Index: test/cctest/test-double.cc |
=================================================================== |
--- test/cctest/test-double.cc (revision 4092) |
+++ test/cctest/test-double.cc (working copy) |
@@ -9,6 +9,7 @@ |
#include "diy_fp.h" |
#include "double.h" |
+ |
using namespace v8::internal; |
@@ -29,18 +30,18 @@ |
DiyFp diy_fp = Double(ordered).AsDiyFp(); |
CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e()); |
// The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64. |
- CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f()); |
+ CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT |
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
diy_fp = Double(min_double64).AsDiyFp(); |
CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e()); |
// This is a denormal; so no hidden bit. |
- CHECK(1 == diy_fp.f()); |
+ CHECK(1 == diy_fp.f()); // NOLINT |
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
diy_fp = Double(max_double64).AsDiyFp(); |
CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e()); |
- CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f()); |
+ CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT |
} |
@@ -48,18 +49,20 @@ |
uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF); |
DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp(); |
CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e()); |
- CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) == diy_fp.f()); |
+ CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) == |
+ diy_fp.f()); // NOLINT |
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e()); |
// This is a denormal; so no hidden bit. |
- CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f()); |
+ CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT |
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e()); |
- CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) == diy_fp.f()); |
+ CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) == |
+ diy_fp.f()); // NOLINT |
} |
@@ -145,7 +148,7 @@ |
// 1.5 does not have a significand of the form 2^p (for some p). |
// Therefore its boundaries are at the same distance. |
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
- CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); |
+ CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT |
diy_fp = Double(1.0).AsNormalizedDiyFp(); |
Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
@@ -154,8 +157,8 @@ |
// 1.0 does have a significand of the form 2^p (for some p). |
// Therefore its lower boundary is twice as close as the upper boundary. |
CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f()); |
- CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); |
- CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); |
+ CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT |
+ CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT |
uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001); |
diy_fp = Double(min_double64).AsNormalizedDiyFp(); |
@@ -166,7 +169,8 @@ |
// Therefore its boundaries are at the same distance. |
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
// Denormals have their boundaries much closer. |
- CHECK((static_cast<uint64_t>(1) << 62) == diy_fp.f() - boundary_minus.f()); |
+ CHECK((static_cast<uint64_t>(1) << 62) == |
+ diy_fp.f() - boundary_minus.f()); // NOLINT |
uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000); |
diy_fp = Double(smallest_normal64).AsNormalizedDiyFp(); |
@@ -177,7 +181,7 @@ |
// Even though the significand is of the form 2^p (for some p), its boundaries |
// are at the same distance. (This is the only exception). |
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
- CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); |
+ CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT |
uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); |
diy_fp = Double(largest_denormal64).AsNormalizedDiyFp(); |
@@ -186,7 +190,7 @@ |
CHECK_EQ(diy_fp.e(), boundary_minus.e()); |
CHECK_EQ(diy_fp.e(), boundary_plus.e()); |
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
- CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); |
+ CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT |
uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff); |
diy_fp = Double(max_double64).AsNormalizedDiyFp(); |
@@ -196,5 +200,5 @@ |
// max-value does not have a significand of the form 2^p (for some p). |
// Therefore its boundaries are at the same distance. |
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); |
- CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); |
+ CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT |
} |