OLD | NEW |
1 // Copyright 2011 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 201 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
212 // Return and remove the on-stack parameter. | 212 // Return and remove the on-stack parameter. |
213 __ movq(rsi, rax); | 213 __ movq(rsi, rax); |
214 __ ret(2 * kPointerSize); | 214 __ ret(2 * kPointerSize); |
215 | 215 |
216 // Need to collect. Call into runtime system. | 216 // Need to collect. Call into runtime system. |
217 __ bind(&gc); | 217 __ bind(&gc); |
218 __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1); | 218 __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1); |
219 } | 219 } |
220 | 220 |
221 | 221 |
222 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { | 222 static void GenerateFastCloneShallowArrayCommon( |
223 // Stack layout on entry: | 223 MacroAssembler* masm, |
| 224 int length, |
| 225 FastCloneShallowArrayStub::Mode mode, |
| 226 Label* fail) { |
| 227 // Registers on entry: |
224 // | 228 // |
225 // [rsp + kPointerSize]: constant elements. | 229 // rcx: boilerplate literal array. |
226 // [rsp + (2 * kPointerSize)]: literal index. | 230 ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS); |
227 // [rsp + (3 * kPointerSize)]: literals array. | |
228 | 231 |
229 // All sizes here are multiples of kPointerSize. | 232 // All sizes here are multiples of kPointerSize. |
230 int elements_size = 0; | 233 int elements_size = 0; |
231 if (length_ > 0) { | 234 if (length > 0) { |
232 elements_size = mode_ == CLONE_DOUBLE_ELEMENTS | 235 elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS |
233 ? FixedDoubleArray::SizeFor(length_) | 236 ? FixedDoubleArray::SizeFor(length) |
234 : FixedArray::SizeFor(length_); | 237 : FixedArray::SizeFor(length); |
235 } | 238 } |
236 int size = JSArray::kSize + elements_size; | 239 int size = JSArray::kSize + elements_size; |
237 | 240 |
238 // Load boilerplate object into rcx and check if we need to create a | |
239 // boilerplate. | |
240 Label slow_case; | |
241 __ movq(rcx, Operand(rsp, 3 * kPointerSize)); | |
242 __ movq(rax, Operand(rsp, 2 * kPointerSize)); | |
243 SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); | |
244 __ movq(rcx, | |
245 FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); | |
246 __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); | |
247 __ j(equal, &slow_case); | |
248 | |
249 if (FLAG_debug_code) { | |
250 const char* message; | |
251 Heap::RootListIndex expected_map_index; | |
252 if (mode_ == CLONE_ELEMENTS) { | |
253 message = "Expected (writable) fixed array"; | |
254 expected_map_index = Heap::kFixedArrayMapRootIndex; | |
255 } else if (mode_ == CLONE_DOUBLE_ELEMENTS) { | |
256 message = "Expected (writable) fixed double array"; | |
257 expected_map_index = Heap::kFixedDoubleArrayMapRootIndex; | |
258 } else { | |
259 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); | |
260 message = "Expected copy-on-write fixed array"; | |
261 expected_map_index = Heap::kFixedCOWArrayMapRootIndex; | |
262 } | |
263 __ push(rcx); | |
264 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); | |
265 __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), | |
266 expected_map_index); | |
267 __ Assert(equal, message); | |
268 __ pop(rcx); | |
269 } | |
270 | |
271 // Allocate both the JS array and the elements array in one big | 241 // Allocate both the JS array and the elements array in one big |
272 // allocation. This avoids multiple limit checks. | 242 // allocation. This avoids multiple limit checks. |
273 __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT); | 243 __ AllocateInNewSpace(size, rax, rbx, rdx, fail, TAG_OBJECT); |
274 | 244 |
275 // Copy the JS array part. | 245 // Copy the JS array part. |
276 for (int i = 0; i < JSArray::kSize; i += kPointerSize) { | 246 for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
277 if ((i != JSArray::kElementsOffset) || (length_ == 0)) { | 247 if ((i != JSArray::kElementsOffset) || (length == 0)) { |
278 __ movq(rbx, FieldOperand(rcx, i)); | 248 __ movq(rbx, FieldOperand(rcx, i)); |
279 __ movq(FieldOperand(rax, i), rbx); | 249 __ movq(FieldOperand(rax, i), rbx); |
280 } | 250 } |
281 } | 251 } |
282 | 252 |
283 if (length_ > 0) { | 253 if (length > 0) { |
284 // Get hold of the elements array of the boilerplate and setup the | 254 // Get hold of the elements array of the boilerplate and setup the |
285 // elements pointer in the resulting object. | 255 // elements pointer in the resulting object. |
286 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); | 256 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); |
287 __ lea(rdx, Operand(rax, JSArray::kSize)); | 257 __ lea(rdx, Operand(rax, JSArray::kSize)); |
288 __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx); | 258 __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx); |
289 | 259 |
290 // Copy the elements array. | 260 // Copy the elements array. |
291 if (mode_ == CLONE_ELEMENTS) { | 261 if (mode == FastCloneShallowArrayStub::CLONE_ELEMENTS) { |
292 for (int i = 0; i < elements_size; i += kPointerSize) { | 262 for (int i = 0; i < elements_size; i += kPointerSize) { |
293 __ movq(rbx, FieldOperand(rcx, i)); | 263 __ movq(rbx, FieldOperand(rcx, i)); |
294 __ movq(FieldOperand(rdx, i), rbx); | 264 __ movq(FieldOperand(rdx, i), rbx); |
295 } | 265 } |
296 } else { | 266 } else { |
297 ASSERT(mode_ == CLONE_DOUBLE_ELEMENTS); | 267 ASSERT(mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS); |
298 int i; | 268 int i; |
299 for (i = 0; i < FixedDoubleArray::kHeaderSize; i += kPointerSize) { | 269 for (i = 0; i < FixedDoubleArray::kHeaderSize; i += kPointerSize) { |
300 __ movq(rbx, FieldOperand(rcx, i)); | 270 __ movq(rbx, FieldOperand(rcx, i)); |
301 __ movq(FieldOperand(rdx, i), rbx); | 271 __ movq(FieldOperand(rdx, i), rbx); |
302 } | 272 } |
303 while (i < elements_size) { | 273 while (i < elements_size) { |
304 __ movsd(xmm0, FieldOperand(rcx, i)); | 274 __ movsd(xmm0, FieldOperand(rcx, i)); |
305 __ movsd(FieldOperand(rdx, i), xmm0); | 275 __ movsd(FieldOperand(rdx, i), xmm0); |
306 i += kDoubleSize; | 276 i += kDoubleSize; |
307 } | 277 } |
308 ASSERT(i == elements_size); | 278 ASSERT(i == elements_size); |
309 } | 279 } |
310 } | 280 } |
| 281 } |
311 | 282 |
312 // Return and remove the on-stack parameters. | 283 void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
| 284 // Stack layout on entry: |
| 285 // |
| 286 // [rsp + kPointerSize]: constant elements. |
| 287 // [rsp + (2 * kPointerSize)]: literal index. |
| 288 // [rsp + (3 * kPointerSize)]: literals array. |
| 289 |
| 290 // Load boilerplate object into rcx and check if we need to create a |
| 291 // boilerplate. |
| 292 __ movq(rcx, Operand(rsp, 3 * kPointerSize)); |
| 293 __ movq(rax, Operand(rsp, 2 * kPointerSize)); |
| 294 SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); |
| 295 __ movq(rcx, |
| 296 FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); |
| 297 __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); |
| 298 Label slow_case; |
| 299 __ j(equal, &slow_case); |
| 300 |
| 301 FastCloneShallowArrayStub::Mode mode = mode_; |
| 302 // rcx is boilerplate object. |
| 303 Factory* factory = masm->isolate()->factory(); |
| 304 if (mode == CLONE_ANY_ELEMENTS) { |
| 305 Label double_elements, check_fast_elements; |
| 306 __ movq(rbx, FieldOperand(rcx, JSArray::kElementsOffset)); |
| 307 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), |
| 308 factory->fixed_cow_array_map()); |
| 309 __ j(not_equal, &check_fast_elements); |
| 310 GenerateFastCloneShallowArrayCommon(masm, 0, |
| 311 COPY_ON_WRITE_ELEMENTS, &slow_case); |
| 312 __ ret(3 * kPointerSize); |
| 313 |
| 314 __ bind(&check_fast_elements); |
| 315 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), |
| 316 factory->fixed_array_map()); |
| 317 __ j(not_equal, &double_elements); |
| 318 GenerateFastCloneShallowArrayCommon(masm, length_, |
| 319 CLONE_ELEMENTS, &slow_case); |
| 320 __ ret(3 * kPointerSize); |
| 321 |
| 322 __ bind(&double_elements); |
| 323 mode = CLONE_DOUBLE_ELEMENTS; |
| 324 // Fall through to generate the code to handle double elements. |
| 325 } |
| 326 |
| 327 if (FLAG_debug_code) { |
| 328 const char* message; |
| 329 Heap::RootListIndex expected_map_index; |
| 330 if (mode == CLONE_ELEMENTS) { |
| 331 message = "Expected (writable) fixed array"; |
| 332 expected_map_index = Heap::kFixedArrayMapRootIndex; |
| 333 } else if (mode == CLONE_DOUBLE_ELEMENTS) { |
| 334 message = "Expected (writable) fixed double array"; |
| 335 expected_map_index = Heap::kFixedDoubleArrayMapRootIndex; |
| 336 } else { |
| 337 ASSERT(mode == COPY_ON_WRITE_ELEMENTS); |
| 338 message = "Expected copy-on-write fixed array"; |
| 339 expected_map_index = Heap::kFixedCOWArrayMapRootIndex; |
| 340 } |
| 341 __ push(rcx); |
| 342 __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); |
| 343 __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), |
| 344 expected_map_index); |
| 345 __ Assert(equal, message); |
| 346 __ pop(rcx); |
| 347 } |
| 348 |
| 349 GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case); |
313 __ ret(3 * kPointerSize); | 350 __ ret(3 * kPointerSize); |
314 | 351 |
315 __ bind(&slow_case); | 352 __ bind(&slow_case); |
316 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); | 353 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
317 } | 354 } |
318 | 355 |
319 | 356 |
320 // The stub expects its argument on the stack and returns its result in tos_: | 357 // The stub expects its argument on the stack and returns its result in tos_: |
321 // zero for false, and a non-zero value for true. | 358 // zero for false, and a non-zero value for true. |
322 void ToBooleanStub::Generate(MacroAssembler* masm) { | 359 void ToBooleanStub::Generate(MacroAssembler* masm) { |
(...skipping 4582 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4905 // If coming from the make_two_character_string path, the string | 4942 // If coming from the make_two_character_string path, the string |
4906 // is too short to be sliced anyways. | 4943 // is too short to be sliced anyways. |
4907 STATIC_ASSERT(2 < SlicedString::kMinLength); | 4944 STATIC_ASSERT(2 < SlicedString::kMinLength); |
4908 __ jmp(©_routine); | 4945 __ jmp(©_routine); |
4909 __ bind(&result_longer_than_two); | 4946 __ bind(&result_longer_than_two); |
4910 | 4947 |
4911 // rax: string | 4948 // rax: string |
4912 // rbx: instance type | 4949 // rbx: instance type |
4913 // rcx: sub string length | 4950 // rcx: sub string length |
4914 // rdx: from index (smi) | 4951 // rdx: from index (smi) |
4915 Label allocate_slice, sliced_string, seq_string; | 4952 Label allocate_slice, sliced_string, seq_or_external_string; |
4916 __ cmpq(rcx, Immediate(SlicedString::kMinLength)); | 4953 __ cmpq(rcx, Immediate(SlicedString::kMinLength)); |
4917 // Short slice. Copy instead of slicing. | 4954 // Short slice. Copy instead of slicing. |
4918 __ j(less, ©_routine); | 4955 __ j(less, ©_routine); |
4919 STATIC_ASSERT(kSeqStringTag == 0); | 4956 // If the string is not indirect, it can only be sequential or external. |
4920 __ testb(rbx, Immediate(kStringRepresentationMask)); | |
4921 __ j(zero, &seq_string, Label::kNear); | |
4922 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); | 4957 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); |
4923 STATIC_ASSERT(kIsIndirectStringMask != 0); | 4958 STATIC_ASSERT(kIsIndirectStringMask != 0); |
4924 __ testb(rbx, Immediate(kIsIndirectStringMask)); | 4959 __ testb(rbx, Immediate(kIsIndirectStringMask)); |
4925 // External string. Jump to runtime. | 4960 __ j(zero, &seq_or_external_string, Label::kNear); |
4926 __ j(zero, &runtime); | |
4927 | 4961 |
4928 __ testb(rbx, Immediate(kSlicedNotConsMask)); | 4962 __ testb(rbx, Immediate(kSlicedNotConsMask)); |
4929 __ j(not_zero, &sliced_string, Label::kNear); | 4963 __ j(not_zero, &sliced_string, Label::kNear); |
4930 // Cons string. Check whether it is flat, then fetch first part. | 4964 // Cons string. Check whether it is flat, then fetch first part. |
4931 __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset), | 4965 __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset), |
4932 Heap::kEmptyStringRootIndex); | 4966 Heap::kEmptyStringRootIndex); |
4933 __ j(not_equal, &runtime); | 4967 __ j(not_equal, &runtime); |
4934 __ movq(rdi, FieldOperand(rax, ConsString::kFirstOffset)); | 4968 __ movq(rdi, FieldOperand(rax, ConsString::kFirstOffset)); |
4935 __ jmp(&allocate_slice, Label::kNear); | 4969 __ jmp(&allocate_slice, Label::kNear); |
4936 | 4970 |
4937 __ bind(&sliced_string); | 4971 __ bind(&sliced_string); |
4938 // Sliced string. Fetch parent and correct start index by offset. | 4972 // Sliced string. Fetch parent and correct start index by offset. |
4939 __ addq(rdx, FieldOperand(rax, SlicedString::kOffsetOffset)); | 4973 __ addq(rdx, FieldOperand(rax, SlicedString::kOffsetOffset)); |
4940 __ movq(rdi, FieldOperand(rax, SlicedString::kParentOffset)); | 4974 __ movq(rdi, FieldOperand(rax, SlicedString::kParentOffset)); |
4941 __ jmp(&allocate_slice, Label::kNear); | 4975 __ jmp(&allocate_slice, Label::kNear); |
4942 | 4976 |
4943 __ bind(&seq_string); | 4977 __ bind(&seq_or_external_string); |
4944 // Sequential string. Just move string to the right register. | 4978 // Sequential or external string. Just move string to the correct register. |
4945 __ movq(rdi, rax); | 4979 __ movq(rdi, rax); |
4946 | 4980 |
4947 __ bind(&allocate_slice); | 4981 __ bind(&allocate_slice); |
4948 // edi: underlying subject string | 4982 // edi: underlying subject string |
4949 // ebx: instance type of original subject string | 4983 // ebx: instance type of original subject string |
4950 // edx: offset | 4984 // edx: offset |
4951 // ecx: length | 4985 // ecx: length |
4952 // Allocate new sliced string. At this point we do not reload the instance | 4986 // Allocate new sliced string. At this point we do not reload the instance |
4953 // type including the string encoding because we simply rely on the info | 4987 // type including the string encoding because we simply rely on the info |
4954 // provided by the original string. It does not matter if the original | 4988 // provided by the original string. It does not matter if the original |
(...skipping 1072 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
6027 xmm0, | 6061 xmm0, |
6028 &slow_elements); | 6062 &slow_elements); |
6029 __ ret(0); | 6063 __ ret(0); |
6030 } | 6064 } |
6031 | 6065 |
6032 #undef __ | 6066 #undef __ |
6033 | 6067 |
6034 } } // namespace v8::internal | 6068 } } // namespace v8::internal |
6035 | 6069 |
6036 #endif // V8_TARGET_ARCH_X64 | 6070 #endif // V8_TARGET_ARCH_X64 |
OLD | NEW |