m.m23 = -(2 * zNear * zFar) / zDepth; |
+ m.m32 = -1; |
+ return m; |
+ } |
+ |
+ /** |
+ * Returns the inverse of this matrix. |
+ */ |
+ Matrix4 inverse() { |
+ double a0 = m00 * m11 - m10 * m01; |
+ double a1 = m00 * m21 - m20 * m01; |
+ double a2 = m00 * m31 - m30 * m01; |
+ double a3 = m10 * m21 - m20 * m11; |
+ double a4 = m10 * m31 - m30 * m11; |
+ double a5 = m20 * m31 - m30 * m21; |
+ |
+ double b0 = m02 * m13 - m12 * m03; |
+ double b1 = m02 * m23 - m22 * m03; |
+ double b2 = m02 * m33 - m32 * m03; |
+ double b3 = m12 * m23 - m22 * m13; |
+ double b4 = m12 * m33 - m32 * m13; |
+ double b5 = m22 * m33 - m32 * m23; |
+ |
+ // compute determinant |
+ double det = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0; |
+ if (det == 0) { |
+ throw new SingularMatrixException(); |
+ } |
+ |
+ Matrix4 m = new Matrix4(); |
+ m.m00 = (m11 * b5 - m21 * b4 + m31 * b3) / det; |
+ m.m10 = (-m10 * b5 + m20 * b4 - m30 * b3) / det; |
+ m.m20 = (m13 * a5 - m23 * a4 + m33 * a3) / det; |
+ m.m30 = (-m12 * a5 + m22 * a4 - m32 * a3) / det; |
+ |
+ m.m01 = (-m01 * b5 + m21 * b2 - m31 * b1) / det; |
+ m.m11 = (m00 * b5 - m20 * b2 + m30 * b1) / det; |
+ m.m21 = (-m03 * a5 + m23 * a2 - m33 * a1) / det; |
+ m.m31 = (m02 * a5 - m22 * a2 + m32 * a1) / det; |
+ |
+ m.m02 = (m01 * b4 - m11 * b2 + m31 * b0) / det; |
+ m.m12 = (-m00 * b4 + m10 * b2 - m30 * b0) / det; |
+ m.m22 = (m03 * a4 - m13 * a2 + m33 * a0) / det; |
+ m.m32 = (-m02 * a4 + m12 * a2 - m32 * a0) / det; |
+ |
+ m.m03 = (-m01 * b3 + m11 * b1 - m21 * b0) / det; |
+ m.m13 = (m00 * b3 - m10 * b1 + m20 * b0) / det; |
+ m.m23 = (-m03 * a3 + m13 * a1 - m23 * a0) / det; |
+ m.m33 = (m02 * a3 - m12 * a1 + m22 * a0) / det; |
+ |
+ return m; |
+ } |
+} |