Chromium Code Reviews| Index: src/x64/code-stubs-x64.cc |
| diff --git a/src/x64/code-stubs-x64.cc b/src/x64/code-stubs-x64.cc |
| index 96f70bfa913e37148bb55f3f7aad46a59eb60b30..21248f5bcb936315cdda7587acc84ba6e53e7ee1 100644 |
| --- a/src/x64/code-stubs-x64.cc |
| +++ b/src/x64/code-stubs-x64.cc |
| @@ -1991,152 +1991,274 @@ void FloatingPointHelper::NumbersToSmis(MacroAssembler* masm, |
| void MathPowStub::Generate(MacroAssembler* masm) { |
| - // Registers are used as follows: |
| - // rdx = base |
| - // rax = exponent |
| - // rcx = temporary, result |
| - |
| - Label allocate_return, call_runtime; |
| - |
| - // Load input parameters. |
| - __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
| - __ movq(rax, Operand(rsp, 1 * kPointerSize)); |
| - |
| - // Save 1 in xmm3 - we need this several times later on. |
| - __ Set(rcx, 1); |
| - __ cvtlsi2sd(xmm3, rcx); |
| - |
| - Label exponent_nonsmi; |
| - Label base_nonsmi; |
| - // If the exponent is a heap number go to that specific case. |
| - __ JumpIfNotSmi(rax, &exponent_nonsmi); |
| - __ JumpIfNotSmi(rdx, &base_nonsmi); |
| + // Choose register conforming to calling convention (when bailing out). |
| +#ifdef _WIN64 |
| + const Register exponent = rdx; |
| +#else |
| + const Register exponent = rdi; |
| +#endif |
| + const Register base = rax; |
| + const Register scratch = rcx; |
| + const XMMRegister double_result = xmm3; |
| + const XMMRegister double_base = xmm2; |
| + const XMMRegister double_exponent = xmm1; |
| + const XMMRegister double_scratch = xmm4; |
| + |
| + Label double_int_runtime, generic_runtime, done; |
| + Label exponent_not_smi, int_exponent; |
| + |
| + // Save 1 in double_result - we need this several times later on. |
| + __ Set(scratch, 1); |
| + __ cvtlsi2sd(double_result, scratch); |
| + |
| + if (exponent_type_ == ON_STACK) { |
| + Label base_is_smi, unpack_exponent; |
| + // The exponent and base are supplied as arguments on the stack. |
| + // This can only happen if the stub is called from non-optimized code. |
| + // Load input parameters from stack. |
| + __ movq(base, Operand(rsp, 2 * kPointerSize)); |
| + __ movq(exponent, Operand(rsp, 1 * kPointerSize)); |
| + __ JumpIfSmi(base, &base_is_smi, Label::kNear); |
| + __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset), |
| + Heap::kHeapNumberMapRootIndex); |
| + __ j(not_equal, &generic_runtime); |
| + |
| + __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset)); |
| + __ jmp(&unpack_exponent, Label::kNear); |
| + |
| + __ bind(&base_is_smi); |
| + __ SmiToInteger32(base, base); |
| + __ cvtlsi2sd(double_base, base); |
| + __ bind(&unpack_exponent); |
| + |
| + __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); |
| + __ SmiToInteger32(exponent, exponent); |
| + __ jmp(&int_exponent); |
| + |
| + __ bind(&exponent_not_smi); |
| + __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset), |
| + Heap::kHeapNumberMapRootIndex); |
| + __ j(not_equal, &generic_runtime); |
| + __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); |
| + } else if (exponent_type_ == TAGGED) { |
| + __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); |
| + __ SmiToInteger32(exponent, exponent); |
| + __ jmp(&int_exponent); |
| + |
| + __ bind(&exponent_not_smi); |
| + __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); |
| + } |
| - // Optimized version when both exponent and base are smis. |
| - Label powi; |
| - __ SmiToInteger32(rdx, rdx); |
| - __ cvtlsi2sd(xmm0, rdx); |
| - __ jmp(&powi); |
| - // Exponent is a smi and base is a heapnumber. |
| - __ bind(&base_nonsmi); |
| - __ CompareRoot(FieldOperand(rdx, HeapObject::kMapOffset), |
| - Heap::kHeapNumberMapRootIndex); |
| - __ j(not_equal, &call_runtime); |
| + if (exponent_type_ != INTEGER) { |
| + Label fast_power; |
| + // Detect integer exponents stored as double. |
| + __ cvttsd2si(exponent, double_exponent); |
| + // Skip to runtime if possibly NaN (indicated by the indefinite integer). |
| + __ cmpl(exponent, Immediate(0x80000000u)); |
| + __ j(equal, &generic_runtime); |
| + __ cvtlsi2sd(double_scratch, exponent); |
| + // Already ruled out NaNs for exponent. |
| + __ ucomisd(double_exponent, double_scratch); |
| + __ j(equal, &int_exponent); |
| + |
| + if (exponent_type_ == ON_STACK) { |
| + // Detect square root case. Crankshaft detects constant +/-0.5 at |
| + // compile time and uses DoMathPowHalf instead. We then skip this check |
| + // for non-constant cases of +/-0.5 as these hardly occur. |
| + Label continue_sqrt, continue_rsqrt, not_plus_half; |
| + // Test for 0.5. |
| + // Load double_scratch with 0.5. |
| + __ movq(scratch, V8_UINT64_C(0x3FE0000000000000), RelocInfo::NONE); |
| + __ movq(double_scratch, scratch); |
| + // Already ruled out NaNs for exponent. |
| + __ ucomisd(double_scratch, double_exponent); |
| + __ j(not_equal, ¬_plus_half, Label::kNear); |
| + |
| + // Calculates square root of base. Check for the special case of |
| + // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). |
| + // According to IEEE-754, double-precision -Infinity has the highest |
| + // 12 bits set and the lowest 52 bits cleared. |
| + __ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE); |
| + __ movq(double_scratch, scratch); |
| + __ ucomisd(double_scratch, double_base); |
| + // Comparing -Infinity with NaN results in "unordered", which sets the |
| + // zero flag as if both were equal. However, it also sets the carry flag. |
| + __ j(not_equal, &continue_sqrt, Label::kNear); |
| + __ j(carry, &continue_sqrt, Label::kNear); |
| + |
| + // Set result to Infinity in the special case. |
| + __ xorps(double_result, double_result); |
| + __ subsd(double_result, double_scratch); |
| + __ jmp(&done); |
| + |
| + __ bind(&continue_sqrt); |
| + // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
| + __ xorps(double_scratch, double_scratch); |
| + __ addsd(double_scratch, double_base); // Convert -0 to 0. |
| + __ sqrtsd(double_result, double_scratch); |
| + __ jmp(&done); |
| + |
| + // Test for -0.5. |
| + __ bind(¬_plus_half); |
| + // Load double_scratch with -0.5 by substracting 1. |
| + __ subsd(double_scratch, double_result); |
| + // Already ruled out NaNs for exponent. |
| + __ ucomisd(double_scratch, double_exponent); |
| + __ j(not_equal, &fast_power, Label::kNear); |
| + |
| + // Calculates reciprocal of square root of base. Check for the special |
| + // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). |
| + // According to IEEE-754, double-precision -Infinity has the highest |
| + // 12 bits set and the lowest 52 bits cleared. |
| + __ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE); |
| + __ movq(double_scratch, scratch); |
| + __ ucomisd(double_scratch, double_base); |
| + // Comparing -Infinity with NaN results in "unordered", which sets the |
| + // zero flag as if both were equal. However, it also sets the carry flag. |
| + __ j(not_equal, &continue_rsqrt, Label::kNear); |
| + __ j(carry, &continue_rsqrt, Label::kNear); |
| + |
| + // Set result to 0 in the special case. |
| + __ xorps(double_result, double_result); |
| + __ jmp(&done); |
| + |
| + __ bind(&continue_rsqrt); |
| + // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
| + __ xorps(double_exponent, double_exponent); |
| + __ addsd(double_exponent, double_base); // Convert -0 to +0. |
|
ulan
2011/12/06 17:38:04
addsd(double_base, double_exponent) would allow yo
|
| + __ sqrtsd(double_exponent, double_exponent); |
| + __ divsd(double_result, double_exponent); |
| + __ jmp(&done); |
| + } |
| - __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
| + // Using FPU instructions to calculate power. |
| + Label fast_power_failed; |
| + __ bind(&fast_power); |
| + __ fnclex(); // Clear flags to catch exceptions later. |
| + // Transfer (B)ase and (E)xponent onto the FPU register stack. |
| + __ subq(rsp, Immediate(kDoubleSize)); |
| + __ movsd(Operand(rsp, 0), double_exponent); |
| + __ fld_d(Operand(rsp, 0)); // E |
| + __ movsd(Operand(rsp, 0), double_base); |
| + __ fld_d(Operand(rsp, 0)); // B, E |
| + |
| + // Exponent is in st(1) and base is in st(0) |
| + // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) |
| + // FYL2X calculates st(1) * log2(st(0)) |
| + __ fyl2x(); // X |
| + __ fld(0); // X, X |
| + __ frndint(); // rnd(X), X |
| + __ fsub(1); // rnd(X), X-rnd(X) |
| + __ fxch(1); // X - rnd(X), rnd(X) |
| + // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 |
| + __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) |
| + __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) |
| + __ faddp(1); // 1, 2^(X-rnd(X)), rnd(X) |
| + // FSCALE calculates st(0) * 2^st(1) |
| + __ fscale(); // 2^X, rnd(X) |
| + __ fstp(1); |
| + // Bail out to runtime in case of exceptions in the status word. |
| + __ fnstsw_ax(); |
| + __ testb(rax, Immediate(0x5F)); // Check for all but precision exception. |
| + __ j(not_zero, &fast_power_failed, Label::kNear); |
| + __ fstp_d(Operand(rsp, 0)); |
| + __ movsd(double_result, Operand(rsp, 0)); |
| + __ addq(rsp, Immediate(kDoubleSize)); |
| + __ jmp(&done); |
| - // Optimized version of pow if exponent is a smi. |
| - // xmm0 contains the base. |
| - __ bind(&powi); |
| - __ SmiToInteger32(rax, rax); |
| + __ bind(&fast_power_failed); |
| + __ fninit(); |
| + __ addq(rsp, Immediate(kDoubleSize)); |
| + __ jmp(&generic_runtime); |
| + } |
| - // Save exponent in base as we need to check if exponent is negative later. |
| - // We know that base and exponent are in different registers. |
| - __ movq(rdx, rax); |
| + // Calculate power with integer exponent. |
| + __ bind(&int_exponent); |
| + const XMMRegister double_scratch2 = double_exponent; |
| + // Back up exponent as we need to check if exponent is negative later. |
| + __ movq(scratch, exponent); // Back up exponent. |
| + __ movsd(double_scratch, double_base); // Back up base. |
| + __ movsd(double_scratch2, double_result); // Load double_exponent with 1. |
| // Get absolute value of exponent. |
| - Label no_neg; |
| - __ cmpl(rax, Immediate(0)); |
| - __ j(greater_equal, &no_neg, Label::kNear); |
| - __ negl(rax); |
| + Label no_neg, while_true, no_multiply; |
| + __ cmpl(scratch, Immediate(0)); |
| + __ j(positive, &no_neg, Label::kNear); |
| + __ negl(scratch); |
| __ bind(&no_neg); |
| - // Load xmm1 with 1. |
| - __ movaps(xmm1, xmm3); |
| - Label while_true; |
| - Label no_multiply; |
| - |
| __ bind(&while_true); |
| - __ shrl(rax, Immediate(1)); |
| + __ shrl(scratch, Immediate(1)); |
| __ j(not_carry, &no_multiply, Label::kNear); |
| - __ mulsd(xmm1, xmm0); |
| + __ mulsd(double_result, double_scratch); |
| __ bind(&no_multiply); |
| - __ mulsd(xmm0, xmm0); |
| - __ j(not_zero, &while_true); |
| - // Base has the original value of the exponent - if the exponent is |
| - // negative return 1/result. |
| - __ testl(rdx, rdx); |
| - __ j(positive, &allocate_return); |
| - // Special case if xmm1 has reached infinity. |
| - __ divsd(xmm3, xmm1); |
| - __ movaps(xmm1, xmm3); |
| - __ xorps(xmm0, xmm0); |
| - __ ucomisd(xmm0, xmm1); |
| - __ j(equal, &call_runtime); |
| + __ mulsd(double_scratch, double_scratch); |
| + __ j(not_zero, &while_true); |
| - __ jmp(&allocate_return); |
| + // scratch has the original value of the exponent - if the exponent is |
| + // negative, return 1/result. |
| + __ testl(exponent, exponent); |
| + __ j(greater, &done); |
| + __ divsd(double_scratch2, double_result); |
| + __ movsd(double_result, double_scratch2); |
| + // Test whether result is zero. Bail out to check for subnormal result. |
| + // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. |
| + __ xorps(double_scratch2, double_scratch2); |
| + __ ucomisd(double_scratch2, double_result); |
| + __ j(equal, &double_int_runtime); |
| + |
| + // Returning or bailing out. |
| + if (exponent_type_ == ON_STACK) { |
| + // The stub is called from non-optimized code, which expects the result |
| + // as heap number in eax. |
| + __ bind(&done); |
| + __ AllocateHeapNumber(rax, rcx, &generic_runtime); |
| + __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result); |
| + __ ret(2 * kPointerSize); |
| - // Exponent (or both) is a heapnumber - no matter what we should now work |
| - // on doubles. |
| - __ bind(&exponent_nonsmi); |
| - __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), |
| - Heap::kHeapNumberMapRootIndex); |
| - __ j(not_equal, &call_runtime); |
| - __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
| - // Test if exponent is nan. |
| - __ ucomisd(xmm1, xmm1); |
| - __ j(parity_even, &call_runtime); |
| + // The arguments are still on the stack. |
| + __ bind(&generic_runtime); |
| + __ bind(&double_int_runtime); |
| + __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
| + } else { |
| + __ jmp(&done); |
| - Label base_not_smi, handle_special_cases; |
| - __ JumpIfNotSmi(rdx, &base_not_smi, Label::kNear); |
| - __ SmiToInteger32(rdx, rdx); |
| - __ cvtlsi2sd(xmm0, rdx); |
| - __ jmp(&handle_special_cases, Label::kNear); |
| + Label return_from_runtime; |
| + StubRuntimeCallHelper callhelper; |
| + __ bind(&generic_runtime); |
| + // Move base to the correct argument register. Exponent is already in xmm1. |
| + __ movsd(xmm0, double_base); |
| + ASSERT(exponent.is(xmm1)); |
| + { |
| + AllowExternalCallThatCantCauseGC scope(masm); |
| + __ PrepareCallCFunction(2); |
| + __ CallCFunction( |
| + ExternalReference::power_double_double_function(masm->isolate()), 2); |
| + } |
| + __ jmp(&return_from_runtime, Label::kNear); |
| - __ bind(&base_not_smi); |
| - __ CompareRoot(FieldOperand(rdx, HeapObject::kMapOffset), |
| - Heap::kHeapNumberMapRootIndex); |
| - __ j(not_equal, &call_runtime); |
| - __ movl(rcx, FieldOperand(rdx, HeapNumber::kExponentOffset)); |
| - __ andl(rcx, Immediate(HeapNumber::kExponentMask)); |
| - __ cmpl(rcx, Immediate(HeapNumber::kExponentMask)); |
| - // base is NaN or +/-Infinity |
| - __ j(greater_equal, &call_runtime); |
| - __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
| + __ bind(&double_int_runtime); |
| + // Move base to the correct argument register. |
| + __ movsd(xmm0, double_base); |
| + // Exponent is already in the correct argument register: |
| + // edi (not rdi) on Linux and edx on Windows. |
| + { |
| + AllowExternalCallThatCantCauseGC scope(masm); |
| + __ PrepareCallCFunction(2); |
| + __ CallCFunction( |
| + ExternalReference::power_double_int_function(masm->isolate()), 2); |
| + } |
| - // base is in xmm0 and exponent is in xmm1. |
| - __ bind(&handle_special_cases); |
| - Label not_minus_half; |
| - // Test for -0.5. |
| - // Load xmm2 with -0.5. |
| - __ movq(rcx, V8_UINT64_C(0xBFE0000000000000), RelocInfo::NONE); |
| - __ movq(xmm2, rcx); |
| - // xmm2 now has -0.5. |
| - __ ucomisd(xmm2, xmm1); |
| - __ j(not_equal, ¬_minus_half, Label::kNear); |
| - |
| - // Calculates reciprocal of square root. |
| - // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
| - __ xorps(xmm1, xmm1); |
| - __ addsd(xmm1, xmm0); |
| - __ sqrtsd(xmm1, xmm1); |
| - __ divsd(xmm3, xmm1); |
| - __ movaps(xmm1, xmm3); |
| - __ jmp(&allocate_return); |
| - |
| - // Test for 0.5. |
| - __ bind(¬_minus_half); |
| - // Load xmm2 with 0.5. |
| - // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3. |
| - __ addsd(xmm2, xmm3); |
| - // xmm2 now has 0.5. |
| - __ ucomisd(xmm2, xmm1); |
| - __ j(not_equal, &call_runtime); |
| - // Calculates square root. |
| - // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
| - __ xorps(xmm1, xmm1); |
| - __ addsd(xmm1, xmm0); // Convert -0 to 0. |
| - __ sqrtsd(xmm1, xmm1); |
| - |
| - __ bind(&allocate_return); |
| - __ AllocateHeapNumber(rcx, rax, &call_runtime); |
| - __ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm1); |
| - __ movq(rax, rcx); |
| - __ ret(2 * kPointerSize); |
| + __ bind(&return_from_runtime); |
| + // Return value is in xmm0. |
| + __ movsd(double_result, xmm0); |
| + // Restore context register. |
| + __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); |
| - __ bind(&call_runtime); |
| - __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
| + __ bind(&done); |
| + __ ret(0); |
| + } |
| } |