OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 // This code implements SPAKE2, a varient of EKE: | |
6 // http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04 | |
7 | |
8 #include <crypto/mutual_auth.h> | |
9 | |
10 #include <base/logging.h> | |
11 #include <base/rand_util.h> | |
12 #include <crypto/p224.h> | |
13 #include <crypto/secure_util.h> | |
14 | |
15 namespace { | |
16 | |
17 // The following two points (M and N in the protocol) are verifiable random | |
18 // points on the curve and can be generated with the following code: | |
19 | |
20 // #include <stdint.h> | |
21 // #include <stdio.h> | |
22 // #include <string.h> | |
23 // | |
24 // #include <openssl/ec.h> | |
25 // #include <openssl/obj_mac.h> | |
26 // #include <openssl/sha.h> | |
27 // | |
28 // static const char kSeed1[] = "P224 point generation seed (M)"; | |
29 // static const char kSeed2[] = "P224 point generation seed (N)"; | |
30 // | |
31 // void find_seed(const char* seed) { | |
32 // SHA256_CTX sha256; | |
33 // uint8_t digest[SHA256_DIGEST_LENGTH]; | |
34 // | |
35 // SHA256_Init(&sha256); | |
36 // SHA256_Update(&sha256, seed, strlen(seed)); | |
37 // SHA256_Final(digest, &sha256); | |
38 // | |
39 // BIGNUM x, y; | |
40 // EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1); | |
41 // EC_POINT* p = EC_POINT_new(p224); | |
42 // | |
43 // for (unsigned i = 0;; i++) { | |
44 // BN_init(&x); | |
45 // BN_bin2bn(digest, 28, &x); | |
46 // | |
47 // if (EC_POINT_set_compressed_coordinates_GFp( | |
48 // p224, p, &x, digest[28] & 1, NULL)) { | |
49 // BN_init(&y); | |
50 // EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL); | |
51 // char* x_str = BN_bn2hex(&x); | |
52 // char* y_str = BN_bn2hex(&y); | |
53 // printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str); | |
54 // OPENSSL_free(x_str); | |
55 // OPENSSL_free(y_str); | |
56 // BN_free(&x); | |
57 // BN_free(&y); | |
58 // break; | |
59 // } | |
60 // | |
61 // SHA256_Init(&sha256); | |
62 // SHA256_Update(&sha256, digest, sizeof(digest)); | |
63 // SHA256_Final(digest, &sha256); | |
64 // | |
65 // BN_free(&x); | |
66 // } | |
67 // | |
68 // EC_POINT_free(p); | |
69 // EC_GROUP_free(p224); | |
70 // } | |
71 // | |
72 // int main() { | |
73 // find_seed(kSeed1); | |
74 // find_seed(kSeed2); | |
75 // return 0; | |
76 // } | |
77 | |
78 const crypto::p224::Point kM = { | |
79 {174237515, 77186811, 235213682, 33849492, | |
80 33188520, 48266885, 177021753, 81038478}, | |
81 {104523827, 245682244, 266509668, 236196369, | |
82 28372046, 145351378, 198520366, 113345994}, | |
83 {1, 0, 0, 0, 0, 0, 0}, | |
84 }; | |
85 | |
86 const crypto::p224::Point kN = { | |
87 {136176322, 263523628, 251628795, 229292285, | |
88 5034302, 185981975, 171998428, 11653062}, | |
89 {197567436, 51226044, 60372156, 175772188, | |
90 42075930, 8083165, 160827401, 65097570}, | |
91 {1, 0, 0, 0, 0, 0, 0}, | |
92 }; | |
93 | |
94 } // anonymous namespace | |
95 | |
96 namespace crypto { | |
97 | |
98 SharedSecretMutualAuthentication::SharedSecretMutualAuthentication( | |
99 PeerType peer_type, | |
100 const base::StringPiece& password, | |
101 const base::StringPiece& session) | |
102 : is_server_(peer_type == kServer), | |
103 state_(kStateInitial) { | |
104 // x_ is a random scalar. | |
105 base::RandBytes(x_, sizeof(x_)); | |
106 | |
107 // X = g**x_ | |
108 p224::Point X; | |
109 p224::ScalarBaseMult(x_, &X); | |
110 | |
111 // The "password" in the SPAKE2 protocol is | |
112 // SHA256(P(password) + P(session)) where P is function that prepends a | |
113 // uint32, big-endian length prefix. | |
114 uint8 password_length[4], session_length[4]; | |
115 password_length[0] = password.size() >> 24; | |
116 password_length[1] = password.size() >> 16; | |
117 password_length[2] = password.size() >> 8; | |
118 password_length[3] = password.size(); | |
119 session_length[0] = session.size() >> 24; | |
120 session_length[1] = session.size() >> 16; | |
121 session_length[2] = session.size() >> 8; | |
122 session_length[3] = session.size(); | |
Wez
2011/11/09 22:43:46
nit: Do we not have helper functions in crypto/, o
agl
2011/11/10 17:18:19
In net/ we use htonl/ntohl and memcpy. For the sak
| |
123 SHA256HashString(std::string(reinterpret_cast<const char *>(password_length), | |
124 sizeof(password_length)) + | |
125 password.as_string() + | |
126 std::string(reinterpret_cast<const char *>(session_length), | |
127 sizeof(session_length)) + | |
128 session.as_string(), | |
129 pw_, | |
130 sizeof(pw_)); | |
131 | |
132 // The client masks the Diffie-Hellman value, X, by adding M**pw and the | |
133 // server uses N**pw. | |
134 p224::Point MNpw; | |
135 p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw); | |
136 | |
137 // X* = X + (N|M)**pw | |
138 p224::Point Xstar; | |
139 p224::Add(X, MNpw, &Xstar); | |
140 | |
141 next_message_ = Xstar.ToString(); | |
142 } | |
143 | |
144 const std::string& SharedSecretMutualAuthentication::GetMessage() { | |
145 if (state_ == kStateInitial) { | |
146 state_ = kStateRecvDH; | |
147 return next_message_; | |
148 } else if (state_ == kStateSendHash) { | |
149 state_ = kStateRecvHash; | |
150 return next_message_; | |
151 } | |
152 | |
153 LOG(ERROR) << "SharedSecretMutualAuthentication::GetMessage called in" | |
154 " bad state " << state_; | |
Wez
2011/11/09 22:43:46
Is this actually a sufficiently severe failure of
agl
2011/11/10 17:18:19
You're the one writing the calling code so, if you
| |
155 NOTREACHED(); | |
156 next_message_ = ""; | |
157 return next_message_; | |
158 } | |
159 | |
160 SharedSecretMutualAuthentication::Result | |
161 SharedSecretMutualAuthentication::ProcessMessage( | |
162 const base::StringPiece& message) { | |
163 if (state_ == kStateRecvHash) { | |
164 // This is the final state of the protocol: we are reading the peer's | |
165 // authentication hash and checking that it matches the one that we expect. | |
166 if (message.size() != sizeof(expected_authenticator_)) { | |
167 error_ = "peer's hash had an incorrect size"; | |
168 return kResultFailed; | |
169 } | |
170 if (!SecureMemEqual(message.data(), expected_authenticator_, | |
171 message.size())) { | |
172 error_ = "peer's hash had incorrect value"; | |
173 return kResultFailed; | |
174 } | |
175 state_ = kStateDone; | |
176 return kResultSuccess; | |
177 } | |
178 | |
179 if (state_ != kStateRecvDH) { | |
180 LOG(ERROR) << "SharedSecretMutualAuthentication::ProcessMessage called in" | |
181 " bad state " << state_; | |
182 error_ = "internal error"; | |
183 return kResultFailed; | |
Wez
2011/11/09 22:43:46
Similarly, is this actually a potentially severe f
agl
2011/11/10 17:18:19
Ditto.
| |
184 } | |
185 | |
186 // Y* is the other party's masked, Diffie-Hellman value. | |
187 p224::Point Ystar; | |
188 if (!Ystar.SetFromString(message)) { | |
189 error_ = "failed to parse peer's masked Diffie-Hellman value"; | |
190 return kResultFailed; | |
191 } | |
192 | |
193 // We calculate the mask value: (N|M)**pw | |
194 p224::Point MNpw, minus_MNpw, Y, k; | |
195 p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw); | |
196 p224::Negate(MNpw, &minus_MNpw); | |
197 // Y = Y* - (N|M)**pw | |
198 p224::Add(Ystar, minus_MNpw, &Y); | |
199 // K = Y**x_ | |
200 p224::ScalarMult(Y, x_, &k); | |
Wez
2011/11/09 22:43:46
nit: As for the P224 impl, I find this easier to r
agl
2011/11/10 17:18:19
Done.
| |
201 // If everything worked out, then K is the same for both parties. | |
202 std::string k_str = k.ToString(); | |
203 | |
204 std::string client_masked_dh, server_masked_dh; | |
Wez
2011/11/09 22:43:46
Add a comment here to indicate that we're just cal
agl
2011/11/10 17:18:19
Done.
| |
205 if (is_server_) { | |
206 client_masked_dh = message.as_string(); | |
207 server_masked_dh = next_message_; | |
208 } else { | |
209 client_masked_dh = next_message_; | |
210 server_masked_dh = message.as_string(); | |
211 } | |
212 | |
213 std::string client_hash_contents; | |
214 client_hash_contents = "client"; | |
215 client_hash_contents += client_masked_dh; | |
216 client_hash_contents += server_masked_dh; | |
217 client_hash_contents += std::string(reinterpret_cast<const char *>(pw_), | |
218 sizeof(pw_)); | |
219 client_hash_contents += k_str; | |
220 | |
221 std::string server_hash_contents; | |
222 server_hash_contents = "server"; | |
223 server_hash_contents += client_masked_dh; | |
224 server_hash_contents += server_masked_dh; | |
225 server_hash_contents += std::string(reinterpret_cast<const char *>(pw_), | |
226 sizeof(pw_)); | |
227 server_hash_contents += k_str; | |
Wez
2011/11/09 22:43:46
Consider having a static function to do these, sin
agl
2011/11/10 17:18:19
Done.
| |
228 | |
229 uint8 client_hash[kSHA256Length], server_hash[kSHA256Length]; | |
230 SHA256HashString(client_hash_contents, client_hash, sizeof(client_hash)); | |
231 SHA256HashString(server_hash_contents, server_hash, sizeof(server_hash)); | |
232 | |
233 const uint8* my_hash = is_server_ ? server_hash : client_hash; | |
234 const uint8* their_hash = is_server_ ? client_hash : server_hash; | |
235 | |
236 next_message_ = | |
237 std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length); | |
238 memcpy(expected_authenticator_, their_hash, kSHA256Length); | |
239 state_ = kStateSendHash; | |
240 return kResultPending; | |
241 } | |
242 | |
243 const std::string& SharedSecretMutualAuthentication::error() const { | |
244 return error_; | |
245 } | |
246 | |
247 } // namespace crypto | |
OLD | NEW |