OLD | NEW |
(Empty) | |
| 1 // Copyright 2011 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 /** |
| 29 * Constructs a Splay tree. A splay tree is a self-balancing binary |
| 30 * search tree with the additional property that recently accessed |
| 31 * elements are quick to access again. It performs basic operations |
| 32 * such as insertion, look-up and removal in O(log(n)) amortized time. |
| 33 * |
| 34 * @constructor |
| 35 */ |
| 36 function SplayTree() { |
| 37 }; |
| 38 |
| 39 |
| 40 /** |
| 41 * Pointer to the root node of the tree. |
| 42 * |
| 43 * @type {SplayTree.Node} |
| 44 * @private |
| 45 */ |
| 46 SplayTree.prototype.root_ = null; |
| 47 |
| 48 |
| 49 /** |
| 50 * @return {boolean} Whether the tree is empty. |
| 51 */ |
| 52 SplayTree.prototype.isEmpty = function() { |
| 53 return !this.root_; |
| 54 }; |
| 55 |
| 56 |
| 57 /** |
| 58 * Inserts a node into the tree with the specified key and value if |
| 59 * the tree does not already contain a node with the specified key. If |
| 60 * the value is inserted, it becomes the root of the tree. |
| 61 * |
| 62 * @param {number} key Key to insert into the tree. |
| 63 * @param {*} value Value to insert into the tree. |
| 64 */ |
| 65 SplayTree.prototype.insert = function(key, value) { |
| 66 if (this.isEmpty()) { |
| 67 this.root_ = new SplayTree.Node(key, value); |
| 68 return; |
| 69 } |
| 70 // Splay on the key to move the last node on the search path for |
| 71 // the key to the root of the tree. |
| 72 this.splay_(key); |
| 73 if (this.root_.key == key) { |
| 74 return; |
| 75 } |
| 76 var node = new SplayTree.Node(key, value); |
| 77 if (key > this.root_.key) { |
| 78 node.left = this.root_; |
| 79 node.right = this.root_.right; |
| 80 this.root_.right = null; |
| 81 } else { |
| 82 node.right = this.root_; |
| 83 node.left = this.root_.left; |
| 84 this.root_.left = null; |
| 85 } |
| 86 this.root_ = node; |
| 87 }; |
| 88 |
| 89 |
| 90 /** |
| 91 * Removes a node with the specified key from the tree if the tree |
| 92 * contains a node with this key. The removed node is returned. If the |
| 93 * key is not found, an exception is thrown. |
| 94 * |
| 95 * @param {number} key Key to find and remove from the tree. |
| 96 * @return {SplayTree.Node} The removed node. |
| 97 */ |
| 98 SplayTree.prototype.remove = function(key) { |
| 99 if (this.isEmpty()) { |
| 100 throw Error('Key not found: ' + key); |
| 101 } |
| 102 this.splay_(key); |
| 103 if (this.root_.key != key) { |
| 104 throw Error('Key not found: ' + key); |
| 105 } |
| 106 var removed = this.root_; |
| 107 if (!this.root_.left) { |
| 108 this.root_ = this.root_.right; |
| 109 } else { |
| 110 var right = this.root_.right; |
| 111 this.root_ = this.root_.left; |
| 112 // Splay to make sure that the new root has an empty right child. |
| 113 this.splay_(key); |
| 114 // Insert the original right child as the right child of the new |
| 115 // root. |
| 116 this.root_.right = right; |
| 117 } |
| 118 return removed; |
| 119 }; |
| 120 |
| 121 |
| 122 /** |
| 123 * Returns the node having the specified key or null if the tree doesn't contain |
| 124 * a node with the specified key. |
| 125 * |
| 126 * @param {number} key Key to find in the tree. |
| 127 * @return {SplayTree.Node} Node having the specified key. |
| 128 */ |
| 129 SplayTree.prototype.find = function(key) { |
| 130 if (this.isEmpty()) { |
| 131 return null; |
| 132 } |
| 133 this.splay_(key); |
| 134 return this.root_.key == key ? this.root_ : null; |
| 135 }; |
| 136 |
| 137 |
| 138 /** |
| 139 * @return {SplayTree.Node} Node having the maximum key value. |
| 140 */ |
| 141 SplayTree.prototype.findMax = function(opt_startNode) { |
| 142 if (this.isEmpty()) { |
| 143 return null; |
| 144 } |
| 145 var current = opt_startNode || this.root_; |
| 146 while (current.right) { |
| 147 current = current.right; |
| 148 } |
| 149 return current; |
| 150 }; |
| 151 |
| 152 |
| 153 /** |
| 154 * @return {SplayTree.Node} Node having the maximum key value that |
| 155 * is less than the specified key value. |
| 156 */ |
| 157 SplayTree.prototype.findGreatestLessThan = function(key) { |
| 158 if (this.isEmpty()) { |
| 159 return null; |
| 160 } |
| 161 // Splay on the key to move the node with the given key or the last |
| 162 // node on the search path to the top of the tree. |
| 163 this.splay_(key); |
| 164 // Now the result is either the root node or the greatest node in |
| 165 // the left subtree. |
| 166 if (this.root_.key < key) { |
| 167 return this.root_; |
| 168 } else if (this.root_.left) { |
| 169 return this.findMax(this.root_.left); |
| 170 } else { |
| 171 return null; |
| 172 } |
| 173 }; |
| 174 |
| 175 |
| 176 /** |
| 177 * @return {Array<*>} An array containing all the keys of tree's nodes. |
| 178 */ |
| 179 SplayTree.prototype.exportKeys = function() { |
| 180 var result = []; |
| 181 if (!this.isEmpty()) { |
| 182 this.root_.traverse_(function(node) { result.push(node.key); }); |
| 183 } |
| 184 return result; |
| 185 }; |
| 186 |
| 187 |
| 188 /** |
| 189 * Perform the splay operation for the given key. Moves the node with |
| 190 * the given key to the top of the tree. If no node has the given |
| 191 * key, the last node on the search path is moved to the top of the |
| 192 * tree. This is the simplified top-down splaying algorithm from: |
| 193 * "Self-adjusting Binary Search Trees" by Sleator and Tarjan |
| 194 * |
| 195 * @param {number} key Key to splay the tree on. |
| 196 * @private |
| 197 */ |
| 198 SplayTree.prototype.splay_ = function(key) { |
| 199 if (this.isEmpty()) { |
| 200 return; |
| 201 } |
| 202 // Create a dummy node. The use of the dummy node is a bit |
| 203 // counter-intuitive: The right child of the dummy node will hold |
| 204 // the L tree of the algorithm. The left child of the dummy node |
| 205 // will hold the R tree of the algorithm. Using a dummy node, left |
| 206 // and right will always be nodes and we avoid special cases. |
| 207 var dummy, left, right; |
| 208 dummy = left = right = new SplayTree.Node(null, null); |
| 209 var current = this.root_; |
| 210 while (true) { |
| 211 if (key < current.key) { |
| 212 if (!current.left) { |
| 213 break; |
| 214 } |
| 215 if (key < current.left.key) { |
| 216 // Rotate right. |
| 217 var tmp = current.left; |
| 218 current.left = tmp.right; |
| 219 tmp.right = current; |
| 220 current = tmp; |
| 221 if (!current.left) { |
| 222 break; |
| 223 } |
| 224 } |
| 225 // Link right. |
| 226 right.left = current; |
| 227 right = current; |
| 228 current = current.left; |
| 229 } else if (key > current.key) { |
| 230 if (!current.right) { |
| 231 break; |
| 232 } |
| 233 if (key > current.right.key) { |
| 234 // Rotate left. |
| 235 var tmp = current.right; |
| 236 current.right = tmp.left; |
| 237 tmp.left = current; |
| 238 current = tmp; |
| 239 if (!current.right) { |
| 240 break; |
| 241 } |
| 242 } |
| 243 // Link left. |
| 244 left.right = current; |
| 245 left = current; |
| 246 current = current.right; |
| 247 } else { |
| 248 break; |
| 249 } |
| 250 } |
| 251 // Assemble. |
| 252 left.right = current.left; |
| 253 right.left = current.right; |
| 254 current.left = dummy.right; |
| 255 current.right = dummy.left; |
| 256 this.root_ = current; |
| 257 }; |
| 258 |
| 259 |
| 260 /** |
| 261 * Constructs a Splay tree node. |
| 262 * |
| 263 * @param {number} key Key. |
| 264 * @param {*} value Value. |
| 265 */ |
| 266 SplayTree.Node = function(key, value) { |
| 267 this.key = key; |
| 268 this.value = value; |
| 269 }; |
| 270 |
| 271 |
| 272 /** |
| 273 * @type {SplayTree.Node} |
| 274 */ |
| 275 SplayTree.Node.prototype.left = null; |
| 276 |
| 277 |
| 278 /** |
| 279 * @type {SplayTree.Node} |
| 280 */ |
| 281 SplayTree.Node.prototype.right = null; |
| 282 |
| 283 |
| 284 /** |
| 285 * Performs an ordered traversal of the subtree starting at |
| 286 * this SplayTree.Node. |
| 287 * |
| 288 * @param {function(SplayTree.Node)} f Visitor function. |
| 289 * @private |
| 290 */ |
| 291 SplayTree.Node.prototype.traverse_ = function(f) { |
| 292 var current = this; |
| 293 while (current) { |
| 294 var left = current.left; |
| 295 if (left) left.traverse_(f); |
| 296 f(current); |
| 297 current = current.right; |
| 298 } |
| 299 }; |
| 300 |
| 301 SplayTree.prototype.traverseBreadthFirst = function (f) { |
| 302 if (f(this.root_.value)) return; |
| 303 |
| 304 var stack = [this.root_]; |
| 305 var length = 1; |
| 306 |
| 307 while (length > 0) { |
| 308 var new_stack = new Array(stack.length * 2); |
| 309 var new_length = 0; |
| 310 for (var i = 0; i < length; i++) { |
| 311 var n = stack[i]; |
| 312 var l = n.left; |
| 313 var r = n.right; |
| 314 if (l) { |
| 315 if (f(l.value)) return; |
| 316 new_stack[new_length++] = l; |
| 317 } |
| 318 if (r) { |
| 319 if (f(r.value)) return; |
| 320 new_stack[new_length++] = r; |
| 321 } |
| 322 } |
| 323 stack = new_stack; |
| 324 length = new_length; |
| 325 } |
| 326 }; |
OLD | NEW |