OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 // This code implements SPAKE2, a varient of EKE: |
| 6 // http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04 |
| 7 |
| 8 #include <crypto/p224_spake.h> |
| 9 |
| 10 #include <base/logging.h> |
| 11 #include <base/rand_util.h> |
| 12 #include <crypto/p224.h> |
| 13 #include <crypto/secure_util.h> |
| 14 |
| 15 namespace { |
| 16 |
| 17 // The following two points (M and N in the protocol) are verifiable random |
| 18 // points on the curve and can be generated with the following code: |
| 19 |
| 20 // #include <stdint.h> |
| 21 // #include <stdio.h> |
| 22 // #include <string.h> |
| 23 // |
| 24 // #include <openssl/ec.h> |
| 25 // #include <openssl/obj_mac.h> |
| 26 // #include <openssl/sha.h> |
| 27 // |
| 28 // static const char kSeed1[] = "P224 point generation seed (M)"; |
| 29 // static const char kSeed2[] = "P224 point generation seed (N)"; |
| 30 // |
| 31 // void find_seed(const char* seed) { |
| 32 // SHA256_CTX sha256; |
| 33 // uint8_t digest[SHA256_DIGEST_LENGTH]; |
| 34 // |
| 35 // SHA256_Init(&sha256); |
| 36 // SHA256_Update(&sha256, seed, strlen(seed)); |
| 37 // SHA256_Final(digest, &sha256); |
| 38 // |
| 39 // BIGNUM x, y; |
| 40 // EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1); |
| 41 // EC_POINT* p = EC_POINT_new(p224); |
| 42 // |
| 43 // for (unsigned i = 0;; i++) { |
| 44 // BN_init(&x); |
| 45 // BN_bin2bn(digest, 28, &x); |
| 46 // |
| 47 // if (EC_POINT_set_compressed_coordinates_GFp( |
| 48 // p224, p, &x, digest[28] & 1, NULL)) { |
| 49 // BN_init(&y); |
| 50 // EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL); |
| 51 // char* x_str = BN_bn2hex(&x); |
| 52 // char* y_str = BN_bn2hex(&y); |
| 53 // printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str); |
| 54 // OPENSSL_free(x_str); |
| 55 // OPENSSL_free(y_str); |
| 56 // BN_free(&x); |
| 57 // BN_free(&y); |
| 58 // break; |
| 59 // } |
| 60 // |
| 61 // SHA256_Init(&sha256); |
| 62 // SHA256_Update(&sha256, digest, sizeof(digest)); |
| 63 // SHA256_Final(digest, &sha256); |
| 64 // |
| 65 // BN_free(&x); |
| 66 // } |
| 67 // |
| 68 // EC_POINT_free(p); |
| 69 // EC_GROUP_free(p224); |
| 70 // } |
| 71 // |
| 72 // int main() { |
| 73 // find_seed(kSeed1); |
| 74 // find_seed(kSeed2); |
| 75 // return 0; |
| 76 // } |
| 77 |
| 78 const crypto::p224::Point kM = { |
| 79 {174237515, 77186811, 235213682, 33849492, |
| 80 33188520, 48266885, 177021753, 81038478}, |
| 81 {104523827, 245682244, 266509668, 236196369, |
| 82 28372046, 145351378, 198520366, 113345994}, |
| 83 {1, 0, 0, 0, 0, 0, 0}, |
| 84 }; |
| 85 |
| 86 const crypto::p224::Point kN = { |
| 87 {136176322, 263523628, 251628795, 229292285, |
| 88 5034302, 185981975, 171998428, 11653062}, |
| 89 {197567436, 51226044, 60372156, 175772188, |
| 90 42075930, 8083165, 160827401, 65097570}, |
| 91 {1, 0, 0, 0, 0, 0, 0}, |
| 92 }; |
| 93 |
| 94 } // anonymous namespace |
| 95 |
| 96 namespace crypto { |
| 97 |
| 98 P224EncryptedKeyExchange::P224EncryptedKeyExchange( |
| 99 PeerType peer_type, |
| 100 const base::StringPiece& password, |
| 101 const base::StringPiece& session) |
| 102 : state_(kStateInitial), |
| 103 is_server_(peer_type == kPeerTypeServer) { |
| 104 // x_ is a random scalar. |
| 105 base::RandBytes(x_, sizeof(x_)); |
| 106 |
| 107 // X = g**x_ |
| 108 p224::Point X; |
| 109 p224::ScalarBaseMult(x_, &X); |
| 110 |
| 111 // The "password" in the SPAKE2 protocol is |
| 112 // SHA256(P(password) + P(session)) where P is function that prepends a |
| 113 // uint32, big-endian length prefix. |
| 114 uint8 password_length[4], session_length[4]; |
| 115 password_length[0] = password.size() >> 24; |
| 116 password_length[1] = password.size() >> 16; |
| 117 password_length[2] = password.size() >> 8; |
| 118 password_length[3] = password.size(); |
| 119 session_length[0] = session.size() >> 24; |
| 120 session_length[1] = session.size() >> 16; |
| 121 session_length[2] = session.size() >> 8; |
| 122 session_length[3] = session.size(); |
| 123 SHA256HashString(std::string(reinterpret_cast<const char *>(password_length), |
| 124 sizeof(password_length)) + |
| 125 password.as_string() + |
| 126 std::string(reinterpret_cast<const char *>(session_length), |
| 127 sizeof(session_length)) + |
| 128 session.as_string(), |
| 129 pw_, |
| 130 sizeof(pw_)); |
| 131 |
| 132 // The client masks the Diffie-Hellman value, X, by adding M**pw and the |
| 133 // server uses N**pw. |
| 134 p224::Point MNpw; |
| 135 p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw); |
| 136 |
| 137 // X* = X + (N|M)**pw |
| 138 p224::Point Xstar; |
| 139 p224::Add(X, MNpw, &Xstar); |
| 140 |
| 141 next_message_ = Xstar.ToString(); |
| 142 } |
| 143 |
| 144 const std::string& P224EncryptedKeyExchange::GetMessage() { |
| 145 if (state_ == kStateInitial) { |
| 146 state_ = kStateRecvDH; |
| 147 return next_message_; |
| 148 } else if (state_ == kStateSendHash) { |
| 149 state_ = kStateRecvHash; |
| 150 return next_message_; |
| 151 } |
| 152 |
| 153 LOG(FATAL) << "P224EncryptedKeyExchange::GetMessage called in" |
| 154 " bad state " << state_; |
| 155 next_message_ = ""; |
| 156 return next_message_; |
| 157 } |
| 158 |
| 159 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage( |
| 160 const base::StringPiece& message) { |
| 161 if (state_ == kStateRecvHash) { |
| 162 // This is the final state of the protocol: we are reading the peer's |
| 163 // authentication hash and checking that it matches the one that we expect. |
| 164 if (message.size() != sizeof(expected_authenticator_)) { |
| 165 error_ = "peer's hash had an incorrect size"; |
| 166 return kResultFailed; |
| 167 } |
| 168 if (!SecureMemEqual(message.data(), expected_authenticator_, |
| 169 message.size())) { |
| 170 error_ = "peer's hash had incorrect value"; |
| 171 return kResultFailed; |
| 172 } |
| 173 state_ = kStateDone; |
| 174 return kResultSuccess; |
| 175 } |
| 176 |
| 177 if (state_ != kStateRecvDH) { |
| 178 LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in" |
| 179 " bad state " << state_; |
| 180 error_ = "internal error"; |
| 181 return kResultFailed; |
| 182 } |
| 183 |
| 184 // Y* is the other party's masked, Diffie-Hellman value. |
| 185 p224::Point Ystar; |
| 186 if (!Ystar.SetFromString(message)) { |
| 187 error_ = "failed to parse peer's masked Diffie-Hellman value"; |
| 188 return kResultFailed; |
| 189 } |
| 190 |
| 191 // We calculate the mask value: (N|M)**pw |
| 192 p224::Point MNpw, minus_MNpw, Y, k; |
| 193 p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw); |
| 194 p224::Negate(MNpw, &minus_MNpw); |
| 195 |
| 196 // Y = Y* - (N|M)**pw |
| 197 p224::Add(Ystar, minus_MNpw, &Y); |
| 198 |
| 199 // K = Y**x_ |
| 200 p224::ScalarMult(Y, x_, &k); |
| 201 |
| 202 // If everything worked out, then K is the same for both parties. |
| 203 std::string k_str = k.ToString(); |
| 204 |
| 205 std::string client_masked_dh, server_masked_dh; |
| 206 if (is_server_) { |
| 207 client_masked_dh = message.as_string(); |
| 208 server_masked_dh = next_message_; |
| 209 } else { |
| 210 client_masked_dh = next_message_; |
| 211 server_masked_dh = message.as_string(); |
| 212 } |
| 213 |
| 214 // Now we calculate the hashes that each side will use to prove to the other |
| 215 // that they derived the correct value for K. |
| 216 uint8 client_hash[kSHA256Length], server_hash[kSHA256Length]; |
| 217 CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, k_str, |
| 218 client_hash); |
| 219 CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, k_str, |
| 220 server_hash); |
| 221 |
| 222 const uint8* my_hash = is_server_ ? server_hash : client_hash; |
| 223 const uint8* their_hash = is_server_ ? client_hash : server_hash; |
| 224 |
| 225 next_message_ = |
| 226 std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length); |
| 227 memcpy(expected_authenticator_, their_hash, kSHA256Length); |
| 228 state_ = kStateSendHash; |
| 229 return kResultPending; |
| 230 } |
| 231 |
| 232 void P224EncryptedKeyExchange::CalculateHash( |
| 233 PeerType peer_type, |
| 234 const std::string& client_masked_dh, |
| 235 const std::string& server_masked_dh, |
| 236 const std::string& k, |
| 237 uint8* out_digest) { |
| 238 std::string hash_contents; |
| 239 |
| 240 if (peer_type == kPeerTypeServer) { |
| 241 hash_contents = "server"; |
| 242 } else { |
| 243 hash_contents = "client"; |
| 244 } |
| 245 |
| 246 hash_contents += client_masked_dh; |
| 247 hash_contents += server_masked_dh; |
| 248 hash_contents += |
| 249 std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_)); |
| 250 hash_contents += k; |
| 251 |
| 252 SHA256HashString(hash_contents, out_digest, kSHA256Length); |
| 253 } |
| 254 |
| 255 const std::string& P224EncryptedKeyExchange::error() const { |
| 256 return error_; |
| 257 } |
| 258 |
| 259 } // namespace crypto |
OLD | NEW |