Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 // This is an implementation of the P224 elliptic curve group. It's written to | |
| 6 // be short and simple rather than fast, although it's still constant-time. | |
| 7 | |
| 8 #include <string.h> | |
| 9 #include <arpa/inet.h> | |
| 10 | |
| 11 #include "crypto/p224.h" | |
| 12 | |
| 13 namespace { | |
| 14 | |
| 15 // Field element functions. | |
| 16 // | |
| 17 // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. | |
| 18 // | |
| 19 // Field elements are represented by a FieldElement, which is a typedef to an | |
| 20 // array of 8 uint32's. The value of a FieldElement, a, is: | |
| 21 // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] | |
| 22 // | |
| 23 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less | |
| 24 // than we would really like. But it has the useful feature that we hit 2**224 | |
| 25 // exactly, making the reflections during a reduce much nicer. | |
| 26 | |
| 27 typedef crypto::P224::FieldElement FieldElement; | |
|
Wez
2011/11/02 23:46:06
nit: Why not just "using crypto::P224::FieldElemen
agl
2011/11/03 17:20:49
Doesn't work I'm afraid:
../../crypto/p224.cc:35:
| |
| 28 | |
| 29 // Add computes *out = a+b | |
| 30 // | |
| 31 // Bounds on a and b are such that the sum of each corresponding limb of a and | |
| 32 // b mustn't exceed 2**32. | |
|
Wez
2011/11/02 23:46:06
Express this similarly to the comment on Sub(), fo
agl
2011/11/03 17:20:49
Done.
| |
| 33 void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) { | |
| 34 for (int i = 0; i < 8; i++) { | |
| 35 (*out)[i] = a[i] + b[i]; | |
| 36 } | |
| 37 } | |
| 38 | |
| 39 static const uint32 kTwo31p3 = (1u<<31) + (1u<<3); | |
| 40 static const uint32 kTwo31m3 = (1u<<31) - (1u<<3); | |
| 41 static const uint32 kTwo31m15m3 = (1u<<31) - (1u<<15) - (1u<<3); | |
| 42 // kZero31ModP is 0 mod p where bit 31 is set in all limbs. | |
| 43 static const FieldElement kZero31ModP = { | |
| 44 kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3, | |
| 45 kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3 | |
|
Wez
2011/11/02 23:46:06
It would be great to clarify with _why_ we want to
agl
2011/11/03 17:20:49
That could go on for a while so I've cited hthe su
Wez
2011/11/03 20:03:46
What I had in mind was a sentence explaining that
agl
2011/11/04 20:13:22
Have updated the comment.
| |
| 46 }; | |
| 47 | |
| 48 // Sub computes *out = a-b | |
| 49 // | |
| 50 // a[i], b[i] < 2**30 | |
| 51 // out[i] < 2**32 | |
| 52 void Sub(FieldElement* out, const FieldElement& a, const FieldElement& b) { | |
|
Wez
2011/11/02 23:46:06
nit: Sub -> Subtract, according to the style guide
agl
2011/11/03 17:20:49
Done.
| |
| 53 for (int i = 0; i < 8; i++) { | |
| 54 (*out)[i] = a[i] + kZero31ModP[i] - b[i]; | |
|
Wez
2011/11/02 23:46:06
It looks like the "zero" constant here is being us
agl
2011/11/03 17:20:49
Have also cited the same section in ecc.html.
| |
| 55 } | |
| 56 } | |
| 57 | |
| 58 static const uint64 kTwo63p35 = (1ull<<63) + (1ull<<35); | |
| 59 static const uint64 kTwo63m35 = (1ull<<63) - (1ull<<35); | |
| 60 static const uint64 kTwo63m35m19 = (1ull<<63) - (1ull<<35) - (1ull<<19); | |
| 61 // kZero31ModP is 0 mod p where bit 63 is set in all limbs. | |
|
Wez
2011/11/02 23:46:06
kZero31ModP -> kZero63ModP
agl
2011/11/03 17:20:49
Done.
| |
| 62 static const uint64 kZero63ModP[8] = { | |
| 63 kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35, | |
| 64 kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35, | |
| 65 }; | |
| 66 | |
| 67 static const uint32 kBottom12Bits = 0xfff; | |
|
Wez
2011/11/02 23:46:06
You define this but never use it?
agl
2011/11/03 17:20:49
Removed.
| |
| 68 static const uint32 kBottom28Bits = 0xfffffff; | |
| 69 | |
| 70 // LargeFieldElement also represents an element of the field. The limbs are | |
| 71 // still spaced 28-bits apart and in little-endian order. | |
|
Wez
2011/11/02 23:46:06
Since LargeFieldElement still represents 28-bits w
agl
2011/11/03 17:20:49
It only has coefficients up to 392 bits, but it's
Wez
2011/11/03 20:03:46
Would it be correct to say that each limb "represe
agl
2011/11/04 20:13:22
"represents"? Not really I'm afraid.
| |
| 72 typedef uint64 LargeFieldElement[15]; | |
| 73 | |
| 74 // ReduceLarge converts a LargeFieldElement to a FieldElement. | |
| 75 // | |
| 76 // in[i] < 2**62 | |
| 77 void ReduceLarge(FieldElement* out, LargeFieldElement& in) { | |
|
Wez
2011/11/02 23:46:06
You're modifying LargeFieldElement, so it should r
agl
2011/11/03 17:20:49
Done.
| |
| 78 for (int i = 0; i < 8; i++) { | |
| 79 in[i] += kZero63ModP[i]; | |
| 80 } | |
| 81 | |
| 82 // Eliminate the coefficients at 2**224 and greater. | |
|
Wez
2011/11/02 23:46:06
Explain that you're using a mod p operation to red
agl
2011/11/03 17:20:49
Done.
| |
| 83 for (int i = 14; i >= 8; i--) { | |
| 84 in[i-8] -= in[i]; | |
| 85 in[i-5] += (in[i] & 0xffff) << 12; | |
| 86 in[i-4] += in[i] >> 16; | |
|
Wez
2011/11/02 23:46:06
nit: It would help laymen like me to have each of
agl
2011/11/03 17:20:49
Done.
| |
| 87 } | |
| 88 in[8] = 0; | |
| 89 // in[0..8] < 2**64 | |
| 90 | |
| 91 // As the values become small enough, we start to store them in |out| and use | |
| 92 // 32-bit operations. | |
| 93 for (int i = 1; i < 8; i++) { | |
| 94 in[i+1] += in[i] >> 28; | |
| 95 (*out)[i] = static_cast<uint32>(in[i] & kBottom28Bits); | |
| 96 } | |
| 97 in[0] -= in[8]; | |
| 98 (*out)[3] += static_cast<uint32>(in[8] & 0xffff) << 12; | |
| 99 (*out)[4] += static_cast<uint32>(in[8] >> 16); | |
|
Wez
2011/11/02 23:46:06
This looks like another mod p operation?
agl
2011/11/03 17:20:49
Done.
| |
| 100 // in[0] < 2**64 | |
| 101 // out[3] < 2**29 | |
| 102 // out[4] < 2**29 | |
| 103 // out[1,2,5..7] < 2**28 | |
| 104 | |
| 105 (*out)[0] = static_cast<uint32>(in[0] & kBottom28Bits); | |
| 106 (*out)[1] += static_cast<uint32>((in[0] >> 28) & kBottom28Bits); | |
| 107 (*out)[2] += static_cast<uint32>(in[0] >> 56); | |
| 108 // out[0] < 2**28 | |
| 109 // out[1..4] < 2**29 | |
| 110 // out[5..7] < 2**28 | |
| 111 } | |
| 112 | |
| 113 // Mul computes *out = a*b | |
| 114 // | |
| 115 // a[i] < 2**29, b[i] < 2**30 (or vice versa) | |
| 116 // out[i] < 2**29 | |
| 117 void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) { | |
| 118 LargeFieldElement tmp; | |
| 119 memset(&tmp, 0, sizeof(tmp)); | |
| 120 | |
| 121 for (int i = 0; i < 8; i++) { | |
| 122 for (int j = 0; j < 8; j++) { | |
| 123 tmp[i+j] += static_cast<uint64>(a[i]) * static_cast<uint64>(b[j]); | |
| 124 } | |
| 125 } | |
| 126 | |
| 127 ReduceLarge(out, tmp); | |
| 128 } | |
| 129 | |
| 130 // Square computes *out = a*a | |
| 131 // | |
| 132 // a[i] < 2**29 | |
| 133 // out[i] < 2**29 | |
| 134 void Square(FieldElement* out, const FieldElement& a) { | |
| 135 LargeFieldElement tmp; | |
| 136 memset(&tmp, 0, sizeof(tmp)); | |
| 137 | |
| 138 for (int i = 0; i < 8; i++) { | |
| 139 for (int j = 0; j <= i; j++) { | |
| 140 uint64 r = static_cast<uint64>(a[i]) * static_cast<uint64>(a[j]); | |
| 141 if (i == j) { | |
| 142 tmp[i+j] += r; | |
| 143 } else { | |
| 144 tmp[i+j] += r << 1; | |
| 145 } | |
| 146 } | |
| 147 } | |
| 148 | |
| 149 ReduceLarge(out, tmp); | |
| 150 } | |
| 151 | |
| 152 // Reduce reduces the coefficients of a to smaller bounds. | |
| 153 // | |
| 154 // On entry: a[i] < 2**31 + 2**30 | |
| 155 // On exit: a[i] < 2**29 | |
| 156 void Reduce(FieldElement* in) { | |
|
Wez
2011/11/02 23:46:06
Either rename in to in_out, or update the comment.
agl
2011/11/03 17:20:49
Done.
| |
| 157 FieldElement& a = *in; | |
| 158 | |
| 159 for (int i = 0; i < 7; i++) { | |
| 160 a[i+1] += a[i] >> 28; | |
| 161 a[i] &= kBottom28Bits; | |
| 162 } | |
| 163 uint32 top = a[7] >> 28; | |
| 164 a[7] &= kBottom28Bits; | |
| 165 | |
| 166 // top < 2**4 | |
| 167 uint32 mask = top; | |
| 168 mask |= mask >> 2; | |
| 169 mask |= mask >> 1; | |
| 170 mask <<= 31; | |
| 171 mask = static_cast<uint32>(static_cast<int32>(mask) >> 31); | |
| 172 // Mask is all ones if top != 0, all zero otherwise | |
|
Wez
2011/11/02 23:46:06
I think you're doing this to ensure constant-time
agl
2011/11/03 17:20:49
Done.
| |
| 173 | |
| 174 a[0] -= top; | |
| 175 a[3] += top << 12; | |
|
Wez
2011/11/02 23:46:06
This comes, again, as a result of folding things d
agl
2011/11/03 17:20:49
Yes. Commented.
| |
| 176 | |
| 177 // We may have just made a[0] negative but, if we did, then we must | |
| 178 // have added something to a[3], this it's > 2**12. Therefore we can | |
|
Wez
2011/11/02 23:46:06
typo: this -> thus?
agl
2011/11/03 17:20:49
Done.
| |
| 179 // carry down to a[0]. | |
| 180 a[3] -= 1 & mask; | |
| 181 a[2] += mask & ((1<<28) - 1); | |
| 182 a[1] += mask & ((1<<28) - 1); | |
| 183 a[0] += mask & (1<<28); | |
| 184 } | |
| 185 | |
| 186 // Invert calcuates *out = in^-1 using Fermat's little theorem. | |
|
Wez
2011/11/02 23:46:06
Suggest indicating as part of this comment that th
agl
2011/11/03 17:20:49
Done.
| |
| 187 void Invert(FieldElement* out, const FieldElement& in) { | |
| 188 FieldElement f1, f2, f3, f4; | |
| 189 | |
| 190 Square(&f1, in); // 2 | |
| 191 Mul(&f1, f1, in); // 2**2 - 1 | |
| 192 Square(&f1, f1); // 2**3 - 2 | |
| 193 Mul(&f1, f1, in); // 2**3 - 1 | |
| 194 Square(&f2, f1); // 2**4 - 2 | |
| 195 Square(&f2, f2); // 2**5 - 4 | |
| 196 Square(&f2, f2); // 2**6 - 8 | |
| 197 Mul(&f1, f1, f2); // 2**6 - 1 | |
| 198 Square(&f2, f1); // 2**7 - 2 | |
| 199 for (int i = 0; i < 5; i++) { // 2**12 - 2**6 | |
| 200 Square(&f2, f2); | |
|
Wez
2011/11/02 23:46:06
I like the exuberance of your indentation, but the
agl
2011/11/03 17:20:49
Done.
| |
| 201 } | |
| 202 Mul(&f2, f2, f1); // 2**12 - 1 | |
| 203 Square(&f3, f2); // 2**13 - 2 | |
| 204 for (int i = 0; i < 11; i++) { // 2**24 - 2**12 | |
| 205 Square(&f3, f3); | |
| 206 } | |
| 207 Mul(&f2, f3, f2); // 2**24 - 1 | |
| 208 Square(&f3, f2); // 2**25 - 2 | |
| 209 for (int i = 0; i < 23; i++) { // 2**48 - 2**24 | |
| 210 Square(&f3, f3); | |
| 211 } | |
| 212 Mul(&f3, f3, f2); // 2**48 - 1 | |
| 213 Square(&f4, f3); // 2**49 - 2 | |
| 214 for (int i = 0; i < 47; i++) { // 2**96 - 2**48 | |
| 215 Square(&f4, f4); | |
| 216 } | |
| 217 Mul(&f3, f3, f4); // 2**96 - 1 | |
| 218 Square(&f4, f3); // 2**97 - 2 | |
| 219 for (int i = 0; i < 23; i++) { // 2**120 - 2**24 | |
| 220 Square(&f4, f4); | |
| 221 } | |
| 222 Mul(&f2, f4, f2); // 2**120 - 1 | |
| 223 for (int i = 0; i < 6; i++) { // 2**126 - 2**6 | |
| 224 Square(&f2, f2); | |
| 225 } | |
| 226 Mul(&f1, f1, f2); // 2**126 - 1 | |
| 227 Square(&f1, f1); // 2**127 - 2 | |
| 228 Mul(&f1, f1, in); // 2**127 - 1 | |
| 229 for (int i = 0; i < 97; i++) { // 2**224 - 2**97 | |
| 230 Square(&f1, f1); | |
| 231 } | |
| 232 Mul(out, f1, f3); // 2**224 - 2**96 - 1 | |
| 233 } | |
| 234 | |
| 235 // Contract converts a FieldElement to its minimal, distinguished form. | |
| 236 // | |
| 237 // On entry, in[i] < 2**32 | |
| 238 // On exit, in[i] < 2**28 | |
| 239 void Contract(FieldElement* inout) { | |
| 240 FieldElement& out = *inout; | |
| 241 | |
| 242 for (int i = 0; i < 7; i++) { | |
|
Wez
2011/11/02 23:46:06
Again, a comment on this block indicating that we'
agl
2011/11/03 17:20:49
Done.
| |
| 243 out[i+1] += out[i] >> 28; | |
| 244 out[i] &= kBottom28Bits; | |
| 245 } | |
| 246 uint32 top = out[7] >> 28; | |
| 247 out[7] &= kBottom28Bits; | |
| 248 | |
| 249 out[0] -= top; | |
|
Wez
2011/11/02 23:46:06
... and a comment to indicate that we're then goin
agl
2011/11/03 17:20:49
Done.
| |
| 250 out[3] += top << 12; | |
| 251 | |
| 252 // We may just have made out[0] negative. So we carry down. If we made | |
| 253 // out[0] negative then we know that out[3] is sufficiently positive | |
| 254 // because we just added to it. | |
| 255 for (int i = 0; i < 3; i++) { | |
| 256 uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31); | |
| 257 out[i] += (1 << 28) & mask; | |
| 258 out[i+1] -= 1 & mask; | |
| 259 } | |
| 260 | |
| 261 // Now we see if the value is >= p and, if so, subtract p. | |
|
Wez
2011/11/02 23:46:06
For what purpose? Is the value in the range 0-2p,
agl
2011/11/03 17:20:49
Done.
| |
| 262 | |
| 263 // First we build a mask from the top four limbs, which must all be | |
| 264 // equal to bottom28Bits if the whole value is >= p. If top4AllOnes | |
| 265 // ends up with any zero bits in the bottom 28 bits, then this wasn't | |
| 266 // true. | |
| 267 uint32 top4AllOnes = 0xffffffffu; | |
| 268 for (int i = 4; i < 8; i++) { | |
| 269 top4AllOnes &= (out[i] & kBottom28Bits) - 1; | |
| 270 } | |
| 271 top4AllOnes |= 0xf0000000; | |
| 272 // Now we replicate any zero bits to all the bits in top4AllOnes. | |
| 273 top4AllOnes &= top4AllOnes >> 16; | |
| 274 top4AllOnes &= top4AllOnes >> 8; | |
| 275 top4AllOnes &= top4AllOnes >> 4; | |
| 276 top4AllOnes &= top4AllOnes >> 2; | |
| 277 top4AllOnes &= top4AllOnes >> 1; | |
| 278 top4AllOnes = | |
| 279 static_cast<uint32>(static_cast<int32>(top4AllOnes << 31) >> 31); | |
| 280 | |
| 281 // Now we test whether the bottom three limbs are non-zero. | |
| 282 uint32 bottom3NonZero = out[0] | out[1] | out[2]; | |
| 283 bottom3NonZero |= bottom3NonZero >> 16; | |
| 284 bottom3NonZero |= bottom3NonZero >> 8; | |
| 285 bottom3NonZero |= bottom3NonZero >> 4; | |
| 286 bottom3NonZero |= bottom3NonZero >> 2; | |
| 287 bottom3NonZero |= bottom3NonZero >> 1; | |
| 288 bottom3NonZero = | |
| 289 static_cast<uint32>(static_cast<int32>(bottom3NonZero << 31) >> 31); | |
| 290 | |
| 291 // Everything depends on the value of out[3]. | |
| 292 // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p | |
| 293 // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, | |
| 294 // then the whole value is >= p | |
| 295 // If it's < 0xffff000, then the whole value is < p | |
| 296 uint32 n = out[3] - 0xffff000; | |
| 297 uint32 out3Equal = n; | |
| 298 out3Equal |= out3Equal >> 16; | |
| 299 out3Equal |= out3Equal >> 8; | |
| 300 out3Equal |= out3Equal >> 4; | |
| 301 out3Equal |= out3Equal >> 2; | |
| 302 out3Equal |= out3Equal >> 1; | |
| 303 out3Equal = | |
| 304 ~static_cast<uint32>(static_cast<int32>(out3Equal << 31) >> 31); | |
| 305 | |
| 306 // If out[3] > 0xffff000 then n's MSB will be zero. | |
| 307 uint32 out3GT = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); | |
| 308 | |
| 309 uint32 mask = top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT); | |
| 310 out[0] -= 1 & mask; | |
| 311 out[3] -= 0xffff000 & mask; | |
| 312 out[4] -= 0xfffffff & mask; | |
| 313 out[5] -= 0xfffffff & mask; | |
| 314 out[6] -= 0xfffffff & mask; | |
| 315 out[7] -= 0xfffffff & mask; | |
| 316 } | |
| 317 | |
| 318 | |
| 319 // Group element functions. | |
| 320 // | |
| 321 // These functions deal with group elements. The group is an elliptic curve | |
| 322 // group with a = -3 defined in FIPS 186-3, section D.2.2. | |
| 323 | |
| 324 typedef crypto::P224::InternalPoint GroupElement; | |
| 325 | |
| 326 // kP is the P224 prime. | |
| 327 const FieldElement kP = { | |
| 328 1, 0, 0, 268431360, | |
| 329 268435455, 268435455, 268435455, 268435455, | |
| 330 }; | |
| 331 | |
| 332 // kB is parameter of the elliptic curve. | |
| 333 const FieldElement kB = { | |
| 334 55967668, 11768882, 265861671, 185302395, | |
| 335 39211076, 180311059, 84673715, 188764328, | |
| 336 }; | |
| 337 | |
| 338 // AddJacobian computes *out = a+b where a != b. | |
|
Wez
2011/11/02 23:46:06
nit: The body of this function may be easier to re
agl
2011/11/03 17:20:49
Done.
| |
| 339 void AddJacobian(GroupElement *out, | |
| 340 const GroupElement& a, | |
| 341 const GroupElement& b) { | |
| 342 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-a dd-2007-bl | |
| 343 FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v; | |
| 344 | |
| 345 // Z1Z1 = Z1² | |
| 346 Square(&z1z1, a.z); | |
| 347 // Z2Z2 = Z2² | |
| 348 Square(&z2z2, b.z); | |
| 349 // U1 = X1*Z2Z2 | |
| 350 Mul(&u1, a.x, z2z2); | |
| 351 // U2 = X2*Z1Z1 | |
| 352 Mul(&u2, b.x, z1z1); | |
| 353 // S1 = Y1*Z2*Z2Z2 | |
| 354 Mul(&s1, b.z, z2z2); | |
| 355 Mul(&s1, a.y, s1); | |
| 356 // S2 = Y2*Z1*Z1Z1 | |
| 357 Mul(&s2, a.z, z1z1); | |
| 358 Mul(&s2, b.y, s2); | |
| 359 // H = U2-U1 | |
| 360 Sub(&h, u2, u1); | |
| 361 Reduce(&h); | |
| 362 // I = (2*H)² | |
| 363 for (int j = 0; j < 8; j++) { | |
| 364 i[j] = h[j] << 1; | |
| 365 } | |
| 366 Reduce(&i); | |
| 367 Square(&i, i); | |
| 368 // J = H*I | |
| 369 Mul(&j, h, i); | |
| 370 // r = 2*(S2-S1) | |
| 371 Sub(&r, s2, s1); | |
| 372 Reduce(&r); | |
| 373 for (int i = 0; i < 8; i++) { | |
| 374 r[i] <<= 1; | |
| 375 } | |
| 376 Reduce(&r); | |
| 377 // V = U1*I | |
| 378 Mul(&v, u1, i); | |
| 379 // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H | |
| 380 Add(&z1z1, z1z1, z2z2); | |
| 381 Add(&z2z2, a.z, b.z); | |
| 382 Reduce(&z2z2); | |
| 383 Square(&z2z2, z2z2); | |
| 384 Sub(&out->z, z2z2, z1z1); | |
| 385 Reduce(&out->z); | |
| 386 Mul(&out->z, out->z, h); | |
| 387 // X3 = r²-J-2*V | |
| 388 for (int i = 0; i < 8; i++) { | |
| 389 z1z1[i] = v[i] << 1; | |
| 390 } | |
| 391 Add(&z1z1, j, z1z1); | |
| 392 Reduce(&z1z1); | |
| 393 Square(&out->x, r); | |
| 394 Sub(&out->x, out->x, z1z1); | |
| 395 Reduce(&out->x); | |
| 396 // Y3 = r*(V-X3)-2*S1*J | |
| 397 for (int i = 0; i < 8; i++) { | |
| 398 s1[i] <<= 1; | |
| 399 } | |
| 400 Mul(&s1, s1, j); | |
| 401 Sub(&z1z1, v, out->x); | |
| 402 Reduce(&z1z1); | |
| 403 Mul(&z1z1, z1z1, r); | |
| 404 Sub(&out->y, z1z1, s1); | |
| 405 Reduce(&out->y); | |
| 406 } | |
| 407 | |
| 408 // DoubleJacobian computes *out = a+a. | |
| 409 void DoubleJacobian(GroupElement* out, const GroupElement& a) { | |
| 410 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-d bl-2001-b | |
| 411 FieldElement delta, gamma, beta, alpha, t; | |
| 412 | |
| 413 Square(&delta, a.z); | |
| 414 Square(&gamma, a.y); | |
| 415 Mul(&beta, a.x, gamma); | |
| 416 | |
| 417 // alpha = 3*(X1-delta)*(X1+delta) | |
| 418 Add(&t, a.x, delta); | |
| 419 for (int i = 0; i < 8; i++) { | |
| 420 t[i] += t[i] << 1; | |
| 421 } | |
| 422 Reduce(&t); | |
| 423 Sub(&alpha, a.x, delta); | |
| 424 Reduce(&alpha); | |
| 425 Mul(&alpha, alpha, t); | |
| 426 | |
| 427 // Z3 = (Y1+Z1)²-gamma-delta | |
| 428 Add(&out->z, a.y, a.z); | |
| 429 Reduce(&out->z); | |
| 430 Square(&out->z, out->z); | |
| 431 Sub(&out->z, out->z, gamma); | |
| 432 Reduce(&out->z); | |
| 433 Sub(&out->z, out->z, delta); | |
| 434 Reduce(&out->z); | |
| 435 | |
| 436 // X3 = alpha²-8*beta | |
| 437 for (int i = 0; i < 8; i++) { | |
| 438 delta[i] = beta[i] << 3; | |
| 439 } | |
| 440 Reduce(&delta); | |
| 441 Square(&out->x, alpha); | |
| 442 Sub(&out->x, out->x, delta); | |
| 443 Reduce(&out->x); | |
| 444 | |
| 445 // Y3 = alpha*(4*beta-X3)-8*gamma² | |
| 446 for (int i = 0; i < 8; i++) { | |
| 447 beta[i] <<= 2; | |
| 448 } | |
| 449 Reduce(&beta); | |
| 450 Sub(&beta, beta, out->x); | |
| 451 Reduce(&beta); | |
| 452 Square(&gamma, gamma); | |
| 453 for (int i = 0; i < 8; i++) { | |
| 454 gamma[i] <<= 3; | |
| 455 } | |
| 456 Reduce(&gamma); | |
| 457 Mul(&out->y, alpha, beta); | |
| 458 Sub(&out->y, out->y, gamma); | |
| 459 Reduce(&out->y); | |
| 460 } | |
| 461 | |
| 462 // CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of | |
| 463 // 0xffffffff. | |
| 464 void CopyConditional(GroupElement* out, | |
| 465 const GroupElement& a, | |
| 466 uint32 mask) { | |
| 467 for (int i = 0; i < 8; i++) { | |
| 468 out->x[i] ^= mask & (a.x[i] ^ out->x[i]); | |
| 469 out->y[i] ^= mask & (a.y[i] ^ out->y[i]); | |
| 470 out->z[i] ^= mask & (a.z[i] ^ out->z[i]); | |
| 471 } | |
| 472 } | |
| 473 | |
| 474 // ScalarMult calculates *out = a*scalar where scalar is a big-endian number of | |
| 475 // length scalar_len and != 0. | |
| 476 void ScalarMult(GroupElement* out, const GroupElement& a, | |
| 477 const uint8* scalar, size_t scalar_len) { | |
| 478 memset(out, 0, sizeof(*out)); | |
| 479 GroupElement tmp; | |
| 480 | |
| 481 uint32 first_bit = 0xffffffff; | |
| 482 for (size_t i = 0; i < scalar_len; i++) { | |
| 483 for (unsigned int bit_num = 0; bit_num < 8; bit_num++) { | |
| 484 DoubleJacobian(out, *out); | |
| 485 uint32 bit = static_cast<uint32>(static_cast<int32>( | |
| 486 (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31)); | |
| 487 AddJacobian(&tmp, a, *out); | |
| 488 CopyConditional(out, a, first_bit & bit); | |
| 489 CopyConditional(out, tmp, ~first_bit & bit); | |
| 490 first_bit = first_bit & ~bit; | |
| 491 } | |
| 492 } | |
| 493 } | |
| 494 | |
| 495 // Get224Bits reads 7 words from in and scatters their contents in | |
| 496 // little-endian form into 8 words at out, 28 bits per output word. | |
| 497 void Get224Bits(uint32* out, const uint32* in) { | |
| 498 out[0] = ntohl(in[6]) & kBottom28Bits; | |
| 499 out[1] = ((ntohl(in[5]) << 4) | (ntohl(in[6]) >> 28)) & kBottom28Bits; | |
| 500 out[2] = ((ntohl(in[4]) << 8) | (ntohl(in[5]) >> 24)) & kBottom28Bits; | |
| 501 out[3] = ((ntohl(in[3]) << 12) | (ntohl(in[4]) >> 20)) & kBottom28Bits; | |
| 502 out[4] = ((ntohl(in[2]) << 16) | (ntohl(in[3]) >> 16)) & kBottom28Bits; | |
| 503 out[5] = ((ntohl(in[1]) << 20) | (ntohl(in[2]) >> 12)) & kBottom28Bits; | |
| 504 out[6] = ((ntohl(in[0]) << 24) | (ntohl(in[1]) >> 8)) & kBottom28Bits; | |
| 505 out[7] = (ntohl(in[0]) >> 4) & kBottom28Bits; | |
| 506 } | |
| 507 | |
| 508 // Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from | |
| 509 // each of 8 input words and writing them in big-endian order to 7 words at | |
| 510 // out. | |
| 511 void Put224Bits(uint32* out, const uint32* in) { | |
| 512 out[6] = htonl((in[0] >> 0) | (in[1] << 28)); | |
| 513 out[5] = htonl((in[1] >> 4) | (in[2] << 24)); | |
| 514 out[4] = htonl((in[2] >> 8) | (in[3] << 20)); | |
| 515 out[3] = htonl((in[3] >> 12) | (in[4] << 16)); | |
| 516 out[2] = htonl((in[4] >> 16) | (in[5] << 12)); | |
| 517 out[1] = htonl((in[5] >> 20) | (in[6] << 8)); | |
| 518 out[0] = htonl((in[6] >> 24) | (in[7] << 4)); | |
| 519 } | |
| 520 | |
| 521 } // anonymous namespace | |
| 522 | |
| 523 namespace crypto { | |
| 524 | |
| 525 bool P224::ToInternal(const ExternalPoint& in, InternalPoint* out) { | |
| 526 const uint32* inwords = reinterpret_cast<const uint32*>(in.affine); | |
| 527 Get224Bits(out->x, inwords); | |
| 528 Get224Bits(out->y, inwords + 7); | |
| 529 memset(&out->z, 0, sizeof(out->z)); | |
| 530 out->z[0] = 1; | |
| 531 | |
| 532 // Check that the point is on the curve, i.e. that y² = x³ - 3x + b. | |
| 533 FieldElement lhs; | |
| 534 Square(&lhs, out->y); | |
| 535 Contract(&lhs); | |
| 536 | |
| 537 FieldElement rhs; | |
| 538 Square(&rhs, out->x); | |
| 539 Mul(&rhs, out->x, rhs); | |
| 540 | |
| 541 FieldElement three_x; | |
| 542 for (int i = 0; i < 8; i++) { | |
| 543 three_x[i] = out->x[i] * 3; | |
| 544 } | |
| 545 Reduce(&three_x); | |
| 546 Sub(&rhs, rhs, three_x); | |
| 547 Reduce(&rhs); | |
| 548 | |
| 549 ::Add(&rhs, rhs, kB); | |
| 550 Contract(&rhs); | |
| 551 return memcmp(&lhs, &rhs, sizeof(lhs)) == 0; | |
| 552 } | |
| 553 | |
| 554 void P224::ToExternal(const InternalPoint& in, ExternalPoint* out) { | |
| 555 FieldElement zinv, zinv_sq, x, y; | |
| 556 | |
| 557 Invert(&zinv, in.z); | |
| 558 Square(&zinv_sq, zinv); | |
| 559 Mul(&x, in.x, zinv_sq); | |
| 560 Mul(&zinv_sq, zinv_sq, zinv); | |
| 561 Mul(&y, in.y, zinv_sq); | |
| 562 | |
| 563 Contract(&x); | |
| 564 Contract(&y); | |
| 565 | |
| 566 uint32* outwords = reinterpret_cast<uint32*>(out->affine); | |
| 567 Put224Bits(outwords, x); | |
| 568 Put224Bits(outwords + 7, y); | |
| 569 } | |
| 570 | |
| 571 void P224::ScalarMult(const InternalPoint& in, | |
| 572 const uint8* scalar, | |
| 573 InternalPoint* out) { | |
| 574 ::ScalarMult(out, in, scalar, 28); | |
| 575 } | |
| 576 | |
| 577 static const P224::InternalPoint kBasePoint = { | |
| 578 {22813985, 52956513, 34677300, 203240812, | |
| 579 12143107, 133374265, 225162431, 191946955}, | |
| 580 {83918388, 223877528, 122119236, 123340192, | |
| 581 266784067, 263504429, 146143011, 198407736}, | |
| 582 {1, 0, 0, 0, 0, 0, 0, 0}, | |
| 583 }; | |
| 584 | |
| 585 void P224::ScalarBaseMult(const uint8* scalar, InternalPoint* out) { | |
| 586 ::ScalarMult(out, kBasePoint, scalar, 28); | |
| 587 } | |
| 588 | |
| 589 void P224::Add(const InternalPoint& a, const InternalPoint& b, | |
| 590 InternalPoint* out) { | |
| 591 AddJacobian(out, a, b); | |
| 592 } | |
| 593 | |
| 594 void P224::Negate(const InternalPoint& in, InternalPoint* out) { | |
| 595 // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z) | |
| 596 // is the negative in Jacobian coordinates, but it doesn't actually appear to | |
| 597 // be true in testing so this performs the negation in affine coordinates. | |
| 598 FieldElement zinv, zinv_sq, y; | |
| 599 Invert(&zinv, in.z); | |
| 600 Square(&zinv_sq, zinv); | |
| 601 Mul(&out->x, in.x, zinv_sq); | |
| 602 Mul(&zinv_sq, zinv_sq, zinv); | |
| 603 Mul(&y, in.y, zinv_sq); | |
| 604 | |
| 605 Sub(&out->y, kP, y); | |
| 606 Reduce(&out->y); | |
| 607 | |
| 608 memset(&out->z, 0, sizeof(out->z)); | |
| 609 out->z[0] = 1; | |
| 610 } | |
| 611 | |
| 612 } // namespace crypto | |
| OLD | NEW |