OLD | NEW |
(Empty) | |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include "bignum.h" |
| 29 #include "utils.h" |
| 30 |
| 31 namespace double_conversion { |
| 32 |
| 33 Bignum::Bignum() |
| 34 : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { |
| 35 for (int i = 0; i < kBigitCapacity; ++i) { |
| 36 bigits_[i] = 0; |
| 37 } |
| 38 } |
| 39 |
| 40 |
| 41 template<typename S> |
| 42 static int BitSize(S value) { |
| 43 return 8 * sizeof(value); |
| 44 } |
| 45 |
| 46 // Guaranteed to lie in one Bigit. |
| 47 void Bignum::AssignUInt16(uint16_t value) { |
| 48 ASSERT(kBigitSize >= BitSize(value)); |
| 49 Zero(); |
| 50 if (value == 0) return; |
| 51 |
| 52 EnsureCapacity(1); |
| 53 bigits_[0] = value; |
| 54 used_digits_ = 1; |
| 55 } |
| 56 |
| 57 |
| 58 void Bignum::AssignUInt64(uint64_t value) { |
| 59 const int kUInt64Size = 64; |
| 60 |
| 61 Zero(); |
| 62 if (value == 0) return; |
| 63 |
| 64 int needed_bigits = kUInt64Size / kBigitSize + 1; |
| 65 EnsureCapacity(needed_bigits); |
| 66 for (int i = 0; i < needed_bigits; ++i) { |
| 67 bigits_[i] = value & kBigitMask; |
| 68 value = value >> kBigitSize; |
| 69 } |
| 70 used_digits_ = needed_bigits; |
| 71 Clamp(); |
| 72 } |
| 73 |
| 74 |
| 75 void Bignum::AssignBignum(const Bignum& other) { |
| 76 exponent_ = other.exponent_; |
| 77 for (int i = 0; i < other.used_digits_; ++i) { |
| 78 bigits_[i] = other.bigits_[i]; |
| 79 } |
| 80 // Clear the excess digits (if there were any). |
| 81 for (int i = other.used_digits_; i < used_digits_; ++i) { |
| 82 bigits_[i] = 0; |
| 83 } |
| 84 used_digits_ = other.used_digits_; |
| 85 } |
| 86 |
| 87 |
| 88 static uint64_t ReadUInt64(Vector<const char> buffer, |
| 89 int from, |
| 90 int digits_to_read) { |
| 91 uint64_t result = 0; |
| 92 for (int i = from; i < from + digits_to_read; ++i) { |
| 93 int digit = buffer[i] - '0'; |
| 94 ASSERT(0 <= digit && digit <= 9); |
| 95 result = result * 10 + digit; |
| 96 } |
| 97 return result; |
| 98 } |
| 99 |
| 100 |
| 101 void Bignum::AssignDecimalString(Vector<const char> value) { |
| 102 // 2^64 = 18446744073709551616 > 10^19 |
| 103 const int kMaxUint64DecimalDigits = 19; |
| 104 Zero(); |
| 105 int length = value.length(); |
| 106 int pos = 0; |
| 107 // Let's just say that each digit needs 4 bits. |
| 108 while (length >= kMaxUint64DecimalDigits) { |
| 109 uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); |
| 110 pos += kMaxUint64DecimalDigits; |
| 111 length -= kMaxUint64DecimalDigits; |
| 112 MultiplyByPowerOfTen(kMaxUint64DecimalDigits); |
| 113 AddUInt64(digits); |
| 114 } |
| 115 uint64_t digits = ReadUInt64(value, pos, length); |
| 116 MultiplyByPowerOfTen(length); |
| 117 AddUInt64(digits); |
| 118 Clamp(); |
| 119 } |
| 120 |
| 121 |
| 122 static int HexCharValue(char c) { |
| 123 if ('0' <= c && c <= '9') return c - '0'; |
| 124 if ('a' <= c && c <= 'f') return 10 + c - 'a'; |
| 125 if ('A' <= c && c <= 'F') return 10 + c - 'A'; |
| 126 UNREACHABLE(); |
| 127 return 0; // To make compiler happy. |
| 128 } |
| 129 |
| 130 |
| 131 void Bignum::AssignHexString(Vector<const char> value) { |
| 132 Zero(); |
| 133 int length = value.length(); |
| 134 |
| 135 int needed_bigits = length * 4 / kBigitSize + 1; |
| 136 EnsureCapacity(needed_bigits); |
| 137 int string_index = length - 1; |
| 138 for (int i = 0; i < needed_bigits - 1; ++i) { |
| 139 // These bigits are guaranteed to be "full". |
| 140 Chunk current_bigit = 0; |
| 141 for (int j = 0; j < kBigitSize / 4; j++) { |
| 142 current_bigit += HexCharValue(value[string_index--]) << (j * 4); |
| 143 } |
| 144 bigits_[i] = current_bigit; |
| 145 } |
| 146 used_digits_ = needed_bigits - 1; |
| 147 |
| 148 Chunk most_significant_bigit = 0; // Could be = 0; |
| 149 for (int j = 0; j <= string_index; ++j) { |
| 150 most_significant_bigit <<= 4; |
| 151 most_significant_bigit += HexCharValue(value[j]); |
| 152 } |
| 153 if (most_significant_bigit != 0) { |
| 154 bigits_[used_digits_] = most_significant_bigit; |
| 155 used_digits_++; |
| 156 } |
| 157 Clamp(); |
| 158 } |
| 159 |
| 160 |
| 161 void Bignum::AddUInt64(uint64_t operand) { |
| 162 if (operand == 0) return; |
| 163 Bignum other; |
| 164 other.AssignUInt64(operand); |
| 165 AddBignum(other); |
| 166 } |
| 167 |
| 168 |
| 169 void Bignum::AddBignum(const Bignum& other) { |
| 170 ASSERT(IsClamped()); |
| 171 ASSERT(other.IsClamped()); |
| 172 |
| 173 // If this has a greater exponent than other append zero-bigits to this. |
| 174 // After this call exponent_ <= other.exponent_. |
| 175 Align(other); |
| 176 |
| 177 // There are two possibilities: |
| 178 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) |
| 179 // bbbbb 00000000 |
| 180 // ---------------- |
| 181 // ccccccccccc 0000 |
| 182 // or |
| 183 // aaaaaaaaaa 0000 |
| 184 // bbbbbbbbb 0000000 |
| 185 // ----------------- |
| 186 // cccccccccccc 0000 |
| 187 // In both cases we might need a carry bigit. |
| 188 |
| 189 EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); |
| 190 Chunk carry = 0; |
| 191 int bigit_pos = other.exponent_ - exponent_; |
| 192 ASSERT(bigit_pos >= 0); |
| 193 for (int i = 0; i < other.used_digits_; ++i) { |
| 194 Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; |
| 195 bigits_[bigit_pos] = sum & kBigitMask; |
| 196 carry = sum >> kBigitSize; |
| 197 bigit_pos++; |
| 198 } |
| 199 |
| 200 while (carry != 0) { |
| 201 Chunk sum = bigits_[bigit_pos] + carry; |
| 202 bigits_[bigit_pos] = sum & kBigitMask; |
| 203 carry = sum >> kBigitSize; |
| 204 bigit_pos++; |
| 205 } |
| 206 used_digits_ = Max(bigit_pos, used_digits_); |
| 207 ASSERT(IsClamped()); |
| 208 } |
| 209 |
| 210 |
| 211 void Bignum::SubtractBignum(const Bignum& other) { |
| 212 ASSERT(IsClamped()); |
| 213 ASSERT(other.IsClamped()); |
| 214 // We require this to be bigger than other. |
| 215 ASSERT(LessEqual(other, *this)); |
| 216 |
| 217 Align(other); |
| 218 |
| 219 int offset = other.exponent_ - exponent_; |
| 220 Chunk borrow = 0; |
| 221 int i; |
| 222 for (i = 0; i < other.used_digits_; ++i) { |
| 223 ASSERT((borrow == 0) || (borrow == 1)); |
| 224 Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; |
| 225 bigits_[i + offset] = difference & kBigitMask; |
| 226 borrow = difference >> (kChunkSize - 1); |
| 227 } |
| 228 while (borrow != 0) { |
| 229 Chunk difference = bigits_[i + offset] - borrow; |
| 230 bigits_[i + offset] = difference & kBigitMask; |
| 231 borrow = difference >> (kChunkSize - 1); |
| 232 ++i; |
| 233 } |
| 234 Clamp(); |
| 235 } |
| 236 |
| 237 |
| 238 void Bignum::ShiftLeft(int shift_amount) { |
| 239 if (used_digits_ == 0) return; |
| 240 exponent_ += shift_amount / kBigitSize; |
| 241 int local_shift = shift_amount % kBigitSize; |
| 242 EnsureCapacity(used_digits_ + 1); |
| 243 BigitsShiftLeft(local_shift); |
| 244 } |
| 245 |
| 246 |
| 247 void Bignum::MultiplyByUInt32(uint32_t factor) { |
| 248 if (factor == 1) return; |
| 249 if (factor == 0) { |
| 250 Zero(); |
| 251 return; |
| 252 } |
| 253 if (used_digits_ == 0) return; |
| 254 |
| 255 // The product of a bigit with the factor is of size kBigitSize + 32. |
| 256 // Assert that this number + 1 (for the carry) fits into double chunk. |
| 257 ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); |
| 258 DoubleChunk carry = 0; |
| 259 for (int i = 0; i < used_digits_; ++i) { |
| 260 DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; |
| 261 bigits_[i] = static_cast<Chunk>(product & kBigitMask); |
| 262 carry = (product >> kBigitSize); |
| 263 } |
| 264 while (carry != 0) { |
| 265 EnsureCapacity(used_digits_ + 1); |
| 266 bigits_[used_digits_] = carry & kBigitMask; |
| 267 used_digits_++; |
| 268 carry >>= kBigitSize; |
| 269 } |
| 270 } |
| 271 |
| 272 |
| 273 void Bignum::MultiplyByUInt64(uint64_t factor) { |
| 274 if (factor == 1) return; |
| 275 if (factor == 0) { |
| 276 Zero(); |
| 277 return; |
| 278 } |
| 279 ASSERT(kBigitSize < 32); |
| 280 uint64_t carry = 0; |
| 281 uint64_t low = factor & 0xFFFFFFFF; |
| 282 uint64_t high = factor >> 32; |
| 283 for (int i = 0; i < used_digits_; ++i) { |
| 284 uint64_t product_low = low * bigits_[i]; |
| 285 uint64_t product_high = high * bigits_[i]; |
| 286 uint64_t tmp = (carry & kBigitMask) + product_low; |
| 287 bigits_[i] = tmp & kBigitMask; |
| 288 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + |
| 289 (product_high << (32 - kBigitSize)); |
| 290 } |
| 291 while (carry != 0) { |
| 292 EnsureCapacity(used_digits_ + 1); |
| 293 bigits_[used_digits_] = carry & kBigitMask; |
| 294 used_digits_++; |
| 295 carry >>= kBigitSize; |
| 296 } |
| 297 } |
| 298 |
| 299 |
| 300 void Bignum::MultiplyByPowerOfTen(int exponent) { |
| 301 const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); |
| 302 const uint16_t kFive1 = 5; |
| 303 const uint16_t kFive2 = kFive1 * 5; |
| 304 const uint16_t kFive3 = kFive2 * 5; |
| 305 const uint16_t kFive4 = kFive3 * 5; |
| 306 const uint16_t kFive5 = kFive4 * 5; |
| 307 const uint16_t kFive6 = kFive5 * 5; |
| 308 const uint32_t kFive7 = kFive6 * 5; |
| 309 const uint32_t kFive8 = kFive7 * 5; |
| 310 const uint32_t kFive9 = kFive8 * 5; |
| 311 const uint32_t kFive10 = kFive9 * 5; |
| 312 const uint32_t kFive11 = kFive10 * 5; |
| 313 const uint32_t kFive12 = kFive11 * 5; |
| 314 const uint32_t kFive13 = kFive12 * 5; |
| 315 const uint32_t kFive1_to_12[] = |
| 316 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, |
| 317 kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; |
| 318 |
| 319 ASSERT(exponent >= 0); |
| 320 if (exponent == 0) return; |
| 321 if (used_digits_ == 0) return; |
| 322 |
| 323 // We shift by exponent at the end just before returning. |
| 324 int remaining_exponent = exponent; |
| 325 while (remaining_exponent >= 27) { |
| 326 MultiplyByUInt64(kFive27); |
| 327 remaining_exponent -= 27; |
| 328 } |
| 329 while (remaining_exponent >= 13) { |
| 330 MultiplyByUInt32(kFive13); |
| 331 remaining_exponent -= 13; |
| 332 } |
| 333 if (remaining_exponent > 0) { |
| 334 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); |
| 335 } |
| 336 ShiftLeft(exponent); |
| 337 } |
| 338 |
| 339 |
| 340 void Bignum::Square() { |
| 341 ASSERT(IsClamped()); |
| 342 int product_length = 2 * used_digits_; |
| 343 EnsureCapacity(product_length); |
| 344 |
| 345 // Comba multiplication: compute each column separately. |
| 346 // Example: r = a2a1a0 * b2b1b0. |
| 347 // r = 1 * a0b0 + |
| 348 // 10 * (a1b0 + a0b1) + |
| 349 // 100 * (a2b0 + a1b1 + a0b2) + |
| 350 // 1000 * (a2b1 + a1b2) + |
| 351 // 10000 * a2b2 |
| 352 // |
| 353 // In the worst case we have to accumulate nb-digits products of digit*digit. |
| 354 // |
| 355 // Assert that the additional number of bits in a DoubleChunk are enough to |
| 356 // sum up used_digits of Bigit*Bigit. |
| 357 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { |
| 358 UNIMPLEMENTED(); |
| 359 } |
| 360 DoubleChunk accumulator = 0; |
| 361 // First shift the digits so we don't overwrite them. |
| 362 int copy_offset = used_digits_; |
| 363 for (int i = 0; i < used_digits_; ++i) { |
| 364 bigits_[copy_offset + i] = bigits_[i]; |
| 365 } |
| 366 // We have two loops to avoid some 'if's in the loop. |
| 367 for (int i = 0; i < used_digits_; ++i) { |
| 368 // Process temporary digit i with power i. |
| 369 // The sum of the two indices must be equal to i. |
| 370 int bigit_index1 = i; |
| 371 int bigit_index2 = 0; |
| 372 // Sum all of the sub-products. |
| 373 while (bigit_index1 >= 0) { |
| 374 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
| 375 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
| 376 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
| 377 bigit_index1--; |
| 378 bigit_index2++; |
| 379 } |
| 380 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
| 381 accumulator >>= kBigitSize; |
| 382 } |
| 383 for (int i = used_digits_; i < product_length; ++i) { |
| 384 int bigit_index1 = used_digits_ - 1; |
| 385 int bigit_index2 = i - bigit_index1; |
| 386 // Invariant: sum of both indices is again equal to i. |
| 387 // Inner loop runs 0 times on last iteration, emptying accumulator. |
| 388 while (bigit_index2 < used_digits_) { |
| 389 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
| 390 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
| 391 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
| 392 bigit_index1--; |
| 393 bigit_index2++; |
| 394 } |
| 395 // The overwritten bigits_[i] will never be read in further loop iterations, |
| 396 // because bigit_index1 and bigit_index2 are always greater |
| 397 // than i - used_digits_. |
| 398 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
| 399 accumulator >>= kBigitSize; |
| 400 } |
| 401 // Since the result was guaranteed to lie inside the number the |
| 402 // accumulator must be 0 now. |
| 403 ASSERT(accumulator == 0); |
| 404 |
| 405 // Don't forget to update the used_digits and the exponent. |
| 406 used_digits_ = product_length; |
| 407 exponent_ *= 2; |
| 408 Clamp(); |
| 409 } |
| 410 |
| 411 |
| 412 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { |
| 413 ASSERT(base != 0); |
| 414 ASSERT(power_exponent >= 0); |
| 415 if (power_exponent == 0) { |
| 416 AssignUInt16(1); |
| 417 return; |
| 418 } |
| 419 Zero(); |
| 420 int shifts = 0; |
| 421 // We expect base to be in range 2-32, and most often to be 10. |
| 422 // It does not make much sense to implement different algorithms for counting |
| 423 // the bits. |
| 424 while ((base & 1) == 0) { |
| 425 base >>= 1; |
| 426 shifts++; |
| 427 } |
| 428 int bit_size = 0; |
| 429 int tmp_base = base; |
| 430 while (tmp_base != 0) { |
| 431 tmp_base >>= 1; |
| 432 bit_size++; |
| 433 } |
| 434 int final_size = bit_size * power_exponent; |
| 435 // 1 extra bigit for the shifting, and one for rounded final_size. |
| 436 EnsureCapacity(final_size / kBigitSize + 2); |
| 437 |
| 438 // Left to Right exponentiation. |
| 439 int mask = 1; |
| 440 while (power_exponent >= mask) mask <<= 1; |
| 441 |
| 442 // The mask is now pointing to the bit above the most significant 1-bit of |
| 443 // power_exponent. |
| 444 // Get rid of first 1-bit; |
| 445 mask >>= 2; |
| 446 uint64_t this_value = base; |
| 447 |
| 448 bool delayed_multipliciation = false; |
| 449 const uint64_t max_32bits = 0xFFFFFFFF; |
| 450 while (mask != 0 && this_value <= max_32bits) { |
| 451 this_value = this_value * this_value; |
| 452 // Verify that there is enough space in this_value to perform the |
| 453 // multiplication. The first bit_size bits must be 0. |
| 454 if ((power_exponent & mask) != 0) { |
| 455 uint64_t base_bits_mask = |
| 456 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); |
| 457 bool high_bits_zero = (this_value & base_bits_mask) == 0; |
| 458 if (high_bits_zero) { |
| 459 this_value *= base; |
| 460 } else { |
| 461 delayed_multipliciation = true; |
| 462 } |
| 463 } |
| 464 mask >>= 1; |
| 465 } |
| 466 AssignUInt64(this_value); |
| 467 if (delayed_multipliciation) { |
| 468 MultiplyByUInt32(base); |
| 469 } |
| 470 |
| 471 // Now do the same thing as a bignum. |
| 472 while (mask != 0) { |
| 473 Square(); |
| 474 if ((power_exponent & mask) != 0) { |
| 475 MultiplyByUInt32(base); |
| 476 } |
| 477 mask >>= 1; |
| 478 } |
| 479 |
| 480 // And finally add the saved shifts. |
| 481 ShiftLeft(shifts * power_exponent); |
| 482 } |
| 483 |
| 484 |
| 485 // Precondition: this/other < 16bit. |
| 486 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { |
| 487 ASSERT(IsClamped()); |
| 488 ASSERT(other.IsClamped()); |
| 489 ASSERT(other.used_digits_ > 0); |
| 490 |
| 491 // Easy case: if we have less digits than the divisor than the result is 0. |
| 492 // Note: this handles the case where this == 0, too. |
| 493 if (BigitLength() < other.BigitLength()) { |
| 494 return 0; |
| 495 } |
| 496 |
| 497 Align(other); |
| 498 |
| 499 uint16_t result = 0; |
| 500 |
| 501 // Start by removing multiples of 'other' until both numbers have the same |
| 502 // number of digits. |
| 503 while (BigitLength() > other.BigitLength()) { |
| 504 // This naive approach is extremely inefficient if the this divided other |
| 505 // might be big. This function is implemented for doubleToString where |
| 506 // the result should be small (less than 10). |
| 507 ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); |
| 508 // Remove the multiples of the first digit. |
| 509 // Example this = 23 and other equals 9. -> Remove 2 multiples. |
| 510 result += bigits_[used_digits_ - 1]; |
| 511 SubtractTimes(other, bigits_[used_digits_ - 1]); |
| 512 } |
| 513 |
| 514 ASSERT(BigitLength() == other.BigitLength()); |
| 515 |
| 516 // Both bignums are at the same length now. |
| 517 // Since other has more than 0 digits we know that the access to |
| 518 // bigits_[used_digits_ - 1] is safe. |
| 519 Chunk this_bigit = bigits_[used_digits_ - 1]; |
| 520 Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; |
| 521 |
| 522 if (other.used_digits_ == 1) { |
| 523 // Shortcut for easy (and common) case. |
| 524 int quotient = this_bigit / other_bigit; |
| 525 bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; |
| 526 result += quotient; |
| 527 Clamp(); |
| 528 return result; |
| 529 } |
| 530 |
| 531 int division_estimate = this_bigit / (other_bigit + 1); |
| 532 result += division_estimate; |
| 533 SubtractTimes(other, division_estimate); |
| 534 |
| 535 if (other_bigit * (division_estimate + 1) > this_bigit) { |
| 536 // No need to even try to subtract. Even if other's remaining digits were 0 |
| 537 // another subtraction would be too much. |
| 538 return result; |
| 539 } |
| 540 |
| 541 while (LessEqual(other, *this)) { |
| 542 SubtractBignum(other); |
| 543 result++; |
| 544 } |
| 545 return result; |
| 546 } |
| 547 |
| 548 |
| 549 template<typename S> |
| 550 static int SizeInHexChars(S number) { |
| 551 ASSERT(number > 0); |
| 552 int result = 0; |
| 553 while (number != 0) { |
| 554 number >>= 4; |
| 555 result++; |
| 556 } |
| 557 return result; |
| 558 } |
| 559 |
| 560 |
| 561 static char HexCharOfValue(int value) { |
| 562 ASSERT(0 <= value && value <= 16); |
| 563 if (value < 10) return value + '0'; |
| 564 return value - 10 + 'A'; |
| 565 } |
| 566 |
| 567 |
| 568 bool Bignum::ToHexString(char* buffer, int buffer_size) const { |
| 569 ASSERT(IsClamped()); |
| 570 // Each bigit must be printable as separate hex-character. |
| 571 ASSERT(kBigitSize % 4 == 0); |
| 572 const int kHexCharsPerBigit = kBigitSize / 4; |
| 573 |
| 574 if (used_digits_ == 0) { |
| 575 if (buffer_size < 2) return false; |
| 576 buffer[0] = '0'; |
| 577 buffer[1] = '\0'; |
| 578 return true; |
| 579 } |
| 580 // We add 1 for the terminating '\0' character. |
| 581 int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + |
| 582 SizeInHexChars(bigits_[used_digits_ - 1]) + 1; |
| 583 if (needed_chars > buffer_size) return false; |
| 584 int string_index = needed_chars - 1; |
| 585 buffer[string_index--] = '\0'; |
| 586 for (int i = 0; i < exponent_; ++i) { |
| 587 for (int j = 0; j < kHexCharsPerBigit; ++j) { |
| 588 buffer[string_index--] = '0'; |
| 589 } |
| 590 } |
| 591 for (int i = 0; i < used_digits_ - 1; ++i) { |
| 592 Chunk current_bigit = bigits_[i]; |
| 593 for (int j = 0; j < kHexCharsPerBigit; ++j) { |
| 594 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); |
| 595 current_bigit >>= 4; |
| 596 } |
| 597 } |
| 598 // And finally the last bigit. |
| 599 Chunk most_significant_bigit = bigits_[used_digits_ - 1]; |
| 600 while (most_significant_bigit != 0) { |
| 601 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); |
| 602 most_significant_bigit >>= 4; |
| 603 } |
| 604 return true; |
| 605 } |
| 606 |
| 607 |
| 608 Bignum::Chunk Bignum::BigitAt(int index) const { |
| 609 if (index >= BigitLength()) return 0; |
| 610 if (index < exponent_) return 0; |
| 611 return bigits_[index - exponent_]; |
| 612 } |
| 613 |
| 614 |
| 615 int Bignum::Compare(const Bignum& a, const Bignum& b) { |
| 616 ASSERT(a.IsClamped()); |
| 617 ASSERT(b.IsClamped()); |
| 618 int bigit_length_a = a.BigitLength(); |
| 619 int bigit_length_b = b.BigitLength(); |
| 620 if (bigit_length_a < bigit_length_b) return -1; |
| 621 if (bigit_length_a > bigit_length_b) return +1; |
| 622 for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { |
| 623 Chunk bigit_a = a.BigitAt(i); |
| 624 Chunk bigit_b = b.BigitAt(i); |
| 625 if (bigit_a < bigit_b) return -1; |
| 626 if (bigit_a > bigit_b) return +1; |
| 627 // Otherwise they are equal up to this digit. Try the next digit. |
| 628 } |
| 629 return 0; |
| 630 } |
| 631 |
| 632 |
| 633 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { |
| 634 ASSERT(a.IsClamped()); |
| 635 ASSERT(b.IsClamped()); |
| 636 ASSERT(c.IsClamped()); |
| 637 if (a.BigitLength() < b.BigitLength()) { |
| 638 return PlusCompare(b, a, c); |
| 639 } |
| 640 if (a.BigitLength() + 1 < c.BigitLength()) return -1; |
| 641 if (a.BigitLength() > c.BigitLength()) return +1; |
| 642 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than |
| 643 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one |
| 644 // of 'a'. |
| 645 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { |
| 646 return -1; |
| 647 } |
| 648 |
| 649 Chunk borrow = 0; |
| 650 // Starting at min_exponent all digits are == 0. So no need to compare them. |
| 651 int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); |
| 652 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { |
| 653 Chunk chunk_a = a.BigitAt(i); |
| 654 Chunk chunk_b = b.BigitAt(i); |
| 655 Chunk chunk_c = c.BigitAt(i); |
| 656 Chunk sum = chunk_a + chunk_b; |
| 657 if (sum > chunk_c + borrow) { |
| 658 return +1; |
| 659 } else { |
| 660 borrow = chunk_c + borrow - sum; |
| 661 if (borrow > 1) return -1; |
| 662 borrow <<= kBigitSize; |
| 663 } |
| 664 } |
| 665 if (borrow == 0) return 0; |
| 666 return -1; |
| 667 } |
| 668 |
| 669 |
| 670 void Bignum::Clamp() { |
| 671 while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { |
| 672 used_digits_--; |
| 673 } |
| 674 if (used_digits_ == 0) { |
| 675 // Zero. |
| 676 exponent_ = 0; |
| 677 } |
| 678 } |
| 679 |
| 680 |
| 681 bool Bignum::IsClamped() const { |
| 682 return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; |
| 683 } |
| 684 |
| 685 |
| 686 void Bignum::Zero() { |
| 687 for (int i = 0; i < used_digits_; ++i) { |
| 688 bigits_[i] = 0; |
| 689 } |
| 690 used_digits_ = 0; |
| 691 exponent_ = 0; |
| 692 } |
| 693 |
| 694 |
| 695 void Bignum::Align(const Bignum& other) { |
| 696 if (exponent_ > other.exponent_) { |
| 697 // If "X" represents a "hidden" digit (by the exponent) then we are in the |
| 698 // following case (a == this, b == other): |
| 699 // a: aaaaaaXXXX or a: aaaaaXXX |
| 700 // b: bbbbbbX b: bbbbbbbbXX |
| 701 // We replace some of the hidden digits (X) of a with 0 digits. |
| 702 // a: aaaaaa000X or a: aaaaa0XX |
| 703 int zero_digits = exponent_ - other.exponent_; |
| 704 EnsureCapacity(used_digits_ + zero_digits); |
| 705 for (int i = used_digits_ - 1; i >= 0; --i) { |
| 706 bigits_[i + zero_digits] = bigits_[i]; |
| 707 } |
| 708 for (int i = 0; i < zero_digits; ++i) { |
| 709 bigits_[i] = 0; |
| 710 } |
| 711 used_digits_ += zero_digits; |
| 712 exponent_ -= zero_digits; |
| 713 ASSERT(used_digits_ >= 0); |
| 714 ASSERT(exponent_ >= 0); |
| 715 } |
| 716 } |
| 717 |
| 718 |
| 719 void Bignum::BigitsShiftLeft(int shift_amount) { |
| 720 ASSERT(shift_amount < kBigitSize); |
| 721 ASSERT(shift_amount >= 0); |
| 722 Chunk carry = 0; |
| 723 for (int i = 0; i < used_digits_; ++i) { |
| 724 Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); |
| 725 bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; |
| 726 carry = new_carry; |
| 727 } |
| 728 if (carry != 0) { |
| 729 bigits_[used_digits_] = carry; |
| 730 used_digits_++; |
| 731 } |
| 732 } |
| 733 |
| 734 |
| 735 void Bignum::SubtractTimes(const Bignum& other, int factor) { |
| 736 ASSERT(exponent_ <= other.exponent_); |
| 737 if (factor < 3) { |
| 738 for (int i = 0; i < factor; ++i) { |
| 739 SubtractBignum(other); |
| 740 } |
| 741 return; |
| 742 } |
| 743 Chunk borrow = 0; |
| 744 int exponent_diff = other.exponent_ - exponent_; |
| 745 for (int i = 0; i < other.used_digits_; ++i) { |
| 746 DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; |
| 747 DoubleChunk remove = borrow + product; |
| 748 Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask); |
| 749 bigits_[i + exponent_diff] = difference & kBigitMask; |
| 750 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + |
| 751 (remove >> kBigitSize)); |
| 752 } |
| 753 for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { |
| 754 if (borrow == 0) return; |
| 755 Chunk difference = bigits_[i] - borrow; |
| 756 bigits_[i] = difference & kBigitMask; |
| 757 borrow = difference >> (kChunkSize - 1); |
| 758 ++i; |
| 759 } |
| 760 Clamp(); |
| 761 } |
| 762 |
| 763 |
| 764 } // namespace double_conversion |
OLD | NEW |