OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #ifndef DOUBLE_CONVERSION_UTILS_H_ |
| 29 #define DOUBLE_CONVERSION_UTILS_H_ |
| 30 |
| 31 #include <stdlib.h> |
| 32 #include <string.h> |
| 33 |
| 34 #include <assert.h> |
| 35 #define ASSERT(condition) (assert(condition)) |
| 36 #define UNIMPLEMENTED() (abort()) |
| 37 #define UNREACHABLE() (abort()) |
| 38 |
| 39 // Double operations detection based on target architecture. |
| 40 // Linux uses a 80bit wide floating point stack on x86. This induces double |
| 41 // rounding, which in turn leads to wrong results. |
| 42 // An easy way to test if the floating-point operations are correct is to |
| 43 // evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then |
| 44 // the result is equal to 89255e-22. |
| 45 // The best way to test this, is to create a division-function and to compare |
| 46 // the output of the division with the expected result. (Inlining must be |
| 47 // disabled.) |
| 48 // On Linux,x86 89255e-22 != Div_double(89255.0/1e22) |
| 49 #if defined(_M_X64) || defined(__x86_64__) || \ |
| 50 defined(__ARMEL__) || \ |
| 51 defined(_MIPS_ARCH_MIPS32R2) |
| 52 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
| 53 #elif defined(_M_IX86) || defined(__i386__) |
| 54 #if defined(_WIN32) |
| 55 // Windows uses a 64bit wide floating point stack. |
| 56 #define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 |
| 57 #else |
| 58 #undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS |
| 59 #endif // _WIN32 |
| 60 #else |
| 61 #error Target architecture was not detected as supported by Double-Conversion. |
| 62 #endif |
| 63 |
| 64 |
| 65 #if defined(_WIN32) && !defined(__MINGW32__) |
| 66 |
| 67 typedef signed char int8_t; |
| 68 typedef unsigned char uint8_t; |
| 69 typedef short int16_t; // NOLINT |
| 70 typedef unsigned short uint16_t; // NOLINT |
| 71 typedef int int32_t; |
| 72 typedef unsigned int uint32_t; |
| 73 typedef __int64 int64_t; |
| 74 typedef unsigned __int64 uint64_t; |
| 75 // intptr_t and friends are defined in crtdefs.h through stdio.h. |
| 76 |
| 77 #else |
| 78 |
| 79 #include <stdint.h> |
| 80 |
| 81 #endif |
| 82 |
| 83 // The following macro works on both 32 and 64-bit platforms. |
| 84 // Usage: instead of writing 0x1234567890123456 |
| 85 // write UINT64_2PART_C(0x12345678,90123456); |
| 86 #define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) |
| 87 |
| 88 |
| 89 // The expression ARRAY_SIZE(a) is a compile-time constant of type |
| 90 // size_t which represents the number of elements of the given |
| 91 // array. You should only use ARRAY_SIZE on statically allocated |
| 92 // arrays. |
| 93 #define ARRAY_SIZE(a) \ |
| 94 ((sizeof(a) / sizeof(*(a))) / \ |
| 95 static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) |
| 96 |
| 97 // A macro to disallow the evil copy constructor and operator= functions |
| 98 // This should be used in the private: declarations for a class |
| 99 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ |
| 100 TypeName(const TypeName&); \ |
| 101 void operator=(const TypeName&) |
| 102 |
| 103 // A macro to disallow all the implicit constructors, namely the |
| 104 // default constructor, copy constructor and operator= functions. |
| 105 // |
| 106 // This should be used in the private: declarations for a class |
| 107 // that wants to prevent anyone from instantiating it. This is |
| 108 // especially useful for classes containing only static methods. |
| 109 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ |
| 110 TypeName(); \ |
| 111 DISALLOW_COPY_AND_ASSIGN(TypeName) |
| 112 |
| 113 namespace double_conversion { |
| 114 |
| 115 static const int kCharSize = sizeof(char); |
| 116 |
| 117 // Returns the maximum of the two parameters. |
| 118 template <typename T> |
| 119 static T Max(T a, T b) { |
| 120 return a < b ? b : a; |
| 121 } |
| 122 |
| 123 |
| 124 // Returns the minimum of the two parameters. |
| 125 template <typename T> |
| 126 static T Min(T a, T b) { |
| 127 return a < b ? a : b; |
| 128 } |
| 129 |
| 130 |
| 131 inline int StrLength(const char* string) { |
| 132 size_t length = strlen(string); |
| 133 ASSERT(length == static_cast<size_t>(static_cast<int>(length))); |
| 134 return static_cast<int>(length); |
| 135 } |
| 136 |
| 137 // This is a simplified version of V8's Vector class. |
| 138 template <typename T> |
| 139 class Vector { |
| 140 public: |
| 141 Vector() : start_(NULL), length_(0) {} |
| 142 Vector(T* data, int length) : start_(data), length_(length) { |
| 143 ASSERT(length == 0 || (length > 0 && data != NULL)); |
| 144 } |
| 145 |
| 146 // Returns a vector using the same backing storage as this one, |
| 147 // spanning from and including 'from', to but not including 'to'. |
| 148 Vector<T> SubVector(int from, int to) { |
| 149 ASSERT(to <= length_); |
| 150 ASSERT(from < to); |
| 151 ASSERT(0 <= from); |
| 152 return Vector<T>(start() + from, to - from); |
| 153 } |
| 154 |
| 155 // Returns the length of the vector. |
| 156 int length() const { return length_; } |
| 157 |
| 158 // Returns whether or not the vector is empty. |
| 159 bool is_empty() const { return length_ == 0; } |
| 160 |
| 161 // Returns the pointer to the start of the data in the vector. |
| 162 T* start() const { return start_; } |
| 163 |
| 164 // Access individual vector elements - checks bounds in debug mode. |
| 165 T& operator[](int index) const { |
| 166 ASSERT(0 <= index && index < length_); |
| 167 return start_[index]; |
| 168 } |
| 169 |
| 170 T& first() { return start_[0]; } |
| 171 |
| 172 T& last() { return start_[length_ - 1]; } |
| 173 |
| 174 private: |
| 175 T* start_; |
| 176 int length_; |
| 177 }; |
| 178 |
| 179 |
| 180 // Helper class for building result strings in a character buffer. The |
| 181 // purpose of the class is to use safe operations that checks the |
| 182 // buffer bounds on all operations in debug mode. |
| 183 class StringBuilder { |
| 184 public: |
| 185 StringBuilder(char* buffer, int size) |
| 186 : buffer_(buffer, size), position_(0) { } |
| 187 |
| 188 ~StringBuilder() { if (!is_finalized()) Finalize(); } |
| 189 |
| 190 int size() const { return buffer_.length(); } |
| 191 |
| 192 // Get the current position in the builder. |
| 193 int position() const { |
| 194 ASSERT(!is_finalized()); |
| 195 return position_; |
| 196 } |
| 197 |
| 198 // Reset the position. |
| 199 void Reset() { position_ = 0; } |
| 200 |
| 201 // Add a single character to the builder. It is not allowed to add |
| 202 // 0-characters; use the Finalize() method to terminate the string |
| 203 // instead. |
| 204 void AddCharacter(char c) { |
| 205 ASSERT(c != '\0'); |
| 206 ASSERT(!is_finalized() && position_ < buffer_.length()); |
| 207 buffer_[position_++] = c; |
| 208 } |
| 209 |
| 210 // Add an entire string to the builder. Uses strlen() internally to |
| 211 // compute the length of the input string. |
| 212 void AddString(const char* s) { |
| 213 AddSubstring(s, StrLength(s)); |
| 214 } |
| 215 |
| 216 // Add the first 'n' characters of the given string 's' to the |
| 217 // builder. The input string must have enough characters. |
| 218 void AddSubstring(const char* s, int n) { |
| 219 ASSERT(!is_finalized() && position_ + n < buffer_.length()); |
| 220 ASSERT(static_cast<size_t>(n) <= strlen(s)); |
| 221 memcpy(&buffer_[position_], s, n * kCharSize); |
| 222 position_ += n; |
| 223 } |
| 224 |
| 225 |
| 226 // Add character padding to the builder. If count is non-positive, |
| 227 // nothing is added to the builder. |
| 228 void AddPadding(char c, int count) { |
| 229 for (int i = 0; i < count; i++) { |
| 230 AddCharacter(c); |
| 231 } |
| 232 } |
| 233 |
| 234 // Finalize the string by 0-terminating it and returning the buffer. |
| 235 char* Finalize() { |
| 236 ASSERT(!is_finalized() && position_ < buffer_.length()); |
| 237 buffer_[position_] = '\0'; |
| 238 // Make sure nobody managed to add a 0-character to the |
| 239 // buffer while building the string. |
| 240 ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_)); |
| 241 position_ = -1; |
| 242 ASSERT(is_finalized()); |
| 243 return buffer_.start(); |
| 244 } |
| 245 |
| 246 private: |
| 247 Vector<char> buffer_; |
| 248 int position_; |
| 249 |
| 250 bool is_finalized() const { return position_ < 0; } |
| 251 |
| 252 DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); |
| 253 }; |
| 254 |
| 255 // The type-based aliasing rule allows the compiler to assume that pointers of |
| 256 // different types (for some definition of different) never alias each other. |
| 257 // Thus the following code does not work: |
| 258 // |
| 259 // float f = foo(); |
| 260 // int fbits = *(int*)(&f); |
| 261 // |
| 262 // The compiler 'knows' that the int pointer can't refer to f since the types |
| 263 // don't match, so the compiler may cache f in a register, leaving random data |
| 264 // in fbits. Using C++ style casts makes no difference, however a pointer to |
| 265 // char data is assumed to alias any other pointer. This is the 'memcpy |
| 266 // exception'. |
| 267 // |
| 268 // Bit_cast uses the memcpy exception to move the bits from a variable of one |
| 269 // type of a variable of another type. Of course the end result is likely to |
| 270 // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) |
| 271 // will completely optimize BitCast away. |
| 272 // |
| 273 // There is an additional use for BitCast. |
| 274 // Recent gccs will warn when they see casts that may result in breakage due to |
| 275 // the type-based aliasing rule. If you have checked that there is no breakage |
| 276 // you can use BitCast to cast one pointer type to another. This confuses gcc |
| 277 // enough that it can no longer see that you have cast one pointer type to |
| 278 // another thus avoiding the warning. |
| 279 template <class Dest, class Source> |
| 280 inline Dest BitCast(const Source& source) { |
| 281 // Compile time assertion: sizeof(Dest) == sizeof(Source) |
| 282 // A compile error here means your Dest and Source have different sizes. |
| 283 typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1]; |
| 284 |
| 285 Dest dest; |
| 286 memcpy(&dest, &source, sizeof(dest)); |
| 287 return dest; |
| 288 } |
| 289 |
| 290 template <class Dest, class Source> |
| 291 inline Dest BitCast(Source* source) { |
| 292 return BitCast<Dest>(reinterpret_cast<uintptr_t>(source)); |
| 293 } |
| 294 |
| 295 } // namespace double_conversion |
| 296 |
| 297 #endif // DOUBLE_CONVERSION_UTILS_H_ |
OLD | NEW |