Index: runtime/third_party/double-conversion/src/fast-dtoa.cc |
diff --git a/runtime/third_party/double-conversion/src/fast-dtoa.cc b/runtime/third_party/double-conversion/src/fast-dtoa.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..eb0dcc04fa3deb03c857b80a868bfaf3264843cb |
--- /dev/null |
+++ b/runtime/third_party/double-conversion/src/fast-dtoa.cc |
@@ -0,0 +1,656 @@ |
+// Copyright 2010 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "fast-dtoa.h" |
+ |
+#include "cached-powers.h" |
+#include "diy-fp.h" |
+#include "double.h" |
+ |
+namespace double_conversion { |
+ |
+// The minimal and maximal target exponent define the range of w's binary |
+// exponent, where 'w' is the result of multiplying the input by a cached power |
+// of ten. |
+// |
+// A different range might be chosen on a different platform, to optimize digit |
+// generation, but a smaller range requires more powers of ten to be cached. |
+static const int kMinimalTargetExponent = -60; |
+static const int kMaximalTargetExponent = -32; |
+ |
+ |
+// Adjusts the last digit of the generated number, and screens out generated |
+// solutions that may be inaccurate. A solution may be inaccurate if it is |
+// outside the safe interval, or if we cannot prove that it is closer to the |
+// input than a neighboring representation of the same length. |
+// |
+// Input: * buffer containing the digits of too_high / 10^kappa |
+// * the buffer's length |
+// * distance_too_high_w == (too_high - w).f() * unit |
+// * unsafe_interval == (too_high - too_low).f() * unit |
+// * rest = (too_high - buffer * 10^kappa).f() * unit |
+// * ten_kappa = 10^kappa * unit |
+// * unit = the common multiplier |
+// Output: returns true if the buffer is guaranteed to contain the closest |
+// representable number to the input. |
+// Modifies the generated digits in the buffer to approach (round towards) w. |
+static bool RoundWeed(Vector<char> buffer, |
+ int length, |
+ uint64_t distance_too_high_w, |
+ uint64_t unsafe_interval, |
+ uint64_t rest, |
+ uint64_t ten_kappa, |
+ uint64_t unit) { |
+ uint64_t small_distance = distance_too_high_w - unit; |
+ uint64_t big_distance = distance_too_high_w + unit; |
+ // Let w_low = too_high - big_distance, and |
+ // w_high = too_high - small_distance. |
+ // Note: w_low < w < w_high |
+ // |
+ // The real w (* unit) must lie somewhere inside the interval |
+ // ]w_low; w_high[ (often written as "(w_low; w_high)") |
+ |
+ // Basically the buffer currently contains a number in the unsafe interval |
+ // ]too_low; too_high[ with too_low < w < too_high |
+ // |
+ // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
+ // ^v 1 unit ^ ^ ^ ^ |
+ // boundary_high --------------------- . . . . |
+ // ^v 1 unit . . . . |
+ // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . |
+ // . . ^ . . |
+ // . big_distance . . . |
+ // . . . . rest |
+ // small_distance . . . . |
+ // v . . . . |
+ // w_high - - - - - - - - - - - - - - - - - - . . . . |
+ // ^v 1 unit . . . . |
+ // w ---------------------------------------- . . . . |
+ // ^v 1 unit v . . . |
+ // w_low - - - - - - - - - - - - - - - - - - - - - . . . |
+ // . . v |
+ // buffer --------------------------------------------------+-------+-------- |
+ // . . |
+ // safe_interval . |
+ // v . |
+ // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . |
+ // ^v 1 unit . |
+ // boundary_low ------------------------- unsafe_interval |
+ // ^v 1 unit v |
+ // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
+ // |
+ // |
+ // Note that the value of buffer could lie anywhere inside the range too_low |
+ // to too_high. |
+ // |
+ // boundary_low, boundary_high and w are approximations of the real boundaries |
+ // and v (the input number). They are guaranteed to be precise up to one unit. |
+ // In fact the error is guaranteed to be strictly less than one unit. |
+ // |
+ // Anything that lies outside the unsafe interval is guaranteed not to round |
+ // to v when read again. |
+ // Anything that lies inside the safe interval is guaranteed to round to v |
+ // when read again. |
+ // If the number inside the buffer lies inside the unsafe interval but not |
+ // inside the safe interval then we simply do not know and bail out (returning |
+ // false). |
+ // |
+ // Similarly we have to take into account the imprecision of 'w' when finding |
+ // the closest representation of 'w'. If we have two potential |
+ // representations, and one is closer to both w_low and w_high, then we know |
+ // it is closer to the actual value v. |
+ // |
+ // By generating the digits of too_high we got the largest (closest to |
+ // too_high) buffer that is still in the unsafe interval. In the case where |
+ // w_high < buffer < too_high we try to decrement the buffer. |
+ // This way the buffer approaches (rounds towards) w. |
+ // There are 3 conditions that stop the decrementation process: |
+ // 1) the buffer is already below w_high |
+ // 2) decrementing the buffer would make it leave the unsafe interval |
+ // 3) decrementing the buffer would yield a number below w_high and farther |
+ // away than the current number. In other words: |
+ // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high |
+ // Instead of using the buffer directly we use its distance to too_high. |
+ // Conceptually rest ~= too_high - buffer |
+ // We need to do the following tests in this order to avoid over- and |
+ // underflows. |
+ ASSERT(rest <= unsafe_interval); |
+ while (rest < small_distance && // Negated condition 1 |
+ unsafe_interval - rest >= ten_kappa && // Negated condition 2 |
+ (rest + ten_kappa < small_distance || // buffer{-1} > w_high |
+ small_distance - rest >= rest + ten_kappa - small_distance)) { |
+ buffer[length - 1]--; |
+ rest += ten_kappa; |
+ } |
+ |
+ // We have approached w+ as much as possible. We now test if approaching w- |
+ // would require changing the buffer. If yes, then we have two possible |
+ // representations close to w, but we cannot decide which one is closer. |
+ if (rest < big_distance && |
+ unsafe_interval - rest >= ten_kappa && |
+ (rest + ten_kappa < big_distance || |
+ big_distance - rest > rest + ten_kappa - big_distance)) { |
+ return false; |
+ } |
+ |
+ // Weeding test. |
+ // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] |
+ // Since too_low = too_high - unsafe_interval this is equivalent to |
+ // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] |
+ // Conceptually we have: rest ~= too_high - buffer |
+ return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); |
+} |
+ |
+ |
+// Rounds the buffer upwards if the result is closer to v by possibly adding |
+// 1 to the buffer. If the precision of the calculation is not sufficient to |
+// round correctly, return false. |
+// The rounding might shift the whole buffer in which case the kappa is |
+// adjusted. For example "99", kappa = 3 might become "10", kappa = 4. |
+// |
+// If 2*rest > ten_kappa then the buffer needs to be round up. |
+// rest can have an error of +/- 1 unit. This function accounts for the |
+// imprecision and returns false, if the rounding direction cannot be |
+// unambiguously determined. |
+// |
+// Precondition: rest < ten_kappa. |
+static bool RoundWeedCounted(Vector<char> buffer, |
+ int length, |
+ uint64_t rest, |
+ uint64_t ten_kappa, |
+ uint64_t unit, |
+ int* kappa) { |
+ ASSERT(rest < ten_kappa); |
+ // The following tests are done in a specific order to avoid overflows. They |
+ // will work correctly with any uint64 values of rest < ten_kappa and unit. |
+ // |
+ // If the unit is too big, then we don't know which way to round. For example |
+ // a unit of 50 means that the real number lies within rest +/- 50. If |
+ // 10^kappa == 40 then there is no way to tell which way to round. |
+ if (unit >= ten_kappa) return false; |
+ // Even if unit is just half the size of 10^kappa we are already completely |
+ // lost. (And after the previous test we know that the expression will not |
+ // over/underflow.) |
+ if (ten_kappa - unit <= unit) return false; |
+ // If 2 * (rest + unit) <= 10^kappa we can safely round down. |
+ if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { |
+ return true; |
+ } |
+ // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. |
+ if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { |
+ // Increment the last digit recursively until we find a non '9' digit. |
+ buffer[length - 1]++; |
+ for (int i = length - 1; i > 0; --i) { |
+ if (buffer[i] != '0' + 10) break; |
+ buffer[i] = '0'; |
+ buffer[i - 1]++; |
+ } |
+ // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the |
+ // exception of the first digit all digits are now '0'. Simply switch the |
+ // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and |
+ // the power (the kappa) is increased. |
+ if (buffer[0] == '0' + 10) { |
+ buffer[0] = '1'; |
+ (*kappa) += 1; |
+ } |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+// Returns the biggest power of ten that is less than or equal to the given |
+// number. We furthermore receive the maximum number of bits 'number' has. |
+// |
+// Returns power == 10^(exponent_plus_one-1) such that |
+// power <= number < power * 10. |
+// If number_bits == 0 then 0^(0-1) is returned. |
+// The number of bits must be <= 32. |
+// Precondition: number < (1 << (number_bits + 1)). |
+ |
+// Inspired by the method for finding an integer log base 10 from here: |
+// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 |
+static unsigned int const kSmallPowersOfTen[] = |
+ {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, |
+ 1000000000}; |
+ |
+static void BiggestPowerTen(uint32_t number, |
+ int number_bits, |
+ uint32_t* power, |
+ int* exponent_plus_one) { |
+ ASSERT(number < (static_cast<uint32_t>(1) << (number_bits + 1))); |
+ // 1233/4096 is approximately 1/lg(10). |
+ int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12); |
+ // We increment to skip over the first entry in the kPowersOf10 table. |
+ // Note: kPowersOf10[i] == 10^(i-1). |
+ exponent_plus_one_guess++; |
+ // We don't have any guarantees that 2^number_bits <= number. |
+ // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see |
+ // number < (2^number_bits - 1), but I haven't encountered |
+ // number < (2^number_bits - 2) yet. |
+ while (number < kSmallPowersOfTen[exponent_plus_one_guess]) { |
+ exponent_plus_one_guess--; |
+ } |
+ *power = kSmallPowersOfTen[exponent_plus_one_guess]; |
+ *exponent_plus_one = exponent_plus_one_guess; |
+} |
+ |
+// Generates the digits of input number w. |
+// w is a floating-point number (DiyFp), consisting of a significand and an |
+// exponent. Its exponent is bounded by kMinimalTargetExponent and |
+// kMaximalTargetExponent. |
+// Hence -60 <= w.e() <= -32. |
+// |
+// Returns false if it fails, in which case the generated digits in the buffer |
+// should not be used. |
+// Preconditions: |
+// * low, w and high are correct up to 1 ulp (unit in the last place). That |
+// is, their error must be less than a unit of their last digits. |
+// * low.e() == w.e() == high.e() |
+// * low < w < high, and taking into account their error: low~ <= high~ |
+// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent |
+// Postconditions: returns false if procedure fails. |
+// otherwise: |
+// * buffer is not null-terminated, but len contains the number of digits. |
+// * buffer contains the shortest possible decimal digit-sequence |
+// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the |
+// correct values of low and high (without their error). |
+// * if more than one decimal representation gives the minimal number of |
+// decimal digits then the one closest to W (where W is the correct value |
+// of w) is chosen. |
+// Remark: this procedure takes into account the imprecision of its input |
+// numbers. If the precision is not enough to guarantee all the postconditions |
+// then false is returned. This usually happens rarely (~0.5%). |
+// |
+// Say, for the sake of example, that |
+// w.e() == -48, and w.f() == 0x1234567890abcdef |
+// w's value can be computed by w.f() * 2^w.e() |
+// We can obtain w's integral digits by simply shifting w.f() by -w.e(). |
+// -> w's integral part is 0x1234 |
+// w's fractional part is therefore 0x567890abcdef. |
+// Printing w's integral part is easy (simply print 0x1234 in decimal). |
+// In order to print its fraction we repeatedly multiply the fraction by 10 and |
+// get each digit. Example the first digit after the point would be computed by |
+// (0x567890abcdef * 10) >> 48. -> 3 |
+// The whole thing becomes slightly more complicated because we want to stop |
+// once we have enough digits. That is, once the digits inside the buffer |
+// represent 'w' we can stop. Everything inside the interval low - high |
+// represents w. However we have to pay attention to low, high and w's |
+// imprecision. |
+static bool DigitGen(DiyFp low, |
+ DiyFp w, |
+ DiyFp high, |
+ Vector<char> buffer, |
+ int* length, |
+ int* kappa) { |
+ ASSERT(low.e() == w.e() && w.e() == high.e()); |
+ ASSERT(low.f() + 1 <= high.f() - 1); |
+ ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
+ // low, w and high are imprecise, but by less than one ulp (unit in the last |
+ // place). |
+ // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that |
+ // the new numbers are outside of the interval we want the final |
+ // representation to lie in. |
+ // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield |
+ // numbers that are certain to lie in the interval. We will use this fact |
+ // later on. |
+ // We will now start by generating the digits within the uncertain |
+ // interval. Later we will weed out representations that lie outside the safe |
+ // interval and thus _might_ lie outside the correct interval. |
+ uint64_t unit = 1; |
+ DiyFp too_low = DiyFp(low.f() - unit, low.e()); |
+ DiyFp too_high = DiyFp(high.f() + unit, high.e()); |
+ // too_low and too_high are guaranteed to lie outside the interval we want the |
+ // generated number in. |
+ DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); |
+ // We now cut the input number into two parts: the integral digits and the |
+ // fractionals. We will not write any decimal separator though, but adapt |
+ // kappa instead. |
+ // Reminder: we are currently computing the digits (stored inside the buffer) |
+ // such that: too_low < buffer * 10^kappa < too_high |
+ // We use too_high for the digit_generation and stop as soon as possible. |
+ // If we stop early we effectively round down. |
+ DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); |
+ // Division by one is a shift. |
+ uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); |
+ // Modulo by one is an and. |
+ uint64_t fractionals = too_high.f() & (one.f() - 1); |
+ uint32_t divisor; |
+ int divisor_exponent_plus_one; |
+ BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
+ &divisor, &divisor_exponent_plus_one); |
+ *kappa = divisor_exponent_plus_one; |
+ *length = 0; |
+ // Loop invariant: buffer = too_high / 10^kappa (integer division) |
+ // The invariant holds for the first iteration: kappa has been initialized |
+ // with the divisor exponent + 1. And the divisor is the biggest power of ten |
+ // that is smaller than integrals. |
+ while (*kappa > 0) { |
+ int digit = integrals / divisor; |
+ buffer[*length] = '0' + digit; |
+ (*length)++; |
+ integrals %= divisor; |
+ (*kappa)--; |
+ // Note that kappa now equals the exponent of the divisor and that the |
+ // invariant thus holds again. |
+ uint64_t rest = |
+ (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
+ // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) |
+ // Reminder: unsafe_interval.e() == one.e() |
+ if (rest < unsafe_interval.f()) { |
+ // Rounding down (by not emitting the remaining digits) yields a number |
+ // that lies within the unsafe interval. |
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), |
+ unsafe_interval.f(), rest, |
+ static_cast<uint64_t>(divisor) << -one.e(), unit); |
+ } |
+ divisor /= 10; |
+ } |
+ |
+ // The integrals have been generated. We are at the point of the decimal |
+ // separator. In the following loop we simply multiply the remaining digits by |
+ // 10 and divide by one. We just need to pay attention to multiply associated |
+ // data (like the interval or 'unit'), too. |
+ // Note that the multiplication by 10 does not overflow, because w.e >= -60 |
+ // and thus one.e >= -60. |
+ ASSERT(one.e() >= -60); |
+ ASSERT(fractionals < one.f()); |
+ ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
+ while (true) { |
+ fractionals *= 10; |
+ unit *= 10; |
+ unsafe_interval.set_f(unsafe_interval.f() * 10); |
+ // Integer division by one. |
+ int digit = static_cast<int>(fractionals >> -one.e()); |
+ buffer[*length] = '0' + digit; |
+ (*length)++; |
+ fractionals &= one.f() - 1; // Modulo by one. |
+ (*kappa)--; |
+ if (fractionals < unsafe_interval.f()) { |
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, |
+ unsafe_interval.f(), fractionals, one.f(), unit); |
+ } |
+ } |
+} |
+ |
+ |
+ |
+// Generates (at most) requested_digits digits of input number w. |
+// w is a floating-point number (DiyFp), consisting of a significand and an |
+// exponent. Its exponent is bounded by kMinimalTargetExponent and |
+// kMaximalTargetExponent. |
+// Hence -60 <= w.e() <= -32. |
+// |
+// Returns false if it fails, in which case the generated digits in the buffer |
+// should not be used. |
+// Preconditions: |
+// * w is correct up to 1 ulp (unit in the last place). That |
+// is, its error must be strictly less than a unit of its last digit. |
+// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent |
+// |
+// Postconditions: returns false if procedure fails. |
+// otherwise: |
+// * buffer is not null-terminated, but length contains the number of |
+// digits. |
+// * the representation in buffer is the most precise representation of |
+// requested_digits digits. |
+// * buffer contains at most requested_digits digits of w. If there are less |
+// than requested_digits digits then some trailing '0's have been removed. |
+// * kappa is such that |
+// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. |
+// |
+// Remark: This procedure takes into account the imprecision of its input |
+// numbers. If the precision is not enough to guarantee all the postconditions |
+// then false is returned. This usually happens rarely, but the failure-rate |
+// increases with higher requested_digits. |
+static bool DigitGenCounted(DiyFp w, |
+ int requested_digits, |
+ Vector<char> buffer, |
+ int* length, |
+ int* kappa) { |
+ ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
+ ASSERT(kMinimalTargetExponent >= -60); |
+ ASSERT(kMaximalTargetExponent <= -32); |
+ // w is assumed to have an error less than 1 unit. Whenever w is scaled we |
+ // also scale its error. |
+ uint64_t w_error = 1; |
+ // We cut the input number into two parts: the integral digits and the |
+ // fractional digits. We don't emit any decimal separator, but adapt kappa |
+ // instead. Example: instead of writing "1.2" we put "12" into the buffer and |
+ // increase kappa by 1. |
+ DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); |
+ // Division by one is a shift. |
+ uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); |
+ // Modulo by one is an and. |
+ uint64_t fractionals = w.f() & (one.f() - 1); |
+ uint32_t divisor; |
+ int divisor_exponent_plus_one; |
+ BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), |
+ &divisor, &divisor_exponent_plus_one); |
+ *kappa = divisor_exponent_plus_one; |
+ *length = 0; |
+ |
+ // Loop invariant: buffer = w / 10^kappa (integer division) |
+ // The invariant holds for the first iteration: kappa has been initialized |
+ // with the divisor exponent + 1. And the divisor is the biggest power of ten |
+ // that is smaller than 'integrals'. |
+ while (*kappa > 0) { |
+ int digit = integrals / divisor; |
+ buffer[*length] = '0' + digit; |
+ (*length)++; |
+ requested_digits--; |
+ integrals %= divisor; |
+ (*kappa)--; |
+ // Note that kappa now equals the exponent of the divisor and that the |
+ // invariant thus holds again. |
+ if (requested_digits == 0) break; |
+ divisor /= 10; |
+ } |
+ |
+ if (requested_digits == 0) { |
+ uint64_t rest = |
+ (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; |
+ return RoundWeedCounted(buffer, *length, rest, |
+ static_cast<uint64_t>(divisor) << -one.e(), w_error, |
+ kappa); |
+ } |
+ |
+ // The integrals have been generated. We are at the point of the decimal |
+ // separator. In the following loop we simply multiply the remaining digits by |
+ // 10 and divide by one. We just need to pay attention to multiply associated |
+ // data (the 'unit'), too. |
+ // Note that the multiplication by 10 does not overflow, because w.e >= -60 |
+ // and thus one.e >= -60. |
+ ASSERT(one.e() >= -60); |
+ ASSERT(fractionals < one.f()); |
+ ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
+ while (requested_digits > 0 && fractionals > w_error) { |
+ fractionals *= 10; |
+ w_error *= 10; |
+ // Integer division by one. |
+ int digit = static_cast<int>(fractionals >> -one.e()); |
+ buffer[*length] = '0' + digit; |
+ (*length)++; |
+ requested_digits--; |
+ fractionals &= one.f() - 1; // Modulo by one. |
+ (*kappa)--; |
+ } |
+ if (requested_digits != 0) return false; |
+ return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, |
+ kappa); |
+} |
+ |
+ |
+// Provides a decimal representation of v. |
+// Returns true if it succeeds, otherwise the result cannot be trusted. |
+// There will be *length digits inside the buffer (not null-terminated). |
+// If the function returns true then |
+// v == (double) (buffer * 10^decimal_exponent). |
+// The digits in the buffer are the shortest representation possible: no |
+// 0.09999999999999999 instead of 0.1. The shorter representation will even be |
+// chosen even if the longer one would be closer to v. |
+// The last digit will be closest to the actual v. That is, even if several |
+// digits might correctly yield 'v' when read again, the closest will be |
+// computed. |
+static bool Grisu3(double v, |
+ Vector<char> buffer, |
+ int* length, |
+ int* decimal_exponent) { |
+ DiyFp w = Double(v).AsNormalizedDiyFp(); |
+ // boundary_minus and boundary_plus are the boundaries between v and its |
+ // closest floating-point neighbors. Any number strictly between |
+ // boundary_minus and boundary_plus will round to v when convert to a double. |
+ // Grisu3 will never output representations that lie exactly on a boundary. |
+ DiyFp boundary_minus, boundary_plus; |
+ Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
+ ASSERT(boundary_plus.e() == w.e()); |
+ DiyFp ten_mk; // Cached power of ten: 10^-k |
+ int mk; // -k |
+ int ten_mk_minimal_binary_exponent = |
+ kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
+ int ten_mk_maximal_binary_exponent = |
+ kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
+ ten_mk_minimal_binary_exponent, |
+ ten_mk_maximal_binary_exponent, |
+ &ten_mk, &mk); |
+ ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
+ DiyFp::kSignificandSize) && |
+ (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
+ DiyFp::kSignificandSize)); |
+ // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
+ // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
+ |
+ // The DiyFp::Times procedure rounds its result, and ten_mk is approximated |
+ // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now |
+ // off by a small amount. |
+ // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. |
+ // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
+ // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
+ DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
+ ASSERT(scaled_w.e() == |
+ boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); |
+ // In theory it would be possible to avoid some recomputations by computing |
+ // the difference between w and boundary_minus/plus (a power of 2) and to |
+ // compute scaled_boundary_minus/plus by subtracting/adding from |
+ // scaled_w. However the code becomes much less readable and the speed |
+ // enhancements are not terriffic. |
+ DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); |
+ DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); |
+ |
+ // DigitGen will generate the digits of scaled_w. Therefore we have |
+ // v == (double) (scaled_w * 10^-mk). |
+ // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an |
+ // integer than it will be updated. For instance if scaled_w == 1.23 then |
+ // the buffer will be filled with "123" und the decimal_exponent will be |
+ // decreased by 2. |
+ int kappa; |
+ bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, |
+ buffer, length, &kappa); |
+ *decimal_exponent = -mk + kappa; |
+ return result; |
+} |
+ |
+ |
+// The "counted" version of grisu3 (see above) only generates requested_digits |
+// number of digits. This version does not generate the shortest representation, |
+// and with enough requested digits 0.1 will at some point print as 0.9999999... |
+// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and |
+// therefore the rounding strategy for halfway cases is irrelevant. |
+static bool Grisu3Counted(double v, |
+ int requested_digits, |
+ Vector<char> buffer, |
+ int* length, |
+ int* decimal_exponent) { |
+ DiyFp w = Double(v).AsNormalizedDiyFp(); |
+ DiyFp ten_mk; // Cached power of ten: 10^-k |
+ int mk; // -k |
+ int ten_mk_minimal_binary_exponent = |
+ kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
+ int ten_mk_maximal_binary_exponent = |
+ kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); |
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange( |
+ ten_mk_minimal_binary_exponent, |
+ ten_mk_maximal_binary_exponent, |
+ &ten_mk, &mk); |
+ ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
+ DiyFp::kSignificandSize) && |
+ (kMaximalTargetExponent >= w.e() + ten_mk.e() + |
+ DiyFp::kSignificandSize)); |
+ // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
+ // 64 bit significand and ten_mk is thus only precise up to 64 bits. |
+ |
+ // The DiyFp::Times procedure rounds its result, and ten_mk is approximated |
+ // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now |
+ // off by a small amount. |
+ // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. |
+ // In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
+ // (f-1) * 2^e < w*10^k < (f+1) * 2^e |
+ DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
+ |
+ // We now have (double) (scaled_w * 10^-mk). |
+ // DigitGen will generate the first requested_digits digits of scaled_w and |
+ // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It |
+ // will not always be exactly the same since DigitGenCounted only produces a |
+ // limited number of digits.) |
+ int kappa; |
+ bool result = DigitGenCounted(scaled_w, requested_digits, |
+ buffer, length, &kappa); |
+ *decimal_exponent = -mk + kappa; |
+ return result; |
+} |
+ |
+ |
+bool FastDtoa(double v, |
+ FastDtoaMode mode, |
+ int requested_digits, |
+ Vector<char> buffer, |
+ int* length, |
+ int* decimal_point) { |
+ ASSERT(v > 0); |
+ ASSERT(!Double(v).IsSpecial()); |
+ |
+ bool result = false; |
+ int decimal_exponent = 0; |
+ switch (mode) { |
+ case FAST_DTOA_SHORTEST: |
+ result = Grisu3(v, buffer, length, &decimal_exponent); |
+ break; |
+ case FAST_DTOA_PRECISION: |
+ result = Grisu3Counted(v, requested_digits, |
+ buffer, length, &decimal_exponent); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ if (result) { |
+ *decimal_point = *length + decimal_exponent; |
+ buffer[*length] = '\0'; |
+ } |
+ return result; |
+} |
+ |
+} // namespace double_conversion |