OLD | NEW |
---|---|
1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2010 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 5505 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
5516 __ str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); | 5516 __ str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); |
5517 } | 5517 } |
5518 | 5518 |
5519 | 5519 |
5520 // We fall into this code if the operands were Smis, but the result was | 5520 // We fall into this code if the operands were Smis, but the result was |
5521 // not (eg. overflow). We branch into this code (to the not_smi label) if | 5521 // not (eg. overflow). We branch into this code (to the not_smi label) if |
5522 // the operands were not both Smi. The operands are in r0 and r1. In order | 5522 // the operands were not both Smi. The operands are in r0 and r1. In order |
5523 // to call the C-implemented binary fp operation routines we need to end up | 5523 // to call the C-implemented binary fp operation routines we need to end up |
5524 // with the double precision floating point operands in r0 and r1 (for the | 5524 // with the double precision floating point operands in r0 and r1 (for the |
5525 // value in r1) and r2 and r3 (for the value in r0). | 5525 // value in r1) and r2 and r3 (for the value in r0). |
5526 static void HandleBinaryOpSlowCases(MacroAssembler* masm, | 5526 void GenericBinaryOpStub::HandleBinaryOpSlowCases(MacroAssembler* masm, |
5527 Label* not_smi, | 5527 Label* not_smi, |
5528 const Builtins::JavaScript& builtin, | 5528 const Builtins::JavaScript& builtin) { |
5529 Token::Value operation, | |
5530 OverwriteMode mode) { | |
5531 Label slow, slow_pop_2_first, do_the_call; | 5529 Label slow, slow_pop_2_first, do_the_call; |
5532 Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1; | 5530 Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1; |
5533 // Smi-smi case (overflow). | |
5534 // Since both are Smis there is no heap number to overwrite, so allocate. | |
5535 // The new heap number is in r5. r6 and r7 are scratch. | |
5536 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
5537 | |
5538 // If we have floating point hardware, inline ADD, SUB, MUL, and DIV, | 5531 // If we have floating point hardware, inline ADD, SUB, MUL, and DIV, |
5539 // using registers d7 and d6 for the double values. | 5532 // using registers d7 and d6 for the double values. |
5540 bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && | 5533 bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && |
5541 Token::MOD != operation; | 5534 Token::MOD != op_; |
5542 if (use_fp_registers) { | 5535 |
5543 CpuFeatures::Scope scope(VFP3); | 5536 if (ShouldGenerateSmiCode()) { |
5544 __ mov(r7, Operand(r0, ASR, kSmiTagSize)); | 5537 // Smi-smi case (overflow). |
5545 __ vmov(s15, r7); | 5538 // Since both are Smis there is no heap number to overwrite, so allocate. |
5546 __ vcvt(d7, s15); | 5539 // The new heap number is in r5. r6 and r7 are scratch. |
5547 __ mov(r7, Operand(r1, ASR, kSmiTagSize)); | 5540 AllocateHeapNumber(masm, &slow, r5, r6, r7); |
5548 __ vmov(s13, r7); | 5541 |
5549 __ vcvt(d6, s13); | 5542 if (use_fp_registers) { |
5550 } else { | 5543 CpuFeatures::Scope scope(VFP3); |
5551 // Write Smi from r0 to r3 and r2 in double format. r6 is scratch. | 5544 __ mov(r7, Operand(r0, ASR, kSmiTagSize)); |
5552 __ mov(r7, Operand(r0)); | 5545 __ vmov(s15, r7); |
5553 ConvertToDoubleStub stub1(r3, r2, r7, r6); | 5546 __ vcvt(d7, s15); |
5554 __ push(lr); | 5547 __ mov(r7, Operand(r1, ASR, kSmiTagSize)); |
5555 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); | 5548 __ vmov(s13, r7); |
5556 // Write Smi from r1 to r1 and r0 in double format. r6 is scratch. | 5549 __ vcvt(d6, s13); |
5557 __ mov(r7, Operand(r1)); | 5550 } else { |
5558 ConvertToDoubleStub stub2(r1, r0, r7, r6); | 5551 // Write Smi from r0 to r3 and r2 in double format. r6 is scratch. |
5559 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); | 5552 __ mov(r7, Operand(r0)); |
5560 __ pop(lr); | 5553 ConvertToDoubleStub stub1(r3, r2, r7, r6); |
5554 __ push(lr); | |
5555 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); | |
5556 // Write Smi from r1 to r1 and r0 in double format. r6 is scratch. | |
5557 __ mov(r7, Operand(r1)); | |
5558 ConvertToDoubleStub stub2(r1, r0, r7, r6); | |
5559 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); | |
5560 __ pop(lr); | |
5561 } | |
5562 | |
5563 __ jmp(&do_the_call); // Tail call. No return. | |
5561 } | 5564 } |
5562 | 5565 |
5563 __ jmp(&do_the_call); // Tail call. No return. | 5566 // We branch here if at least one of r0 and r1 is not a Smi. |
5564 | 5567 __ bind(not_smi); |
5568 | |
5569 if (ShouldGenerateFPCode()) { | |
5570 if (runtime_operands_type_ == BinaryOpIC::DEFAULT) { | |
5571 switch (op_) { | |
5572 case Token::ADD: | |
5573 case Token::SUB: | |
5574 case Token::MUL: | |
5575 case Token::DIV: | |
5576 GenerateTypeTransition(masm); | |
5577 break; | |
5578 | |
5579 default: | |
5580 break; | |
5581 } | |
5582 } | |
5583 | |
5584 if (mode_ == NO_OVERWRITE) { | |
5585 // In the case where there is no chance of an overwritable float we may as | |
5586 // well do the allocation immediately while r0 and r1 are untouched. | |
5587 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
5588 } | |
5589 | |
5590 // Move r0 to a double in r2-r3. | |
5591 __ tst(r0, Operand(kSmiTagMask)); | |
5592 __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number. | |
5593 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); | |
5594 __ b(ne, &slow); | |
5595 if (mode_ == OVERWRITE_RIGHT) { | |
5596 __ mov(r5, Operand(r0)); // Overwrite this heap number. | |
5597 } | |
5598 if (use_fp_registers) { | |
5599 CpuFeatures::Scope scope(VFP3); | |
5600 // Load the double from tagged HeapNumber r0 to d7. | |
5601 __ sub(r7, r0, Operand(kHeapObjectTag)); | |
5602 __ vldr(d7, r7, HeapNumber::kValueOffset); | |
5603 } else { | |
5604 // Calling convention says that second double is in r2 and r3. | |
5605 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset)); | |
5606 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + 4)); | |
5607 } | |
5608 __ jmp(&finished_loading_r0); | |
5609 __ bind(&r0_is_smi); | |
5610 if (mode_ == OVERWRITE_RIGHT) { | |
5611 // We can't overwrite a Smi so get address of new heap number into r5. | |
5612 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
5613 } | |
5614 | |
5615 if (use_fp_registers) { | |
5616 CpuFeatures::Scope scope(VFP3); | |
5617 // Convert smi in r0 to double in d7. | |
5618 __ mov(r7, Operand(r0, ASR, kSmiTagSize)); | |
5619 __ vmov(s15, r7); | |
5620 __ vcvt(d7, s15); | |
5621 } else { | |
5622 // Write Smi from r0 to r3 and r2 in double format. | |
5623 __ mov(r7, Operand(r0)); | |
5624 ConvertToDoubleStub stub3(r3, r2, r7, r6); | |
5625 __ push(lr); | |
5626 __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET); | |
5627 __ pop(lr); | |
5628 } | |
5629 | |
5630 __ bind(&finished_loading_r0); | |
5631 | |
5632 // Move r1 to a double in r0-r1. | |
5633 __ tst(r1, Operand(kSmiTagMask)); | |
5634 __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number. | |
5635 __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); | |
5636 __ b(ne, &slow); | |
5637 if (mode_ == OVERWRITE_LEFT) { | |
5638 __ mov(r5, Operand(r1)); // Overwrite this heap number. | |
5639 } | |
5640 if (use_fp_registers) { | |
5641 CpuFeatures::Scope scope(VFP3); | |
5642 // Load the double from tagged HeapNumber r1 to d6. | |
5643 __ sub(r7, r1, Operand(kHeapObjectTag)); | |
5644 __ vldr(d6, r7, HeapNumber::kValueOffset); | |
5645 } else { | |
5646 // Calling convention says that first double is in r0 and r1. | |
5647 __ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset)); | |
5648 __ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + 4)); | |
5649 } | |
5650 __ jmp(&finished_loading_r1); | |
5651 __ bind(&r1_is_smi); | |
5652 if (mode_ == OVERWRITE_LEFT) { | |
5653 // We can't overwrite a Smi so get address of new heap number into r5. | |
5654 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
5655 } | |
5656 | |
5657 if (use_fp_registers) { | |
5658 CpuFeatures::Scope scope(VFP3); | |
5659 // Convert smi in r1 to double in d6. | |
5660 __ mov(r7, Operand(r1, ASR, kSmiTagSize)); | |
5661 __ vmov(s13, r7); | |
5662 __ vcvt(d6, s13); | |
5663 } else { | |
5664 // Write Smi from r1 to r1 and r0 in double format. | |
5665 __ mov(r7, Operand(r1)); | |
5666 ConvertToDoubleStub stub4(r1, r0, r7, r6); | |
5667 __ push(lr); | |
5668 __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET); | |
5669 __ pop(lr); | |
5670 } | |
5671 | |
5672 __ bind(&finished_loading_r1); | |
5673 | |
5674 __ bind(&do_the_call); | |
5675 // If we are inlining the operation using VFP3 instructions for | |
5676 // add, subtract, multiply, or divide, the arguments are in d6 and d7. | |
5677 if (use_fp_registers) { | |
5678 CpuFeatures::Scope scope(VFP3); | |
5679 // ARMv7 VFP3 instructions to implement | |
5680 // double precision, add, subtract, multiply, divide. | |
5681 | |
5682 if (Token::MUL == op_) { | |
5683 __ vmul(d5, d6, d7); | |
5684 } else if (Token::DIV == op_) { | |
5685 __ vdiv(d5, d6, d7); | |
5686 } else if (Token::ADD == op_) { | |
5687 __ vadd(d5, d6, d7); | |
5688 } else if (Token::SUB == op_) { | |
5689 __ vsub(d5, d6, d7); | |
5690 } else { | |
5691 UNREACHABLE(); | |
5692 } | |
5693 __ sub(r0, r5, Operand(kHeapObjectTag)); | |
5694 __ vstr(d5, r0, HeapNumber::kValueOffset); | |
5695 __ add(r0, r0, Operand(kHeapObjectTag)); | |
5696 __ mov(pc, lr); | |
5697 } else { | |
5698 // If we did not inline the operation, then the arguments are in: | |
5699 // r0: Left value (least significant part of mantissa). | |
5700 // r1: Left value (sign, exponent, top of mantissa). | |
5701 // r2: Right value (least significant part of mantissa). | |
5702 // r3: Right value (sign, exponent, top of mantissa). | |
5703 // r5: Address of heap number for result. | |
5704 | |
5705 __ push(lr); // For later. | |
5706 __ push(r5); // Address of heap number that is answer. | |
5707 __ AlignStack(0); | |
5708 // Call C routine that may not cause GC or other trouble. | |
5709 __ mov(r5, Operand(ExternalReference::double_fp_operation(op_))); | |
5710 __ Call(r5); | |
5711 __ pop(r4); // Address of heap number. | |
5712 __ cmp(r4, Operand(Smi::FromInt(0))); | |
5713 __ pop(r4, eq); // Conditional pop instruction | |
5714 // to get rid of alignment push. | |
5715 // Store answer in the overwritable heap number. | |
5716 #if !defined(USE_ARM_EABI) | |
5717 // Double returned in fp coprocessor register 0 and 1, encoded as register | |
5718 // cr8. Offsets must be divisible by 4 for coprocessor so we need to | |
5719 // substract the tag from r4. | |
5720 __ sub(r5, r4, Operand(kHeapObjectTag)); | |
5721 __ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset)); | |
5722 #else | |
5723 // Double returned in registers 0 and 1. | |
5724 __ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset)); | |
5725 __ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + 4)); | |
5726 #endif | |
5727 __ mov(r0, Operand(r4)); | |
5728 // And we are done. | |
5729 __ pop(pc); | |
5730 } | |
5731 } | |
5565 // We jump to here if something goes wrong (one param is not a number of any | 5732 // We jump to here if something goes wrong (one param is not a number of any |
5566 // sort or new-space allocation fails). | 5733 // sort or new-space allocation fails). |
5567 __ bind(&slow); | 5734 __ bind(&slow); |
5568 | 5735 |
5569 // Push arguments to the stack | 5736 // Push arguments to the stack |
5570 __ push(r1); | 5737 __ push(r1); |
5571 __ push(r0); | 5738 __ push(r0); |
5572 | 5739 |
5573 if (Token::ADD == operation) { | 5740 if (Token::ADD == op_) { |
5574 // Test for string arguments before calling runtime. | 5741 // Test for string arguments before calling runtime. |
5575 // r1 : first argument | 5742 // r1 : first argument |
5576 // r0 : second argument | 5743 // r0 : second argument |
5577 // sp[0] : second argument | 5744 // sp[0] : second argument |
5578 // sp[4] : first argument | 5745 // sp[4] : first argument |
5579 | 5746 |
5580 Label not_strings, not_string1, string1, string1_smi2; | 5747 Label not_strings, not_string1, string1, string1_smi2; |
5581 __ tst(r1, Operand(kSmiTagMask)); | 5748 __ tst(r1, Operand(kSmiTagMask)); |
5582 __ b(eq, ¬_string1); | 5749 __ b(eq, ¬_string1); |
5583 __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE); | 5750 __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE); |
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
5615 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); | 5782 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
5616 __ b(ge, ¬_strings); | 5783 __ b(ge, ¬_strings); |
5617 | 5784 |
5618 // Only second argument is a string. | 5785 // Only second argument is a string. |
5619 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS); | 5786 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS); |
5620 | 5787 |
5621 __ bind(¬_strings); | 5788 __ bind(¬_strings); |
5622 } | 5789 } |
5623 | 5790 |
5624 __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return. | 5791 __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return. |
5625 | |
5626 // We branch here if at least one of r0 and r1 is not a Smi. | |
5627 __ bind(not_smi); | |
5628 if (mode == NO_OVERWRITE) { | |
5629 // In the case where there is no chance of an overwritable float we may as | |
5630 // well do the allocation immediately while r0 and r1 are untouched. | |
5631 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
5632 } | |
5633 | |
5634 // Move r0 to a double in r2-r3. | |
5635 __ tst(r0, Operand(kSmiTagMask)); | |
5636 __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number. | |
5637 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); | |
5638 __ b(ne, &slow); | |
5639 if (mode == OVERWRITE_RIGHT) { | |
5640 __ mov(r5, Operand(r0)); // Overwrite this heap number. | |
5641 } | |
5642 if (use_fp_registers) { | |
5643 CpuFeatures::Scope scope(VFP3); | |
5644 // Load the double from tagged HeapNumber r0 to d7. | |
5645 __ sub(r7, r0, Operand(kHeapObjectTag)); | |
5646 __ vldr(d7, r7, HeapNumber::kValueOffset); | |
5647 } else { | |
5648 // Calling convention says that second double is in r2 and r3. | |
5649 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset)); | |
5650 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + 4)); | |
5651 } | |
5652 __ jmp(&finished_loading_r0); | |
5653 __ bind(&r0_is_smi); | |
5654 if (mode == OVERWRITE_RIGHT) { | |
5655 // We can't overwrite a Smi so get address of new heap number into r5. | |
5656 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
5657 } | |
5658 | |
5659 if (use_fp_registers) { | |
5660 CpuFeatures::Scope scope(VFP3); | |
5661 // Convert smi in r0 to double in d7. | |
5662 __ mov(r7, Operand(r0, ASR, kSmiTagSize)); | |
5663 __ vmov(s15, r7); | |
5664 __ vcvt(d7, s15); | |
5665 } else { | |
5666 // Write Smi from r0 to r3 and r2 in double format. | |
5667 __ mov(r7, Operand(r0)); | |
5668 ConvertToDoubleStub stub3(r3, r2, r7, r6); | |
5669 __ push(lr); | |
5670 __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET); | |
5671 __ pop(lr); | |
5672 } | |
5673 | |
5674 __ bind(&finished_loading_r0); | |
5675 | |
5676 // Move r1 to a double in r0-r1. | |
5677 __ tst(r1, Operand(kSmiTagMask)); | |
5678 __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number. | |
5679 __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); | |
5680 __ b(ne, &slow); | |
5681 if (mode == OVERWRITE_LEFT) { | |
5682 __ mov(r5, Operand(r1)); // Overwrite this heap number. | |
5683 } | |
5684 if (use_fp_registers) { | |
5685 CpuFeatures::Scope scope(VFP3); | |
5686 // Load the double from tagged HeapNumber r1 to d6. | |
5687 __ sub(r7, r1, Operand(kHeapObjectTag)); | |
5688 __ vldr(d6, r7, HeapNumber::kValueOffset); | |
5689 } else { | |
5690 // Calling convention says that first double is in r0 and r1. | |
5691 __ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset)); | |
5692 __ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + 4)); | |
5693 } | |
5694 __ jmp(&finished_loading_r1); | |
5695 __ bind(&r1_is_smi); | |
5696 if (mode == OVERWRITE_LEFT) { | |
5697 // We can't overwrite a Smi so get address of new heap number into r5. | |
5698 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
5699 } | |
5700 | |
5701 if (use_fp_registers) { | |
5702 CpuFeatures::Scope scope(VFP3); | |
5703 // Convert smi in r1 to double in d6. | |
5704 __ mov(r7, Operand(r1, ASR, kSmiTagSize)); | |
5705 __ vmov(s13, r7); | |
5706 __ vcvt(d6, s13); | |
5707 } else { | |
5708 // Write Smi from r1 to r1 and r0 in double format. | |
5709 __ mov(r7, Operand(r1)); | |
5710 ConvertToDoubleStub stub4(r1, r0, r7, r6); | |
5711 __ push(lr); | |
5712 __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET); | |
5713 __ pop(lr); | |
5714 } | |
5715 | |
5716 __ bind(&finished_loading_r1); | |
5717 | |
5718 __ bind(&do_the_call); | |
5719 // If we are inlining the operation using VFP3 instructions for | |
5720 // add, subtract, multiply, or divide, the arguments are in d6 and d7. | |
5721 if (use_fp_registers) { | |
5722 CpuFeatures::Scope scope(VFP3); | |
5723 // ARMv7 VFP3 instructions to implement | |
5724 // double precision, add, subtract, multiply, divide. | |
5725 | |
5726 if (Token::MUL == operation) { | |
5727 __ vmul(d5, d6, d7); | |
5728 } else if (Token::DIV == operation) { | |
5729 __ vdiv(d5, d6, d7); | |
5730 } else if (Token::ADD == operation) { | |
5731 __ vadd(d5, d6, d7); | |
5732 } else if (Token::SUB == operation) { | |
5733 __ vsub(d5, d6, d7); | |
5734 } else { | |
5735 UNREACHABLE(); | |
5736 } | |
5737 __ sub(r0, r5, Operand(kHeapObjectTag)); | |
5738 __ vstr(d5, r0, HeapNumber::kValueOffset); | |
5739 __ add(r0, r0, Operand(kHeapObjectTag)); | |
5740 __ mov(pc, lr); | |
5741 return; | |
5742 } | |
5743 | |
5744 // If we did not inline the operation, then the arguments are in: | |
5745 // r0: Left value (least significant part of mantissa). | |
5746 // r1: Left value (sign, exponent, top of mantissa). | |
5747 // r2: Right value (least significant part of mantissa). | |
5748 // r3: Right value (sign, exponent, top of mantissa). | |
5749 // r5: Address of heap number for result. | |
5750 | |
5751 __ push(lr); // For later. | |
5752 __ push(r5); // Address of heap number that is answer. | |
5753 __ AlignStack(0); | |
5754 // Call C routine that may not cause GC or other trouble. | |
5755 __ mov(r5, Operand(ExternalReference::double_fp_operation(operation))); | |
5756 __ Call(r5); | |
5757 __ pop(r4); // Address of heap number. | |
5758 __ cmp(r4, Operand(Smi::FromInt(0))); | |
5759 __ pop(r4, eq); // Conditional pop instruction to get rid of alignment push. | |
5760 // Store answer in the overwritable heap number. | |
5761 #if !defined(USE_ARM_EABI) | |
5762 // Double returned in fp coprocessor register 0 and 1, encoded as register | |
5763 // cr8. Offsets must be divisible by 4 for coprocessor so we need to | |
5764 // substract the tag from r4. | |
5765 __ sub(r5, r4, Operand(kHeapObjectTag)); | |
5766 __ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset)); | |
5767 #else | |
5768 // Double returned in registers 0 and 1. | |
5769 __ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset)); | |
5770 __ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + 4)); | |
5771 #endif | |
5772 __ mov(r0, Operand(r4)); | |
5773 // And we are done. | |
5774 __ pop(pc); | |
5775 } | 5792 } |
5776 | 5793 |
5777 | 5794 |
5778 // Tries to get a signed int32 out of a double precision floating point heap | 5795 // Tries to get a signed int32 out of a double precision floating point heap |
5779 // number. Rounds towards 0. Fastest for doubles that are in the ranges | 5796 // number. Rounds towards 0. Fastest for doubles that are in the ranges |
5780 // -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds | 5797 // -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds |
5781 // almost to the range of signed int32 values that are not Smis. Jumps to the | 5798 // almost to the range of signed int32 values that are not Smis. Jumps to the |
5782 // label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0 | 5799 // label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0 |
5783 // (excluding the endpoints). | 5800 // (excluding the endpoints). |
5784 static void GetInt32(MacroAssembler* masm, | 5801 static void GetInt32(MacroAssembler* masm, |
(...skipping 313 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
6098 | 6115 |
6099 | 6116 |
6100 | 6117 |
6101 void GenericBinaryOpStub::Generate(MacroAssembler* masm) { | 6118 void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
6102 // r1 : x | 6119 // r1 : x |
6103 // r0 : y | 6120 // r0 : y |
6104 // result : r0 | 6121 // result : r0 |
6105 | 6122 |
6106 // All ops need to know whether we are dealing with two Smis. Set up r2 to | 6123 // All ops need to know whether we are dealing with two Smis. Set up r2 to |
6107 // tell us that. | 6124 // tell us that. |
6108 __ orr(r2, r1, Operand(r0)); // r2 = x | y; | 6125 if (ShouldGenerateSmiCode()) { |
6126 __ orr(r2, r1, Operand(r0)); // r2 = x | y; | |
6127 } | |
6109 | 6128 |
6110 switch (op_) { | 6129 switch (op_) { |
6111 case Token::ADD: { | 6130 case Token::ADD: { |
6112 Label not_smi; | 6131 Label not_smi; |
6113 // Fast path. | 6132 // Fast path. |
6114 ASSERT(kSmiTag == 0); // Adjust code below. | 6133 if (ShouldGenerateSmiCode()) { |
6115 __ tst(r2, Operand(kSmiTagMask)); | 6134 ASSERT(kSmiTag == 0); // Adjust code below. |
6116 __ b(ne, ¬_smi); | 6135 __ tst(r2, Operand(kSmiTagMask)); |
6117 __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. | 6136 __ b(ne, ¬_smi); |
6118 // Return if no overflow. | 6137 __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. |
6119 __ Ret(vc); | 6138 // Return if no overflow. |
6120 __ sub(r0, r0, Operand(r1)); // Revert optimistic add. | 6139 __ Ret(vc); |
6121 | 6140 __ sub(r0, r0, Operand(r1)); // Revert optimistic add. |
6122 HandleBinaryOpSlowCases(masm, | 6141 } |
6123 ¬_smi, | 6142 HandleBinaryOpSlowCases(masm, ¬_smi, Builtins::ADD); |
6124 Builtins::ADD, | |
6125 Token::ADD, | |
6126 mode_); | |
6127 break; | 6143 break; |
6128 } | 6144 } |
6129 | 6145 |
6130 case Token::SUB: { | 6146 case Token::SUB: { |
6131 Label not_smi; | 6147 Label not_smi; |
6132 // Fast path. | 6148 // Fast path. |
6133 ASSERT(kSmiTag == 0); // Adjust code below. | 6149 if (ShouldGenerateSmiCode()) { |
6134 __ tst(r2, Operand(kSmiTagMask)); | 6150 ASSERT(kSmiTag == 0); // Adjust code below. |
6135 __ b(ne, ¬_smi); | 6151 __ tst(r2, Operand(kSmiTagMask)); |
6136 __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically. | 6152 __ b(ne, ¬_smi); |
6137 // Return if no overflow. | 6153 __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically. |
6138 __ Ret(vc); | 6154 // Return if no overflow. |
6139 __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract. | 6155 __ Ret(vc); |
6140 | 6156 __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract. |
6141 HandleBinaryOpSlowCases(masm, | 6157 } |
6142 ¬_smi, | 6158 HandleBinaryOpSlowCases(masm, ¬_smi, Builtins::SUB); |
6143 Builtins::SUB, | |
6144 Token::SUB, | |
6145 mode_); | |
6146 break; | 6159 break; |
6147 } | 6160 } |
6148 | 6161 |
6149 case Token::MUL: { | 6162 case Token::MUL: { |
6150 Label not_smi, slow; | 6163 Label not_smi, slow; |
6151 ASSERT(kSmiTag == 0); // adjust code below | 6164 if (ShouldGenerateSmiCode()) { |
6152 __ tst(r2, Operand(kSmiTagMask)); | 6165 ASSERT(kSmiTag == 0); // adjust code below |
6153 __ b(ne, ¬_smi); | 6166 __ tst(r2, Operand(kSmiTagMask)); |
6154 // Remove tag from one operand (but keep sign), so that result is Smi. | 6167 __ b(ne, ¬_smi); |
6155 __ mov(ip, Operand(r0, ASR, kSmiTagSize)); | 6168 // Remove tag from one operand (but keep sign), so that result is Smi. |
6156 // Do multiplication | 6169 __ mov(ip, Operand(r0, ASR, kSmiTagSize)); |
6157 __ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1. | 6170 // Do multiplication |
6158 // Go slow on overflows (overflow bit is not set). | 6171 __ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1. |
6159 __ mov(ip, Operand(r3, ASR, 31)); | 6172 // Go slow on overflows (overflow bit is not set). |
6160 __ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical | 6173 __ mov(ip, Operand(r3, ASR, 31)); |
6161 __ b(ne, &slow); | 6174 __ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical |
6162 // Go slow on zero result to handle -0. | 6175 __ b(ne, &slow); |
6163 __ tst(r3, Operand(r3)); | 6176 // Go slow on zero result to handle -0. |
6164 __ mov(r0, Operand(r3), LeaveCC, ne); | 6177 __ tst(r3, Operand(r3)); |
6165 __ Ret(ne); | 6178 __ mov(r0, Operand(r3), LeaveCC, ne); |
6166 // We need -0 if we were multiplying a negative number with 0 to get 0. | 6179 __ Ret(ne); |
6167 // We know one of them was zero. | 6180 // We need -0 if we were multiplying a negative number with 0 to get 0. |
6168 __ add(r2, r0, Operand(r1), SetCC); | 6181 // We know one of them was zero. |
6169 __ mov(r0, Operand(Smi::FromInt(0)), LeaveCC, pl); | 6182 __ add(r2, r0, Operand(r1), SetCC); |
6170 __ Ret(pl); // Return Smi 0 if the non-zero one was positive. | 6183 __ mov(r0, Operand(Smi::FromInt(0)), LeaveCC, pl); |
6171 // Slow case. We fall through here if we multiplied a negative number | 6184 __ Ret(pl); // Return Smi 0 if the non-zero one was positive. |
6172 // with 0, because that would mean we should produce -0. | 6185 // Slow case. We fall through here if we multiplied a negative number |
6173 __ bind(&slow); | 6186 // with 0, because that would mean we should produce -0. |
6174 | 6187 __ bind(&slow); |
6175 HandleBinaryOpSlowCases(masm, | 6188 } |
6176 ¬_smi, | 6189 HandleBinaryOpSlowCases(masm, ¬_smi, Builtins::MUL); |
6177 Builtins::MUL, | |
6178 Token::MUL, | |
6179 mode_); | |
6180 break; | 6190 break; |
6181 } | 6191 } |
6182 | 6192 |
6183 case Token::DIV: | 6193 case Token::DIV: |
6184 case Token::MOD: { | 6194 case Token::MOD: { |
6185 Label not_smi; | 6195 Label not_smi; |
6186 if (specialized_on_rhs_) { | 6196 if (ShouldGenerateSmiCode()) { |
6187 Label smi_is_unsuitable; | 6197 Label smi_is_unsuitable; |
6188 __ BranchOnNotSmi(r1, ¬_smi); | 6198 __ BranchOnNotSmi(r1, ¬_smi); |
6189 if (IsPowerOf2(constant_rhs_)) { | 6199 if (IsPowerOf2(constant_rhs_)) { |
6190 if (op_ == Token::MOD) { | 6200 if (op_ == Token::MOD) { |
6191 __ and_(r0, | 6201 __ and_(r0, |
6192 r1, | 6202 r1, |
6193 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)), | 6203 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)), |
6194 SetCC); | 6204 SetCC); |
6195 // We now have the answer, but if the input was negative we also | 6205 // We now have the answer, but if the input was negative we also |
6196 // have the sign bit. Our work is done if the result is | 6206 // have the sign bit. Our work is done if the result is |
(...skipping 59 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
6256 __ sub(r3, r1, Operand(r4, LSL, required_r4_shift), SetCC); | 6266 __ sub(r3, r1, Operand(r4, LSL, required_r4_shift), SetCC); |
6257 __ b(ne, &smi_is_unsuitable); // There was a remainder. | 6267 __ b(ne, &smi_is_unsuitable); // There was a remainder. |
6258 __ mov(r0, Operand(r2, LSL, kSmiTagSize)); | 6268 __ mov(r0, Operand(r2, LSL, kSmiTagSize)); |
6259 } else { | 6269 } else { |
6260 ASSERT(op_ == Token::MOD); | 6270 ASSERT(op_ == Token::MOD); |
6261 __ sub(r0, r1, Operand(r4, LSL, required_r4_shift)); | 6271 __ sub(r0, r1, Operand(r4, LSL, required_r4_shift)); |
6262 } | 6272 } |
6263 } | 6273 } |
6264 __ Ret(); | 6274 __ Ret(); |
6265 __ bind(&smi_is_unsuitable); | 6275 __ bind(&smi_is_unsuitable); |
6266 } else { | |
6267 __ jmp(¬_smi); | |
6268 } | 6276 } |
6269 HandleBinaryOpSlowCases(masm, | 6277 HandleBinaryOpSlowCases( |
6270 ¬_smi, | 6278 masm, |
6271 op_ == Token::MOD ? Builtins::MOD : Builtins::DIV, | 6279 ¬_smi, |
6272 op_, | 6280 op_ == Token::MOD ? Builtins::MOD : Builtins::DIV); |
6273 mode_); | |
6274 break; | 6281 break; |
6275 } | 6282 } |
6276 | 6283 |
6277 case Token::BIT_OR: | 6284 case Token::BIT_OR: |
6278 case Token::BIT_AND: | 6285 case Token::BIT_AND: |
6279 case Token::BIT_XOR: | 6286 case Token::BIT_XOR: |
6280 case Token::SAR: | 6287 case Token::SAR: |
6281 case Token::SHR: | 6288 case Token::SHR: |
6282 case Token::SHL: { | 6289 case Token::SHL: { |
6283 Label slow; | 6290 Label slow; |
(...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
6323 __ Ret(); | 6330 __ Ret(); |
6324 __ bind(&slow); | 6331 __ bind(&slow); |
6325 HandleNonSmiBitwiseOp(masm); | 6332 HandleNonSmiBitwiseOp(masm); |
6326 break; | 6333 break; |
6327 } | 6334 } |
6328 | 6335 |
6329 default: UNREACHABLE(); | 6336 default: UNREACHABLE(); |
6330 } | 6337 } |
6331 // This code should be unreachable. | 6338 // This code should be unreachable. |
6332 __ stop("Unreachable"); | 6339 __ stop("Unreachable"); |
6340 | |
6341 // Generate an unreachable reference to the DEFAULT stub so that it can be | |
Mads Ager (chromium)
2010/03/22 10:17:50
Please add the TODO to get rid of this before subm
| |
6342 // found at the end of this stub when clearing ICs at GC. | |
6343 if (runtime_operands_type_ != BinaryOpIC::DEFAULT) { | |
6344 GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT); | |
6345 __ CallStub(&uninit); | |
6346 } | |
6347 } | |
6348 | |
6349 | |
6350 void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { | |
6351 Label get_result; | |
6352 | |
6353 __ push(r1); | |
6354 __ push(r0); | |
6355 | |
6356 // Internal frame is necessary to handle exceptions properly. | |
6357 __ EnterInternalFrame(); | |
6358 // Call the stub proper to get the result in r0. | |
6359 __ Call(&get_result); | |
6360 __ LeaveInternalFrame(); | |
6361 | |
6362 __ push(r0); | |
6363 | |
6364 __ mov(r0, Operand(Smi::FromInt(MinorKey()))); | |
6365 __ push(r0); | |
6366 __ mov(r0, Operand(Smi::FromInt(op_))); | |
6367 __ push(r0); | |
6368 __ mov(r0, Operand(Smi::FromInt(runtime_operands_type_))); | |
6369 __ push(r0); | |
6370 | |
6371 __ TailCallExternalReference( | |
6372 ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), | |
6373 6, | |
6374 1); | |
6375 | |
6376 // The entry point for the result calculation is assumed to be immediately | |
6377 // after this sequence. | |
6378 __ bind(&get_result); | |
6333 } | 6379 } |
6334 | 6380 |
6335 | 6381 |
6336 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { | 6382 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
6337 return Handle<Code>::null(); | 6383 GenericBinaryOpStub stub(key, type_info); |
6384 return stub.GetCode(); | |
6338 } | 6385 } |
6339 | 6386 |
6340 | 6387 |
6341 void StackCheckStub::Generate(MacroAssembler* masm) { | 6388 void StackCheckStub::Generate(MacroAssembler* masm) { |
6342 // Do tail-call to runtime routine. Runtime routines expect at least one | 6389 // Do tail-call to runtime routine. Runtime routines expect at least one |
6343 // argument, so give it a Smi. | 6390 // argument, so give it a Smi. |
6344 __ mov(r0, Operand(Smi::FromInt(0))); | 6391 __ mov(r0, Operand(Smi::FromInt(0))); |
6345 __ push(r0); | 6392 __ push(r0); |
6346 __ TailCallRuntime(Runtime::kStackGuard, 1, 1); | 6393 __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
6347 | 6394 |
(...skipping 1694 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
8042 | 8089 |
8043 // Just jump to runtime to add the two strings. | 8090 // Just jump to runtime to add the two strings. |
8044 __ bind(&string_add_runtime); | 8091 __ bind(&string_add_runtime); |
8045 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); | 8092 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
8046 } | 8093 } |
8047 | 8094 |
8048 | 8095 |
8049 #undef __ | 8096 #undef __ |
8050 | 8097 |
8051 } } // namespace v8::internal | 8098 } } // namespace v8::internal |
OLD | NEW |