| Index: base/message_pump_win.cc
|
| ===================================================================
|
| --- base/message_pump_win.cc (revision 4870)
|
| +++ base/message_pump_win.cc (working copy)
|
| @@ -11,41 +11,6 @@
|
|
|
| using base::Time;
|
|
|
| -namespace {
|
| -
|
| -class HandlerData : public base::MessagePumpForIO::Watcher {
|
| - public:
|
| - typedef base::MessagePumpForIO::IOHandler IOHandler;
|
| - HandlerData(OVERLAPPED* context, IOHandler* handler)
|
| - : context_(context), handler_(handler) {}
|
| - ~HandlerData() {}
|
| -
|
| - virtual void OnObjectSignaled(HANDLE object);
|
| -
|
| - private:
|
| - OVERLAPPED* context_;
|
| - IOHandler* handler_;
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(HandlerData);
|
| -};
|
| -
|
| -void HandlerData::OnObjectSignaled(HANDLE object) {
|
| - DCHECK(object == context_->hEvent);
|
| - DWORD transfered;
|
| - DWORD error = ERROR_SUCCESS;
|
| - BOOL ret = GetOverlappedResult(NULL, context_, &transfered, FALSE);
|
| - if (!ret) {
|
| - error = GetLastError();
|
| - DCHECK(ERROR_HANDLE_EOF == error || ERROR_BROKEN_PIPE == error);
|
| - transfered = 0;
|
| - }
|
| -
|
| - ResetEvent(context_->hEvent);
|
| - handler_->OnIOCompleted(context_, transfered, error);
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| namespace base {
|
|
|
| static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
|
| @@ -54,24 +19,9 @@
|
| // task (a series of such messages creates a continuous task pump).
|
| static const int kMsgHaveWork = WM_USER + 1;
|
|
|
| -#ifndef NDEBUG
|
| -// Force exercise of polling model.
|
| -static const int kMaxWaitObjects = 8;
|
| -#else
|
| -static const int kMaxWaitObjects = MAXIMUM_WAIT_OBJECTS;
|
| -#endif
|
| -
|
| //-----------------------------------------------------------------------------
|
| // MessagePumpWin public:
|
|
|
| -MessagePumpWin::MessagePumpWin() : have_work_(0), state_(NULL) {
|
| - InitMessageWnd();
|
| -}
|
| -
|
| -MessagePumpWin::~MessagePumpWin() {
|
| - DestroyWindow(message_hwnd_);
|
| -}
|
| -
|
| void MessagePumpWin::AddObserver(Observer* observer) {
|
| observers_.AddObserver(observer);
|
| }
|
| @@ -88,36 +38,6 @@
|
| FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
|
| }
|
|
|
| -void MessagePumpWin::PumpOutPendingPaintMessages() {
|
| - // If we are being called outside of the context of Run, then don't try to do
|
| - // any work.
|
| - if (!state_)
|
| - return;
|
| -
|
| - // Create a mini-message-pump to force immediate processing of only Windows
|
| - // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
|
| - // to get the job done. Actual common max is 4 peeks, but we'll be a little
|
| - // safe here.
|
| - const int kMaxPeekCount = 20;
|
| - bool win2k = win_util::GetWinVersion() <= win_util::WINVERSION_2000;
|
| - int peek_count;
|
| - for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
|
| - MSG msg;
|
| - if (win2k) {
|
| - if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE))
|
| - break;
|
| - } else {
|
| - if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
|
| - break;
|
| - }
|
| - ProcessMessageHelper(msg);
|
| - if (state_->should_quit) // Handle WM_QUIT.
|
| - break;
|
| - }
|
| - // Histogram what was really being used, to help to adjust kMaxPeekCount.
|
| - DHISTOGRAM_COUNTS(L"Loop.PumpOutPendingPaintMessages Peeks", peek_count);
|
| -}
|
| -
|
| void MessagePumpWin::RunWithDispatcher(
|
| Delegate* delegate, Dispatcher* dispatcher) {
|
| RunState s;
|
| @@ -139,7 +59,38 @@
|
| state_->should_quit = true;
|
| }
|
|
|
| -void MessagePumpWin::ScheduleWork() {
|
| +//-----------------------------------------------------------------------------
|
| +// MessagePumpWin protected:
|
| +
|
| +int MessagePumpWin::GetCurrentDelay() const {
|
| + if (delayed_work_time_.is_null())
|
| + return -1;
|
| +
|
| + // Be careful here. TimeDelta has a precision of microseconds, but we want a
|
| + // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
|
| + // 6? It should be 6 to avoid executing delayed work too early.
|
| + double timeout = ceil((delayed_work_time_ - Time::Now()).InMillisecondsF());
|
| +
|
| + // If this value is negative, then we need to run delayed work soon.
|
| + int delay = static_cast<int>(timeout);
|
| + if (delay < 0)
|
| + delay = 0;
|
| +
|
| + return delay;
|
| +}
|
| +
|
| +//-----------------------------------------------------------------------------
|
| +// MessagePumpForUI public:
|
| +
|
| +MessagePumpForUI::MessagePumpForUI() {
|
| + InitMessageWnd();
|
| +}
|
| +
|
| +MessagePumpForUI::~MessagePumpForUI() {
|
| + DestroyWindow(message_hwnd_);
|
| +}
|
| +
|
| +void MessagePumpForUI::ScheduleWork() {
|
| if (InterlockedExchange(&have_work_, 1))
|
| return; // Someone else continued the pumping.
|
|
|
| @@ -147,7 +98,7 @@
|
| PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
|
| }
|
|
|
| -void MessagePumpWin::ScheduleDelayedWork(const Time& delayed_work_time) {
|
| +void MessagePumpForUI::ScheduleDelayedWork(const Time& delayed_work_time) {
|
| //
|
| // We would *like* to provide high resolution timers. Windows timers using
|
| // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
|
| @@ -180,24 +131,110 @@
|
| SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
|
| }
|
|
|
| +void MessagePumpForUI::PumpOutPendingPaintMessages() {
|
| + // If we are being called outside of the context of Run, then don't try to do
|
| + // any work.
|
| + if (!state_)
|
| + return;
|
| +
|
| + // Create a mini-message-pump to force immediate processing of only Windows
|
| + // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
|
| + // to get the job done. Actual common max is 4 peeks, but we'll be a little
|
| + // safe here.
|
| + const int kMaxPeekCount = 20;
|
| + bool win2k = win_util::GetWinVersion() <= win_util::WINVERSION_2000;
|
| + int peek_count;
|
| + for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
|
| + MSG msg;
|
| + if (win2k) {
|
| + if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE))
|
| + break;
|
| + } else {
|
| + if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
|
| + break;
|
| + }
|
| + ProcessMessageHelper(msg);
|
| + if (state_->should_quit) // Handle WM_QUIT.
|
| + break;
|
| + }
|
| + // Histogram what was really being used, to help to adjust kMaxPeekCount.
|
| + DHISTOGRAM_COUNTS(L"Loop.PumpOutPendingPaintMessages Peeks", peek_count);
|
| +}
|
| +
|
| //-----------------------------------------------------------------------------
|
| -// MessagePumpWin protected:
|
| +// MessagePumpForUI private:
|
|
|
| // static
|
| -LRESULT CALLBACK MessagePumpWin::WndProcThunk(
|
| +LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
|
| HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
|
| switch (message) {
|
| case kMsgHaveWork:
|
| - reinterpret_cast<MessagePumpWin*>(wparam)->HandleWorkMessage();
|
| + reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
|
| break;
|
| case WM_TIMER:
|
| - reinterpret_cast<MessagePumpWin*>(wparam)->HandleTimerMessage();
|
| + reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
|
| break;
|
| }
|
| return DefWindowProc(hwnd, message, wparam, lparam);
|
| }
|
|
|
| -void MessagePumpWin::InitMessageWnd() {
|
| +void MessagePumpForUI::DoRunLoop() {
|
| + // IF this was just a simple PeekMessage() loop (servicing all possible work
|
| + // queues), then Windows would try to achieve the following order according
|
| + // to MSDN documentation about PeekMessage with no filter):
|
| + // * Sent messages
|
| + // * Posted messages
|
| + // * Sent messages (again)
|
| + // * WM_PAINT messages
|
| + // * WM_TIMER messages
|
| + //
|
| + // Summary: none of the above classes is starved, and sent messages has twice
|
| + // the chance of being processed (i.e., reduced service time).
|
| +
|
| + for (;;) {
|
| + // If we do any work, we may create more messages etc., and more work may
|
| + // possibly be waiting in another task group. When we (for example)
|
| + // ProcessNextWindowsMessage(), there is a good chance there are still more
|
| + // messages waiting. On the other hand, when any of these methods return
|
| + // having done no work, then it is pretty unlikely that calling them again
|
| + // quickly will find any work to do. Finally, if they all say they had no
|
| + // work, then it is a good time to consider sleeping (waiting) for more
|
| + // work.
|
| +
|
| + bool more_work_is_plausible = ProcessNextWindowsMessage();
|
| + if (state_->should_quit)
|
| + break;
|
| +
|
| + more_work_is_plausible |= state_->delegate->DoWork();
|
| + if (state_->should_quit)
|
| + break;
|
| +
|
| + more_work_is_plausible |=
|
| + state_->delegate->DoDelayedWork(&delayed_work_time_);
|
| + // If we did not process any delayed work, then we can assume that our
|
| + // existing WM_TIMER if any will fire when delayed work should run. We
|
| + // don't want to disturb that timer if it is already in flight. However,
|
| + // if we did do all remaining delayed work, then lets kill the WM_TIMER.
|
| + if (more_work_is_plausible && delayed_work_time_.is_null())
|
| + KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
|
| + if (state_->should_quit)
|
| + break;
|
| +
|
| + if (more_work_is_plausible)
|
| + continue;
|
| +
|
| + more_work_is_plausible = state_->delegate->DoIdleWork();
|
| + if (state_->should_quit)
|
| + break;
|
| +
|
| + if (more_work_is_plausible)
|
| + continue;
|
| +
|
| + WaitForWork(); // Wait (sleep) until we have work to do again.
|
| + }
|
| +}
|
| +
|
| +void MessagePumpForUI::InitMessageWnd() {
|
| HINSTANCE hinst = GetModuleHandle(NULL);
|
|
|
| WNDCLASSEX wc = {0};
|
| @@ -212,7 +249,41 @@
|
| DCHECK(message_hwnd_);
|
| }
|
|
|
| -void MessagePumpWin::HandleWorkMessage() {
|
| +void MessagePumpForUI::WaitForWork() {
|
| + // Wait until a message is available, up to the time needed by the timer
|
| + // manager to fire the next set of timers.
|
| + int delay = GetCurrentDelay();
|
| + if (delay < 0) // Negative value means no timers waiting.
|
| + delay = INFINITE;
|
| +
|
| + DWORD result;
|
| + result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
|
| + MWMO_INPUTAVAILABLE);
|
| +
|
| + if (WAIT_OBJECT_0 == result) {
|
| + // A WM_* message is available.
|
| + // If a parent child relationship exists between windows across threads
|
| + // then their thread inputs are implicitly attached.
|
| + // This causes the MsgWaitForMultipleObjectsEx API to return indicating
|
| + // that messages are ready for processing (specifically mouse messages
|
| + // intended for the child window. Occurs if the child window has capture)
|
| + // The subsequent PeekMessages call fails to return any messages thus
|
| + // causing us to enter a tight loop at times.
|
| + // The WaitMessage call below is a workaround to give the child window
|
| + // sometime to process its input messages.
|
| + MSG msg = {0};
|
| + DWORD queue_status = GetQueueStatus(QS_MOUSE);
|
| + if (HIWORD(queue_status) & QS_MOUSE &&
|
| + !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
|
| + WaitMessage();
|
| + }
|
| + return;
|
| + }
|
| +
|
| + DCHECK_NE(WAIT_FAILED, result) << GetLastError();
|
| +}
|
| +
|
| +void MessagePumpForUI::HandleWorkMessage() {
|
| // If we are being called outside of the context of Run, then don't try to do
|
| // any work. This could correspond to a MessageBox call or something of that
|
| // sort.
|
| @@ -233,7 +304,7 @@
|
| ScheduleWork();
|
| }
|
|
|
| -void MessagePumpWin::HandleTimerMessage() {
|
| +void MessagePumpForUI::HandleTimerMessage() {
|
| KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
|
|
|
| // If we are being called outside of the context of Run, then don't do
|
| @@ -249,7 +320,7 @@
|
| }
|
| }
|
|
|
| -bool MessagePumpWin::ProcessNextWindowsMessage() {
|
| +bool MessagePumpForUI::ProcessNextWindowsMessage() {
|
| // If there are sent messages in the queue then PeekMessage internally
|
| // dispatches the message and returns false. We return true in this
|
| // case to ensure that the message loop peeks again instead of calling
|
| @@ -266,7 +337,7 @@
|
| return sent_messages_in_queue;
|
| }
|
|
|
| -bool MessagePumpWin::ProcessMessageHelper(const MSG& msg) {
|
| +bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
|
| if (WM_QUIT == msg.message) {
|
| // Repost the QUIT message so that it will be retrieved by the primary
|
| // GetMessage() loop.
|
| @@ -293,7 +364,7 @@
|
| return true;
|
| }
|
|
|
| -bool MessagePumpWin::ProcessPumpReplacementMessage() {
|
| +bool MessagePumpForUI::ProcessPumpReplacementMessage() {
|
| // When we encounter a kMsgHaveWork message, this method is called to peek
|
| // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
|
| // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
|
| @@ -307,7 +378,7 @@
|
| bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
|
| DCHECK(!have_message || kMsgHaveWork != msg.message ||
|
| msg.hwnd != message_hwnd_);
|
| -
|
| +
|
| // Since we discarded a kMsgHaveWork message, we must update the flag.
|
| InterlockedExchange(&have_work_, 0);
|
|
|
| @@ -318,233 +389,63 @@
|
| return have_message && ProcessMessageHelper(msg);
|
| }
|
|
|
| -int MessagePumpWin::GetCurrentDelay() const {
|
| - if (delayed_work_time_.is_null())
|
| - return -1;
|
| -
|
| - // Be careful here. TimeDelta has a precision of microseconds, but we want a
|
| - // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
|
| - // 6? It should be 6 to avoid executing delayed work too early.
|
| - double timeout = ceil((delayed_work_time_ - Time::Now()).InMillisecondsF());
|
| -
|
| - // If this value is negative, then we need to run delayed work soon.
|
| - int delay = static_cast<int>(timeout);
|
| - if (delay < 0)
|
| - delay = 0;
|
| -
|
| - return delay;
|
| -}
|
| -
|
| //-----------------------------------------------------------------------------
|
| -// MessagePumpForUI private:
|
| +// MessagePumpForIO public:
|
|
|
| -void MessagePumpForUI::DoRunLoop() {
|
| - // IF this was just a simple PeekMessage() loop (servicing all possible work
|
| - // queues), then Windows would try to achieve the following order according
|
| - // to MSDN documentation about PeekMessage with no filter):
|
| - // * Sent messages
|
| - // * Posted messages
|
| - // * Sent messages (again)
|
| - // * WM_PAINT messages
|
| - // * WM_TIMER messages
|
| - //
|
| - // Summary: none of the above classes is starved, and sent messages has twice
|
| - // the chance of being processed (i.e., reduced service time).
|
| -
|
| - for (;;) {
|
| - // If we do any work, we may create more messages etc., and more work may
|
| - // possibly be waiting in another task group. When we (for example)
|
| - // ProcessNextWindowsMessage(), there is a good chance there are still more
|
| - // messages waiting. On the other hand, when any of these methods return
|
| - // having done no work, then it is pretty unlikely that calling them again
|
| - // quickly will find any work to do. Finally, if they all say they had no
|
| - // work, then it is a good time to consider sleeping (waiting) for more
|
| - // work.
|
| -
|
| - bool more_work_is_plausible = ProcessNextWindowsMessage();
|
| - if (state_->should_quit)
|
| - break;
|
| -
|
| - more_work_is_plausible |= state_->delegate->DoWork();
|
| - if (state_->should_quit)
|
| - break;
|
| -
|
| - more_work_is_plausible |=
|
| - state_->delegate->DoDelayedWork(&delayed_work_time_);
|
| - // If we did not process any delayed work, then we can assume that our
|
| - // existing WM_TIMER if any will fire when delayed work should run. We
|
| - // don't want to disturb that timer if it is already in flight. However,
|
| - // if we did do all remaining delayed work, then lets kill the WM_TIMER.
|
| - if (more_work_is_plausible && delayed_work_time_.is_null())
|
| - KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
|
| - if (state_->should_quit)
|
| - break;
|
| -
|
| - if (more_work_is_plausible)
|
| - continue;
|
| -
|
| - more_work_is_plausible = state_->delegate->DoIdleWork();
|
| - if (state_->should_quit)
|
| - break;
|
| -
|
| - if (more_work_is_plausible)
|
| - continue;
|
| -
|
| - WaitForWork(); // Wait (sleep) until we have work to do again.
|
| - }
|
| +MessagePumpForIO::MessagePumpForIO() {
|
| + port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
|
| + DCHECK(port_.IsValid());
|
| }
|
|
|
| -void MessagePumpForUI::WaitForWork() {
|
| - // Wait until a message is available, up to the time needed by the timer
|
| - // manager to fire the next set of timers.
|
| - int delay = GetCurrentDelay();
|
| - if (delay < 0) // Negative value means no timers waiting.
|
| - delay = INFINITE;
|
| +void MessagePumpForIO::ScheduleWork() {
|
| + if (InterlockedExchange(&have_work_, 1))
|
| + return; // Someone else continued the pumping.
|
|
|
| - DWORD result;
|
| - result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
|
| - MWMO_INPUTAVAILABLE);
|
| -
|
| - if (WAIT_OBJECT_0 == result) {
|
| - // A WM_* message is available.
|
| - // If a parent child relationship exists between windows across threads
|
| - // then their thread inputs are implicitly attached.
|
| - // This causes the MsgWaitForMultipleObjectsEx API to return indicating
|
| - // that messages are ready for processing (specifically mouse messages
|
| - // intended for the child window. Occurs if the child window has capture)
|
| - // The subsequent PeekMessages call fails to return any messages thus
|
| - // causing us to enter a tight loop at times.
|
| - // The WaitMessage call below is a workaround to give the child window
|
| - // sometime to process its input messages.
|
| - MSG msg = {0};
|
| - DWORD queue_status = GetQueueStatus(QS_MOUSE);
|
| - if (HIWORD(queue_status) & QS_MOUSE &&
|
| - !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
|
| - WaitMessage();
|
| - }
|
| - return;
|
| - }
|
| -
|
| - DCHECK_NE(WAIT_FAILED, result) << GetLastError();
|
| + // Make sure the MessagePump does some work for us.
|
| + BOOL ret = PostQueuedCompletionStatus(port_, 0,
|
| + reinterpret_cast<ULONG_PTR>(this),
|
| + reinterpret_cast<OVERLAPPED*>(this));
|
| + DCHECK(ret);
|
| }
|
|
|
| -//-----------------------------------------------------------------------------
|
| -// MessagePumpForIO public:
|
| -
|
| -void MessagePumpForIO::WatchObject(HANDLE object, Watcher* watcher) {
|
| - DCHECK(object);
|
| - DCHECK_NE(object, INVALID_HANDLE_VALUE);
|
| -
|
| - std::vector<HANDLE>::iterator it =
|
| - find(objects_.begin(), objects_.end(), object);
|
| - if (watcher) {
|
| - if (it == objects_.end()) {
|
| - static size_t warning_multiple = 1;
|
| - if (objects_.size() >= warning_multiple * MAXIMUM_WAIT_OBJECTS / 2) {
|
| - LOG(INFO) << "More than " << warning_multiple * MAXIMUM_WAIT_OBJECTS / 2
|
| - << " objects being watched";
|
| - // This DCHECK() is an artificial limitation, meant to warn us if we
|
| - // start creating too many objects. It can safely be raised to a higher
|
| - // level, and the program is designed to handle much larger values.
|
| - // Before raising this limit, make sure that there is a very good reason
|
| - // (in your debug testing) to be watching this many objects.
|
| - DCHECK(2 <= warning_multiple);
|
| - ++warning_multiple;
|
| - }
|
| - objects_.push_back(object);
|
| - watchers_.push_back(watcher);
|
| - } else {
|
| - watchers_[it - objects_.begin()] = watcher;
|
| - }
|
| - } else if (it != objects_.end()) {
|
| - std::vector<HANDLE>::difference_type index = it - objects_.begin();
|
| - objects_.erase(it);
|
| - watchers_.erase(watchers_.begin() + index);
|
| - }
|
| +void MessagePumpForIO::ScheduleDelayedWork(const Time& delayed_work_time) {
|
| + // We know that we can't be blocked right now since this method can only be
|
| + // called on the same thread as Run, so we only need to update our record of
|
| + // how long to sleep when we do sleep.
|
| + delayed_work_time_ = delayed_work_time;
|
| }
|
|
|
| void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
|
| IOHandler* handler) {
|
| -#if 0
|
| - // TODO(rvargas): This is just to give an idea of what this code will look
|
| - // like when we actually move to completion ports. Of course, we cannot
|
| - // do this without calling GetQueuedCompletionStatus().
|
| ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
|
| HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
|
| - if (!port_.IsValid())
|
| - port_.Set(port);
|
| -#endif
|
| + DCHECK(port == port_.Get());
|
| }
|
|
|
| -void MessagePumpForIO::RegisterIOContext(OVERLAPPED* context,
|
| - IOHandler* handler) {
|
| - DCHECK(context->hEvent);
|
| - if (handler) {
|
| - HandlerData* watcher = new HandlerData(context, handler);
|
| - WatchObject(context->hEvent, watcher);
|
| - } else {
|
| - std::vector<HANDLE>::iterator it =
|
| - find(objects_.begin(), objects_.end(), context->hEvent);
|
| -
|
| - if (it == objects_.end()) {
|
| - NOTREACHED();
|
| - return;
|
| - }
|
| -
|
| - std::vector<HANDLE>::difference_type index = it - objects_.begin();
|
| - objects_.erase(it);
|
| - delete watchers_[index];
|
| - watchers_.erase(watchers_.begin() + index);
|
| - }
|
| -}
|
| -
|
| //-----------------------------------------------------------------------------
|
| // MessagePumpForIO private:
|
|
|
| void MessagePumpForIO::DoRunLoop() {
|
| - // IF this was just a simple PeekMessage() loop (servicing all possible work
|
| - // queues), then Windows would try to achieve the following order according
|
| - // to MSDN documentation about PeekMessage with no filter):
|
| - // * Sent messages
|
| - // * Posted messages
|
| - // * Sent messages (again)
|
| - // * WM_PAINT messages
|
| - // * WM_TIMER messages
|
| - //
|
| - // Summary: none of the above classes is starved, and sent messages has twice
|
| - // the chance of being processed (i.e., reduced service time).
|
| -
|
| for (;;) {
|
| // If we do any work, we may create more messages etc., and more work may
|
| // possibly be waiting in another task group. When we (for example)
|
| - // ProcessNextWindowsMessage(), there is a good chance there are still more
|
| - // messages waiting (same thing for ProcessNextObject(), which responds to
|
| - // only one signaled object; etc.). On the other hand, when any of these
|
| - // methods return having done no work, then it is pretty unlikely that
|
| - // calling them again quickly will find any work to do. Finally, if they
|
| - // all say they had no work, then it is a good time to consider sleeping
|
| - // (waiting) for more work.
|
| + // WaitForIOCompletion(), there is a good chance there are still more
|
| + // messages waiting. On the other hand, when any of these methods return
|
| + // having done no work, then it is pretty unlikely that calling them
|
| + // again quickly will find any work to do. Finally, if they all say they
|
| + // had no work, then it is a good time to consider sleeping (waiting) for
|
| + // more work.
|
|
|
| - bool more_work_is_plausible = ProcessNextWindowsMessage();
|
| + bool more_work_is_plausible = state_->delegate->DoWork();
|
| if (state_->should_quit)
|
| break;
|
|
|
| - more_work_is_plausible |= state_->delegate->DoWork();
|
| + more_work_is_plausible |= WaitForIOCompletion(0, NULL);
|
| if (state_->should_quit)
|
| break;
|
|
|
| - more_work_is_plausible |= ProcessNextObject();
|
| - if (state_->should_quit)
|
| - break;
|
| -
|
| more_work_is_plausible |=
|
| state_->delegate->DoDelayedWork(&delayed_work_time_);
|
| - // If we did not process any delayed work, then we can assume that our
|
| - // existing WM_TIMER if any will fire when delayed work should run. We
|
| - // don't want to disturb that timer if it is already in flight. However,
|
| - // if we did do all remaining delayed work, then lets kill the WM_TIMER.
|
| - if (more_work_is_plausible && delayed_work_time_.is_null())
|
| - KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
|
| if (state_->should_quit)
|
| break;
|
|
|
| @@ -558,141 +459,92 @@
|
| if (more_work_is_plausible)
|
| continue;
|
|
|
| - // We service APCs in WaitForWork, without returning.
|
| WaitForWork(); // Wait (sleep) until we have work to do again.
|
| }
|
| }
|
|
|
| -// If we handle more than the OS limit on the number of objects that can be
|
| -// waited for, we'll need to poll (sequencing through subsets of the objects
|
| -// that can be passed in a single OS wait call). The following is the polling
|
| -// interval used in that (unusual) case. (I don't have a lot of justifcation
|
| -// for the specific value, but it needed to be short enough that it would not
|
| -// add a lot of latency, and long enough that we wouldn't thrash the CPU for no
|
| -// reason... especially considering the silly user probably has a million tabs
|
| -// open, etc.)
|
| -static const int kMultipleWaitPollingInterval = 20;
|
| -
|
| +// Wait until IO completes, up to the time needed by the timer manager to fire
|
| +// the next set of timers.
|
| void MessagePumpForIO::WaitForWork() {
|
| - // Wait until either an object is signaled or a message is available. Handle
|
| - // (without returning) any APCs (only the IO thread currently has APCs.)
|
| + // We do not support nested IO message loops. This is to avoid messy
|
| + // recursion problems.
|
| + DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!";
|
|
|
| - // We do not support nested message loops when we have watched objects. This
|
| - // is to avoid messy recursion problems.
|
| - DCHECK(objects_.empty() || state_->run_depth == 1) <<
|
| - "Cannot nest a message loop when there are watched objects!";
|
| + int timeout = GetCurrentDelay();
|
| + if (timeout < 0) // Negative value means no timers waiting.
|
| + timeout = INFINITE;
|
|
|
| - int wait_flags = MWMO_ALERTABLE | MWMO_INPUTAVAILABLE;
|
| + WaitForIOCompletion(timeout, NULL);
|
| +}
|
|
|
| - bool use_polling = false; // Poll if too many objects for one OS Wait call.
|
| - for (;;) {
|
| - // Do initialization here, in case APC modifies object list.
|
| - size_t total_objs = objects_.size();
|
| +bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
|
| + IOItem item;
|
| + if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
|
| + // We have to ask the system for another IO completion.
|
| + if (!GetIOItem(timeout, &item))
|
| + return false;
|
|
|
| - int delay;
|
| - size_t polling_index = 0; // The first unprocessed object index.
|
| - do {
|
| - size_t objs_len =
|
| - (polling_index < total_objs) ? total_objs - polling_index : 0;
|
| - if (objs_len >= MAXIMUM_WAIT_OBJECTS) {
|
| - objs_len = MAXIMUM_WAIT_OBJECTS - 1;
|
| - use_polling = true;
|
| - }
|
| - HANDLE* objs = objs_len ? polling_index + &objects_.front() : NULL;
|
| + if (ProcessInternalIOItem(item))
|
| + return true;
|
| + }
|
|
|
| - // Only wait up to the time needed by the timer manager to fire the next
|
| - // set of timers.
|
| - delay = GetCurrentDelay();
|
| - if (use_polling && delay > kMultipleWaitPollingInterval)
|
| - delay = kMultipleWaitPollingInterval;
|
| - if (delay < 0) // Negative value means no timers waiting.
|
| - delay = INFINITE;
|
| -
|
| - DWORD result;
|
| - result = MsgWaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs,
|
| - delay, QS_ALLINPUT, wait_flags);
|
| -
|
| - if (WAIT_IO_COMPLETION == result) {
|
| - // We'll loop here when we service an APC. At it currently stands,
|
| - // *ONLY* the IO thread uses *any* APCs, so this should have no impact
|
| - // on the UI thread.
|
| - break; // Break to outer loop, and waitforwork() again.
|
| - }
|
| -
|
| - // Use unsigned type to simplify range detection;
|
| - size_t signaled_index = result - WAIT_OBJECT_0;
|
| - if (signaled_index < objs_len) {
|
| - SignalWatcher(polling_index + signaled_index);
|
| - return; // We serviced a signaled object.
|
| - }
|
| -
|
| - if (objs_len == signaled_index)
|
| - return; // A WM_* message is available.
|
| -
|
| - DCHECK_NE(WAIT_FAILED, result) << GetLastError();
|
| -
|
| - DCHECK(!objs || result == WAIT_TIMEOUT);
|
| - if (!use_polling)
|
| - return;
|
| - polling_index += objs_len;
|
| - } while (polling_index < total_objs);
|
| - // For compatibility, we didn't return sooner. This made us do *some* wait
|
| - // call(s) before returning. This will probably change in next rev.
|
| - if (!delay || !GetCurrentDelay())
|
| - return; // No work done, but timer is ready to fire.
|
| + if (item.context->handler) {
|
| + if (filter && item.handler != filter) {
|
| + // Save this item for later
|
| + completed_io_.push_back(item);
|
| + } else {
|
| + DCHECK(item.context->handler == item.handler);
|
| + item.handler->OnIOCompleted(item.context, item.bytes_transfered,
|
| + item.error);
|
| + }
|
| + } else {
|
| + // The handler must be gone by now, just cleanup the mess.
|
| + delete item.context;
|
| }
|
| + return true;
|
| }
|
|
|
| -bool MessagePumpForIO::ProcessNextObject() {
|
| - size_t total_objs = objects_.size();
|
| - if (!total_objs) {
|
| - return false;
|
| +// Asks the OS for another IO completion result.
|
| +bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
|
| + memset(item, 0, sizeof(*item));
|
| + ULONG_PTR key = NULL;
|
| + OVERLAPPED* overlapped = NULL;
|
| + if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
|
| + &overlapped, timeout)) {
|
| + if (!overlapped)
|
| + return false; // Nothing in the queue.
|
| + item->error = GetLastError();
|
| + item->bytes_transfered = 0;
|
| }
|
|
|
| - size_t polling_index = 0; // The first unprocessed object index.
|
| - do {
|
| - DCHECK(polling_index < total_objs);
|
| - size_t objs_len = total_objs - polling_index;
|
| - if (objs_len >= kMaxWaitObjects)
|
| - objs_len = kMaxWaitObjects - 1;
|
| - HANDLE* objs = polling_index + &objects_.front();
|
| + item->handler = reinterpret_cast<IOHandler*>(key);
|
| + item->context = reinterpret_cast<IOContext*>(overlapped);
|
| + return true;
|
| +}
|
|
|
| - // Identify 1 pending object, or allow an IO APC to be completed.
|
| - DWORD result = WaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs,
|
| - FALSE, // 1 signal is sufficient.
|
| - 0, // Wait 0ms.
|
| - false); // Not alertable (no APC).
|
| +bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
|
| + if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
|
| + this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
|
| + // This is our internal completion.
|
| + DCHECK(!item.bytes_transfered);
|
| + InterlockedExchange(&have_work_, 0);
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
|
|
| - // Use unsigned type to simplify range detection;
|
| - size_t signaled_index = result - WAIT_OBJECT_0;
|
| - if (signaled_index < objs_len) {
|
| - SignalWatcher(polling_index + signaled_index);
|
| - return true; // We serviced a signaled object.
|
| +// Returns a completion item that was previously received.
|
| +bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
|
| + DCHECK(!completed_io_.empty());
|
| + for (std::list<IOItem>::iterator it = completed_io_.begin();
|
| + it != completed_io_.end(); ++it) {
|
| + if (!filter || it->handler == filter) {
|
| + *item = *it;
|
| + completed_io_.erase(it);
|
| + return true;
|
| }
|
| -
|
| - // If an handle is invalid, it will be WAIT_FAILED.
|
| - DCHECK_EQ(WAIT_TIMEOUT, result) << GetLastError();
|
| - polling_index += objs_len;
|
| - } while (polling_index < total_objs);
|
| - return false; // We serviced nothing.
|
| + }
|
| + return false;
|
| }
|
|
|
| -bool MessagePumpForIO::SignalWatcher(size_t object_index) {
|
| - // Signal the watcher corresponding to the given index.
|
| -
|
| - DCHECK(objects_.size() > object_index);
|
| -
|
| - // On reception of OnObjectSignaled() to a Watcher object, it may call
|
| - // WatchObject(). watchers_ and objects_ will be modified. This is expected,
|
| - // so don't be afraid if, while tracing a OnObjectSignaled() function, the
|
| - // corresponding watchers_[result] is non-existant.
|
| - watchers_[object_index]->OnObjectSignaled(objects_[object_index]);
|
| -
|
| - // Signaled objects tend to be removed from the watch list, and then added
|
| - // back (appended). As a result, they move to the end of the objects_ array,
|
| - // and this should make their service "fair" (no HANDLEs should be starved).
|
| -
|
| - return true;
|
| -}
|
| -
|
| } // namespace base
|
|
|