| OLD | NEW |
| 1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #ifndef BASE_MESSAGE_PUMP_WIN_H_ | 5 #ifndef BASE_MESSAGE_PUMP_WIN_H_ |
| 6 #define BASE_MESSAGE_PUMP_WIN_H_ | 6 #define BASE_MESSAGE_PUMP_WIN_H_ |
| 7 | 7 |
| 8 #include <vector> | 8 #include <windows.h> |
| 9 | 9 |
| 10 #include <windows.h> | 10 #include <list> |
| 11 | 11 |
| 12 #include "base/lock.h" | 12 #include "base/lock.h" |
| 13 #include "base/message_pump.h" | 13 #include "base/message_pump.h" |
| 14 #include "base/observer_list.h" | 14 #include "base/observer_list.h" |
| 15 #include "base/scoped_handle.h" | 15 #include "base/scoped_handle.h" |
| 16 #include "base/time.h" | 16 #include "base/time.h" |
| 17 | 17 |
| 18 namespace base { | 18 namespace base { |
| 19 | 19 |
| 20 // MessagePumpWin implements a "traditional" Windows message pump. It contains | 20 // MessagePumpWin serves as the base for specialized versions of the MessagePump |
| 21 // a nearly infinite loop that peeks out messages, and then dispatches them. | 21 // for Windows. It provides basic functionality like handling of observers and |
| 22 // Intermixed with those peeks are callouts to DoWork for pending tasks, | 22 // controlling the lifetime of the message pump. |
| 23 // DoDelayedWork for pending timers, and OnObjectSignaled for signaled objects. | |
| 24 // When there are no events to be serviced, this pump goes into a wait state. | |
| 25 // In most cases, this message pump handles all processing. | |
| 26 // | |
| 27 // However, when a task, or windows event, invokes on the stack a native dialog | |
| 28 // box or such, that window typically provides a bare bones (native?) message | |
| 29 // pump. That bare-bones message pump generally supports little more than a | |
| 30 // peek of the Windows message queue, followed by a dispatch of the peeked | |
| 31 // message. MessageLoop extends that bare-bones message pump to also service | |
| 32 // Tasks, at the cost of some complexity. | |
| 33 // | |
| 34 // The basic structure of the extension (refered to as a sub-pump) is that a | |
| 35 // special message, kMsgHaveWork, is repeatedly injected into the Windows | |
| 36 // Message queue. Each time the kMsgHaveWork message is peeked, checks are | |
| 37 // made for an extended set of events, including the availability of Tasks to | |
| 38 // run. | |
| 39 // | |
| 40 // After running a task, the special message kMsgHaveWork is again posted to | |
| 41 // the Windows Message queue, ensuring a future time slice for processing a | |
| 42 // future event. To prevent flooding the Windows Message queue, care is taken | |
| 43 // to be sure that at most one kMsgHaveWork message is EVER pending in the | |
| 44 // Window's Message queue. | |
| 45 // | |
| 46 // There are a few additional complexities in this system where, when there are | |
| 47 // no Tasks to run, this otherwise infinite stream of messages which drives the | |
| 48 // sub-pump is halted. The pump is automatically re-started when Tasks are | |
| 49 // queued. | |
| 50 // | |
| 51 // A second complexity is that the presence of this stream of posted tasks may | |
| 52 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. | |
| 53 // Such paint and timer events always give priority to a posted message, such as | |
| 54 // kMsgHaveWork messages. As a result, care is taken to do some peeking in | |
| 55 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork | |
| 56 // is peeked, and before a replacement kMsgHaveWork is posted). | |
| 57 // | |
| 58 // NOTE: Although it may seem odd that messages are used to start and stop this | |
| 59 // flow (as opposed to signaling objects, etc.), it should be understood that | |
| 60 // the native message pump will *only* respond to messages. As a result, it is | |
| 61 // an excellent choice. It is also helpful that the starter messages that are | |
| 62 // placed in the queue when new task arrive also awakens DoRunLoop. | |
| 63 // | |
| 64 class MessagePumpWin : public MessagePump { | 23 class MessagePumpWin : public MessagePump { |
| 65 public: | 24 public: |
| 66 // An Observer is an object that receives global notifications from the | 25 // An Observer is an object that receives global notifications from the |
| 67 // MessageLoop. | 26 // MessageLoop. |
| 68 // | 27 // |
| 69 // NOTE: An Observer implementation should be extremely fast! | 28 // NOTE: An Observer implementation should be extremely fast! |
| 70 // | 29 // |
| 71 class Observer { | 30 class Observer { |
| 72 public: | 31 public: |
| 73 virtual ~Observer() {} | 32 virtual ~Observer() {} |
| (...skipping 16 matching lines...) Expand all Loading... |
| 90 // The nested loop is exited by either posting a quit, or returning false | 49 // The nested loop is exited by either posting a quit, or returning false |
| 91 // from Dispatch. | 50 // from Dispatch. |
| 92 class Dispatcher { | 51 class Dispatcher { |
| 93 public: | 52 public: |
| 94 virtual ~Dispatcher() {} | 53 virtual ~Dispatcher() {} |
| 95 // Dispatches the event. If true is returned processing continues as | 54 // Dispatches the event. If true is returned processing continues as |
| 96 // normal. If false is returned, the nested loop exits immediately. | 55 // normal. If false is returned, the nested loop exits immediately. |
| 97 virtual bool Dispatch(const MSG& msg) = 0; | 56 virtual bool Dispatch(const MSG& msg) = 0; |
| 98 }; | 57 }; |
| 99 | 58 |
| 100 MessagePumpWin(); | 59 MessagePumpWin() : have_work_(0), state_(NULL) {} |
| 101 virtual ~MessagePumpWin(); | 60 virtual ~MessagePumpWin() {} |
| 102 | 61 |
| 103 // Add an Observer, which will start receiving notifications immediately. | 62 // Add an Observer, which will start receiving notifications immediately. |
| 104 void AddObserver(Observer* observer); | 63 void AddObserver(Observer* observer); |
| 105 | 64 |
| 106 // Remove an Observer. It is safe to call this method while an Observer is | 65 // Remove an Observer. It is safe to call this method while an Observer is |
| 107 // receiving a notification callback. | 66 // receiving a notification callback. |
| 108 void RemoveObserver(Observer* observer); | 67 void RemoveObserver(Observer* observer); |
| 109 | 68 |
| 110 // Give a chance to code processing additional messages to notify the | 69 // Give a chance to code processing additional messages to notify the |
| 111 // message loop observers that another message has been processed. | 70 // message loop observers that another message has been processed. |
| 112 void WillProcessMessage(const MSG& msg); | 71 void WillProcessMessage(const MSG& msg); |
| 113 void DidProcessMessage(const MSG& msg); | 72 void DidProcessMessage(const MSG& msg); |
| 114 | 73 |
| 115 // Applications can call this to encourage us to process all pending WM_PAINT | |
| 116 // messages. This method will process all paint messages the Windows Message | |
| 117 // queue can provide, up to some fixed number (to avoid any infinite loops). | |
| 118 void PumpOutPendingPaintMessages(); | |
| 119 | |
| 120 // Like MessagePump::Run, but MSG objects are routed through dispatcher. | 74 // Like MessagePump::Run, but MSG objects are routed through dispatcher. |
| 121 void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher); | 75 void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher); |
| 122 | 76 |
| 123 // MessagePump methods: | 77 // MessagePump methods: |
| 124 virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); } | 78 virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); } |
| 125 virtual void Quit(); | 79 virtual void Quit(); |
| 126 virtual void ScheduleWork(); | |
| 127 virtual void ScheduleDelayedWork(const Time& delayed_work_time); | |
| 128 | 80 |
| 129 protected: | 81 protected: |
| 130 struct RunState { | 82 struct RunState { |
| 131 Delegate* delegate; | 83 Delegate* delegate; |
| 132 Dispatcher* dispatcher; | 84 Dispatcher* dispatcher; |
| 133 | 85 |
| 134 // Used to flag that the current Run() invocation should return ASAP. | 86 // Used to flag that the current Run() invocation should return ASAP. |
| 135 bool should_quit; | 87 bool should_quit; |
| 136 | 88 |
| 137 // Used to count how many Run() invocations are on the stack. | 89 // Used to count how many Run() invocations are on the stack. |
| 138 int run_depth; | 90 int run_depth; |
| 139 }; | 91 }; |
| 140 | 92 |
| 141 static LRESULT CALLBACK WndProcThunk( | |
| 142 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam); | |
| 143 virtual void DoRunLoop() = 0; | 93 virtual void DoRunLoop() = 0; |
| 144 void InitMessageWnd(); | |
| 145 void HandleWorkMessage(); | |
| 146 void HandleTimerMessage(); | |
| 147 bool ProcessNextWindowsMessage(); | |
| 148 bool ProcessMessageHelper(const MSG& msg); | |
| 149 bool ProcessPumpReplacementMessage(); | |
| 150 int GetCurrentDelay() const; | 94 int GetCurrentDelay() const; |
| 151 | 95 |
| 152 // A hidden message-only window. | |
| 153 HWND message_hwnd_; | |
| 154 | |
| 155 ObserverList<Observer> observers_; | 96 ObserverList<Observer> observers_; |
| 156 | 97 |
| 157 // The time at which delayed work should run. | 98 // The time at which delayed work should run. |
| 158 Time delayed_work_time_; | 99 Time delayed_work_time_; |
| 159 | 100 |
| 160 // A boolean value used to indicate if there is a kMsgDoWork message pending | 101 // A boolean value used to indicate if there is a kMsgDoWork message pending |
| 161 // in the Windows Message queue. There is at most one such message, and it | 102 // in the Windows Message queue. There is at most one such message, and it |
| 162 // can drive execution of tasks when a native message pump is running. | 103 // can drive execution of tasks when a native message pump is running. |
| 163 LONG have_work_; | 104 LONG have_work_; |
| 164 | 105 |
| 165 // State for the current invocation of Run. | 106 // State for the current invocation of Run. |
| 166 RunState* state_; | 107 RunState* state_; |
| 167 }; | 108 }; |
| 168 | 109 |
| 169 //----------------------------------------------------------------------------- | 110 //----------------------------------------------------------------------------- |
| 170 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a | 111 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a |
| 171 // MessageLoop instantiated with TYPE_UI. | 112 // MessageLoop instantiated with TYPE_UI. |
| 172 // | 113 // |
| 114 // MessagePumpForUI implements a "traditional" Windows message pump. It contains |
| 115 // a nearly infinite loop that peeks out messages, and then dispatches them. |
| 116 // Intermixed with those peeks are callouts to DoWork for pending tasks, and |
| 117 // DoDelayedWork for pending timers. When there are no events to be serviced, |
| 118 // this pump goes into a wait state. In most cases, this message pump handles |
| 119 // all processing. |
| 120 // |
| 121 // However, when a task, or windows event, invokes on the stack a native dialog |
| 122 // box or such, that window typically provides a bare bones (native?) message |
| 123 // pump. That bare-bones message pump generally supports little more than a |
| 124 // peek of the Windows message queue, followed by a dispatch of the peeked |
| 125 // message. MessageLoop extends that bare-bones message pump to also service |
| 126 // Tasks, at the cost of some complexity. |
| 127 // |
| 128 // The basic structure of the extension (refered to as a sub-pump) is that a |
| 129 // special message, kMsgHaveWork, is repeatedly injected into the Windows |
| 130 // Message queue. Each time the kMsgHaveWork message is peeked, checks are |
| 131 // made for an extended set of events, including the availability of Tasks to |
| 132 // run. |
| 133 // |
| 134 // After running a task, the special message kMsgHaveWork is again posted to |
| 135 // the Windows Message queue, ensuring a future time slice for processing a |
| 136 // future event. To prevent flooding the Windows Message queue, care is taken |
| 137 // to be sure that at most one kMsgHaveWork message is EVER pending in the |
| 138 // Window's Message queue. |
| 139 // |
| 140 // There are a few additional complexities in this system where, when there are |
| 141 // no Tasks to run, this otherwise infinite stream of messages which drives the |
| 142 // sub-pump is halted. The pump is automatically re-started when Tasks are |
| 143 // queued. |
| 144 // |
| 145 // A second complexity is that the presence of this stream of posted tasks may |
| 146 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. |
| 147 // Such paint and timer events always give priority to a posted message, such as |
| 148 // kMsgHaveWork messages. As a result, care is taken to do some peeking in |
| 149 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork |
| 150 // is peeked, and before a replacement kMsgHaveWork is posted). |
| 151 // |
| 152 // NOTE: Although it may seem odd that messages are used to start and stop this |
| 153 // flow (as opposed to signaling objects, etc.), it should be understood that |
| 154 // the native message pump will *only* respond to messages. As a result, it is |
| 155 // an excellent choice. It is also helpful that the starter messages that are |
| 156 // placed in the queue when new task arrive also awakens DoRunLoop. |
| 157 // |
| 173 class MessagePumpForUI : public MessagePumpWin { | 158 class MessagePumpForUI : public MessagePumpWin { |
| 174 public: | 159 public: |
| 175 MessagePumpForUI() {} | 160 MessagePumpForUI(); |
| 176 virtual ~MessagePumpForUI() {} | 161 virtual ~MessagePumpForUI(); |
| 162 |
| 163 // MessagePump methods: |
| 164 virtual void ScheduleWork(); |
| 165 virtual void ScheduleDelayedWork(const Time& delayed_work_time); |
| 166 |
| 167 // Applications can call this to encourage us to process all pending WM_PAINT |
| 168 // messages. This method will process all paint messages the Windows Message |
| 169 // queue can provide, up to some fixed number (to avoid any infinite loops). |
| 170 void PumpOutPendingPaintMessages(); |
| 171 |
| 177 private: | 172 private: |
| 173 static LRESULT CALLBACK WndProcThunk( |
| 174 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam); |
| 178 virtual void DoRunLoop(); | 175 virtual void DoRunLoop(); |
| 176 void InitMessageWnd(); |
| 179 void WaitForWork(); | 177 void WaitForWork(); |
| 178 void HandleWorkMessage(); |
| 179 void HandleTimerMessage(); |
| 180 bool ProcessNextWindowsMessage(); |
| 181 bool ProcessMessageHelper(const MSG& msg); |
| 182 bool ProcessPumpReplacementMessage(); |
| 183 |
| 184 // A hidden message-only window. |
| 185 HWND message_hwnd_; |
| 180 }; | 186 }; |
| 181 | 187 |
| 182 //----------------------------------------------------------------------------- | 188 //----------------------------------------------------------------------------- |
| 183 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a | 189 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a |
| 184 // MessageLoop instantiated with TYPE_IO. | 190 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not |
| 191 // deal with Windows mesagges, and instead has a Run loop based on Completion |
| 192 // Ports so it is better suited for IO operations. |
| 185 // | 193 // |
| 186 class MessagePumpForIO : public MessagePumpWin { | 194 class MessagePumpForIO : public MessagePumpWin { |
| 187 public: | 195 public: |
| 188 // Used with WatchObject to asynchronously monitor the signaled state of a | 196 struct IOContext; |
| 189 // HANDLE object. | |
| 190 class Watcher { | |
| 191 public: | |
| 192 virtual ~Watcher() {} | |
| 193 // Called from MessageLoop::Run when a signalled object is detected. | |
| 194 virtual void OnObjectSignaled(HANDLE object) = 0; | |
| 195 }; | |
| 196 | 197 |
| 197 // Clients interested in receiving OS notifications when asynchronous IO | 198 // Clients interested in receiving OS notifications when asynchronous IO |
| 198 // operations complete should implement this interface and register themselves | 199 // operations complete should implement this interface and register themselves |
| 199 // with the message pump. | 200 // with the message pump. |
| 201 // |
| 202 // Typical use #1: |
| 203 // // Use only when there are no user's buffers involved on the actual IO, |
| 204 // // so that all the cleanup can be done by the message pump. |
| 205 // class MyFile : public IOHandler { |
| 206 // MyFile() { |
| 207 // ... |
| 208 // context_ = new IOContext; |
| 209 // context_->handler = this; |
| 210 // message_pump->RegisterIOHandler(file_, this); |
| 211 // } |
| 212 // ~MyFile() { |
| 213 // if (pending_) { |
| 214 // // By setting the handler to NULL, we're asking for this context |
| 215 // // to be deleted when received, without calling back to us. |
| 216 // context_->handler = NULL; |
| 217 // } else { |
| 218 // delete context_; |
| 219 // } |
| 220 // } |
| 221 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, |
| 222 // DWORD error) { |
| 223 // pending_ = false; |
| 224 // } |
| 225 // void DoSomeIo() { |
| 226 // ... |
| 227 // // The only buffer required for this operation is the overlapped |
| 228 // // structure. |
| 229 // ConnectNamedPipe(file_, &context_->overlapped); |
| 230 // pending_ = true; |
| 231 // } |
| 232 // bool pending_; |
| 233 // IOContext* context_; |
| 234 // HANDLE file_; |
| 235 // }; |
| 236 // |
| 237 // Typical use #2: |
| 238 // class MyFile : public IOHandler { |
| 239 // MyFile() { |
| 240 // ... |
| 241 // message_pump->RegisterIOHandler(file_, this); |
| 242 // } |
| 243 // // Plus some code to make sure that this destructor is not called |
| 244 // // while there are pending IO operations. |
| 245 // ~MyFile() { |
| 246 // } |
| 247 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, |
| 248 // DWORD error) { |
| 249 // ... |
| 250 // delete context; |
| 251 // } |
| 252 // void DoSomeIo() { |
| 253 // ... |
| 254 // IOContext* context = new IOContext; |
| 255 // // This is not used for anything. It just prevents the context from |
| 256 // // being considered "abandoned". |
| 257 // context->handler = this; |
| 258 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped); |
| 259 // } |
| 260 // HANDLE file_; |
| 261 // }; |
| 262 // |
| 263 // Typical use #3: |
| 264 // Same as the previous example, except that in order to deal with the |
| 265 // requirement stated for the destructor, the class calls WaitForIOCompletion |
| 266 // from the destructor to block until all IO finishes. |
| 267 // ~MyFile() { |
| 268 // while(pending_) |
| 269 // message_pump->WaitForIOCompletion(INFINITE, this); |
| 270 // } |
| 271 // |
| 200 class IOHandler { | 272 class IOHandler { |
| 201 public: | 273 public: |
| 202 virtual ~IOHandler() {} | 274 virtual ~IOHandler() {} |
| 203 // This will be called once the pending IO operation associated with | 275 // This will be called once the pending IO operation associated with |
| 204 // |context| completes. |error| is the Win32 error code of the IO operation | 276 // |context| completes. |error| is the Win32 error code of the IO operation |
| 205 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero | 277 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero |
| 206 // on error. | 278 // on error. |
| 207 virtual void OnIOCompleted(OVERLAPPED* context, DWORD bytes_transfered, | 279 virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, |
| 208 DWORD error) = 0; | 280 DWORD error) = 0; |
| 209 }; | 281 }; |
| 210 | 282 |
| 211 MessagePumpForIO() {} | 283 // The extended context that should be used as the base structure on every |
| 284 // overlapped IO operation. |handler| must be set to the registered IOHandler |
| 285 // for the given file when the operation is started, and it can be set to NULL |
| 286 // before the operation completes to indicate that the handler should not be |
| 287 // called anymore, and instead, the IOContext should be deleted when the OS |
| 288 // notifies the completion of this operation. Please remember that any buffers |
| 289 // involved with an IO operation should be around until the callback is |
| 290 // received, so this technique can only be used for IO that do not involve |
| 291 // additional buffers (other than the overlapped structure itself). |
| 292 struct IOContext { |
| 293 OVERLAPPED overlapped; |
| 294 IOHandler* handler; |
| 295 }; |
| 296 |
| 297 MessagePumpForIO(); |
| 212 virtual ~MessagePumpForIO() {} | 298 virtual ~MessagePumpForIO() {} |
| 213 | 299 |
| 214 // Have the current thread's message loop watch for a signaled object. | 300 // MessagePump methods: |
| 215 // Pass a null watcher to stop watching the object. | 301 virtual void ScheduleWork(); |
| 216 void WatchObject(HANDLE, Watcher*); | 302 virtual void ScheduleDelayedWork(const Time& delayed_work_time); |
| 217 | 303 |
| 218 // Register the handler to be used when asynchronous IO for the given file | 304 // Register the handler to be used when asynchronous IO for the given file |
| 219 // completes. The registration persists as long as |file_handle| is valid, so | 305 // completes. The registration persists as long as |file_handle| is valid, so |
| 220 // |handler| must be valid as long as there is pending IO for the given file. | 306 // |handler| must be valid as long as there is pending IO for the given file. |
| 221 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); | 307 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); |
| 222 | 308 |
| 223 // This is just a throw away function to ease transition to completion ports. | 309 // Waits for the next IO completion that should be processed by |filter|, for |
| 224 // Pass NULL for handler to stop tracking this request. WARNING: cancellation | 310 // up to |timeout| milliseconds. Return true if any IO operation completed, |
| 225 // correctness is the responsibility of the caller. |context| must contain a | 311 // regardless of the involved handler, and false if the timeout expired. If |
| 226 // valid manual reset event, but the caller should not interact directly with | 312 // the completion port received any message and the involved IO handler |
| 227 // it. The registration can live across a single IO operation, or it can live | 313 // matches |filter|, the callback is called before returning from this code; |
| 228 // across multiple IO operations without having to reset it after each IO | 314 // if the handler is not the one that we are looking for, the callback will |
| 229 // completion callback. Internally, there will be a WatchObject registration | 315 // be postponed for another time, so reentrancy problems can be avoided. |
| 230 // alive as long as this context registration is in effect. It is an error | 316 // External use of this method should be reserved for the rare case when the |
| 231 // to unregister a context that has not been registered before. | 317 // caller is willing to allow pausing regular task dispatching on this thread. |
| 232 void RegisterIOContext(OVERLAPPED* context, IOHandler* handler); | 318 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); |
| 233 | 319 |
| 234 private: | 320 private: |
| 321 struct IOItem { |
| 322 IOHandler* handler; |
| 323 IOContext* context; |
| 324 DWORD bytes_transfered; |
| 325 DWORD error; |
| 326 }; |
| 327 |
| 235 virtual void DoRunLoop(); | 328 virtual void DoRunLoop(); |
| 236 void WaitForWork(); | 329 void WaitForWork(); |
| 237 bool ProcessNextObject(); | 330 bool MatchCompletedIOItem(IOHandler* filter, IOItem* item); |
| 238 bool SignalWatcher(size_t object_index); | 331 bool GetIOItem(DWORD timeout, IOItem* item); |
| 239 | 332 bool ProcessInternalIOItem(const IOItem& item); |
| 240 // A vector of objects (and corresponding watchers) that are routinely | |
| 241 // serviced by this message pump. | |
| 242 std::vector<HANDLE> objects_; | |
| 243 std::vector<Watcher*> watchers_; | |
| 244 | 333 |
| 245 // The completion port associated with this thread. | 334 // The completion port associated with this thread. |
| 246 ScopedHandle port_; | 335 ScopedHandle port_; |
| 336 // This list will be empty almost always. It stores IO completions that have |
| 337 // not been delivered yet because somebody was doing cleanup. |
| 338 std::list<IOItem> completed_io_; |
| 247 }; | 339 }; |
| 248 | 340 |
| 249 } // namespace base | 341 } // namespace base |
| 250 | 342 |
| 251 #endif // BASE_MESSAGE_PUMP_WIN_H_ | 343 #endif // BASE_MESSAGE_PUMP_WIN_H_ |
| OLD | NEW |