OLD | NEW |
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "media/audio/win/waveout_output_win.h" | 5 #include "media/audio/win/waveout_output_win.h" |
6 | 6 |
7 #include <windows.h> | 7 #include <windows.h> |
8 #include <mmsystem.h> | 8 #include <mmsystem.h> |
9 #pragma comment(lib, "winmm.lib") | 9 #pragma comment(lib, "winmm.lib") |
10 | 10 |
11 #include "base/basictypes.h" | 11 #include "base/basictypes.h" |
12 #include "base/debug/trace_event.h" | 12 #include "base/debug/trace_event.h" |
13 #include "base/logging.h" | 13 #include "base/logging.h" |
14 #include "media/audio/audio_io.h" | 14 #include "media/audio/audio_io.h" |
15 #include "media/audio/audio_util.h" | 15 #include "media/audio/audio_util.h" |
16 #include "media/audio/win/audio_manager_win.h" | 16 #include "media/audio/win/audio_manager_win.h" |
17 | 17 |
18 // Number of times InitializeCriticalSectionAndSpinCount() spins | |
19 // before going to sleep. | |
20 const DWORD kSpinCount = 2000; | |
21 | |
22 // Some general thoughts about the waveOut API which is badly documented : | 18 // Some general thoughts about the waveOut API which is badly documented : |
23 // - We use CALLBACK_FUNCTION mode in which XP secretly creates two threads | 19 // - We use CALLBACK_EVENT mode in which XP signals events such as buffer |
24 // named _MixerCallbackThread and _waveThread which have real-time priority. | 20 // releases. |
25 // The callbacks occur in _waveThread. | 21 // - We use RegisterWaitForSingleObject() so one of threads in thread pool |
| 22 // automatically calls our callback that feeds more data to Windows. |
26 // - Windows does not provide a way to query if the device is playing or paused | 23 // - Windows does not provide a way to query if the device is playing or paused |
27 // thus it forces you to maintain state, which naturally is not exactly | 24 // thus it forces you to maintain state, which naturally is not exactly |
28 // synchronized to the actual device state. | 25 // synchronized to the actual device state. |
29 // - Some functions, like waveOutReset cannot be called in the callback thread | |
30 // or called in any random state because they deadlock. This results in a | |
31 // non- instantaneous Stop() method. waveOutPrepareHeader seems to be in the | |
32 // same boat. | |
33 // - waveOutReset() will forcefully kill the _waveThread so it is important | |
34 // to make sure we are not executing inside the audio source's OnMoreData() | |
35 // or that we take locks inside WaveCallback() or QueueNextPacket(). | |
36 | 26 |
37 // Sixty four MB is the maximum buffer size per AudioOutputStream. | 27 // Sixty four MB is the maximum buffer size per AudioOutputStream. |
38 static const uint32 kMaxOpenBufferSize = 1024 * 1024 * 64; | 28 static const uint32 kMaxOpenBufferSize = 1024 * 1024 * 64; |
39 | 29 |
40 // Our sound buffers are allocated once and kept in a linked list using the | |
41 // the WAVEHDR::dwUser variable. The last buffer points to the first buffer. | |
42 static WAVEHDR* GetNextBuffer(WAVEHDR* current) { | |
43 return reinterpret_cast<WAVEHDR*>(current->dwUser); | |
44 } | |
45 | |
46 // See Also | 30 // See Also |
47 // http://www.thx.com/consumer/home-entertainment/home-theater/surround-sound-sp
eaker-set-up/ | 31 // http://www.thx.com/consumer/home-entertainment/home-theater/surround-sound-sp
eaker-set-up/ |
48 // http://en.wikipedia.org/wiki/Surround_sound | 32 // http://en.wikipedia.org/wiki/Surround_sound |
49 | 33 |
50 static const int kMaxChannelsToMask = 8; | 34 static const int kMaxChannelsToMask = 8; |
51 static const unsigned int kChannelsToMask[kMaxChannelsToMask + 1] = { | 35 static const unsigned int kChannelsToMask[kMaxChannelsToMask + 1] = { |
52 0, | 36 0, |
53 // 1 = Mono | 37 // 1 = Mono |
54 SPEAKER_FRONT_CENTER, | 38 SPEAKER_FRONT_CENTER, |
55 // 2 = Stereo | 39 // 2 = Stereo |
(...skipping 16 matching lines...) Expand all Loading... |
72 SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT | | 56 SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT | |
73 SPEAKER_BACK_CENTER, | 57 SPEAKER_BACK_CENTER, |
74 // 8 = 7.1 | 58 // 8 = 7.1 |
75 SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | | 59 SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | |
76 SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | | 60 SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | |
77 SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT | | 61 SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT | |
78 SPEAKER_SIDE_LEFT | SPEAKER_SIDE_RIGHT | 62 SPEAKER_SIDE_LEFT | SPEAKER_SIDE_RIGHT |
79 // TODO(fbarchard): Add additional masks for 7.2 and beyond. | 63 // TODO(fbarchard): Add additional masks for 7.2 and beyond. |
80 }; | 64 }; |
81 | 65 |
| 66 inline size_t PCMWaveOutAudioOutputStream::BufferSize() const { |
| 67 // Round size of buffer up to the nearest 16 bytes. |
| 68 return (sizeof(WAVEHDR) + buffer_size_ + 15u) & static_cast<size_t>(~15); |
| 69 } |
| 70 |
| 71 inline WAVEHDR* PCMWaveOutAudioOutputStream::GetBuffer(int n) const { |
| 72 DCHECK_GE(n, 0); |
| 73 DCHECK_LT(n, num_buffers_); |
| 74 return reinterpret_cast<WAVEHDR*>(&buffers_[n * BufferSize()]); |
| 75 } |
| 76 |
| 77 |
82 PCMWaveOutAudioOutputStream::PCMWaveOutAudioOutputStream( | 78 PCMWaveOutAudioOutputStream::PCMWaveOutAudioOutputStream( |
83 AudioManagerWin* manager, const AudioParameters& params, int num_buffers, | 79 AudioManagerWin* manager, const AudioParameters& params, int num_buffers, |
84 UINT device_id) | 80 UINT device_id) |
85 : state_(PCMA_BRAND_NEW), | 81 : state_(PCMA_BRAND_NEW), |
86 manager_(manager), | 82 manager_(manager), |
87 device_id_(device_id), | 83 device_id_(device_id), |
88 waveout_(NULL), | 84 waveout_(NULL), |
89 callback_(NULL), | 85 callback_(NULL), |
90 num_buffers_(num_buffers), | 86 num_buffers_(num_buffers), |
91 buffer_(NULL), | |
92 buffer_size_(params.GetPacketSize()), | 87 buffer_size_(params.GetPacketSize()), |
93 volume_(1), | 88 volume_(1), |
94 channels_(params.channels), | 89 channels_(params.channels), |
95 pending_bytes_(0) { | 90 pending_bytes_(0) { |
96 ::InitializeCriticalSectionAndSpinCount(&lock_, kSpinCount); | |
97 | |
98 format_.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; | 91 format_.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE; |
99 format_.Format.nChannels = params.channels; | 92 format_.Format.nChannels = params.channels; |
100 format_.Format.nSamplesPerSec = params.sample_rate; | 93 format_.Format.nSamplesPerSec = params.sample_rate; |
101 format_.Format.wBitsPerSample = params.bits_per_sample; | 94 format_.Format.wBitsPerSample = params.bits_per_sample; |
102 format_.Format.cbSize = sizeof(format_) - sizeof(WAVEFORMATEX); | 95 format_.Format.cbSize = sizeof(format_) - sizeof(WAVEFORMATEX); |
103 // The next are computed from above. | 96 // The next are computed from above. |
104 format_.Format.nBlockAlign = (format_.Format.nChannels * | 97 format_.Format.nBlockAlign = (format_.Format.nChannels * |
105 format_.Format.wBitsPerSample) / 8; | 98 format_.Format.wBitsPerSample) / 8; |
106 format_.Format.nAvgBytesPerSec = format_.Format.nBlockAlign * | 99 format_.Format.nAvgBytesPerSec = format_.Format.nBlockAlign * |
107 format_.Format.nSamplesPerSec; | 100 format_.Format.nSamplesPerSec; |
108 if (params.channels > kMaxChannelsToMask) { | 101 if (params.channels > kMaxChannelsToMask) { |
109 format_.dwChannelMask = kChannelsToMask[kMaxChannelsToMask]; | 102 format_.dwChannelMask = kChannelsToMask[kMaxChannelsToMask]; |
110 } else { | 103 } else { |
111 format_.dwChannelMask = kChannelsToMask[params.channels]; | 104 format_.dwChannelMask = kChannelsToMask[params.channels]; |
112 } | 105 } |
113 format_.SubFormat = KSDATAFORMAT_SUBTYPE_PCM; | 106 format_.SubFormat = KSDATAFORMAT_SUBTYPE_PCM; |
114 format_.Samples.wValidBitsPerSample = params.bits_per_sample; | 107 format_.Samples.wValidBitsPerSample = params.bits_per_sample; |
115 } | 108 } |
116 | 109 |
117 PCMWaveOutAudioOutputStream::~PCMWaveOutAudioOutputStream() { | 110 PCMWaveOutAudioOutputStream::~PCMWaveOutAudioOutputStream() { |
118 DCHECK(NULL == waveout_); | 111 DCHECK(NULL == waveout_); |
119 ::DeleteCriticalSection(&lock_); | |
120 } | 112 } |
121 | 113 |
122 bool PCMWaveOutAudioOutputStream::Open() { | 114 bool PCMWaveOutAudioOutputStream::Open() { |
123 if (state_ != PCMA_BRAND_NEW) | 115 if (state_ != PCMA_BRAND_NEW) |
124 return false; | 116 return false; |
| 117 if (BufferSize() * num_buffers_ > kMaxOpenBufferSize) |
| 118 return false; |
125 if (num_buffers_ < 2 || num_buffers_ > 5) | 119 if (num_buffers_ < 2 || num_buffers_ > 5) |
126 return false; | 120 return false; |
127 // Open the device. We'll be getting callback in WaveCallback function. | 121 |
128 // They occur in a magic, time-critical thread that windows creates. | 122 // Create buffer event. |
129 MMRESULT result = ::waveOutOpen(&waveout_, device_id_, | 123 buffer_event_.Set(::CreateEvent(NULL, // Security attributes. |
130 reinterpret_cast<LPCWAVEFORMATEX>(&format_), | 124 FALSE, // It will auto-reset. |
131 reinterpret_cast<DWORD_PTR>(WaveCallback), | 125 FALSE, // Initial state. |
132 reinterpret_cast<DWORD_PTR>(this), | 126 NULL)); // No name. |
133 CALLBACK_FUNCTION); | 127 if (!buffer_event_.Get()) |
| 128 return false; |
| 129 |
| 130 // Open the device. |
| 131 // We'll be getting buffer_event_ events when it's time to refill the buffer. |
| 132 MMRESULT result = ::waveOutOpen( |
| 133 &waveout_, |
| 134 device_id_, |
| 135 reinterpret_cast<LPCWAVEFORMATEX>(&format_), |
| 136 reinterpret_cast<DWORD_PTR>(buffer_event_.Get()), |
| 137 NULL, |
| 138 CALLBACK_EVENT); |
134 if (result != MMSYSERR_NOERROR) | 139 if (result != MMSYSERR_NOERROR) |
135 return false; | 140 return false; |
136 | 141 |
137 SetupBuffers(); | 142 SetupBuffers(); |
138 state_ = PCMA_READY; | 143 state_ = PCMA_READY; |
139 return true; | 144 return true; |
140 } | 145 } |
141 | 146 |
142 void PCMWaveOutAudioOutputStream::SetupBuffers() { | 147 void PCMWaveOutAudioOutputStream::SetupBuffers() { |
143 WAVEHDR* last = NULL; | 148 buffers_.reset(new char[BufferSize() * num_buffers_]); |
144 WAVEHDR* first = NULL; | |
145 for (int ix = 0; ix != num_buffers_; ++ix) { | 149 for (int ix = 0; ix != num_buffers_; ++ix) { |
146 uint32 sz = sizeof(WAVEHDR) + buffer_size_; | 150 WAVEHDR* buffer = GetBuffer(ix); |
147 buffer_ = reinterpret_cast<WAVEHDR*>(new char[sz]); | 151 buffer->lpData = reinterpret_cast<char*>(buffer) + sizeof(WAVEHDR); |
148 buffer_->lpData = reinterpret_cast<char*>(buffer_) + sizeof(WAVEHDR); | 152 buffer->dwBufferLength = buffer_size_; |
149 buffer_->dwBufferLength = buffer_size_; | 153 buffer->dwBytesRecorded = 0; |
150 buffer_->dwBytesRecorded = 0; | 154 buffer->dwFlags = WHDR_DONE; |
151 buffer_->dwUser = reinterpret_cast<DWORD_PTR>(last); | 155 buffer->dwLoops = 0; |
152 buffer_->dwFlags = WHDR_DONE; | |
153 buffer_->dwLoops = 0; | |
154 if (ix == 0) | |
155 first = buffer_; | |
156 last = buffer_; | |
157 // Tell windows sound drivers about our buffers. Not documented what | 156 // Tell windows sound drivers about our buffers. Not documented what |
158 // this does but we can guess that causes the OS to keep a reference to | 157 // this does but we can guess that causes the OS to keep a reference to |
159 // the memory pages so the driver can use them without worries. | 158 // the memory pages so the driver can use them without worries. |
160 ::waveOutPrepareHeader(waveout_, buffer_, sizeof(WAVEHDR)); | 159 ::waveOutPrepareHeader(waveout_, buffer, sizeof(WAVEHDR)); |
161 } | 160 } |
162 // Fix the first buffer to point to the last one. | |
163 first->dwUser = reinterpret_cast<DWORD_PTR>(last); | |
164 } | 161 } |
165 | 162 |
166 void PCMWaveOutAudioOutputStream::FreeBuffers() { | 163 void PCMWaveOutAudioOutputStream::FreeBuffers() { |
167 WAVEHDR* current = buffer_; | |
168 for (int ix = 0; ix != num_buffers_; ++ix) { | 164 for (int ix = 0; ix != num_buffers_; ++ix) { |
169 WAVEHDR* next = GetNextBuffer(current); | 165 ::waveOutUnprepareHeader(waveout_, GetBuffer(ix), sizeof(WAVEHDR)); |
170 ::waveOutUnprepareHeader(waveout_, current, sizeof(WAVEHDR)); | |
171 delete[] reinterpret_cast<char*>(current); | |
172 current = next; | |
173 } | 166 } |
174 buffer_ = NULL; | 167 buffers_.reset(NULL); |
175 } | 168 } |
176 | 169 |
177 // Initially we ask the source to fill up both audio buffers. If we don't do | 170 // Initially we ask the source to fill up all audio buffers. If we don't do |
178 // this then we would always get the driver callback when it is about to run | 171 // this then we would always get the driver callback when it is about to run |
179 // samples and that would leave too little time to react. | 172 // samples and that would leave too little time to react. |
180 void PCMWaveOutAudioOutputStream::Start(AudioSourceCallback* callback) { | 173 void PCMWaveOutAudioOutputStream::Start(AudioSourceCallback* callback) { |
181 if (state_ != PCMA_READY) | 174 if (state_ != PCMA_READY) |
182 return; | 175 return; |
183 callback_ = callback; | 176 callback_ = callback; |
| 177 |
| 178 // Start watching for buffer events. |
| 179 { |
| 180 HANDLE waiting_handle = NULL; |
| 181 ::RegisterWaitForSingleObject(&waiting_handle, |
| 182 buffer_event_.Get(), |
| 183 &BufferCallback, |
| 184 this, |
| 185 INFINITE, |
| 186 WT_EXECUTEDEFAULT); |
| 187 if (!waiting_handle) { |
| 188 HandleError(MMSYSERR_ERROR); |
| 189 return; |
| 190 } |
| 191 waiting_handle_.Set(waiting_handle); |
| 192 } |
| 193 |
184 state_ = PCMA_PLAYING; | 194 state_ = PCMA_PLAYING; |
| 195 |
| 196 // Queue the buffers. |
185 pending_bytes_ = 0; | 197 pending_bytes_ = 0; |
186 WAVEHDR* buffer = buffer_; | |
187 for (int ix = 0; ix != num_buffers_; ++ix) { | 198 for (int ix = 0; ix != num_buffers_; ++ix) { |
| 199 WAVEHDR* buffer = GetBuffer(ix); |
188 // Caller waits for 1st packet to become available, but not for others, | 200 // Caller waits for 1st packet to become available, but not for others, |
189 // so we wait for them here. | 201 // so we wait for them here. |
190 if (ix != 0) | 202 if (ix != 0) |
191 callback_->WaitTillDataReady(); | 203 callback_->WaitTillDataReady(); |
192 QueueNextPacket(buffer); // Read more data. | 204 QueueNextPacket(buffer); // Read more data. |
193 pending_bytes_ += buffer->dwBufferLength; | 205 pending_bytes_ += buffer->dwBufferLength; |
194 buffer = GetNextBuffer(buffer); | |
195 } | 206 } |
196 buffer = buffer_; | |
197 | 207 |
198 // From now on |pending_bytes_| would be accessed by callback thread. | 208 // From now on |pending_bytes_| would be accessed by callback thread. |
199 // Most likely waveOutPause() or waveOutRestart() has its own memory barrier, | 209 // Most likely waveOutPause() or waveOutRestart() has its own memory barrier, |
200 // but issuing our own is safer. | 210 // but issuing our own is safer. |
201 MemoryBarrier(); | 211 MemoryBarrier(); |
202 | 212 |
203 MMRESULT result = ::waveOutPause(waveout_); | 213 MMRESULT result = ::waveOutPause(waveout_); |
204 if (result != MMSYSERR_NOERROR) { | 214 if (result != MMSYSERR_NOERROR) { |
205 HandleError(result); | 215 HandleError(result); |
206 return; | 216 return; |
207 } | 217 } |
208 | 218 |
209 // Send the buffers to the audio driver. Note that the device is paused | 219 // Send the buffers to the audio driver. Note that the device is paused |
210 // so we avoid entering the callback method while still here. | 220 // so we avoid entering the callback method while still here. |
211 for (int ix = 0; ix != num_buffers_; ++ix) { | 221 for (int ix = 0; ix != num_buffers_; ++ix) { |
212 result = ::waveOutWrite(waveout_, buffer, sizeof(WAVEHDR)); | 222 result = ::waveOutWrite(waveout_, GetBuffer(ix), sizeof(WAVEHDR)); |
213 if (result != MMSYSERR_NOERROR) { | 223 if (result != MMSYSERR_NOERROR) { |
214 HandleError(result); | 224 HandleError(result); |
215 break; | 225 break; |
216 } | 226 } |
217 buffer = GetNextBuffer(buffer); | |
218 } | 227 } |
219 result = ::waveOutRestart(waveout_); | 228 result = ::waveOutRestart(waveout_); |
220 if (result != MMSYSERR_NOERROR) { | 229 if (result != MMSYSERR_NOERROR) { |
221 HandleError(result); | 230 HandleError(result); |
222 return; | 231 return; |
223 } | 232 } |
224 } | 233 } |
225 | 234 |
226 // Stopping is tricky. First, no buffer should be locked by the audio driver | 235 // Stopping is tricky if we want it be fast. |
227 // or else the waveOutReset() will deadlock and secondly, the callback should | 236 // For now just do it synchronously and avoid all the complexities. |
228 // not be inside the AudioSource's OnMoreData because waveOutReset() forcefully | 237 // TODO(enal): if we want faster Stop() we can create singleton that keeps track |
229 // kills the callback thread after releasing all buffers. | 238 // of all currently playing streams. Then you don't have to wait |
| 239 // till all callbacks are completed. Of course access to singleton |
| 240 // should be under its own lock, and checking the liveness and |
| 241 // acquiring the lock on stream should be done atomically. |
230 void PCMWaveOutAudioOutputStream::Stop() { | 242 void PCMWaveOutAudioOutputStream::Stop() { |
231 if (state_ != PCMA_PLAYING) | 243 if (state_ != PCMA_PLAYING) |
232 return; | 244 return; |
| 245 state_ = PCMA_STOPPING; |
| 246 MemoryBarrier(); |
233 | 247 |
234 // Enter into critical section and call ::waveOutReset(). The fact that we | 248 // Stop playback. |
235 // entered critical section means that callback is out of critical section and | |
236 // it is safe to reset. | |
237 ::EnterCriticalSection(&lock_); | |
238 MMRESULT res = ::waveOutReset(waveout_); | 249 MMRESULT res = ::waveOutReset(waveout_); |
239 ::LeaveCriticalSection(&lock_); | |
240 if (res != MMSYSERR_NOERROR) { | 250 if (res != MMSYSERR_NOERROR) { |
| 251 state_ = PCMA_PLAYING; |
241 HandleError(res); | 252 HandleError(res); |
242 return; | 253 return; |
243 } | 254 } |
244 | 255 |
| 256 // Stop watching for buffer event, wait till all the callbacks are complete. |
| 257 BOOL unregister = UnregisterWaitEx(waiting_handle_.Take(), |
| 258 INVALID_HANDLE_VALUE); |
| 259 if (!unregister) { |
| 260 state_ = PCMA_PLAYING; |
| 261 HandleError(MMSYSERR_ERROR); |
| 262 return; |
| 263 } |
| 264 |
| 265 // waveOutReset() leaves buffers in the unpredictable state, causing |
| 266 // problems if we want to release or reuse them. Fix the states. |
| 267 for (int ix = 0; ix != num_buffers_; ++ix) { |
| 268 GetBuffer(ix)->dwFlags = WHDR_PREPARED; |
| 269 } |
| 270 |
245 // Don't use callback after Stop(). | 271 // Don't use callback after Stop(). |
246 callback_ = NULL; | 272 callback_ = NULL; |
247 | 273 |
248 state_ = PCMA_READY; | 274 state_ = PCMA_READY; |
249 } | 275 } |
250 | 276 |
251 // We can Close in any state except that trying to close a stream that is | 277 // We can Close in any state except that trying to close a stream that is |
252 // playing Windows generates an error, which we propagate to the source. | 278 // playing Windows generates an error, which we propagate to the source. |
253 void PCMWaveOutAudioOutputStream::Close() { | 279 void PCMWaveOutAudioOutputStream::Close() { |
| 280 Stop(); // Just to be sure. No-op if not playing. |
254 if (waveout_) { | 281 if (waveout_) { |
255 // waveOutClose generates a callback with WOM_CLOSE id in the same thread. | |
256 MMRESULT res = ::waveOutClose(waveout_); | 282 MMRESULT res = ::waveOutClose(waveout_); |
257 if (res != MMSYSERR_NOERROR) { | 283 if (res != MMSYSERR_NOERROR) { |
258 HandleError(res); | 284 HandleError(res); |
259 return; | 285 return; |
260 } | 286 } |
261 state_ = PCMA_CLOSED; | 287 state_ = PCMA_CLOSED; |
262 waveout_ = NULL; | 288 waveout_ = NULL; |
263 FreeBuffers(); | 289 FreeBuffers(); |
264 } | 290 } |
265 // Tell the audio manager that we have been released. This can result in | 291 // Tell the audio manager that we have been released. This can result in |
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
309 format_.Format.wBitsPerSample >> 3, | 335 format_.Format.wBitsPerSample >> 3, |
310 volume_); | 336 volume_); |
311 } | 337 } |
312 } else { | 338 } else { |
313 HandleError(0); | 339 HandleError(0); |
314 return; | 340 return; |
315 } | 341 } |
316 buffer->dwFlags = WHDR_PREPARED; | 342 buffer->dwFlags = WHDR_PREPARED; |
317 } | 343 } |
318 | 344 |
319 // Windows call us back in this function when some events happen. Most notably | 345 // One of the threads in our thread pool asynchronously calls this function when |
320 // when it is done playing a buffer. Since we use double buffering it is | 346 // buffer_event_ is signalled. Search through all the buffers looking for freed |
321 // convenient to think of |buffer| as free and GetNextBuffer(buffer) as in | 347 // ones, fills them with data, and "feed" the Windows. |
322 // use by the driver. | 348 // Note: by searching through all the buffers we guarantee that we fill all the |
323 void PCMWaveOutAudioOutputStream::WaveCallback(HWAVEOUT hwo, UINT msg, | 349 // buffers, even when "event loss" happens, i.e. if Windows signals event |
324 DWORD_PTR instance, | 350 // when it did not flip into unsignaled state from the previous signal. |
325 DWORD_PTR param1, DWORD_PTR) { | 351 void NTAPI PCMWaveOutAudioOutputStream::BufferCallback(PVOID lpParameter, |
326 TRACE_EVENT0("audio", "PCMWaveOutAudioOutputStream::WaveCallback"); | 352 BOOLEAN timer_fired) { |
| 353 TRACE_EVENT0("audio", "PCMWaveOutAudioOutputStream::BufferCallback"); |
327 | 354 |
328 if (msg == WOM_DONE) { | 355 DCHECK(!timer_fired); |
329 // WOM_DONE indicates that the driver is done with our buffer, we can | 356 PCMWaveOutAudioOutputStream* stream = |
330 // either ask the source for more data or check if we need to stop playing. | 357 reinterpret_cast<PCMWaveOutAudioOutputStream*>(lpParameter); |
331 WAVEHDR* buffer = reinterpret_cast<WAVEHDR*>(param1); | |
332 buffer->dwFlags = WHDR_DONE; | |
333 | 358 |
334 PCMWaveOutAudioOutputStream* stream = | 359 // Lock the stream so callbacks do not interfere with each other. |
335 reinterpret_cast<PCMWaveOutAudioOutputStream*>(instance); | 360 // Several callbacks can be called simultaneously by different threads in the |
| 361 // thread pool if some of the callbacks are slow, or system is very busy and |
| 362 // scheduled callbacks are not called on time. |
| 363 base::AutoLock auto_lock(stream->lock_); |
| 364 if (stream->state_ != PCMA_PLAYING) |
| 365 return; |
336 | 366 |
337 // Do real work only if main thread has not yet called waveOutReset(). | 367 for (int ix = 0; ix != stream->num_buffers_; ++ix) { |
338 if (::TryEnterCriticalSection(&stream->lock_)) { | 368 WAVEHDR* buffer = stream->GetBuffer(ix); |
| 369 if (buffer->dwFlags & WHDR_DONE) { |
339 // Before we queue the next packet, we need to adjust the number of | 370 // Before we queue the next packet, we need to adjust the number of |
340 // pending bytes since the last write to hardware. | 371 // pending bytes since the last write to hardware. |
341 stream->pending_bytes_ -= buffer->dwBufferLength; | 372 stream->pending_bytes_ -= buffer->dwBufferLength; |
| 373 stream->QueueNextPacket(buffer); |
342 | 374 |
343 stream->QueueNextPacket(buffer); | 375 // QueueNextPacket() can take a long time, especially if several of them |
| 376 // were called back-to-back. Check if we are stopping now. |
| 377 if (stream->state_ != PCMA_PLAYING) |
| 378 return; |
344 | 379 |
345 // Time to send the buffer to the audio driver. Since we are reusing | 380 // Time to send the buffer to the audio driver. Since we are reusing |
346 // the same buffers we can get away without calling waveOutPrepareHeader. | 381 // the same buffers we can get away without calling waveOutPrepareHeader. |
347 MMRESULT result = ::waveOutWrite(hwo, buffer, sizeof(WAVEHDR)); | 382 MMRESULT result = ::waveOutWrite(stream->waveout_, |
| 383 buffer, |
| 384 sizeof(WAVEHDR)); |
348 if (result != MMSYSERR_NOERROR) | 385 if (result != MMSYSERR_NOERROR) |
349 stream->HandleError(result); | 386 stream->HandleError(result); |
350 | |
351 stream->pending_bytes_ += buffer->dwBufferLength; | 387 stream->pending_bytes_ += buffer->dwBufferLength; |
352 ::LeaveCriticalSection(&stream->lock_); | |
353 } | 388 } |
354 } | 389 } |
355 } | 390 } |
OLD | NEW |