Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(817)

Side by Side Diff: runtime/third_party/double-conversion/src/bignum-dtoa.cc

Issue 8632010: double-conversion drop. (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: Updated to latest double-conversion version. Created 9 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <math.h>
29
30 #include "bignum-dtoa.h"
31
32 #include "bignum.h"
33 #include "double.h"
34
35 namespace double_conversion {
36
37 static int NormalizedExponent(uint64_t significand, int exponent) {
38 ASSERT(significand != 0);
39 while ((significand & Double::kHiddenBit) == 0) {
40 significand = significand << 1;
41 exponent = exponent - 1;
42 }
43 return exponent;
44 }
45
46
47 // Forward declarations:
48 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
49 static int EstimatePower(int exponent);
50 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
51 // and denominator.
52 static void InitialScaledStartValues(double v,
53 int estimated_power,
54 bool need_boundary_deltas,
55 Bignum* numerator,
56 Bignum* denominator,
57 Bignum* delta_minus,
58 Bignum* delta_plus);
59 // Multiplies numerator/denominator so that its values lies in the range 1-10.
60 // Returns decimal_point s.t.
61 // v = numerator'/denominator' * 10^(decimal_point-1)
62 // where numerator' and denominator' are the values of numerator and
63 // denominator after the call to this function.
64 static void FixupMultiply10(int estimated_power, bool is_even,
65 int* decimal_point,
66 Bignum* numerator, Bignum* denominator,
67 Bignum* delta_minus, Bignum* delta_plus);
68 // Generates digits from the left to the right and stops when the generated
69 // digits yield the shortest decimal representation of v.
70 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
71 Bignum* delta_minus, Bignum* delta_plus,
72 bool is_even,
73 Vector<char> buffer, int* length);
74 // Generates 'requested_digits' after the decimal point.
75 static void BignumToFixed(int requested_digits, int* decimal_point,
76 Bignum* numerator, Bignum* denominator,
77 Vector<char>(buffer), int* length);
78 // Generates 'count' digits of numerator/denominator.
79 // Once 'count' digits have been produced rounds the result depending on the
80 // remainder (remainders of exactly .5 round upwards). Might update the
81 // decimal_point when rounding up (for example for 0.9999).
82 static void GenerateCountedDigits(int count, int* decimal_point,
83 Bignum* numerator, Bignum* denominator,
84 Vector<char>(buffer), int* length);
85
86
87 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
88 Vector<char> buffer, int* length, int* decimal_point) {
89 ASSERT(v > 0);
90 ASSERT(!Double(v).IsSpecial());
91 uint64_t significand = Double(v).Significand();
92 bool is_even = (significand & 1) == 0;
93 int exponent = Double(v).Exponent();
94 int normalized_exponent = NormalizedExponent(significand, exponent);
95 // estimated_power might be too low by 1.
96 int estimated_power = EstimatePower(normalized_exponent);
97
98 // Shortcut for Fixed.
99 // The requested digits correspond to the digits after the point. If the
100 // number is much too small, then there is no need in trying to get any
101 // digits.
102 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
103 buffer[0] = '\0';
104 *length = 0;
105 // Set decimal-point to -requested_digits. This is what Gay does.
106 // Note that it should not have any effect anyways since the string is
107 // empty.
108 *decimal_point = -requested_digits;
109 return;
110 }
111
112 Bignum numerator;
113 Bignum denominator;
114 Bignum delta_minus;
115 Bignum delta_plus;
116 // Make sure the bignum can grow large enough. The smallest double equals
117 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
118 // The maximum double is 1.7976931348623157e308 which needs fewer than
119 // 308*4 binary digits.
120 ASSERT(Bignum::kMaxSignificantBits >= 324*4);
121 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
122 InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
123 &numerator, &denominator,
124 &delta_minus, &delta_plus);
125 // We now have v = (numerator / denominator) * 10^estimated_power.
126 FixupMultiply10(estimated_power, is_even, decimal_point,
127 &numerator, &denominator,
128 &delta_minus, &delta_plus);
129 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
130 // 1 <= (numerator + delta_plus) / denominator < 10
131 switch (mode) {
132 case BIGNUM_DTOA_SHORTEST:
133 GenerateShortestDigits(&numerator, &denominator,
134 &delta_minus, &delta_plus,
135 is_even, buffer, length);
136 break;
137 case BIGNUM_DTOA_FIXED:
138 BignumToFixed(requested_digits, decimal_point,
139 &numerator, &denominator,
140 buffer, length);
141 break;
142 case BIGNUM_DTOA_PRECISION:
143 GenerateCountedDigits(requested_digits, decimal_point,
144 &numerator, &denominator,
145 buffer, length);
146 break;
147 default:
148 UNREACHABLE();
149 }
150 buffer[*length] = '\0';
151 }
152
153
154 // The procedure starts generating digits from the left to the right and stops
155 // when the generated digits yield the shortest decimal representation of v. A
156 // decimal representation of v is a number lying closer to v than to any other
157 // double, so it converts to v when read.
158 //
159 // This is true if d, the decimal representation, is between m- and m+, the
160 // upper and lower boundaries. d must be strictly between them if !is_even.
161 // m- := (numerator - delta_minus) / denominator
162 // m+ := (numerator + delta_plus) / denominator
163 //
164 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
165 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
166 // will be produced. This should be the standard precondition.
167 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
168 Bignum* delta_minus, Bignum* delta_plus,
169 bool is_even,
170 Vector<char> buffer, int* length) {
171 // Small optimization: if delta_minus and delta_plus are the same just reuse
172 // one of the two bignums.
173 if (Bignum::Equal(*delta_minus, *delta_plus)) {
174 delta_plus = delta_minus;
175 }
176 *length = 0;
177 while (true) {
178 uint16_t digit;
179 digit = numerator->DivideModuloIntBignum(*denominator);
180 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
181 // digit = numerator / denominator (integer division).
182 // numerator = numerator % denominator.
183 buffer[(*length)++] = digit + '0';
184
185 // Can we stop already?
186 // If the remainder of the division is less than the distance to the lower
187 // boundary we can stop. In this case we simply round down (discarding the
188 // remainder).
189 // Similarly we test if we can round up (using the upper boundary).
190 bool in_delta_room_minus;
191 bool in_delta_room_plus;
192 if (is_even) {
193 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
194 } else {
195 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
196 }
197 if (is_even) {
198 in_delta_room_plus =
199 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
200 } else {
201 in_delta_room_plus =
202 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
203 }
204 if (!in_delta_room_minus && !in_delta_room_plus) {
205 // Prepare for next iteration.
206 numerator->Times10();
207 delta_minus->Times10();
208 // We optimized delta_plus to be equal to delta_minus (if they share the
209 // same value). So don't multiply delta_plus if they point to the same
210 // object.
211 if (delta_minus != delta_plus) {
212 delta_plus->Times10();
213 }
214 } else if (in_delta_room_minus && in_delta_room_plus) {
215 // Let's see if 2*numerator < denominator.
216 // If yes, then the next digit would be < 5 and we can round down.
217 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
218 if (compare < 0) {
219 // Remaining digits are less than .5. -> Round down (== do nothing).
220 } else if (compare > 0) {
221 // Remaining digits are more than .5 of denominator. -> Round up.
222 // Note that the last digit could not be a '9' as otherwise the whole
223 // loop would have stopped earlier.
224 // We still have an assert here in case the preconditions were not
225 // satisfied.
226 ASSERT(buffer[(*length) - 1] != '9');
227 buffer[(*length) - 1]++;
228 } else {
229 // Halfway case.
230 // TODO(floitsch): need a way to solve half-way cases.
231 // For now let's round towards even (since this is what Gay seems to
232 // do).
233
234 if ((buffer[(*length) - 1] - '0') % 2 == 0) {
235 // Round down => Do nothing.
236 } else {
237 ASSERT(buffer[(*length) - 1] != '9');
238 buffer[(*length) - 1]++;
239 }
240 }
241 return;
242 } else if (in_delta_room_minus) {
243 // Round down (== do nothing).
244 return;
245 } else { // in_delta_room_plus
246 // Round up.
247 // Note again that the last digit could not be '9' since this would have
248 // stopped the loop earlier.
249 // We still have an ASSERT here, in case the preconditions were not
250 // satisfied.
251 ASSERT(buffer[(*length) -1] != '9');
252 buffer[(*length) - 1]++;
253 return;
254 }
255 }
256 }
257
258
259 // Let v = numerator / denominator < 10.
260 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
261 // from left to right. Once 'count' digits have been produced we decide wether
262 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
263 // as 9.999999 propagate a carry all the way, and change the
264 // exponent (decimal_point), when rounding upwards.
265 static void GenerateCountedDigits(int count, int* decimal_point,
266 Bignum* numerator, Bignum* denominator,
267 Vector<char>(buffer), int* length) {
268 ASSERT(count >= 0);
269 for (int i = 0; i < count - 1; ++i) {
270 uint16_t digit;
271 digit = numerator->DivideModuloIntBignum(*denominator);
272 ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
273 // digit = numerator / denominator (integer division).
274 // numerator = numerator % denominator.
275 buffer[i] = digit + '0';
276 // Prepare for next iteration.
277 numerator->Times10();
278 }
279 // Generate the last digit.
280 uint16_t digit;
281 digit = numerator->DivideModuloIntBignum(*denominator);
282 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
283 digit++;
284 }
285 buffer[count - 1] = digit + '0';
286 // Correct bad digits (in case we had a sequence of '9's). Propagate the
287 // carry until we hat a non-'9' or til we reach the first digit.
288 for (int i = count - 1; i > 0; --i) {
289 if (buffer[i] != '0' + 10) break;
290 buffer[i] = '0';
291 buffer[i - 1]++;
292 }
293 if (buffer[0] == '0' + 10) {
294 // Propagate a carry past the top place.
295 buffer[0] = '1';
296 (*decimal_point)++;
297 }
298 *length = count;
299 }
300
301
302 // Generates 'requested_digits' after the decimal point. It might omit
303 // trailing '0's. If the input number is too small then no digits at all are
304 // generated (ex.: 2 fixed digits for 0.00001).
305 //
306 // Input verifies: 1 <= (numerator + delta) / denominator < 10.
307 static void BignumToFixed(int requested_digits, int* decimal_point,
308 Bignum* numerator, Bignum* denominator,
309 Vector<char>(buffer), int* length) {
310 // Note that we have to look at more than just the requested_digits, since
311 // a number could be rounded up. Example: v=0.5 with requested_digits=0.
312 // Even though the power of v equals 0 we can't just stop here.
313 if (-(*decimal_point) > requested_digits) {
314 // The number is definitively too small.
315 // Ex: 0.001 with requested_digits == 1.
316 // Set decimal-point to -requested_digits. This is what Gay does.
317 // Note that it should not have any effect anyways since the string is
318 // empty.
319 *decimal_point = -requested_digits;
320 *length = 0;
321 return;
322 } else if (-(*decimal_point) == requested_digits) {
323 // We only need to verify if the number rounds down or up.
324 // Ex: 0.04 and 0.06 with requested_digits == 1.
325 ASSERT(*decimal_point == -requested_digits);
326 // Initially the fraction lies in range (1, 10]. Multiply the denominator
327 // by 10 so that we can compare more easily.
328 denominator->Times10();
329 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
330 // If the fraction is >= 0.5 then we have to include the rounded
331 // digit.
332 buffer[0] = '1';
333 *length = 1;
334 (*decimal_point)++;
335 } else {
336 // Note that we caught most of similar cases earlier.
337 *length = 0;
338 }
339 return;
340 } else {
341 // The requested digits correspond to the digits after the point.
342 // The variable 'needed_digits' includes the digits before the point.
343 int needed_digits = (*decimal_point) + requested_digits;
344 GenerateCountedDigits(needed_digits, decimal_point,
345 numerator, denominator,
346 buffer, length);
347 }
348 }
349
350
351 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
352 // v = f * 2^exponent and 2^52 <= f < 2^53.
353 // v is hence a normalized double with the given exponent. The output is an
354 // approximation for the exponent of the decimal approimation .digits * 10^k.
355 //
356 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
357 // Note: this property holds for v's upper boundary m+ too.
358 // 10^k <= m+ < 10^k+1.
359 // (see explanation below).
360 //
361 // Examples:
362 // EstimatePower(0) => 16
363 // EstimatePower(-52) => 0
364 //
365 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
366 static int EstimatePower(int exponent) {
367 // This function estimates log10 of v where v = f*2^e (with e == exponent).
368 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
369 // Note that f is bounded by its container size. Let p = 53 (the double's
370 // significand size). Then 2^(p-1) <= f < 2^p.
371 //
372 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
373 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
374 // The computed number undershoots by less than 0.631 (when we compute log3
375 // and not log10).
376 //
377 // Optimization: since we only need an approximated result this computation
378 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
379 // not really measurable, though.
380 //
381 // Since we want to avoid overshooting we decrement by 1e10 so that
382 // floating-point imprecisions don't affect us.
383 //
384 // Explanation for v's boundary m+: the computation takes advantage of
385 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
386 // (even for denormals where the delta can be much more important).
387
388 const double k1Log10 = 0.30102999566398114; // 1/lg(10)
389
390 // For doubles len(f) == 53 (don't forget the hidden bit).
391 const int kSignificandSize = 53;
392 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
393 return static_cast<int>(estimate);
394 }
395
396
397 // See comments for InitialScaledStartValues.
398 static void InitialScaledStartValuesPositiveExponent(
399 double v, int estimated_power, bool need_boundary_deltas,
400 Bignum* numerator, Bignum* denominator,
401 Bignum* delta_minus, Bignum* delta_plus) {
402 // A positive exponent implies a positive power.
403 ASSERT(estimated_power >= 0);
404 // Since the estimated_power is positive we simply multiply the denominator
405 // by 10^estimated_power.
406
407 // numerator = v.
408 numerator->AssignUInt64(Double(v).Significand());
409 numerator->ShiftLeft(Double(v).Exponent());
410 // denominator = 10^estimated_power.
411 denominator->AssignPowerUInt16(10, estimated_power);
412
413 if (need_boundary_deltas) {
414 // Introduce a common denominator so that the deltas to the boundaries are
415 // integers.
416 denominator->ShiftLeft(1);
417 numerator->ShiftLeft(1);
418 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
419 // denominator (of 2) delta_plus equals 2^e.
420 delta_plus->AssignUInt16(1);
421 delta_plus->ShiftLeft(Double(v).Exponent());
422 // Same for delta_minus (with adjustments below if f == 2^p-1).
423 delta_minus->AssignUInt16(1);
424 delta_minus->ShiftLeft(Double(v).Exponent());
425
426 // If the significand (without the hidden bit) is 0, then the lower
427 // boundary is closer than just half a ulp (unit in the last place).
428 // There is only one exception: if the next lower number is a denormal then
429 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
430 // have to test it in the other function where exponent < 0).
431 uint64_t v_bits = Double(v).AsUint64();
432 if ((v_bits & Double::kSignificandMask) == 0) {
433 // The lower boundary is closer at half the distance of "normal" numbers.
434 // Increase the common denominator and adapt all but the delta_minus.
435 denominator->ShiftLeft(1); // *2
436 numerator->ShiftLeft(1); // *2
437 delta_plus->ShiftLeft(1); // *2
438 }
439 }
440 }
441
442
443 // See comments for InitialScaledStartValues
444 static void InitialScaledStartValuesNegativeExponentPositivePower(
445 double v, int estimated_power, bool need_boundary_deltas,
446 Bignum* numerator, Bignum* denominator,
447 Bignum* delta_minus, Bignum* delta_plus) {
448 uint64_t significand = Double(v).Significand();
449 int exponent = Double(v).Exponent();
450 // v = f * 2^e with e < 0, and with estimated_power >= 0.
451 // This means that e is close to 0 (have a look at how estimated_power is
452 // computed).
453
454 // numerator = significand
455 // since v = significand * 2^exponent this is equivalent to
456 // numerator = v * / 2^-exponent
457 numerator->AssignUInt64(significand);
458 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
459 denominator->AssignPowerUInt16(10, estimated_power);
460 denominator->ShiftLeft(-exponent);
461
462 if (need_boundary_deltas) {
463 // Introduce a common denominator so that the deltas to the boundaries are
464 // integers.
465 denominator->ShiftLeft(1);
466 numerator->ShiftLeft(1);
467 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
468 // denominator (of 2) delta_plus equals 2^e.
469 // Given that the denominator already includes v's exponent the distance
470 // to the boundaries is simply 1.
471 delta_plus->AssignUInt16(1);
472 // Same for delta_minus (with adjustments below if f == 2^p-1).
473 delta_minus->AssignUInt16(1);
474
475 // If the significand (without the hidden bit) is 0, then the lower
476 // boundary is closer than just one ulp (unit in the last place).
477 // There is only one exception: if the next lower number is a denormal
478 // then the distance is 1 ulp. Since the exponent is close to zero
479 // (otherwise estimated_power would have been negative) this cannot happen
480 // here either.
481 uint64_t v_bits = Double(v).AsUint64();
482 if ((v_bits & Double::kSignificandMask) == 0) {
483 // The lower boundary is closer at half the distance of "normal" numbers.
484 // Increase the denominator and adapt all but the delta_minus.
485 denominator->ShiftLeft(1); // *2
486 numerator->ShiftLeft(1); // *2
487 delta_plus->ShiftLeft(1); // *2
488 }
489 }
490 }
491
492
493 // See comments for InitialScaledStartValues
494 static void InitialScaledStartValuesNegativeExponentNegativePower(
495 double v, int estimated_power, bool need_boundary_deltas,
496 Bignum* numerator, Bignum* denominator,
497 Bignum* delta_minus, Bignum* delta_plus) {
498 const uint64_t kMinimalNormalizedExponent =
499 UINT64_2PART_C(0x00100000, 00000000);
500 uint64_t significand = Double(v).Significand();
501 int exponent = Double(v).Exponent();
502 // Instead of multiplying the denominator with 10^estimated_power we
503 // multiply all values (numerator and deltas) by 10^-estimated_power.
504
505 // Use numerator as temporary container for power_ten.
506 Bignum* power_ten = numerator;
507 power_ten->AssignPowerUInt16(10, -estimated_power);
508
509 if (need_boundary_deltas) {
510 // Since power_ten == numerator we must make a copy of 10^estimated_power
511 // before we complete the computation of the numerator.
512 // delta_plus = delta_minus = 10^estimated_power
513 delta_plus->AssignBignum(*power_ten);
514 delta_minus->AssignBignum(*power_ten);
515 }
516
517 // numerator = significand * 2 * 10^-estimated_power
518 // since v = significand * 2^exponent this is equivalent to
519 // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
520 // Remember: numerator has been abused as power_ten. So no need to assign it
521 // to itself.
522 ASSERT(numerator == power_ten);
523 numerator->MultiplyByUInt64(significand);
524
525 // denominator = 2 * 2^-exponent with exponent < 0.
526 denominator->AssignUInt16(1);
527 denominator->ShiftLeft(-exponent);
528
529 if (need_boundary_deltas) {
530 // Introduce a common denominator so that the deltas to the boundaries are
531 // integers.
532 numerator->ShiftLeft(1);
533 denominator->ShiftLeft(1);
534 // With this shift the boundaries have their correct value, since
535 // delta_plus = 10^-estimated_power, and
536 // delta_minus = 10^-estimated_power.
537 // These assignments have been done earlier.
538
539 // The special case where the lower boundary is twice as close.
540 // This time we have to look out for the exception too.
541 uint64_t v_bits = Double(v).AsUint64();
542 if ((v_bits & Double::kSignificandMask) == 0 &&
543 // The only exception where a significand == 0 has its boundaries at
544 // "normal" distances:
545 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
546 numerator->ShiftLeft(1); // *2
547 denominator->ShiftLeft(1); // *2
548 delta_plus->ShiftLeft(1); // *2
549 }
550 }
551 }
552
553
554 // Let v = significand * 2^exponent.
555 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
556 // and denominator. The functions GenerateShortestDigits and
557 // GenerateCountedDigits will then convert this ratio to its decimal
558 // representation d, with the required accuracy.
559 // Then d * 10^estimated_power is the representation of v.
560 // (Note: the fraction and the estimated_power might get adjusted before
561 // generating the decimal representation.)
562 //
563 // The initial start values consist of:
564 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
565 // - a scaled (common) denominator.
566 // optionally (used by GenerateShortestDigits to decide if it has the shortest
567 // decimal converting back to v):
568 // - v - m-: the distance to the lower boundary.
569 // - m+ - v: the distance to the upper boundary.
570 //
571 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
572 //
573 // Let ep == estimated_power, then the returned values will satisfy:
574 // v / 10^ep = numerator / denominator.
575 // v's boundarys m- and m+:
576 // m- / 10^ep == v / 10^ep - delta_minus / denominator
577 // m+ / 10^ep == v / 10^ep + delta_plus / denominator
578 // Or in other words:
579 // m- == v - delta_minus * 10^ep / denominator;
580 // m+ == v + delta_plus * 10^ep / denominator;
581 //
582 // Since 10^(k-1) <= v < 10^k (with k == estimated_power)
583 // or 10^k <= v < 10^(k+1)
584 // we then have 0.1 <= numerator/denominator < 1
585 // or 1 <= numerator/denominator < 10
586 //
587 // It is then easy to kickstart the digit-generation routine.
588 //
589 // The boundary-deltas are only filled if need_boundary_deltas is set.
590 static void InitialScaledStartValues(double v,
591 int estimated_power,
592 bool need_boundary_deltas,
593 Bignum* numerator,
594 Bignum* denominator,
595 Bignum* delta_minus,
596 Bignum* delta_plus) {
597 if (Double(v).Exponent() >= 0) {
598 InitialScaledStartValuesPositiveExponent(
599 v, estimated_power, need_boundary_deltas,
600 numerator, denominator, delta_minus, delta_plus);
601 } else if (estimated_power >= 0) {
602 InitialScaledStartValuesNegativeExponentPositivePower(
603 v, estimated_power, need_boundary_deltas,
604 numerator, denominator, delta_minus, delta_plus);
605 } else {
606 InitialScaledStartValuesNegativeExponentNegativePower(
607 v, estimated_power, need_boundary_deltas,
608 numerator, denominator, delta_minus, delta_plus);
609 }
610 }
611
612
613 // This routine multiplies numerator/denominator so that its values lies in the
614 // range 1-10. That is after a call to this function we have:
615 // 1 <= (numerator + delta_plus) /denominator < 10.
616 // Let numerator the input before modification and numerator' the argument
617 // after modification, then the output-parameter decimal_point is such that
618 // numerator / denominator * 10^estimated_power ==
619 // numerator' / denominator' * 10^(decimal_point - 1)
620 // In some cases estimated_power was too low, and this is already the case. We
621 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
622 // estimated_power) but do not touch the numerator or denominator.
623 // Otherwise the routine multiplies the numerator and the deltas by 10.
624 static void FixupMultiply10(int estimated_power, bool is_even,
625 int* decimal_point,
626 Bignum* numerator, Bignum* denominator,
627 Bignum* delta_minus, Bignum* delta_plus) {
628 bool in_range;
629 if (is_even) {
630 // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
631 // are rounded to the closest floating-point number with even significand.
632 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
633 } else {
634 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
635 }
636 if (in_range) {
637 // Since numerator + delta_plus >= denominator we already have
638 // 1 <= numerator/denominator < 10. Simply update the estimated_power.
639 *decimal_point = estimated_power + 1;
640 } else {
641 *decimal_point = estimated_power;
642 numerator->Times10();
643 if (Bignum::Equal(*delta_minus, *delta_plus)) {
644 delta_minus->Times10();
645 delta_plus->AssignBignum(*delta_minus);
646 } else {
647 delta_minus->Times10();
648 delta_plus->Times10();
649 }
650 }
651 }
652
653 } // namespace double_conversion
OLDNEW
« no previous file with comments | « runtime/third_party/double-conversion/src/bignum-dtoa.h ('k') | runtime/third_party/double-conversion/src/cached-powers.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698