| Index: test/cctest/test-double.cc
|
| ===================================================================
|
| --- test/cctest/test-double.cc (revision 4092)
|
| +++ test/cctest/test-double.cc (working copy)
|
| @@ -9,6 +9,7 @@
|
| #include "diy_fp.h"
|
| #include "double.h"
|
|
|
| +
|
| using namespace v8::internal;
|
|
|
|
|
| @@ -29,18 +30,18 @@
|
| DiyFp diy_fp = Double(ordered).AsDiyFp();
|
| CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e());
|
| // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64.
|
| - CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f());
|
| + CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT
|
|
|
| uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
| diy_fp = Double(min_double64).AsDiyFp();
|
| CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e());
|
| // This is a denormal; so no hidden bit.
|
| - CHECK(1 == diy_fp.f());
|
| + CHECK(1 == diy_fp.f()); // NOLINT
|
|
|
| uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
|
| diy_fp = Double(max_double64).AsDiyFp();
|
| CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e());
|
| - CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f());
|
| + CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT
|
| }
|
|
|
|
|
| @@ -48,18 +49,20 @@
|
| uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
|
| DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp();
|
| CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e());
|
| - CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) == diy_fp.f());
|
| + CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) ==
|
| + diy_fp.f()); // NOLINT
|
|
|
| uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
| diy_fp = Double(min_double64).AsNormalizedDiyFp();
|
| CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e());
|
| // This is a denormal; so no hidden bit.
|
| - CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f());
|
| + CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT
|
|
|
| uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
|
| diy_fp = Double(max_double64).AsNormalizedDiyFp();
|
| CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e());
|
| - CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) == diy_fp.f());
|
| + CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) ==
|
| + diy_fp.f()); // NOLINT
|
| }
|
|
|
|
|
| @@ -145,7 +148,7 @@
|
| // 1.5 does not have a significand of the form 2^p (for some p).
|
| // Therefore its boundaries are at the same distance.
|
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
| - CHECK((1 << 10) == diy_fp.f() - boundary_minus.f());
|
| + CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
|
| diy_fp = Double(1.0).AsNormalizedDiyFp();
|
| Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
| @@ -154,8 +157,8 @@
|
| // 1.0 does have a significand of the form 2^p (for some p).
|
| // Therefore its lower boundary is twice as close as the upper boundary.
|
| CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f());
|
| - CHECK((1 << 9) == diy_fp.f() - boundary_minus.f());
|
| - CHECK((1 << 10) == boundary_plus.f() - diy_fp.f());
|
| + CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
| + CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT
|
|
|
| uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
|
| diy_fp = Double(min_double64).AsNormalizedDiyFp();
|
| @@ -166,7 +169,8 @@
|
| // Therefore its boundaries are at the same distance.
|
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
| // Denormals have their boundaries much closer.
|
| - CHECK((static_cast<uint64_t>(1) << 62) == diy_fp.f() - boundary_minus.f());
|
| + CHECK((static_cast<uint64_t>(1) << 62) ==
|
| + diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
|
| uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000);
|
| diy_fp = Double(smallest_normal64).AsNormalizedDiyFp();
|
| @@ -177,7 +181,7 @@
|
| // Even though the significand is of the form 2^p (for some p), its boundaries
|
| // are at the same distance. (This is the only exception).
|
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
| - CHECK((1 << 10) == diy_fp.f() - boundary_minus.f());
|
| + CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
|
| uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
|
| diy_fp = Double(largest_denormal64).AsNormalizedDiyFp();
|
| @@ -186,7 +190,7 @@
|
| CHECK_EQ(diy_fp.e(), boundary_minus.e());
|
| CHECK_EQ(diy_fp.e(), boundary_plus.e());
|
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
| - CHECK((1 << 11) == diy_fp.f() - boundary_minus.f());
|
| + CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
|
|
| uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
|
| diy_fp = Double(max_double64).AsNormalizedDiyFp();
|
| @@ -196,5 +200,5 @@
|
| // max-value does not have a significand of the form 2^p (for some p).
|
| // Therefore its boundaries are at the same distance.
|
| CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
|
| - CHECK((1 << 10) == diy_fp.f() - boundary_minus.f());
|
| + CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
|
| }
|
|
|