Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 5505 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 5516 __ str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); | 5516 __ str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); |
| 5517 } | 5517 } |
| 5518 | 5518 |
| 5519 | 5519 |
| 5520 // We fall into this code if the operands were Smis, but the result was | 5520 // We fall into this code if the operands were Smis, but the result was |
| 5521 // not (eg. overflow). We branch into this code (to the not_smi label) if | 5521 // not (eg. overflow). We branch into this code (to the not_smi label) if |
| 5522 // the operands were not both Smi. The operands are in r0 and r1. In order | 5522 // the operands were not both Smi. The operands are in r0 and r1. In order |
| 5523 // to call the C-implemented binary fp operation routines we need to end up | 5523 // to call the C-implemented binary fp operation routines we need to end up |
| 5524 // with the double precision floating point operands in r0 and r1 (for the | 5524 // with the double precision floating point operands in r0 and r1 (for the |
| 5525 // value in r1) and r2 and r3 (for the value in r0). | 5525 // value in r1) and r2 and r3 (for the value in r0). |
| 5526 static void HandleBinaryOpSlowCases(MacroAssembler* masm, | 5526 void GenericBinaryOpStub::HandleBinaryOpSlowCases(MacroAssembler* masm, |
| 5527 Label* not_smi, | 5527 Label* not_smi, |
| 5528 const Builtins::JavaScript& builtin, | 5528 const Builtins::JavaScript& builtin) { |
| 5529 Token::Value operation, | |
| 5530 OverwriteMode mode) { | |
| 5531 Label slow, slow_pop_2_first, do_the_call; | 5529 Label slow, slow_pop_2_first, do_the_call; |
| 5532 Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1; | 5530 Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1; |
| 5533 // Smi-smi case (overflow). | |
| 5534 // Since both are Smis there is no heap number to overwrite, so allocate. | |
| 5535 // The new heap number is in r5. r6 and r7 are scratch. | |
| 5536 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
| 5537 | |
| 5538 // If we have floating point hardware, inline ADD, SUB, MUL, and DIV, | 5531 // If we have floating point hardware, inline ADD, SUB, MUL, and DIV, |
| 5539 // using registers d7 and d6 for the double values. | 5532 // using registers d7 and d6 for the double values. |
| 5540 bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && | 5533 bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && |
| 5541 Token::MOD != operation; | 5534 Token::MOD != op_; |
| 5542 if (use_fp_registers) { | 5535 |
| 5543 CpuFeatures::Scope scope(VFP3); | 5536 if (ShouldGenerateSmiCode()) { |
| 5544 __ mov(r7, Operand(r0, ASR, kSmiTagSize)); | 5537 // Smi-smi case (overflow). |
| 5545 __ vmov(s15, r7); | 5538 // Since both are Smis there is no heap number to overwrite, so allocate. |
| 5546 __ vcvt(d7, s15); | 5539 // The new heap number is in r5. r6 and r7 are scratch. |
| 5547 __ mov(r7, Operand(r1, ASR, kSmiTagSize)); | 5540 AllocateHeapNumber(masm, &slow, r5, r6, r7); |
| 5548 __ vmov(s13, r7); | 5541 |
| 5549 __ vcvt(d6, s13); | 5542 if (use_fp_registers) { |
| 5550 } else { | 5543 CpuFeatures::Scope scope(VFP3); |
| 5551 // Write Smi from r0 to r3 and r2 in double format. r6 is scratch. | 5544 __ mov(r7, Operand(r0, ASR, kSmiTagSize)); |
| 5552 __ mov(r7, Operand(r0)); | 5545 __ vmov(s15, r7); |
| 5553 ConvertToDoubleStub stub1(r3, r2, r7, r6); | 5546 __ vcvt(d7, s15); |
| 5554 __ push(lr); | 5547 __ mov(r7, Operand(r1, ASR, kSmiTagSize)); |
| 5555 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); | 5548 __ vmov(s13, r7); |
| 5556 // Write Smi from r1 to r1 and r0 in double format. r6 is scratch. | 5549 __ vcvt(d6, s13); |
| 5557 __ mov(r7, Operand(r1)); | 5550 } else { |
| 5558 ConvertToDoubleStub stub2(r1, r0, r7, r6); | 5551 // Write Smi from r0 to r3 and r2 in double format. r6 is scratch. |
| 5559 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); | 5552 __ mov(r7, Operand(r0)); |
| 5560 __ pop(lr); | 5553 ConvertToDoubleStub stub1(r3, r2, r7, r6); |
| 5554 __ push(lr); | |
| 5555 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); | |
| 5556 // Write Smi from r1 to r1 and r0 in double format. r6 is scratch. | |
| 5557 __ mov(r7, Operand(r1)); | |
| 5558 ConvertToDoubleStub stub2(r1, r0, r7, r6); | |
| 5559 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); | |
| 5560 __ pop(lr); | |
| 5561 } | |
| 5562 | |
| 5563 __ jmp(&do_the_call); // Tail call. No return. | |
| 5561 } | 5564 } |
| 5562 | 5565 |
| 5563 __ jmp(&do_the_call); // Tail call. No return. | 5566 // We branch here if at least one of r0 and r1 is not a Smi. |
| 5564 | 5567 __ bind(not_smi); |
| 5568 | |
| 5569 if (ShouldGenerateFPCode()) { | |
| 5570 if (runtime_operands_type_ == BinaryOpIC::DEFAULT) { | |
| 5571 switch (op_) { | |
| 5572 case Token::ADD: | |
| 5573 case Token::SUB: | |
| 5574 case Token::MUL: | |
| 5575 case Token::DIV: | |
| 5576 GenerateTypeTransition(masm); | |
| 5577 break; | |
| 5578 | |
| 5579 default: | |
| 5580 break; | |
| 5581 } | |
| 5582 } | |
| 5583 | |
| 5584 if (mode_ == NO_OVERWRITE) { | |
| 5585 // In the case where there is no chance of an overwritable float we may as | |
| 5586 // well do the allocation immediately while r0 and r1 are untouched. | |
| 5587 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
| 5588 } | |
| 5589 | |
| 5590 // Move r0 to a double in r2-r3. | |
| 5591 __ tst(r0, Operand(kSmiTagMask)); | |
| 5592 __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number. | |
| 5593 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); | |
| 5594 __ b(ne, &slow); | |
| 5595 if (mode_ == OVERWRITE_RIGHT) { | |
| 5596 __ mov(r5, Operand(r0)); // Overwrite this heap number. | |
| 5597 } | |
| 5598 if (use_fp_registers) { | |
| 5599 CpuFeatures::Scope scope(VFP3); | |
| 5600 // Load the double from tagged HeapNumber r0 to d7. | |
| 5601 __ sub(r7, r0, Operand(kHeapObjectTag)); | |
| 5602 __ vldr(d7, r7, HeapNumber::kValueOffset); | |
| 5603 } else { | |
| 5604 // Calling convention says that second double is in r2 and r3. | |
| 5605 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset)); | |
| 5606 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + 4)); | |
| 5607 } | |
| 5608 __ jmp(&finished_loading_r0); | |
| 5609 __ bind(&r0_is_smi); | |
| 5610 if (mode_ == OVERWRITE_RIGHT) { | |
| 5611 // We can't overwrite a Smi so get address of new heap number into r5. | |
| 5612 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
| 5613 } | |
| 5614 | |
| 5615 if (use_fp_registers) { | |
| 5616 CpuFeatures::Scope scope(VFP3); | |
| 5617 // Convert smi in r0 to double in d7. | |
| 5618 __ mov(r7, Operand(r0, ASR, kSmiTagSize)); | |
| 5619 __ vmov(s15, r7); | |
| 5620 __ vcvt(d7, s15); | |
| 5621 } else { | |
| 5622 // Write Smi from r0 to r3 and r2 in double format. | |
| 5623 __ mov(r7, Operand(r0)); | |
| 5624 ConvertToDoubleStub stub3(r3, r2, r7, r6); | |
| 5625 __ push(lr); | |
| 5626 __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET); | |
| 5627 __ pop(lr); | |
| 5628 } | |
| 5629 | |
| 5630 __ bind(&finished_loading_r0); | |
| 5631 | |
| 5632 // Move r1 to a double in r0-r1. | |
| 5633 __ tst(r1, Operand(kSmiTagMask)); | |
| 5634 __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number. | |
| 5635 __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); | |
| 5636 __ b(ne, &slow); | |
| 5637 if (mode_ == OVERWRITE_LEFT) { | |
| 5638 __ mov(r5, Operand(r1)); // Overwrite this heap number. | |
| 5639 } | |
| 5640 if (use_fp_registers) { | |
| 5641 CpuFeatures::Scope scope(VFP3); | |
| 5642 // Load the double from tagged HeapNumber r1 to d6. | |
| 5643 __ sub(r7, r1, Operand(kHeapObjectTag)); | |
| 5644 __ vldr(d6, r7, HeapNumber::kValueOffset); | |
| 5645 } else { | |
| 5646 // Calling convention says that first double is in r0 and r1. | |
| 5647 __ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset)); | |
| 5648 __ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + 4)); | |
| 5649 } | |
| 5650 __ jmp(&finished_loading_r1); | |
| 5651 __ bind(&r1_is_smi); | |
| 5652 if (mode_ == OVERWRITE_LEFT) { | |
| 5653 // We can't overwrite a Smi so get address of new heap number into r5. | |
| 5654 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
| 5655 } | |
| 5656 | |
| 5657 if (use_fp_registers) { | |
| 5658 CpuFeatures::Scope scope(VFP3); | |
| 5659 // Convert smi in r1 to double in d6. | |
| 5660 __ mov(r7, Operand(r1, ASR, kSmiTagSize)); | |
| 5661 __ vmov(s13, r7); | |
| 5662 __ vcvt(d6, s13); | |
| 5663 } else { | |
| 5664 // Write Smi from r1 to r1 and r0 in double format. | |
| 5665 __ mov(r7, Operand(r1)); | |
| 5666 ConvertToDoubleStub stub4(r1, r0, r7, r6); | |
| 5667 __ push(lr); | |
| 5668 __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET); | |
| 5669 __ pop(lr); | |
| 5670 } | |
| 5671 | |
| 5672 __ bind(&finished_loading_r1); | |
| 5673 | |
| 5674 __ bind(&do_the_call); | |
| 5675 // If we are inlining the operation using VFP3 instructions for | |
| 5676 // add, subtract, multiply, or divide, the arguments are in d6 and d7. | |
| 5677 if (use_fp_registers) { | |
| 5678 CpuFeatures::Scope scope(VFP3); | |
| 5679 // ARMv7 VFP3 instructions to implement | |
| 5680 // double precision, add, subtract, multiply, divide. | |
| 5681 | |
| 5682 if (Token::MUL == op_) { | |
| 5683 __ vmul(d5, d6, d7); | |
| 5684 } else if (Token::DIV == op_) { | |
| 5685 __ vdiv(d5, d6, d7); | |
| 5686 } else if (Token::ADD == op_) { | |
| 5687 __ vadd(d5, d6, d7); | |
| 5688 } else if (Token::SUB == op_) { | |
| 5689 __ vsub(d5, d6, d7); | |
| 5690 } else { | |
| 5691 UNREACHABLE(); | |
| 5692 } | |
| 5693 __ sub(r0, r5, Operand(kHeapObjectTag)); | |
| 5694 __ vstr(d5, r0, HeapNumber::kValueOffset); | |
| 5695 __ add(r0, r0, Operand(kHeapObjectTag)); | |
| 5696 __ mov(pc, lr); | |
| 5697 } else { | |
| 5698 // If we did not inline the operation, then the arguments are in: | |
| 5699 // r0: Left value (least significant part of mantissa). | |
| 5700 // r1: Left value (sign, exponent, top of mantissa). | |
| 5701 // r2: Right value (least significant part of mantissa). | |
| 5702 // r3: Right value (sign, exponent, top of mantissa). | |
| 5703 // r5: Address of heap number for result. | |
| 5704 | |
| 5705 __ push(lr); // For later. | |
| 5706 __ push(r5); // Address of heap number that is answer. | |
| 5707 __ AlignStack(0); | |
| 5708 // Call C routine that may not cause GC or other trouble. | |
| 5709 __ mov(r5, Operand(ExternalReference::double_fp_operation(op_))); | |
| 5710 __ Call(r5); | |
| 5711 __ pop(r4); // Address of heap number. | |
| 5712 __ cmp(r4, Operand(Smi::FromInt(0))); | |
| 5713 __ pop(r4, eq); // Conditional pop instruction | |
| 5714 // to get rid of alignment push. | |
| 5715 // Store answer in the overwritable heap number. | |
| 5716 #if !defined(USE_ARM_EABI) | |
| 5717 // Double returned in fp coprocessor register 0 and 1, encoded as register | |
| 5718 // cr8. Offsets must be divisible by 4 for coprocessor so we need to | |
| 5719 // substract the tag from r4. | |
| 5720 __ sub(r5, r4, Operand(kHeapObjectTag)); | |
| 5721 __ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset)); | |
| 5722 #else | |
| 5723 // Double returned in registers 0 and 1. | |
| 5724 __ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset)); | |
| 5725 __ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + 4)); | |
| 5726 #endif | |
| 5727 __ mov(r0, Operand(r4)); | |
| 5728 // And we are done. | |
| 5729 __ pop(pc); | |
| 5730 } | |
| 5731 } | |
| 5565 // We jump to here if something goes wrong (one param is not a number of any | 5732 // We jump to here if something goes wrong (one param is not a number of any |
| 5566 // sort or new-space allocation fails). | 5733 // sort or new-space allocation fails). |
| 5567 __ bind(&slow); | 5734 __ bind(&slow); |
| 5568 | 5735 |
| 5569 // Push arguments to the stack | 5736 // Push arguments to the stack |
| 5570 __ push(r1); | 5737 __ push(r1); |
| 5571 __ push(r0); | 5738 __ push(r0); |
| 5572 | 5739 |
| 5573 if (Token::ADD == operation) { | 5740 if (Token::ADD == op_) { |
| 5574 // Test for string arguments before calling runtime. | 5741 // Test for string arguments before calling runtime. |
| 5575 // r1 : first argument | 5742 // r1 : first argument |
| 5576 // r0 : second argument | 5743 // r0 : second argument |
| 5577 // sp[0] : second argument | 5744 // sp[0] : second argument |
| 5578 // sp[4] : first argument | 5745 // sp[4] : first argument |
| 5579 | 5746 |
| 5580 Label not_strings, not_string1, string1, string1_smi2; | 5747 Label not_strings, not_string1, string1, string1_smi2; |
| 5581 __ tst(r1, Operand(kSmiTagMask)); | 5748 __ tst(r1, Operand(kSmiTagMask)); |
| 5582 __ b(eq, ¬_string1); | 5749 __ b(eq, ¬_string1); |
| 5583 __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE); | 5750 __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE); |
| (...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 5615 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); | 5782 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE); |
| 5616 __ b(ge, ¬_strings); | 5783 __ b(ge, ¬_strings); |
| 5617 | 5784 |
| 5618 // Only second argument is a string. | 5785 // Only second argument is a string. |
| 5619 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS); | 5786 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS); |
| 5620 | 5787 |
| 5621 __ bind(¬_strings); | 5788 __ bind(¬_strings); |
| 5622 } | 5789 } |
| 5623 | 5790 |
| 5624 __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return. | 5791 __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return. |
| 5625 | |
| 5626 // We branch here if at least one of r0 and r1 is not a Smi. | |
| 5627 __ bind(not_smi); | |
| 5628 if (mode == NO_OVERWRITE) { | |
| 5629 // In the case where there is no chance of an overwritable float we may as | |
| 5630 // well do the allocation immediately while r0 and r1 are untouched. | |
| 5631 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
| 5632 } | |
| 5633 | |
| 5634 // Move r0 to a double in r2-r3. | |
| 5635 __ tst(r0, Operand(kSmiTagMask)); | |
| 5636 __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number. | |
| 5637 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); | |
| 5638 __ b(ne, &slow); | |
| 5639 if (mode == OVERWRITE_RIGHT) { | |
| 5640 __ mov(r5, Operand(r0)); // Overwrite this heap number. | |
| 5641 } | |
| 5642 if (use_fp_registers) { | |
| 5643 CpuFeatures::Scope scope(VFP3); | |
| 5644 // Load the double from tagged HeapNumber r0 to d7. | |
| 5645 __ sub(r7, r0, Operand(kHeapObjectTag)); | |
| 5646 __ vldr(d7, r7, HeapNumber::kValueOffset); | |
| 5647 } else { | |
| 5648 // Calling convention says that second double is in r2 and r3. | |
| 5649 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kValueOffset)); | |
| 5650 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kValueOffset + 4)); | |
| 5651 } | |
| 5652 __ jmp(&finished_loading_r0); | |
| 5653 __ bind(&r0_is_smi); | |
| 5654 if (mode == OVERWRITE_RIGHT) { | |
| 5655 // We can't overwrite a Smi so get address of new heap number into r5. | |
| 5656 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
| 5657 } | |
| 5658 | |
| 5659 if (use_fp_registers) { | |
| 5660 CpuFeatures::Scope scope(VFP3); | |
| 5661 // Convert smi in r0 to double in d7. | |
| 5662 __ mov(r7, Operand(r0, ASR, kSmiTagSize)); | |
| 5663 __ vmov(s15, r7); | |
| 5664 __ vcvt(d7, s15); | |
| 5665 } else { | |
| 5666 // Write Smi from r0 to r3 and r2 in double format. | |
| 5667 __ mov(r7, Operand(r0)); | |
| 5668 ConvertToDoubleStub stub3(r3, r2, r7, r6); | |
| 5669 __ push(lr); | |
| 5670 __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET); | |
| 5671 __ pop(lr); | |
| 5672 } | |
| 5673 | |
| 5674 __ bind(&finished_loading_r0); | |
| 5675 | |
| 5676 // Move r1 to a double in r0-r1. | |
| 5677 __ tst(r1, Operand(kSmiTagMask)); | |
| 5678 __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number. | |
| 5679 __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE); | |
| 5680 __ b(ne, &slow); | |
| 5681 if (mode == OVERWRITE_LEFT) { | |
| 5682 __ mov(r5, Operand(r1)); // Overwrite this heap number. | |
| 5683 } | |
| 5684 if (use_fp_registers) { | |
| 5685 CpuFeatures::Scope scope(VFP3); | |
| 5686 // Load the double from tagged HeapNumber r1 to d6. | |
| 5687 __ sub(r7, r1, Operand(kHeapObjectTag)); | |
| 5688 __ vldr(d6, r7, HeapNumber::kValueOffset); | |
| 5689 } else { | |
| 5690 // Calling convention says that first double is in r0 and r1. | |
| 5691 __ ldr(r0, FieldMemOperand(r1, HeapNumber::kValueOffset)); | |
| 5692 __ ldr(r1, FieldMemOperand(r1, HeapNumber::kValueOffset + 4)); | |
| 5693 } | |
| 5694 __ jmp(&finished_loading_r1); | |
| 5695 __ bind(&r1_is_smi); | |
| 5696 if (mode == OVERWRITE_LEFT) { | |
| 5697 // We can't overwrite a Smi so get address of new heap number into r5. | |
| 5698 AllocateHeapNumber(masm, &slow, r5, r6, r7); | |
| 5699 } | |
| 5700 | |
| 5701 if (use_fp_registers) { | |
| 5702 CpuFeatures::Scope scope(VFP3); | |
| 5703 // Convert smi in r1 to double in d6. | |
| 5704 __ mov(r7, Operand(r1, ASR, kSmiTagSize)); | |
| 5705 __ vmov(s13, r7); | |
| 5706 __ vcvt(d6, s13); | |
| 5707 } else { | |
| 5708 // Write Smi from r1 to r1 and r0 in double format. | |
| 5709 __ mov(r7, Operand(r1)); | |
| 5710 ConvertToDoubleStub stub4(r1, r0, r7, r6); | |
| 5711 __ push(lr); | |
| 5712 __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET); | |
| 5713 __ pop(lr); | |
| 5714 } | |
| 5715 | |
| 5716 __ bind(&finished_loading_r1); | |
| 5717 | |
| 5718 __ bind(&do_the_call); | |
| 5719 // If we are inlining the operation using VFP3 instructions for | |
| 5720 // add, subtract, multiply, or divide, the arguments are in d6 and d7. | |
| 5721 if (use_fp_registers) { | |
| 5722 CpuFeatures::Scope scope(VFP3); | |
| 5723 // ARMv7 VFP3 instructions to implement | |
| 5724 // double precision, add, subtract, multiply, divide. | |
| 5725 | |
| 5726 if (Token::MUL == operation) { | |
| 5727 __ vmul(d5, d6, d7); | |
| 5728 } else if (Token::DIV == operation) { | |
| 5729 __ vdiv(d5, d6, d7); | |
| 5730 } else if (Token::ADD == operation) { | |
| 5731 __ vadd(d5, d6, d7); | |
| 5732 } else if (Token::SUB == operation) { | |
| 5733 __ vsub(d5, d6, d7); | |
| 5734 } else { | |
| 5735 UNREACHABLE(); | |
| 5736 } | |
| 5737 __ sub(r0, r5, Operand(kHeapObjectTag)); | |
| 5738 __ vstr(d5, r0, HeapNumber::kValueOffset); | |
| 5739 __ add(r0, r0, Operand(kHeapObjectTag)); | |
| 5740 __ mov(pc, lr); | |
| 5741 return; | |
| 5742 } | |
| 5743 | |
| 5744 // If we did not inline the operation, then the arguments are in: | |
| 5745 // r0: Left value (least significant part of mantissa). | |
| 5746 // r1: Left value (sign, exponent, top of mantissa). | |
| 5747 // r2: Right value (least significant part of mantissa). | |
| 5748 // r3: Right value (sign, exponent, top of mantissa). | |
| 5749 // r5: Address of heap number for result. | |
| 5750 | |
| 5751 __ push(lr); // For later. | |
| 5752 __ push(r5); // Address of heap number that is answer. | |
| 5753 __ AlignStack(0); | |
| 5754 // Call C routine that may not cause GC or other trouble. | |
| 5755 __ mov(r5, Operand(ExternalReference::double_fp_operation(operation))); | |
| 5756 __ Call(r5); | |
| 5757 __ pop(r4); // Address of heap number. | |
| 5758 __ cmp(r4, Operand(Smi::FromInt(0))); | |
| 5759 __ pop(r4, eq); // Conditional pop instruction to get rid of alignment push. | |
| 5760 // Store answer in the overwritable heap number. | |
| 5761 #if !defined(USE_ARM_EABI) | |
| 5762 // Double returned in fp coprocessor register 0 and 1, encoded as register | |
| 5763 // cr8. Offsets must be divisible by 4 for coprocessor so we need to | |
| 5764 // substract the tag from r4. | |
| 5765 __ sub(r5, r4, Operand(kHeapObjectTag)); | |
| 5766 __ stc(p1, cr8, MemOperand(r5, HeapNumber::kValueOffset)); | |
| 5767 #else | |
| 5768 // Double returned in registers 0 and 1. | |
| 5769 __ str(r0, FieldMemOperand(r4, HeapNumber::kValueOffset)); | |
| 5770 __ str(r1, FieldMemOperand(r4, HeapNumber::kValueOffset + 4)); | |
| 5771 #endif | |
| 5772 __ mov(r0, Operand(r4)); | |
| 5773 // And we are done. | |
| 5774 __ pop(pc); | |
| 5775 } | 5792 } |
| 5776 | 5793 |
| 5777 | 5794 |
| 5778 // Tries to get a signed int32 out of a double precision floating point heap | 5795 // Tries to get a signed int32 out of a double precision floating point heap |
| 5779 // number. Rounds towards 0. Fastest for doubles that are in the ranges | 5796 // number. Rounds towards 0. Fastest for doubles that are in the ranges |
| 5780 // -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds | 5797 // -0x7fffffff to -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds |
| 5781 // almost to the range of signed int32 values that are not Smis. Jumps to the | 5798 // almost to the range of signed int32 values that are not Smis. Jumps to the |
| 5782 // label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0 | 5799 // label 'slow' if the double isn't in the range -0x80000000.0 to 0x80000000.0 |
| 5783 // (excluding the endpoints). | 5800 // (excluding the endpoints). |
| 5784 static void GetInt32(MacroAssembler* masm, | 5801 static void GetInt32(MacroAssembler* masm, |
| (...skipping 313 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 6098 | 6115 |
| 6099 | 6116 |
| 6100 | 6117 |
| 6101 void GenericBinaryOpStub::Generate(MacroAssembler* masm) { | 6118 void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
| 6102 // r1 : x | 6119 // r1 : x |
| 6103 // r0 : y | 6120 // r0 : y |
| 6104 // result : r0 | 6121 // result : r0 |
| 6105 | 6122 |
| 6106 // All ops need to know whether we are dealing with two Smis. Set up r2 to | 6123 // All ops need to know whether we are dealing with two Smis. Set up r2 to |
| 6107 // tell us that. | 6124 // tell us that. |
| 6108 __ orr(r2, r1, Operand(r0)); // r2 = x | y; | 6125 if (ShouldGenerateSmiCode()) { |
| 6126 __ orr(r2, r1, Operand(r0)); // r2 = x | y; | |
| 6127 } | |
| 6109 | 6128 |
| 6110 switch (op_) { | 6129 switch (op_) { |
| 6111 case Token::ADD: { | 6130 case Token::ADD: { |
| 6112 Label not_smi; | 6131 Label not_smi; |
| 6113 // Fast path. | 6132 // Fast path. |
| 6114 ASSERT(kSmiTag == 0); // Adjust code below. | 6133 if (ShouldGenerateSmiCode()) { |
| 6115 __ tst(r2, Operand(kSmiTagMask)); | 6134 ASSERT(kSmiTag == 0); // Adjust code below. |
| 6116 __ b(ne, ¬_smi); | 6135 __ tst(r2, Operand(kSmiTagMask)); |
| 6117 __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. | 6136 __ b(ne, ¬_smi); |
| 6118 // Return if no overflow. | 6137 __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. |
| 6119 __ Ret(vc); | 6138 // Return if no overflow. |
| 6120 __ sub(r0, r0, Operand(r1)); // Revert optimistic add. | 6139 __ Ret(vc); |
| 6121 | 6140 __ sub(r0, r0, Operand(r1)); // Revert optimistic add. |
| 6122 HandleBinaryOpSlowCases(masm, | 6141 } |
| 6123 ¬_smi, | 6142 HandleBinaryOpSlowCases(masm, ¬_smi, Builtins::ADD); |
| 6124 Builtins::ADD, | |
| 6125 Token::ADD, | |
| 6126 mode_); | |
| 6127 break; | 6143 break; |
| 6128 } | 6144 } |
| 6129 | 6145 |
| 6130 case Token::SUB: { | 6146 case Token::SUB: { |
| 6131 Label not_smi; | 6147 Label not_smi; |
| 6132 // Fast path. | 6148 // Fast path. |
| 6133 ASSERT(kSmiTag == 0); // Adjust code below. | 6149 if (ShouldGenerateSmiCode()) { |
| 6134 __ tst(r2, Operand(kSmiTagMask)); | 6150 ASSERT(kSmiTag == 0); // Adjust code below. |
| 6135 __ b(ne, ¬_smi); | 6151 __ tst(r2, Operand(kSmiTagMask)); |
| 6136 __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically. | 6152 __ b(ne, ¬_smi); |
| 6137 // Return if no overflow. | 6153 __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically. |
| 6138 __ Ret(vc); | 6154 // Return if no overflow. |
| 6139 __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract. | 6155 __ Ret(vc); |
| 6140 | 6156 __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract. |
| 6141 HandleBinaryOpSlowCases(masm, | 6157 } |
| 6142 ¬_smi, | 6158 HandleBinaryOpSlowCases(masm, ¬_smi, Builtins::SUB); |
| 6143 Builtins::SUB, | |
| 6144 Token::SUB, | |
| 6145 mode_); | |
| 6146 break; | 6159 break; |
| 6147 } | 6160 } |
| 6148 | 6161 |
| 6149 case Token::MUL: { | 6162 case Token::MUL: { |
| 6150 Label not_smi, slow; | 6163 Label not_smi, slow; |
| 6151 ASSERT(kSmiTag == 0); // adjust code below | 6164 if (ShouldGenerateSmiCode()) { |
| 6152 __ tst(r2, Operand(kSmiTagMask)); | 6165 ASSERT(kSmiTag == 0); // adjust code below |
| 6153 __ b(ne, ¬_smi); | 6166 __ tst(r2, Operand(kSmiTagMask)); |
| 6154 // Remove tag from one operand (but keep sign), so that result is Smi. | 6167 __ b(ne, ¬_smi); |
| 6155 __ mov(ip, Operand(r0, ASR, kSmiTagSize)); | 6168 // Remove tag from one operand (but keep sign), so that result is Smi. |
| 6156 // Do multiplication | 6169 __ mov(ip, Operand(r0, ASR, kSmiTagSize)); |
| 6157 __ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1. | 6170 // Do multiplication |
| 6158 // Go slow on overflows (overflow bit is not set). | 6171 __ smull(r3, r2, r1, ip); // r3 = lower 32 bits of ip*r1. |
| 6159 __ mov(ip, Operand(r3, ASR, 31)); | 6172 // Go slow on overflows (overflow bit is not set). |
| 6160 __ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical | 6173 __ mov(ip, Operand(r3, ASR, 31)); |
| 6161 __ b(ne, &slow); | 6174 __ cmp(ip, Operand(r2)); // no overflow if higher 33 bits are identical |
| 6162 // Go slow on zero result to handle -0. | 6175 __ b(ne, &slow); |
| 6163 __ tst(r3, Operand(r3)); | 6176 // Go slow on zero result to handle -0. |
| 6164 __ mov(r0, Operand(r3), LeaveCC, ne); | 6177 __ tst(r3, Operand(r3)); |
| 6165 __ Ret(ne); | 6178 __ mov(r0, Operand(r3), LeaveCC, ne); |
| 6166 // We need -0 if we were multiplying a negative number with 0 to get 0. | 6179 __ Ret(ne); |
| 6167 // We know one of them was zero. | 6180 // We need -0 if we were multiplying a negative number with 0 to get 0. |
| 6168 __ add(r2, r0, Operand(r1), SetCC); | 6181 // We know one of them was zero. |
| 6169 __ mov(r0, Operand(Smi::FromInt(0)), LeaveCC, pl); | 6182 __ add(r2, r0, Operand(r1), SetCC); |
| 6170 __ Ret(pl); // Return Smi 0 if the non-zero one was positive. | 6183 __ mov(r0, Operand(Smi::FromInt(0)), LeaveCC, pl); |
| 6171 // Slow case. We fall through here if we multiplied a negative number | 6184 __ Ret(pl); // Return Smi 0 if the non-zero one was positive. |
| 6172 // with 0, because that would mean we should produce -0. | 6185 // Slow case. We fall through here if we multiplied a negative number |
| 6173 __ bind(&slow); | 6186 // with 0, because that would mean we should produce -0. |
| 6174 | 6187 __ bind(&slow); |
| 6175 HandleBinaryOpSlowCases(masm, | 6188 } |
| 6176 ¬_smi, | 6189 HandleBinaryOpSlowCases(masm, ¬_smi, Builtins::MUL); |
| 6177 Builtins::MUL, | |
| 6178 Token::MUL, | |
| 6179 mode_); | |
| 6180 break; | 6190 break; |
| 6181 } | 6191 } |
| 6182 | 6192 |
| 6183 case Token::DIV: | 6193 case Token::DIV: |
| 6184 case Token::MOD: { | 6194 case Token::MOD: { |
| 6185 Label not_smi; | 6195 Label not_smi; |
| 6186 if (specialized_on_rhs_) { | 6196 if (ShouldGenerateSmiCode()) { |
| 6187 Label smi_is_unsuitable; | 6197 Label smi_is_unsuitable; |
| 6188 __ BranchOnNotSmi(r1, ¬_smi); | 6198 __ BranchOnNotSmi(r1, ¬_smi); |
| 6189 if (IsPowerOf2(constant_rhs_)) { | 6199 if (IsPowerOf2(constant_rhs_)) { |
| 6190 if (op_ == Token::MOD) { | 6200 if (op_ == Token::MOD) { |
| 6191 __ and_(r0, | 6201 __ and_(r0, |
| 6192 r1, | 6202 r1, |
| 6193 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)), | 6203 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)), |
| 6194 SetCC); | 6204 SetCC); |
| 6195 // We now have the answer, but if the input was negative we also | 6205 // We now have the answer, but if the input was negative we also |
| 6196 // have the sign bit. Our work is done if the result is | 6206 // have the sign bit. Our work is done if the result is |
| (...skipping 59 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 6256 __ sub(r3, r1, Operand(r4, LSL, required_r4_shift), SetCC); | 6266 __ sub(r3, r1, Operand(r4, LSL, required_r4_shift), SetCC); |
| 6257 __ b(ne, &smi_is_unsuitable); // There was a remainder. | 6267 __ b(ne, &smi_is_unsuitable); // There was a remainder. |
| 6258 __ mov(r0, Operand(r2, LSL, kSmiTagSize)); | 6268 __ mov(r0, Operand(r2, LSL, kSmiTagSize)); |
| 6259 } else { | 6269 } else { |
| 6260 ASSERT(op_ == Token::MOD); | 6270 ASSERT(op_ == Token::MOD); |
| 6261 __ sub(r0, r1, Operand(r4, LSL, required_r4_shift)); | 6271 __ sub(r0, r1, Operand(r4, LSL, required_r4_shift)); |
| 6262 } | 6272 } |
| 6263 } | 6273 } |
| 6264 __ Ret(); | 6274 __ Ret(); |
| 6265 __ bind(&smi_is_unsuitable); | 6275 __ bind(&smi_is_unsuitable); |
| 6266 } else { | |
| 6267 __ jmp(¬_smi); | |
| 6268 } | 6276 } |
| 6269 HandleBinaryOpSlowCases(masm, | 6277 HandleBinaryOpSlowCases( |
| 6270 ¬_smi, | 6278 masm, |
| 6271 op_ == Token::MOD ? Builtins::MOD : Builtins::DIV, | 6279 ¬_smi, |
| 6272 op_, | 6280 op_ == Token::MOD ? Builtins::MOD : Builtins::DIV); |
| 6273 mode_); | |
| 6274 break; | 6281 break; |
| 6275 } | 6282 } |
| 6276 | 6283 |
| 6277 case Token::BIT_OR: | 6284 case Token::BIT_OR: |
| 6278 case Token::BIT_AND: | 6285 case Token::BIT_AND: |
| 6279 case Token::BIT_XOR: | 6286 case Token::BIT_XOR: |
| 6280 case Token::SAR: | 6287 case Token::SAR: |
| 6281 case Token::SHR: | 6288 case Token::SHR: |
| 6282 case Token::SHL: { | 6289 case Token::SHL: { |
| 6283 Label slow; | 6290 Label slow; |
| (...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 6323 __ Ret(); | 6330 __ Ret(); |
| 6324 __ bind(&slow); | 6331 __ bind(&slow); |
| 6325 HandleNonSmiBitwiseOp(masm); | 6332 HandleNonSmiBitwiseOp(masm); |
| 6326 break; | 6333 break; |
| 6327 } | 6334 } |
| 6328 | 6335 |
| 6329 default: UNREACHABLE(); | 6336 default: UNREACHABLE(); |
| 6330 } | 6337 } |
| 6331 // This code should be unreachable. | 6338 // This code should be unreachable. |
| 6332 __ stop("Unreachable"); | 6339 __ stop("Unreachable"); |
| 6340 | |
| 6341 // Generate an unreachable reference to the DEFAULT stub so that it can be | |
|
Mads Ager (chromium)
2010/03/22 10:17:50
Please add the TODO to get rid of this before subm
| |
| 6342 // found at the end of this stub when clearing ICs at GC. | |
| 6343 if (runtime_operands_type_ != BinaryOpIC::DEFAULT) { | |
| 6344 GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT); | |
| 6345 __ CallStub(&uninit); | |
| 6346 } | |
| 6347 } | |
| 6348 | |
| 6349 | |
| 6350 void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { | |
| 6351 Label get_result; | |
| 6352 | |
| 6353 __ push(r1); | |
| 6354 __ push(r0); | |
| 6355 | |
| 6356 // Internal frame is necessary to handle exceptions properly. | |
| 6357 __ EnterInternalFrame(); | |
| 6358 // Call the stub proper to get the result in r0. | |
| 6359 __ Call(&get_result); | |
| 6360 __ LeaveInternalFrame(); | |
| 6361 | |
| 6362 __ push(r0); | |
| 6363 | |
| 6364 __ mov(r0, Operand(Smi::FromInt(MinorKey()))); | |
| 6365 __ push(r0); | |
| 6366 __ mov(r0, Operand(Smi::FromInt(op_))); | |
| 6367 __ push(r0); | |
| 6368 __ mov(r0, Operand(Smi::FromInt(runtime_operands_type_))); | |
| 6369 __ push(r0); | |
| 6370 | |
| 6371 __ TailCallExternalReference( | |
| 6372 ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), | |
| 6373 6, | |
| 6374 1); | |
| 6375 | |
| 6376 // The entry point for the result calculation is assumed to be immediately | |
| 6377 // after this sequence. | |
| 6378 __ bind(&get_result); | |
| 6333 } | 6379 } |
| 6334 | 6380 |
| 6335 | 6381 |
| 6336 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { | 6382 Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
| 6337 return Handle<Code>::null(); | 6383 GenericBinaryOpStub stub(key, type_info); |
| 6384 return stub.GetCode(); | |
| 6338 } | 6385 } |
| 6339 | 6386 |
| 6340 | 6387 |
| 6341 void StackCheckStub::Generate(MacroAssembler* masm) { | 6388 void StackCheckStub::Generate(MacroAssembler* masm) { |
| 6342 // Do tail-call to runtime routine. Runtime routines expect at least one | 6389 // Do tail-call to runtime routine. Runtime routines expect at least one |
| 6343 // argument, so give it a Smi. | 6390 // argument, so give it a Smi. |
| 6344 __ mov(r0, Operand(Smi::FromInt(0))); | 6391 __ mov(r0, Operand(Smi::FromInt(0))); |
| 6345 __ push(r0); | 6392 __ push(r0); |
| 6346 __ TailCallRuntime(Runtime::kStackGuard, 1, 1); | 6393 __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
| 6347 | 6394 |
| (...skipping 1694 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 8042 | 8089 |
| 8043 // Just jump to runtime to add the two strings. | 8090 // Just jump to runtime to add the two strings. |
| 8044 __ bind(&string_add_runtime); | 8091 __ bind(&string_add_runtime); |
| 8045 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); | 8092 __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
| 8046 } | 8093 } |
| 8047 | 8094 |
| 8048 | 8095 |
| 8049 #undef __ | 8096 #undef __ |
| 8050 | 8097 |
| 8051 } } // namespace v8::internal | 8098 } } // namespace v8::internal |
| OLD | NEW |