OLD | NEW |
1 // Copyright 2011 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 2922 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2933 | 2933 |
2934 void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm, | 2934 void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm, |
2935 Label* non_int32) { | 2935 Label* non_int32) { |
2936 return; | 2936 return; |
2937 } | 2937 } |
2938 | 2938 |
2939 | 2939 |
2940 void MathPowStub::Generate(MacroAssembler* masm) { | 2940 void MathPowStub::Generate(MacroAssembler* masm) { |
2941 CpuFeatures::Scope use_sse2(SSE2); | 2941 CpuFeatures::Scope use_sse2(SSE2); |
2942 Factory* factory = masm->isolate()->factory(); | 2942 Factory* factory = masm->isolate()->factory(); |
| 2943 const Register exponent = eax; |
| 2944 const Register base = edx; |
| 2945 const Register scratch = ecx; |
| 2946 const XMMRegister double_result = xmm3; |
| 2947 const XMMRegister double_base = xmm2; |
| 2948 const XMMRegister double_exponent = xmm1; |
| 2949 const XMMRegister double_scratch = xmm4; |
| 2950 |
2943 Label double_int_runtime, generic_runtime, done; | 2951 Label double_int_runtime, generic_runtime, done; |
2944 Label base_is_smi, unpack_exponent, exponent_not_smi, int_exponent; | 2952 Label exponent_not_smi, int_exponent; |
2945 // Save 1 in xmm3 - we need this several times later on. | 2953 |
2946 __ mov(ecx, Immediate(1)); | 2954 // Save 1 in double_result - we need this several times later on. |
2947 __ cvtsi2sd(xmm3, ecx); | 2955 __ mov(scratch, Immediate(1)); |
| 2956 __ cvtsi2sd(double_result, scratch); |
2948 | 2957 |
2949 if (exponent_type_ == ON_STACK) { | 2958 if (exponent_type_ == ON_STACK) { |
2950 // The exponent (and base) are supplied as arguments on the stack. | 2959 Label base_is_smi, unpack_exponent; |
| 2960 // The exponent and base are supplied as arguments on the stack. |
2951 // This can only happen if the stub is called from non-optimized code. | 2961 // This can only happen if the stub is called from non-optimized code. |
2952 // Load input parameters from stack | 2962 // Load input parameters from stack. |
2953 __ mov(edx, Operand(esp, 2 * kPointerSize)); | 2963 __ mov(base, Operand(esp, 2 * kPointerSize)); |
2954 __ mov(eax, Operand(esp, 1 * kPointerSize)); | 2964 __ mov(exponent, Operand(esp, 1 * kPointerSize)); |
2955 // edx: base (smi or heap number) | 2965 |
2956 // eax: exponent (smi or heap number) | 2966 __ JumpIfSmi(base, &base_is_smi, Label::kNear); |
2957 __ JumpIfSmi(edx, &base_is_smi, Label::kNear); | 2967 __ cmp(FieldOperand(base, HeapObject::kMapOffset), |
2958 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), | |
2959 factory->heap_number_map()); | 2968 factory->heap_number_map()); |
2960 __ j(not_equal, &generic_runtime); | 2969 __ j(not_equal, &generic_runtime); |
2961 | 2970 |
2962 __ movdbl(xmm1, FieldOperand(edx, HeapNumber::kValueOffset)); | 2971 __ movdbl(double_base, FieldOperand(base, HeapNumber::kValueOffset)); |
2963 __ jmp(&unpack_exponent, Label::kNear); | 2972 __ jmp(&unpack_exponent, Label::kNear); |
2964 | 2973 |
2965 __ bind(&base_is_smi); | 2974 __ bind(&base_is_smi); |
2966 __ SmiUntag(edx); | 2975 __ SmiUntag(base); |
2967 __ cvtsi2sd(xmm1, edx); | 2976 __ cvtsi2sd(double_base, base); |
2968 __ bind(&unpack_exponent); | 2977 __ bind(&unpack_exponent); |
2969 | 2978 |
2970 __ JumpIfNotSmi(eax, &exponent_not_smi, Label::kNear); | 2979 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); |
2971 __ SmiUntag(eax); | 2980 __ SmiUntag(exponent); |
2972 __ jmp(&int_exponent); | 2981 __ jmp(&int_exponent); |
2973 | 2982 |
2974 __ bind(&exponent_not_smi); | 2983 __ bind(&exponent_not_smi); |
2975 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), | 2984 __ cmp(FieldOperand(exponent, HeapObject::kMapOffset), |
2976 factory->heap_number_map()); | 2985 factory->heap_number_map()); |
2977 __ j(not_equal, &generic_runtime); | 2986 __ j(not_equal, &generic_runtime); |
2978 __ movdbl(xmm2, FieldOperand(eax, HeapNumber::kValueOffset)); | 2987 __ movdbl(double_exponent, |
| 2988 FieldOperand(exponent, HeapNumber::kValueOffset)); |
2979 } else if (exponent_type_ == TAGGED) { | 2989 } else if (exponent_type_ == TAGGED) { |
2980 // xmm1: base as double | 2990 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); |
2981 // eax: exponent (smi or heap number) | 2991 __ SmiUntag(exponent); |
2982 __ JumpIfNotSmi(eax, &exponent_not_smi, Label::kNear); | |
2983 __ SmiUntag(eax); | |
2984 __ jmp(&int_exponent); | 2992 __ jmp(&int_exponent); |
2985 | 2993 |
2986 __ bind(&exponent_not_smi); | 2994 __ bind(&exponent_not_smi); |
2987 __ movdbl(xmm2, FieldOperand(eax, HeapNumber::kValueOffset)); | 2995 __ movdbl(double_exponent, |
| 2996 FieldOperand(exponent, HeapNumber::kValueOffset)); |
2988 } | 2997 } |
2989 | 2998 |
2990 if (exponent_type_ != INTEGER) { | 2999 if (exponent_type_ != INTEGER) { |
2991 Label fast_power; | 3000 Label fast_power; |
2992 // xmm1: base as double that is not +/- Infinity or NaN | |
2993 // xmm2: exponent as double | |
2994 // Detect integer exponents stored as double. | 3001 // Detect integer exponents stored as double. |
2995 __ cvttsd2si(eax, Operand(xmm2)); | 3002 __ cvttsd2si(exponent, Operand(double_exponent)); |
2996 // Skip to runtime if possibly NaN (indicated by the indefinite integer). | 3003 // Skip to runtime if possibly NaN (indicated by the indefinite integer). |
2997 __ cmp(eax, Immediate(0x80000000u)); | 3004 __ cmp(exponent, Immediate(0x80000000u)); |
2998 __ j(equal, &generic_runtime); | 3005 __ j(equal, &generic_runtime); |
2999 __ cvtsi2sd(xmm4, eax); | 3006 __ cvtsi2sd(double_scratch, exponent); |
3000 __ ucomisd(xmm2, xmm4); // Already ruled out NaNs for exponent. | 3007 // Already ruled out NaNs for exponent. |
| 3008 __ ucomisd(double_exponent, double_scratch); |
3001 __ j(equal, &int_exponent); | 3009 __ j(equal, &int_exponent); |
3002 | 3010 |
3003 if (exponent_type_ == ON_STACK) { | 3011 if (exponent_type_ == ON_STACK) { |
3004 // Detect square root case. Crankshaft detects constant +/-0.5 at | 3012 // Detect square root case. Crankshaft detects constant +/-0.5 at |
3005 // compile time and uses DoMathPowHalf instead. We then skip this check | 3013 // compile time and uses DoMathPowHalf instead. We then skip this check |
3006 // for non-constant cases of +/-0.5 as these hardly occur. | 3014 // for non-constant cases of +/-0.5 as these hardly occur. |
3007 Label continue_sqrt, continue_rsqrt, not_plus_half; | 3015 Label continue_sqrt, continue_rsqrt, not_plus_half; |
3008 // Test for 0.5. | 3016 // Test for 0.5. |
3009 // Load xmm4 with 0.5. | 3017 // Load double_scratch with 0.5. |
3010 __ mov(ecx, Immediate(0x3F000000u)); | 3018 __ mov(scratch, Immediate(0x3F000000u)); |
3011 __ movd(xmm4, ecx); | 3019 __ movd(double_scratch, scratch); |
3012 __ cvtss2sd(xmm4, xmm4); | 3020 __ cvtss2sd(double_scratch, double_scratch); |
3013 // xmm4 now has 0.5. | 3021 // Already ruled out NaNs for exponent. |
3014 __ ucomisd(xmm4, xmm2); // Already ruled out NaNs for exponent. | 3022 __ ucomisd(double_scratch, double_exponent); |
3015 __ j(not_equal, ¬_plus_half, Label::kNear); | 3023 __ j(not_equal, ¬_plus_half, Label::kNear); |
3016 | 3024 |
3017 // Calculates square root of base. Check for the special case of | 3025 // Calculates square root of base. Check for the special case of |
3018 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). | 3026 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). |
3019 // According to IEEE-754, single-precision -Infinity has the highest | 3027 // According to IEEE-754, single-precision -Infinity has the highest |
3020 // 9 bits set and the lowest 23 bits cleared. | 3028 // 9 bits set and the lowest 23 bits cleared. |
3021 __ mov(ecx, 0xFF800000u); | 3029 __ mov(scratch, 0xFF800000u); |
3022 __ movd(xmm4, ecx); | 3030 __ movd(double_scratch, scratch); |
3023 __ cvtss2sd(xmm4, xmm4); | 3031 __ cvtss2sd(double_scratch, double_scratch); |
3024 __ ucomisd(xmm1, xmm4); | 3032 __ ucomisd(double_base, double_scratch); |
3025 // Comparing -Infinity with NaN results in "unordered", which sets the | 3033 // Comparing -Infinity with NaN results in "unordered", which sets the |
3026 // zero flag as if both were equal. However, it also sets the carry flag. | 3034 // zero flag as if both were equal. However, it also sets the carry flag. |
3027 __ j(not_equal, &continue_sqrt, Label::kNear); | 3035 __ j(not_equal, &continue_sqrt, Label::kNear); |
3028 __ j(carry, &continue_sqrt, Label::kNear); | 3036 __ j(carry, &continue_sqrt, Label::kNear); |
3029 | 3037 |
3030 // Set result to Infinity in the special case. | 3038 // Set result to Infinity in the special case. |
3031 __ xorps(xmm3, xmm3); | 3039 __ xorps(double_result, double_result); |
3032 __ subsd(xmm3, xmm4); | 3040 __ subsd(double_result, double_scratch); |
3033 __ jmp(&done); | 3041 __ jmp(&done); |
3034 | 3042 |
3035 __ bind(&continue_sqrt); | 3043 __ bind(&continue_sqrt); |
3036 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. | 3044 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
3037 __ xorps(xmm4, xmm4); | 3045 __ xorps(double_scratch, double_scratch); |
3038 __ addsd(xmm4, xmm1); // Convert -0 to +0. | 3046 __ addsd(double_scratch, double_base); // Convert -0 to +0. |
3039 __ sqrtsd(xmm3, xmm4); | 3047 __ sqrtsd(double_result, double_scratch); |
3040 __ jmp(&done); | 3048 __ jmp(&done); |
3041 | 3049 |
3042 // Test for -0.5. | 3050 // Test for -0.5. |
3043 __ bind(¬_plus_half); | 3051 __ bind(¬_plus_half); |
3044 // Load xmm2 with -0.5. | 3052 // Load double_exponent with -0.5 by substracting 1. |
3045 // Since xmm3 is 1 and xmm4 is 0.5 this is simply xmm4 - xmm3. | 3053 __ subsd(double_scratch, double_result); |
3046 __ subsd(xmm4, xmm3); | 3054 // Already ruled out NaNs for exponent. |
3047 // xmm4 now has -0.5. | 3055 __ ucomisd(double_scratch, double_exponent); |
3048 __ ucomisd(xmm4, xmm2); // Already ruled out NaNs for exponent. | |
3049 __ j(not_equal, &fast_power, Label::kNear); | 3056 __ j(not_equal, &fast_power, Label::kNear); |
3050 | 3057 |
3051 // Calculates reciprocal of square root of base. Check for the special | 3058 // Calculates reciprocal of square root of base. Check for the special |
3052 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). | 3059 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). |
3053 // According to IEEE-754, single-precision -Infinity has the highest | 3060 // According to IEEE-754, single-precision -Infinity has the highest |
3054 // 9 bits set and the lowest 23 bits cleared. | 3061 // 9 bits set and the lowest 23 bits cleared. |
3055 __ mov(ecx, 0xFF800000u); | 3062 __ mov(scratch, 0xFF800000u); |
3056 __ movd(xmm4, ecx); | 3063 __ movd(double_scratch, scratch); |
3057 __ cvtss2sd(xmm4, xmm4); | 3064 __ cvtss2sd(double_scratch, double_scratch); |
3058 __ ucomisd(xmm1, xmm4); | 3065 __ ucomisd(double_base, double_scratch); |
3059 // Comparing -Infinity with NaN results in "unordered", which sets the | 3066 // Comparing -Infinity with NaN results in "unordered", which sets the |
3060 // zero flag as if both were equal. However, it also sets the carry flag. | 3067 // zero flag as if both were equal. However, it also sets the carry flag. |
3061 __ j(not_equal, &continue_rsqrt, Label::kNear); | 3068 __ j(not_equal, &continue_rsqrt, Label::kNear); |
3062 __ j(carry, &continue_rsqrt, Label::kNear); | 3069 __ j(carry, &continue_rsqrt, Label::kNear); |
3063 | 3070 |
3064 // Set result to 0 in the special case. | 3071 // Set result to 0 in the special case. |
3065 __ xorps(xmm3, xmm3); | 3072 __ xorps(double_result, double_result); |
3066 __ jmp(&done); | 3073 __ jmp(&done); |
3067 | 3074 |
3068 __ bind(&continue_rsqrt); | 3075 __ bind(&continue_rsqrt); |
3069 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. | 3076 // sqrtsd returns -0 when input is -0. ECMA spec requires +0. |
3070 __ xorps(xmm2, xmm2); | 3077 __ xorps(double_exponent, double_exponent); |
3071 __ addsd(xmm2, xmm1); // Convert -0 to +0. | 3078 __ addsd(double_exponent, double_base); // Convert -0 to +0. |
3072 __ sqrtsd(xmm2, xmm2); | 3079 __ sqrtsd(double_exponent, double_exponent); |
3073 __ divsd(xmm3, xmm2); | 3080 __ divsd(double_result, double_exponent); |
3074 __ jmp(&done); | 3081 __ jmp(&done); |
3075 } | 3082 } |
3076 | 3083 |
3077 // Using FPU instructions to calculate power. | 3084 // Using FPU instructions to calculate power. |
3078 Label fast_power_failed; | 3085 Label fast_power_failed; |
3079 __ bind(&fast_power); | 3086 __ bind(&fast_power); |
3080 __ fnclex(); // Clear flags to catch exceptions later. | 3087 __ fnclex(); // Clear flags to catch exceptions later. |
3081 // Transfer (B)ase and (E)xponent onto the FPU register stack. | 3088 // Transfer (B)ase and (E)xponent onto the FPU register stack. |
3082 __ sub(esp, Immediate(kDoubleSize)); | 3089 __ sub(esp, Immediate(kDoubleSize)); |
3083 __ movdbl(Operand(esp, 0), xmm2); | 3090 __ movdbl(Operand(esp, 0), double_exponent); |
3084 __ fld_d(Operand(esp, 0)); // E | 3091 __ fld_d(Operand(esp, 0)); // E |
3085 __ movdbl(Operand(esp, 0), xmm1); | 3092 __ movdbl(Operand(esp, 0), double_base); |
3086 __ fld_d(Operand(esp, 0)); // B, E | 3093 __ fld_d(Operand(esp, 0)); // B, E |
3087 | 3094 |
3088 // Exponent is in st(1) and base is in st(0) | 3095 // Exponent is in st(1) and base is in st(0) |
3089 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) | 3096 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) |
3090 // FYL2X calculates st(1) * log2(st(0)) | 3097 // FYL2X calculates st(1) * log2(st(0)) |
3091 __ fyl2x(); // X | 3098 __ fyl2x(); // X |
3092 __ fld(0); // X, X | 3099 __ fld(0); // X, X |
3093 __ frndint(); // rnd(X), X | 3100 __ frndint(); // rnd(X), X |
3094 __ fsub(1); // rnd(X), X-rnd(X) | 3101 __ fsub(1); // rnd(X), X-rnd(X) |
3095 __ fxch(1); // X - rnd(X), rnd(X) | 3102 __ fxch(1); // X - rnd(X), rnd(X) |
3096 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 | 3103 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 |
3097 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) | 3104 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) |
3098 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) | 3105 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) |
3099 __ faddp(1); // 1, 2^(X-rnd(X)), rnd(X) | 3106 __ faddp(1); // 1, 2^(X-rnd(X)), rnd(X) |
3100 // FSCALE calculates st(0) * 2^st(1) | 3107 // FSCALE calculates st(0) * 2^st(1) |
3101 __ fscale(); // 2^X, rnd(X) | 3108 __ fscale(); // 2^X, rnd(X) |
3102 __ fstp(1); | 3109 __ fstp(1); |
3103 // Bail out to runtime in case of exceptions in the status word. | 3110 // Bail out to runtime in case of exceptions in the status word. |
3104 __ fnstsw_ax(); | 3111 __ fnstsw_ax(); |
3105 __ test_b(eax, 0x5F); // We check for all but precision exception. | 3112 __ test_b(exponent, 0x5F); // We check for all but precision exception. |
3106 __ j(not_zero, &fast_power_failed, Label::kNear); | 3113 __ j(not_zero, &fast_power_failed, Label::kNear); |
3107 __ fstp_d(Operand(esp, 0)); | 3114 __ fstp_d(Operand(esp, 0)); |
3108 __ movdbl(xmm3, Operand(esp, 0)); | 3115 __ movdbl(double_result, Operand(esp, 0)); |
3109 __ add(esp, Immediate(kDoubleSize)); | 3116 __ add(esp, Immediate(kDoubleSize)); |
3110 __ jmp(&done); | 3117 __ jmp(&done); |
3111 | 3118 |
3112 __ bind(&fast_power_failed); | 3119 __ bind(&fast_power_failed); |
3113 __ fninit(); | 3120 __ fninit(); |
3114 __ add(esp, Immediate(kDoubleSize)); | 3121 __ add(esp, Immediate(kDoubleSize)); |
3115 __ jmp(&generic_runtime); | 3122 __ jmp(&generic_runtime); |
3116 } | 3123 } |
3117 | 3124 |
3118 // Calculate power with integer exponent. | 3125 // Calculate power with integer exponent. |
3119 __ bind(&int_exponent); | 3126 __ bind(&int_exponent); |
3120 // xmm1: base as double that is not +/- Infinity or NaN | 3127 const XMMRegister double_scratch2 = double_exponent; |
3121 // eax: exponent as untagged integer | 3128 __ mov(scratch, exponent); // Back up exponent. |
3122 __ mov(ecx, eax); // Back up exponent. | 3129 __ movsd(double_scratch, double_base); // Back up base. |
3123 __ movsd(xmm4, xmm1); // Back up base. | 3130 __ movsd(double_scratch2, double_result); // Load double_exponent with 1. |
3124 __ movsd(xmm2, xmm3); // Load xmm2 with 1. | |
3125 | |
3126 | 3131 |
3127 // Get absolute value of exponent. | 3132 // Get absolute value of exponent. |
3128 Label no_neg, while_true, no_multiply; | 3133 Label no_neg, while_true, no_multiply; |
3129 __ cmp(eax, 0); | 3134 __ cmp(exponent, 0); |
3130 __ j(greater_equal, &no_neg, Label::kNear); | 3135 __ j(greater_equal, &no_neg, Label::kNear); |
3131 __ neg(eax); | 3136 __ neg(exponent); |
3132 __ bind(&no_neg); | 3137 __ bind(&no_neg); |
3133 | 3138 |
3134 __ bind(&while_true); | 3139 __ bind(&while_true); |
3135 __ shr(eax, 1); | 3140 __ shr(exponent, 1); |
3136 __ j(not_carry, &no_multiply, Label::kNear); | 3141 __ j(not_carry, &no_multiply, Label::kNear); |
3137 __ mulsd(xmm3, xmm1); | 3142 __ mulsd(double_result, double_base); |
3138 __ bind(&no_multiply); | 3143 __ bind(&no_multiply); |
3139 | 3144 |
3140 __ mulsd(xmm1, xmm1); | 3145 __ mulsd(double_base, double_base); |
3141 __ j(not_zero, &while_true); | 3146 __ j(not_zero, &while_true); |
3142 | 3147 |
3143 // base has the original value of the exponent - if the exponent is | 3148 // scratch has the original value of the exponent - if the exponent is |
3144 // negative return 1/result. | 3149 // negative, return 1/result. |
3145 __ test(ecx, ecx); | 3150 __ test(scratch, scratch); |
3146 __ j(positive, &done); | 3151 __ j(positive, &done); |
3147 __ divsd(xmm2, xmm3); | 3152 __ divsd(double_scratch2, double_result); |
3148 __ movsd(xmm3, xmm2); | 3153 __ movsd(double_result, double_scratch2); |
3149 // Test whether result is zero. Bail out to check for subnormal result. | 3154 // Test whether result is zero. Bail out to check for subnormal result. |
3150 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. | 3155 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. |
3151 __ xorps(xmm2, xmm2); | 3156 __ xorps(double_scratch2, double_scratch2); |
3152 __ ucomisd(xmm2, xmm3); // Result cannot be NaN. | 3157 __ ucomisd(double_scratch2, double_result); // Result cannot be NaN. |
3153 __ j(equal, &double_int_runtime); | 3158 __ j(equal, &double_int_runtime); |
3154 | 3159 |
3155 // Returning or bailing out. | 3160 // Returning or bailing out. |
3156 if (exponent_type_ == ON_STACK) { | 3161 if (exponent_type_ == ON_STACK) { |
3157 // The stub is called from non-optimized code, which expects the result | 3162 // The stub is called from non-optimized code, which expects the result |
3158 // as heap number in eax. | 3163 // as heap number in exponent. |
3159 __ bind(&done); | 3164 __ bind(&done); |
3160 // xmm3: result | 3165 __ AllocateHeapNumber(exponent, scratch, base, &generic_runtime); |
3161 __ AllocateHeapNumber(eax, ecx, edx, &generic_runtime); | 3166 __ movdbl(FieldOperand(exponent, HeapNumber::kValueOffset), double_result); |
3162 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm3); | |
3163 __ ret(2 * kPointerSize); | 3167 __ ret(2 * kPointerSize); |
3164 | 3168 |
3165 // The arguments are still on the stack. | 3169 // The arguments are still on the stack. |
3166 __ bind(&generic_runtime); | 3170 __ bind(&generic_runtime); |
3167 __ bind(&double_int_runtime); | 3171 __ bind(&double_int_runtime); |
3168 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); | 3172 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
3169 } else { | 3173 } else { |
3170 __ jmp(&done); | 3174 __ jmp(&done); |
3171 | 3175 |
3172 Label return_from_runtime; | 3176 Label return_from_runtime; |
3173 StubRuntimeCallHelper callhelper; | |
3174 __ bind(&generic_runtime); | 3177 __ bind(&generic_runtime); |
3175 // xmm1: base | |
3176 // xmm2: exponent | |
3177 { | 3178 { |
3178 AllowExternalCallThatCantCauseGC scope(masm); | 3179 AllowExternalCallThatCantCauseGC scope(masm); |
3179 __ PrepareCallCFunction(4, eax); | 3180 __ PrepareCallCFunction(4, exponent); |
3180 __ movdbl(Operand(esp, 0 * kDoubleSize), xmm1); | 3181 __ movdbl(Operand(esp, 0 * kDoubleSize), double_base); |
3181 __ movdbl(Operand(esp, 1 * kDoubleSize), xmm2); | 3182 __ movdbl(Operand(esp, 1 * kDoubleSize), double_exponent); |
3182 __ CallCFunction( | 3183 __ CallCFunction( |
3183 ExternalReference::power_double_double_function(masm->isolate()), 4); | 3184 ExternalReference::power_double_double_function(masm->isolate()), 4); |
3184 } | 3185 } |
3185 __ jmp(&return_from_runtime, Label::kNear); | 3186 __ jmp(&return_from_runtime, Label::kNear); |
3186 | 3187 |
3187 __ bind(&double_int_runtime); | 3188 __ bind(&double_int_runtime); |
3188 // xmm4: base | |
3189 // ecx: exponent | |
3190 { | 3189 { |
3191 AllowExternalCallThatCantCauseGC scope(masm); | 3190 AllowExternalCallThatCantCauseGC scope(masm); |
3192 __ PrepareCallCFunction(4, eax); | 3191 __ PrepareCallCFunction(4, exponent); |
3193 __ movdbl(Operand(esp, 0 * kDoubleSize), xmm4); | 3192 __ movdbl(Operand(esp, 0 * kDoubleSize), double_scratch); |
3194 __ mov(Operand(esp, 1 * kDoubleSize), ecx); | 3193 __ mov(Operand(esp, 1 * kDoubleSize), scratch); |
3195 __ CallCFunction( | 3194 __ CallCFunction( |
3196 ExternalReference::power_double_int_function(masm->isolate()), 4); | 3195 ExternalReference::power_double_int_function(masm->isolate()), 4); |
3197 } | 3196 } |
3198 | 3197 |
3199 __ bind(&return_from_runtime); | 3198 __ bind(&return_from_runtime); |
3200 // Return value is in st(0) on ia32. | 3199 // Return value is in st(0) on ia32. |
3201 // Store it into the (fixed) result register. | 3200 // Store it into the (fixed) result register. |
3202 __ sub(esp, Immediate(kDoubleSize)); | 3201 __ sub(esp, Immediate(kDoubleSize)); |
3203 __ fstp_d(Operand(esp, 0)); | 3202 __ fstp_d(Operand(esp, 0)); |
3204 __ movdbl(xmm3, Operand(esp, 0)); | 3203 __ movdbl(double_result, Operand(esp, 0)); |
3205 __ add(esp, Immediate(kDoubleSize)); | 3204 __ add(esp, Immediate(kDoubleSize)); |
3206 | 3205 |
3207 // xmm3: result | |
3208 __ bind(&done); | 3206 __ bind(&done); |
3209 __ ret(0); | 3207 __ ret(0); |
3210 } | 3208 } |
3211 } | 3209 } |
3212 | 3210 |
3213 | 3211 |
3214 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { | 3212 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
3215 // The key is in edx and the parameter count is in eax. | 3213 // The key is in edx and the parameter count is in eax. |
3216 | 3214 |
3217 // The displacement is used for skipping the frame pointer on the | 3215 // The displacement is used for skipping the frame pointer on the |
(...skipping 4072 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
7290 false); | 7288 false); |
7291 __ pop(edx); | 7289 __ pop(edx); |
7292 __ ret(0); | 7290 __ ret(0); |
7293 } | 7291 } |
7294 | 7292 |
7295 #undef __ | 7293 #undef __ |
7296 | 7294 |
7297 } } // namespace v8::internal | 7295 } } // namespace v8::internal |
7298 | 7296 |
7299 #endif // V8_TARGET_ARCH_IA32 | 7297 #endif // V8_TARGET_ARCH_IA32 |
OLD | NEW |