Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(852)

Unified Diff: runtime/third_party/double-conversion/test/cctest/test-double.cc

Issue 8632010: double-conversion drop. (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: Created 9 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: runtime/third_party/double-conversion/test/cctest/test-double.cc
diff --git a/runtime/third_party/double-conversion/test/cctest/test-double.cc b/runtime/third_party/double-conversion/test/cctest/test-double.cc
new file mode 100644
index 0000000000000000000000000000000000000000..71fa19c14e03ecf32a9126dcf270b38fb118a2fd
--- /dev/null
+++ b/runtime/third_party/double-conversion/test/cctest/test-double.cc
@@ -0,0 +1,218 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+
+#include <stdlib.h>
+
+#include "cctest.h"
+#include "diy-fp.h"
+#include "double.h"
+#include "utils.h"
+
+
+using namespace double_conversion;
+
+
+TEST(Uint64Conversions) {
+ // Start by checking the byte-order.
+ uint64_t ordered = UINT64_2PART_C(0x01234567, 89ABCDEF);
+ CHECK_EQ(3512700564088504e-318, Double(ordered).value());
+
+ uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
+ CHECK_EQ(5e-324, Double(min_double64).value());
+
+ uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
+ CHECK_EQ(1.7976931348623157e308, Double(max_double64).value());
+}
+
+TEST(AsDiyFp) {
+ uint64_t ordered = UINT64_2PART_C(0x01234567, 89ABCDEF);
+ DiyFp diy_fp = Double(ordered).AsDiyFp();
+ CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e());
+ // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64.
+ CHECK(UINT64_2PART_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT
+
+ uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
+ diy_fp = Double(min_double64).AsDiyFp();
+ CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e());
+ // This is a denormal; so no hidden bit.
+ CHECK(1 == diy_fp.f()); // NOLINT
+
+ uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
+ diy_fp = Double(max_double64).AsDiyFp();
+ CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e());
+ CHECK(UINT64_2PART_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT
+}
+
+
+TEST(AsNormalizedDiyFp) {
+ uint64_t ordered = UINT64_2PART_C(0x01234567, 89ABCDEF);
+ DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp();
+ CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e());
+ CHECK((UINT64_2PART_C(0x00134567, 89ABCDEF) << 11) ==
+ diy_fp.f()); // NOLINT
+
+ uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
+ diy_fp = Double(min_double64).AsNormalizedDiyFp();
+ CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e());
+ // This is a denormal; so no hidden bit.
+ CHECK(UINT64_2PART_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT
+
+ uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
+ diy_fp = Double(max_double64).AsNormalizedDiyFp();
+ CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e());
+ CHECK((UINT64_2PART_C(0x001fffff, ffffffff) << 11) ==
+ diy_fp.f()); // NOLINT
+}
+
+
+TEST(IsDenormal) {
+ uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
+ CHECK(Double(min_double64).IsDenormal());
+ uint64_t bits = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
+ CHECK(Double(bits).IsDenormal());
+ bits = UINT64_2PART_C(0x00100000, 00000000);
+ CHECK(!Double(bits).IsDenormal());
+}
+
+
+TEST(IsSpecial) {
+ CHECK(Double(Double::Infinity()).IsSpecial());
+ CHECK(Double(-Double::Infinity()).IsSpecial());
+ CHECK(Double(Double::NaN()).IsSpecial());
+ uint64_t bits = UINT64_2PART_C(0xFFF12345, 00000000);
+ CHECK(Double(bits).IsSpecial());
+ // Denormals are not special:
+ CHECK(!Double(5e-324).IsSpecial());
+ CHECK(!Double(-5e-324).IsSpecial());
+ // And some random numbers:
+ CHECK(!Double(0.0).IsSpecial());
+ CHECK(!Double(-0.0).IsSpecial());
+ CHECK(!Double(1.0).IsSpecial());
+ CHECK(!Double(-1.0).IsSpecial());
+ CHECK(!Double(1000000.0).IsSpecial());
+ CHECK(!Double(-1000000.0).IsSpecial());
+ CHECK(!Double(1e23).IsSpecial());
+ CHECK(!Double(-1e23).IsSpecial());
+ CHECK(!Double(1.7976931348623157e308).IsSpecial());
+ CHECK(!Double(-1.7976931348623157e308).IsSpecial());
+}
+
+
+TEST(IsInfinite) {
+ CHECK(Double(Double::Infinity()).IsInfinite());
+ CHECK(Double(-Double::Infinity()).IsInfinite());
+ CHECK(!Double(Double::NaN()).IsInfinite());
+ CHECK(!Double(0.0).IsInfinite());
+ CHECK(!Double(-0.0).IsInfinite());
+ CHECK(!Double(1.0).IsInfinite());
+ CHECK(!Double(-1.0).IsInfinite());
+ uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
+ CHECK(!Double(min_double64).IsInfinite());
+}
+
+
+TEST(IsNan) {
+ CHECK(Double(Double::NaN()).IsNan());
+ uint64_t other_nan = UINT64_2PART_C(0xFFFFFFFF, 00000001);
+ CHECK(Double(other_nan).IsNan());
+ CHECK(!Double(Double::Infinity()).IsNan());
+ CHECK(!Double(-Double::Infinity()).IsNan());
+ CHECK(!Double(0.0).IsNan());
+ CHECK(!Double(-0.0).IsNan());
+ CHECK(!Double(1.0).IsNan());
+ CHECK(!Double(-1.0).IsNan());
+ uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
+ CHECK(!Double(min_double64).IsNan());
+}
+
+
+TEST(Sign) {
+ CHECK_EQ(1, Double(1.0).Sign());
+ CHECK_EQ(1, Double(Double::Infinity()).Sign());
+ CHECK_EQ(-1, Double(-Double::Infinity()).Sign());
+ CHECK_EQ(1, Double(0.0).Sign());
+ CHECK_EQ(-1, Double(-0.0).Sign());
+ uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
+ CHECK_EQ(1, Double(min_double64).Sign());
+}
+
+
+TEST(NormalizedBoundaries) {
+ DiyFp boundary_plus;
+ DiyFp boundary_minus;
+ DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp();
+ Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus);
+ CHECK_EQ(diy_fp.e(), boundary_minus.e());
+ CHECK_EQ(diy_fp.e(), boundary_plus.e());
+ // 1.5 does not have a significand of the form 2^p (for some p).
+ // Therefore its boundaries are at the same distance.
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
+ CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
+
+ diy_fp = Double(1.0).AsNormalizedDiyFp();
+ Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus);
+ CHECK_EQ(diy_fp.e(), boundary_minus.e());
+ CHECK_EQ(diy_fp.e(), boundary_plus.e());
+ // 1.0 does have a significand of the form 2^p (for some p).
+ // Therefore its lower boundary is twice as close as the upper boundary.
+ CHECK(boundary_plus.f() - diy_fp.f() > diy_fp.f() - boundary_minus.f());
+ CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT
+ CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT
+
+ uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
+ diy_fp = Double(min_double64).AsNormalizedDiyFp();
+ Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
+ CHECK_EQ(diy_fp.e(), boundary_minus.e());
+ CHECK_EQ(diy_fp.e(), boundary_plus.e());
+ // min-value does not have a significand of the form 2^p (for some p).
+ // Therefore its boundaries are at the same distance.
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
+ // Denormals have their boundaries much closer.
+ CHECK((static_cast<uint64_t>(1) << 62) ==
+ diy_fp.f() - boundary_minus.f()); // NOLINT
+
+ uint64_t smallest_normal64 = UINT64_2PART_C(0x00100000, 00000000);
+ diy_fp = Double(smallest_normal64).AsNormalizedDiyFp();
+ Double(smallest_normal64).NormalizedBoundaries(&boundary_minus,
+ &boundary_plus);
+ CHECK_EQ(diy_fp.e(), boundary_minus.e());
+ CHECK_EQ(diy_fp.e(), boundary_plus.e());
+ // Even though the significand is of the form 2^p (for some p), its boundaries
+ // are at the same distance. (This is the only exception).
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
+ CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
+
+ uint64_t largest_denormal64 = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
+ diy_fp = Double(largest_denormal64).AsNormalizedDiyFp();
+ Double(largest_denormal64).NormalizedBoundaries(&boundary_minus,
+ &boundary_plus);
+ CHECK_EQ(diy_fp.e(), boundary_minus.e());
+ CHECK_EQ(diy_fp.e(), boundary_plus.e());
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
+ CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT
+
+ uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
+ diy_fp = Double(max_double64).AsNormalizedDiyFp();
+ Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
+ CHECK_EQ(diy_fp.e(), boundary_minus.e());
+ CHECK_EQ(diy_fp.e(), boundary_plus.e());
+ // max-value does not have a significand of the form 2^p (for some p).
+ // Therefore its boundaries are at the same distance.
+ CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
+ CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
+}
+
+
+TEST(NextDouble) {
+ CHECK_EQ(4e-324, Double(0.0).NextDouble());
+ CHECK_EQ(0.0, Double(-0.0).NextDouble());
+ CHECK_EQ(-0.0, Double(-4e-324).NextDouble());
+ Double d0(-4e-324);
+ Double d1(d0.NextDouble());
+ Double d2(d1.NextDouble());
+ CHECK_EQ(-0.0, d1.value());
+ CHECK_EQ(0.0, d2.value());
+ CHECK_EQ(4e-324, d2.NextDouble());
+ CHECK_EQ(-1.7976931348623157e308, Double(-Double::Infinity()).NextDouble());
+ CHECK_EQ(Double::Infinity(),
+ Double(UINT64_2PART_C(0x7fefffff, ffffffff)).NextDouble());
+}

Powered by Google App Engine
This is Rietveld 408576698