| OLD | NEW |
| (Empty) |
| 1 // qcms | |
| 2 // Copyright (C) 2009 Mozilla Corporation | |
| 3 // Copyright (C) 1998-2007 Marti Maria | |
| 4 // | |
| 5 // Permission is hereby granted, free of charge, to any person obtaining | |
| 6 // a copy of this software and associated documentation files (the "Software"), | |
| 7 // to deal in the Software without restriction, including without limitation | |
| 8 // the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| 9 // and/or sell copies of the Software, and to permit persons to whom the Softwar
e | |
| 10 // is furnished to do so, subject to the following conditions: | |
| 11 // | |
| 12 // The above copyright notice and this permission notice shall be included in | |
| 13 // all copies or substantial portions of the Software. | |
| 14 // | |
| 15 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
| 16 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | |
| 17 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
| 18 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |
| 19 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
| 20 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
| 21 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| 22 | |
| 23 #include <stdlib.h> | |
| 24 #include <math.h> | |
| 25 #include <assert.h> | |
| 26 #include "qcmsint.h" | |
| 27 | |
| 28 /* for MSVC, GCC, Intel, and Sun compilers */ | |
| 29 #if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64
) || defined(__x86_64__) || defined(__x86_64) | |
| 30 #define X86 | |
| 31 #endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */ | |
| 32 | |
| 33 //XXX: could use a bettername | |
| 34 typedef uint16_t uint16_fract_t; | |
| 35 | |
| 36 /* value must be a value between 0 and 1 */ | |
| 37 //XXX: is the above a good restriction to have? | |
| 38 float lut_interp_linear(double value, uint16_t *table, int length) | |
| 39 { | |
| 40 int upper, lower; | |
| 41 value = value * (length - 1); // scale to length of the array | |
| 42 upper = ceil(value); | |
| 43 lower = floor(value); | |
| 44 //XXX: can we be more performant here? | |
| 45 value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - valu
e); | |
| 46 /* scale the value */ | |
| 47 return value * (1./65535.); | |
| 48 } | |
| 49 | |
| 50 /* same as above but takes and returns a uint16_t value representing a range fro
m 0..1 */ | |
| 51 uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) | |
| 52 { | |
| 53 /* Start scaling input_value to the length of the array: 65535*(length-1
). | |
| 54 * We'll divide out the 65535 next */ | |
| 55 uint32_t value = (input_value * (length - 1)); | |
| 56 uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65
535) */ | |
| 57 uint32_t lower = value / 65535; /* equivalent to floor(value/6
5535) */ | |
| 58 /* interp is the distance from upper to value scaled to 0..65535 */ | |
| 59 uint32_t interp = value % 65535; | |
| 60 | |
| 61 value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; /
/ 0..65535*65535 | |
| 62 | |
| 63 return value; | |
| 64 } | |
| 65 | |
| 66 /* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX | |
| 67 * and returns a uint8_t value representing a range from 0..1 */ | |
| 68 static | |
| 69 uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table,
int length) | |
| 70 { | |
| 71 /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT
_MAX*(length-1). | |
| 72 * We'll divide out the PRECACHE_OUTPUT_MAX next */ | |
| 73 uint32_t value = (input_value * (length - 1)); | |
| 74 | |
| 75 /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */ | |
| 76 uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX; | |
| 77 /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */ | |
| 78 uint32_t lower = value / PRECACHE_OUTPUT_MAX; | |
| 79 /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTP
UT_MAX */ | |
| 80 uint32_t interp = value % PRECACHE_OUTPUT_MAX; | |
| 81 | |
| 82 /* the table values range from 0..65535 */ | |
| 83 value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - int
erp)); // 0..(65535*PRECACHE_OUTPUT_MAX) | |
| 84 | |
| 85 /* round and scale */ | |
| 86 value += (PRECACHE_OUTPUT_MAX*65535/255)/2; | |
| 87 value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255 | |
| 88 return value; | |
| 89 } | |
| 90 | |
| 91 #if 0 | |
| 92 /* if we use a different representation i.e. one that goes from 0 to 0x1000 we c
an be more efficient | |
| 93 * because we can avoid the divisions and use a shifting instead */ | |
| 94 /* same as above but takes and returns a uint16_t value representing a range fro
m 0..1 */ | |
| 95 uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) | |
| 96 { | |
| 97 uint32_t value = (input_value * (length - 1)); | |
| 98 uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096
) */ | |
| 99 uint32_t lower = value / 4096; /* equivalent to floor(value/40
96) */ | |
| 100 uint32_t interp = value % 4096; | |
| 101 | |
| 102 value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; //
0..4096*4096 | |
| 103 | |
| 104 return value; | |
| 105 } | |
| 106 #endif | |
| 107 | |
| 108 void compute_curve_gamma_table_type1(float gamma_table[256], double gamma) | |
| 109 { | |
| 110 unsigned int i; | |
| 111 for (i = 0; i < 256; i++) { | |
| 112 gamma_table[i] = pow(i/255., gamma); | |
| 113 } | |
| 114 } | |
| 115 | |
| 116 void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, in
t length) | |
| 117 { | |
| 118 unsigned int i; | |
| 119 for (i = 0; i < 256; i++) { | |
| 120 gamma_table[i] = lut_interp_linear(i/255., table, length); | |
| 121 } | |
| 122 } | |
| 123 | |
| 124 void compute_curve_gamma_table_type0(float gamma_table[256]) | |
| 125 { | |
| 126 unsigned int i; | |
| 127 for (i = 0; i < 256; i++) { | |
| 128 gamma_table[i] = i/255.; | |
| 129 } | |
| 130 } | |
| 131 | |
| 132 unsigned char clamp_u8(float v) | |
| 133 { | |
| 134 if (v > 255.) | |
| 135 return 255; | |
| 136 else if (v < 0) | |
| 137 return 0; | |
| 138 else | |
| 139 return floor(v+.5); | |
| 140 } | |
| 141 | |
| 142 struct vector { | |
| 143 float v[3]; | |
| 144 }; | |
| 145 | |
| 146 struct matrix { | |
| 147 float m[3][3]; | |
| 148 bool invalid; | |
| 149 }; | |
| 150 | |
| 151 struct vector matrix_eval(struct matrix mat, struct vector v) | |
| 152 { | |
| 153 struct vector result; | |
| 154 result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[
2]; | |
| 155 result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[
2]; | |
| 156 result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[
2]; | |
| 157 return result; | |
| 158 } | |
| 159 | |
| 160 //XXX: should probably pass by reference and we could | |
| 161 //probably reuse this computation in matrix_invert | |
| 162 float matrix_det(struct matrix mat) | |
| 163 { | |
| 164 float det; | |
| 165 det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] + | |
| 166 mat.m[0][1]*mat.m[1][2]*mat.m[2][0] + | |
| 167 mat.m[0][2]*mat.m[1][0]*mat.m[2][1] - | |
| 168 mat.m[0][0]*mat.m[1][2]*mat.m[2][1] - | |
| 169 mat.m[0][1]*mat.m[1][0]*mat.m[2][2] - | |
| 170 mat.m[0][2]*mat.m[1][1]*mat.m[2][0]; | |
| 171 return det; | |
| 172 } | |
| 173 | |
| 174 /* from pixman and cairo and Mathematics for Game Programmers */ | |
| 175 /* lcms uses gauss-jordan elimination with partial pivoting which is | |
| 176 * less efficient and not as numerically stable. See Mathematics for | |
| 177 * Game Programmers. */ | |
| 178 struct matrix matrix_invert(struct matrix mat) | |
| 179 { | |
| 180 struct matrix dest_mat; | |
| 181 int i,j; | |
| 182 static int a[3] = { 2, 2, 1 }; | |
| 183 static int b[3] = { 1, 0, 0 }; | |
| 184 | |
| 185 /* inv (A) = 1/det (A) * adj (A) */ | |
| 186 float det = matrix_det(mat); | |
| 187 | |
| 188 if (det == 0) { | |
| 189 dest_mat.invalid = true; | |
| 190 } else { | |
| 191 dest_mat.invalid = false; | |
| 192 } | |
| 193 | |
| 194 det = 1/det; | |
| 195 | |
| 196 for (j = 0; j < 3; j++) { | |
| 197 for (i = 0; i < 3; i++) { | |
| 198 double p; | |
| 199 int ai = a[i]; | |
| 200 int aj = a[j]; | |
| 201 int bi = b[i]; | |
| 202 int bj = b[j]; | |
| 203 | |
| 204 p = mat.m[ai][aj] * mat.m[bi][bj] - | |
| 205 mat.m[ai][bj] * mat.m[bi][aj]; | |
| 206 if (((i + j) & 1) != 0) | |
| 207 p = -p; | |
| 208 | |
| 209 dest_mat.m[j][i] = det * p; | |
| 210 } | |
| 211 } | |
| 212 return dest_mat; | |
| 213 } | |
| 214 | |
| 215 struct matrix matrix_identity(void) | |
| 216 { | |
| 217 struct matrix i; | |
| 218 i.m[0][0] = 1; | |
| 219 i.m[0][1] = 0; | |
| 220 i.m[0][2] = 0; | |
| 221 i.m[1][0] = 0; | |
| 222 i.m[1][1] = 1; | |
| 223 i.m[1][2] = 0; | |
| 224 i.m[2][0] = 0; | |
| 225 i.m[2][1] = 0; | |
| 226 i.m[2][2] = 1; | |
| 227 i.invalid = false; | |
| 228 return i; | |
| 229 } | |
| 230 | |
| 231 static struct matrix matrix_invalid(void) | |
| 232 { | |
| 233 struct matrix inv = matrix_identity(); | |
| 234 inv.invalid = true; | |
| 235 return inv; | |
| 236 } | |
| 237 | |
| 238 | |
| 239 /* from pixman */ | |
| 240 /* MAT3per... */ | |
| 241 struct matrix matrix_multiply(struct matrix a, struct matrix b) | |
| 242 { | |
| 243 struct matrix result; | |
| 244 int dx, dy; | |
| 245 int o; | |
| 246 for (dy = 0; dy < 3; dy++) { | |
| 247 for (dx = 0; dx < 3; dx++) { | |
| 248 double v = 0; | |
| 249 for (o = 0; o < 3; o++) { | |
| 250 v += a.m[dy][o] * b.m[o][dx]; | |
| 251 } | |
| 252 result.m[dy][dx] = v; | |
| 253 } | |
| 254 } | |
| 255 result.invalid = a.invalid || b.invalid; | |
| 256 return result; | |
| 257 } | |
| 258 | |
| 259 float u8Fixed8Number_to_float(uint16_t x) | |
| 260 { | |
| 261 // 0x0000 = 0. | |
| 262 // 0x0100 = 1. | |
| 263 // 0xffff = 255 + 255/256 | |
| 264 return x/256.; | |
| 265 } | |
| 266 | |
| 267 float *build_input_gamma_table(struct curveType *TRC) | |
| 268 { | |
| 269 float *gamma_table = malloc(sizeof(float)*256); | |
| 270 if (gamma_table) { | |
| 271 if (TRC->count == 0) { | |
| 272 compute_curve_gamma_table_type0(gamma_table); | |
| 273 } else if (TRC->count == 1) { | |
| 274 compute_curve_gamma_table_type1(gamma_table, u8Fixed8Num
ber_to_float(TRC->data[0])); | |
| 275 } else { | |
| 276 compute_curve_gamma_table_type2(gamma_table, TRC->data,
TRC->count); | |
| 277 } | |
| 278 } | |
| 279 return gamma_table; | |
| 280 } | |
| 281 | |
| 282 struct matrix build_colorant_matrix(qcms_profile *p) | |
| 283 { | |
| 284 struct matrix result; | |
| 285 result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X); | |
| 286 result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X); | |
| 287 result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X); | |
| 288 result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y); | |
| 289 result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y); | |
| 290 result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y); | |
| 291 result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z); | |
| 292 result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z); | |
| 293 result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z); | |
| 294 result.invalid = false; | |
| 295 return result; | |
| 296 } | |
| 297 | |
| 298 /* The following code is copied nearly directly from lcms. | |
| 299 * I think it could be much better. For example, Argyll seems to have better cod
e in | |
| 300 * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick
way | |
| 301 * to a working solution and allows for easy comparing with lcms. */ | |
| 302 uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int len
gth) | |
| 303 { | |
| 304 int l = 1; | |
| 305 int r = 0x10000; | |
| 306 int x = 0, res; // 'int' Give spacing for negative values | |
| 307 int NumZeroes, NumPoles; | |
| 308 int cell0, cell1; | |
| 309 double val2; | |
| 310 double y0, y1, x0, x1; | |
| 311 double a, b, f; | |
| 312 | |
| 313 // July/27 2001 - Expanded to handle degenerated curves with an arbitrar
y | |
| 314 // number of elements containing 0 at the begining of the table (Zeroes) | |
| 315 // and another arbitrary number of poles (FFFFh) at the end. | |
| 316 // First the zero and pole extents are computed, then value is compared. | |
| 317 | |
| 318 NumZeroes = 0; | |
| 319 while (LutTable[NumZeroes] == 0 && NumZeroes < length-1) | |
| 320 NumZeroes++; | |
| 321 | |
| 322 // There are no zeros at the beginning and we are trying to find a zero,
so | |
| 323 // return anything. It seems zero would be the less destructive choice | |
| 324 /* I'm not sure that this makes sense, but oh well... */ | |
| 325 if (NumZeroes == 0 && Value == 0) | |
| 326 return 0; | |
| 327 | |
| 328 NumPoles = 0; | |
| 329 while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1) | |
| 330 NumPoles++; | |
| 331 | |
| 332 // Does the curve belong to this case? | |
| 333 if (NumZeroes > 1 || NumPoles > 1) | |
| 334 { | |
| 335 int a, b; | |
| 336 | |
| 337 // Identify if value fall downto 0 or FFFF zone | |
| 338 if (Value == 0) return 0; | |
| 339 // if (Value == 0xFFFF) return 0xFFFF; | |
| 340 | |
| 341 // else restrict to valid zone | |
| 342 | |
| 343 a = ((NumZeroes-1) * 0xFFFF) / (length-1); | |
| 344 b = ((length-1 - NumPoles) * 0xFFFF) / (length-1); | |
| 345 | |
| 346 l = a - 1; | |
| 347 r = b + 1; | |
| 348 } | |
| 349 | |
| 350 | |
| 351 // Seems not a degenerated case... apply binary search | |
| 352 | |
| 353 while (r > l) { | |
| 354 | |
| 355 x = (l + r) / 2; | |
| 356 | |
| 357 res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable
, length); | |
| 358 | |
| 359 if (res == Value) { | |
| 360 | |
| 361 // Found exact match. | |
| 362 | |
| 363 return (uint16_fract_t) (x - 1); | |
| 364 } | |
| 365 | |
| 366 if (res > Value) r = x - 1; | |
| 367 else l = x + 1; | |
| 368 } | |
| 369 | |
| 370 // Not found, should we interpolate? | |
| 371 | |
| 372 | |
| 373 // Get surrounding nodes | |
| 374 | |
| 375 val2 = (length-1) * ((double) (x - 1) / 65535.0); | |
| 376 | |
| 377 cell0 = (int) floor(val2); | |
| 378 cell1 = (int) ceil(val2); | |
| 379 | |
| 380 if (cell0 == cell1) return (uint16_fract_t) x; | |
| 381 | |
| 382 y0 = LutTable[cell0] ; | |
| 383 x0 = (65535.0 * cell0) / (length-1); | |
| 384 | |
| 385 y1 = LutTable[cell1] ; | |
| 386 x1 = (65535.0 * cell1) / (length-1); | |
| 387 | |
| 388 a = (y1 - y0) / (x1 - x0); | |
| 389 b = y0 - a * x0; | |
| 390 | |
| 391 if (fabs(a) < 0.01) return (uint16_fract_t) x; | |
| 392 | |
| 393 f = ((Value - b) / a); | |
| 394 | |
| 395 if (f < 0.0) return (uint16_fract_t) 0; | |
| 396 if (f >= 65535.0) return (uint16_fract_t) 0xFFFF; | |
| 397 | |
| 398 return (uint16_fract_t) floor(f + 0.5); | |
| 399 | |
| 400 } | |
| 401 | |
| 402 // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ | |
| 403 // This is just an approximation, I am not handling all the non-linear | |
| 404 // aspects of the RGB to XYZ process, and assumming that the gamma correction | |
| 405 // has transitive property in the tranformation chain. | |
| 406 // | |
| 407 // the alghoritm: | |
| 408 // | |
| 409 // - First I build the absolute conversion matrix using | |
| 410 // primaries in XYZ. This matrix is next inverted | |
| 411 // - Then I eval the source white point across this matrix | |
| 412 // obtaining the coeficients of the transformation | |
| 413 // - Then, I apply these coeficients to the original matrix | |
| 414 static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_C
IE_xyYTRIPLE primrs) | |
| 415 { | |
| 416 struct matrix primaries; | |
| 417 struct matrix primaries_invert; | |
| 418 struct matrix result; | |
| 419 struct vector white_point; | |
| 420 struct vector coefs; | |
| 421 | |
| 422 double xn, yn; | |
| 423 double xr, yr; | |
| 424 double xg, yg; | |
| 425 double xb, yb; | |
| 426 | |
| 427 xn = white.x; | |
| 428 yn = white.y; | |
| 429 | |
| 430 if (yn == 0.0) | |
| 431 return matrix_invalid(); | |
| 432 | |
| 433 xr = primrs.red.x; | |
| 434 yr = primrs.red.y; | |
| 435 xg = primrs.green.x; | |
| 436 yg = primrs.green.y; | |
| 437 xb = primrs.blue.x; | |
| 438 yb = primrs.blue.y; | |
| 439 | |
| 440 primaries.m[0][0] = xr; | |
| 441 primaries.m[0][1] = xg; | |
| 442 primaries.m[0][2] = xb; | |
| 443 | |
| 444 primaries.m[1][0] = yr; | |
| 445 primaries.m[1][1] = yg; | |
| 446 primaries.m[1][2] = yb; | |
| 447 | |
| 448 primaries.m[2][0] = 1 - xr - yr; | |
| 449 primaries.m[2][1] = 1 - xg - yg; | |
| 450 primaries.m[2][2] = 1 - xb - yb; | |
| 451 primaries.invalid = false; | |
| 452 | |
| 453 white_point.v[0] = xn/yn; | |
| 454 white_point.v[1] = 1.; | |
| 455 white_point.v[2] = (1.0-xn-yn)/yn; | |
| 456 | |
| 457 primaries_invert = matrix_invert(primaries); | |
| 458 | |
| 459 coefs = matrix_eval(primaries_invert, white_point); | |
| 460 | |
| 461 result.m[0][0] = coefs.v[0]*xr; | |
| 462 result.m[0][1] = coefs.v[1]*xg; | |
| 463 result.m[0][2] = coefs.v[2]*xb; | |
| 464 | |
| 465 result.m[1][0] = coefs.v[0]*yr; | |
| 466 result.m[1][1] = coefs.v[1]*yg; | |
| 467 result.m[1][2] = coefs.v[2]*yb; | |
| 468 | |
| 469 result.m[2][0] = coefs.v[0]*(1.-xr-yr); | |
| 470 result.m[2][1] = coefs.v[1]*(1.-xg-yg); | |
| 471 result.m[2][2] = coefs.v[2]*(1.-xb-yb); | |
| 472 result.invalid = primaries_invert.invalid; | |
| 473 | |
| 474 return result; | |
| 475 } | |
| 476 | |
| 477 struct CIE_XYZ { | |
| 478 double X; | |
| 479 double Y; | |
| 480 double Z; | |
| 481 }; | |
| 482 | |
| 483 /* CIE Illuminant D50 */ | |
| 484 static const struct CIE_XYZ D50_XYZ = { | |
| 485 0.9642, | |
| 486 1.0000, | |
| 487 0.8249 | |
| 488 }; | |
| 489 | |
| 490 /* from lcms: xyY2XYZ() | |
| 491 * corresponds to argyll: icmYxy2XYZ() */ | |
| 492 static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source) | |
| 493 { | |
| 494 struct CIE_XYZ dest; | |
| 495 dest.X = (source.x / source.y) * source.Y; | |
| 496 dest.Y = source.Y; | |
| 497 dest.Z = ((1 - source.x - source.y) / source.y) * source.Y; | |
| 498 return dest; | |
| 499 } | |
| 500 | |
| 501 /* from lcms: ComputeChromaticAdaption */ | |
| 502 // Compute chromatic adaption matrix using chad as cone matrix | |
| 503 static struct matrix | |
| 504 compute_chromatic_adaption(struct CIE_XYZ source_white_point, | |
| 505 struct CIE_XYZ dest_white_point, | |
| 506 struct matrix chad) | |
| 507 { | |
| 508 struct matrix chad_inv; | |
| 509 struct vector cone_source_XYZ, cone_source_rgb; | |
| 510 struct vector cone_dest_XYZ, cone_dest_rgb; | |
| 511 struct matrix cone, tmp; | |
| 512 | |
| 513 tmp = chad; | |
| 514 chad_inv = matrix_invert(tmp); | |
| 515 | |
| 516 cone_source_XYZ.v[0] = source_white_point.X; | |
| 517 cone_source_XYZ.v[1] = source_white_point.Y; | |
| 518 cone_source_XYZ.v[2] = source_white_point.Z; | |
| 519 | |
| 520 cone_dest_XYZ.v[0] = dest_white_point.X; | |
| 521 cone_dest_XYZ.v[1] = dest_white_point.Y; | |
| 522 cone_dest_XYZ.v[2] = dest_white_point.Z; | |
| 523 | |
| 524 cone_source_rgb = matrix_eval(chad, cone_source_XYZ); | |
| 525 cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ); | |
| 526 | |
| 527 cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0]; | |
| 528 cone.m[0][1] = 0; | |
| 529 cone.m[0][2] = 0; | |
| 530 cone.m[1][0] = 0; | |
| 531 cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1]; | |
| 532 cone.m[1][2] = 0; | |
| 533 cone.m[2][0] = 0; | |
| 534 cone.m[2][1] = 0; | |
| 535 cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2]; | |
| 536 cone.invalid = false; | |
| 537 | |
| 538 // Normalize | |
| 539 return matrix_multiply(chad_inv, matrix_multiply(cone, chad)); | |
| 540 } | |
| 541 | |
| 542 /* from lcms: cmsAdaptionMatrix */ | |
| 543 // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant T
oIll | |
| 544 // Bradford is assumed | |
| 545 static struct matrix | |
| 546 adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumi
nation) | |
| 547 { | |
| 548 struct matrix lam_rigg = {{ // Bradford matrix | |
| 549 { 0.8951, 0.2664, -0.1614 }, | |
| 550 { -0.7502, 1.7135, 0.0367 }, | |
| 551 { 0.0389, -0.0685, 1.0296 } | |
| 552 }}; | |
| 553 return compute_chromatic_adaption(source_illumination, target_illuminati
on, lam_rigg); | |
| 554 } | |
| 555 | |
| 556 /* from lcms: cmsAdaptMatrixToD50 */ | |
| 557 static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_wh
ite_pt) | |
| 558 { | |
| 559 struct CIE_XYZ Dn; | |
| 560 struct matrix Bradford; | |
| 561 | |
| 562 if (source_white_pt.y == 0.0) | |
| 563 return matrix_invalid(); | |
| 564 | |
| 565 Dn = xyY2XYZ(source_white_pt); | |
| 566 | |
| 567 Bradford = adaption_matrix(Dn, D50_XYZ); | |
| 568 return matrix_multiply(Bradford, r); | |
| 569 } | |
| 570 | |
| 571 qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcm
s_CIE_xyYTRIPLE primaries) | |
| 572 { | |
| 573 struct matrix colorants; | |
| 574 colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries); | |
| 575 colorants = adapt_matrix_to_D50(colorants, white_point); | |
| 576 | |
| 577 if (colorants.invalid) | |
| 578 return false; | |
| 579 | |
| 580 /* note: there's a transpose type of operation going on here */ | |
| 581 profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]); | |
| 582 profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]); | |
| 583 profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]); | |
| 584 | |
| 585 profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1])
; | |
| 586 profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1])
; | |
| 587 profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1])
; | |
| 588 | |
| 589 profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]); | |
| 590 profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]); | |
| 591 profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]); | |
| 592 | |
| 593 return true; | |
| 594 } | |
| 595 | |
| 596 /* | |
| 597 The number of entries needed to invert a lookup table should not | |
| 598 necessarily be the same as the original number of entries. This is | |
| 599 especially true of lookup tables that have a small number of entries. | |
| 600 | |
| 601 For example: | |
| 602 Using a table like: | |
| 603 {0, 3104, 14263, 34802, 65535} | |
| 604 invert_lut will produce an inverse of: | |
| 605 {3, 34459, 47529, 56801, 65535} | |
| 606 which has an maximum error of about 9855 (pixel difference of ~38.346) | |
| 607 | |
| 608 For now, we punt the decision of output size to the caller. */ | |
| 609 static uint16_t *invert_lut(uint16_t *table, int length, int out_length) | |
| 610 { | |
| 611 int i; | |
| 612 /* for now we invert the lut by creating a lut of size out_length | |
| 613 * and attempting to lookup a value for each entry using lut_inverse_int
erp16 */ | |
| 614 uint16_t *output = malloc(sizeof(uint16_t)*out_length); | |
| 615 if (!output) | |
| 616 return NULL; | |
| 617 | |
| 618 for (i = 0; i < out_length; i++) { | |
| 619 double x = ((double) i * 65535.) / (double) (out_length - 1); | |
| 620 uint16_fract_t input = floor(x + .5); | |
| 621 output[i] = lut_inverse_interp16(input, table, length); | |
| 622 } | |
| 623 return output; | |
| 624 } | |
| 625 | |
| 626 static uint16_t *build_linear_table(int length) | |
| 627 { | |
| 628 int i; | |
| 629 uint16_t *output = malloc(sizeof(uint16_t)*length); | |
| 630 if (!output) | |
| 631 return NULL; | |
| 632 | |
| 633 for (i = 0; i < length; i++) { | |
| 634 double x = ((double) i * 65535.) / (double) (length - 1); | |
| 635 uint16_fract_t input = floor(x + .5); | |
| 636 output[i] = input; | |
| 637 } | |
| 638 return output; | |
| 639 } | |
| 640 | |
| 641 static uint16_t *build_pow_table(float gamma, int length) | |
| 642 { | |
| 643 int i; | |
| 644 uint16_t *output = malloc(sizeof(uint16_t)*length); | |
| 645 if (!output) | |
| 646 return NULL; | |
| 647 | |
| 648 for (i = 0; i < length; i++) { | |
| 649 uint16_fract_t result; | |
| 650 double x = ((double) i) / (double) (length - 1); | |
| 651 x = pow(x, gamma); | |
| 652 //XXX turn this conversion into a function | |
| 653 result = floor(x*65535. + .5); | |
| 654 output[i] = result; | |
| 655 } | |
| 656 return output; | |
| 657 } | |
| 658 | |
| 659 static float clamp_float(float a) | |
| 660 { | |
| 661 if (a > 1.) | |
| 662 return 1.; | |
| 663 else if (a < 0) | |
| 664 return 0; | |
| 665 else | |
| 666 return a; | |
| 667 } | |
| 668 | |
| 669 #if 0 | |
| 670 static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned
char *src, unsigned char *dest, size_t length) | |
| 671 { | |
| 672 int i; | |
| 673 float (*mat)[4] = transform->matrix; | |
| 674 for (i=0; i<length; i++) { | |
| 675 unsigned char device_r = *src++; | |
| 676 unsigned char device_g = *src++; | |
| 677 unsigned char device_b = *src++; | |
| 678 | |
| 679 float linear_r = transform->input_gamma_table_r[device_r]; | |
| 680 float linear_g = transform->input_gamma_table_g[device_g]; | |
| 681 float linear_b = transform->input_gamma_table_b[device_b]; | |
| 682 | |
| 683 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
| 684 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
| 685 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
| 686 | |
| 687 float out_device_r = pow(out_linear_r, transform->out_gamma_r); | |
| 688 float out_device_g = pow(out_linear_g, transform->out_gamma_g); | |
| 689 float out_device_b = pow(out_linear_b, transform->out_gamma_b); | |
| 690 | |
| 691 *dest++ = clamp_u8(255*out_device_r); | |
| 692 *dest++ = clamp_u8(255*out_device_g); | |
| 693 *dest++ = clamp_u8(255*out_device_b); | |
| 694 } | |
| 695 } | |
| 696 #endif | |
| 697 | |
| 698 static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned
char *src, unsigned char *dest, size_t length) | |
| 699 { | |
| 700 unsigned int i; | |
| 701 for (i = 0; i < length; i++) { | |
| 702 float out_device_r, out_device_g, out_device_b; | |
| 703 unsigned char device = *src++; | |
| 704 | |
| 705 float linear = transform->input_gamma_table_gray[device]; | |
| 706 | |
| 707 out_device_r = lut_interp_linear(linear, transform->output_gamma
_lut_r, transform->output_gamma_lut_r_length); | |
| 708 out_device_g = lut_interp_linear(linear, transform->output_gamma
_lut_g, transform->output_gamma_lut_g_length); | |
| 709 out_device_b = lut_interp_linear(linear, transform->output_gamma
_lut_b, transform->output_gamma_lut_b_length); | |
| 710 | |
| 711 *dest++ = clamp_u8(out_device_r*255); | |
| 712 *dest++ = clamp_u8(out_device_g*255); | |
| 713 *dest++ = clamp_u8(out_device_b*255); | |
| 714 } | |
| 715 } | |
| 716 | |
| 717 /* Alpha is not corrected. | |
| 718 A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If | |
| 719 RGB Is?" Tech Memo 17 (December 14, 1998). | |
| 720 See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf | |
| 721 */ | |
| 722 | |
| 723 static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigne
d char *src, unsigned char *dest, size_t length) | |
| 724 { | |
| 725 unsigned int i; | |
| 726 for (i = 0; i < length; i++) { | |
| 727 float out_device_r, out_device_g, out_device_b; | |
| 728 unsigned char device = *src++; | |
| 729 unsigned char alpha = *src++; | |
| 730 | |
| 731 float linear = transform->input_gamma_table_gray[device]; | |
| 732 | |
| 733 out_device_r = lut_interp_linear(linear, transform->output_gamma
_lut_r, transform->output_gamma_lut_r_length); | |
| 734 out_device_g = lut_interp_linear(linear, transform->output_gamma
_lut_g, transform->output_gamma_lut_g_length); | |
| 735 out_device_b = lut_interp_linear(linear, transform->output_gamma
_lut_b, transform->output_gamma_lut_b_length); | |
| 736 | |
| 737 *dest++ = clamp_u8(out_device_r*255); | |
| 738 *dest++ = clamp_u8(out_device_g*255); | |
| 739 *dest++ = clamp_u8(out_device_b*255); | |
| 740 *dest++ = alpha; | |
| 741 } | |
| 742 } | |
| 743 | |
| 744 | |
| 745 static void qcms_transform_data_gray_out_precache(qcms_transform *transform, uns
igned char *src, unsigned char *dest, size_t length) | |
| 746 { | |
| 747 unsigned int i; | |
| 748 for (i = 0; i < length; i++) { | |
| 749 unsigned char device = *src++; | |
| 750 uint16_t gray; | |
| 751 | |
| 752 float linear = transform->input_gamma_table_gray[device]; | |
| 753 | |
| 754 /* we could round here... */ | |
| 755 gray = linear * PRECACHE_OUTPUT_MAX; | |
| 756 | |
| 757 *dest++ = transform->output_table_r->data[gray]; | |
| 758 *dest++ = transform->output_table_g->data[gray]; | |
| 759 *dest++ = transform->output_table_b->data[gray]; | |
| 760 } | |
| 761 } | |
| 762 | |
| 763 static void qcms_transform_data_graya_out_precache(qcms_transform *transform, un
signed char *src, unsigned char *dest, size_t length) | |
| 764 { | |
| 765 unsigned int i; | |
| 766 for (i = 0; i < length; i++) { | |
| 767 unsigned char device = *src++; | |
| 768 unsigned char alpha = *src++; | |
| 769 uint16_t gray; | |
| 770 | |
| 771 float linear = transform->input_gamma_table_gray[device]; | |
| 772 | |
| 773 /* we could round here... */ | |
| 774 gray = linear * PRECACHE_OUTPUT_MAX; | |
| 775 | |
| 776 *dest++ = transform->output_table_r->data[gray]; | |
| 777 *dest++ = transform->output_table_g->data[gray]; | |
| 778 *dest++ = transform->output_table_b->data[gray]; | |
| 779 *dest++ = alpha; | |
| 780 } | |
| 781 } | |
| 782 | |
| 783 static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform,
unsigned char *src, unsigned char *dest, size_t length) | |
| 784 { | |
| 785 unsigned int i; | |
| 786 float (*mat)[4] = transform->matrix; | |
| 787 for (i = 0; i < length; i++) { | |
| 788 unsigned char device_r = *src++; | |
| 789 unsigned char device_g = *src++; | |
| 790 unsigned char device_b = *src++; | |
| 791 uint16_t r, g, b; | |
| 792 | |
| 793 float linear_r = transform->input_gamma_table_r[device_r]; | |
| 794 float linear_g = transform->input_gamma_table_g[device_g]; | |
| 795 float linear_b = transform->input_gamma_table_b[device_b]; | |
| 796 | |
| 797 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
| 798 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
| 799 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
| 800 | |
| 801 out_linear_r = clamp_float(out_linear_r); | |
| 802 out_linear_g = clamp_float(out_linear_g); | |
| 803 out_linear_b = clamp_float(out_linear_b); | |
| 804 | |
| 805 /* we could round here... */ | |
| 806 r = out_linear_r * PRECACHE_OUTPUT_MAX; | |
| 807 g = out_linear_g * PRECACHE_OUTPUT_MAX; | |
| 808 b = out_linear_b * PRECACHE_OUTPUT_MAX; | |
| 809 | |
| 810 *dest++ = transform->output_table_r->data[r]; | |
| 811 *dest++ = transform->output_table_g->data[g]; | |
| 812 *dest++ = transform->output_table_b->data[b]; | |
| 813 } | |
| 814 } | |
| 815 | |
| 816 static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform,
unsigned char *src, unsigned char *dest, size_t length) | |
| 817 { | |
| 818 unsigned int i; | |
| 819 float (*mat)[4] = transform->matrix; | |
| 820 for (i = 0; i < length; i++) { | |
| 821 unsigned char device_r = *src++; | |
| 822 unsigned char device_g = *src++; | |
| 823 unsigned char device_b = *src++; | |
| 824 unsigned char alpha = *src++; | |
| 825 uint16_t r, g, b; | |
| 826 | |
| 827 float linear_r = transform->input_gamma_table_r[device_r]; | |
| 828 float linear_g = transform->input_gamma_table_g[device_g]; | |
| 829 float linear_b = transform->input_gamma_table_b[device_b]; | |
| 830 | |
| 831 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
| 832 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
| 833 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
| 834 | |
| 835 out_linear_r = clamp_float(out_linear_r); | |
| 836 out_linear_g = clamp_float(out_linear_g); | |
| 837 out_linear_b = clamp_float(out_linear_b); | |
| 838 | |
| 839 /* we could round here... */ | |
| 840 r = out_linear_r * PRECACHE_OUTPUT_MAX; | |
| 841 g = out_linear_g * PRECACHE_OUTPUT_MAX; | |
| 842 b = out_linear_b * PRECACHE_OUTPUT_MAX; | |
| 843 | |
| 844 *dest++ = transform->output_table_r->data[r]; | |
| 845 *dest++ = transform->output_table_g->data[g]; | |
| 846 *dest++ = transform->output_table_b->data[b]; | |
| 847 *dest++ = alpha; | |
| 848 } | |
| 849 } | |
| 850 | |
| 851 static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned
char *src, unsigned char *dest, size_t length) | |
| 852 { | |
| 853 unsigned int i; | |
| 854 float (*mat)[4] = transform->matrix; | |
| 855 for (i = 0; i < length; i++) { | |
| 856 unsigned char device_r = *src++; | |
| 857 unsigned char device_g = *src++; | |
| 858 unsigned char device_b = *src++; | |
| 859 float out_device_r, out_device_g, out_device_b; | |
| 860 | |
| 861 float linear_r = transform->input_gamma_table_r[device_r]; | |
| 862 float linear_g = transform->input_gamma_table_g[device_g]; | |
| 863 float linear_b = transform->input_gamma_table_b[device_b]; | |
| 864 | |
| 865 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
| 866 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
| 867 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
| 868 | |
| 869 out_linear_r = clamp_float(out_linear_r); | |
| 870 out_linear_g = clamp_float(out_linear_g); | |
| 871 out_linear_b = clamp_float(out_linear_b); | |
| 872 | |
| 873 out_device_r = lut_interp_linear(out_linear_r, transform->output
_gamma_lut_r, transform->output_gamma_lut_r_length); | |
| 874 out_device_g = lut_interp_linear(out_linear_g, transform->output
_gamma_lut_g, transform->output_gamma_lut_g_length); | |
| 875 out_device_b = lut_interp_linear(out_linear_b, transform->output
_gamma_lut_b, transform->output_gamma_lut_b_length); | |
| 876 | |
| 877 *dest++ = clamp_u8(out_device_r*255); | |
| 878 *dest++ = clamp_u8(out_device_g*255); | |
| 879 *dest++ = clamp_u8(out_device_b*255); | |
| 880 } | |
| 881 } | |
| 882 | |
| 883 static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned
char *src, unsigned char *dest, size_t length) | |
| 884 { | |
| 885 unsigned int i; | |
| 886 float (*mat)[4] = transform->matrix; | |
| 887 for (i = 0; i < length; i++) { | |
| 888 unsigned char device_r = *src++; | |
| 889 unsigned char device_g = *src++; | |
| 890 unsigned char device_b = *src++; | |
| 891 unsigned char alpha = *src++; | |
| 892 float out_device_r, out_device_g, out_device_b; | |
| 893 | |
| 894 float linear_r = transform->input_gamma_table_r[device_r]; | |
| 895 float linear_g = transform->input_gamma_table_g[device_g]; | |
| 896 float linear_b = transform->input_gamma_table_b[device_b]; | |
| 897 | |
| 898 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
| 899 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
| 900 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
| 901 | |
| 902 out_linear_r = clamp_float(out_linear_r); | |
| 903 out_linear_g = clamp_float(out_linear_g); | |
| 904 out_linear_b = clamp_float(out_linear_b); | |
| 905 | |
| 906 out_device_r = lut_interp_linear(out_linear_r, transform->output
_gamma_lut_r, transform->output_gamma_lut_r_length); | |
| 907 out_device_g = lut_interp_linear(out_linear_g, transform->output
_gamma_lut_g, transform->output_gamma_lut_g_length); | |
| 908 out_device_b = lut_interp_linear(out_linear_b, transform->output
_gamma_lut_b, transform->output_gamma_lut_b_length); | |
| 909 | |
| 910 *dest++ = clamp_u8(out_device_r*255); | |
| 911 *dest++ = clamp_u8(out_device_g*255); | |
| 912 *dest++ = clamp_u8(out_device_b*255); | |
| 913 *dest++ = alpha; | |
| 914 } | |
| 915 } | |
| 916 | |
| 917 #if 0 | |
| 918 static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsign
ed char *src, unsigned char *dest, size_t length) | |
| 919 { | |
| 920 int i; | |
| 921 float (*mat)[4] = transform->matrix; | |
| 922 for (i = 0; i < length; i++) { | |
| 923 unsigned char device_r = *src++; | |
| 924 unsigned char device_g = *src++; | |
| 925 unsigned char device_b = *src++; | |
| 926 | |
| 927 float linear_r = transform->input_gamma_table_r[device_r]; | |
| 928 float linear_g = transform->input_gamma_table_g[device_g]; | |
| 929 float linear_b = transform->input_gamma_table_b[device_b]; | |
| 930 | |
| 931 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
| 932 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
| 933 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
| 934 | |
| 935 *dest++ = clamp_u8(out_linear_r*255); | |
| 936 *dest++ = clamp_u8(out_linear_g*255); | |
| 937 *dest++ = clamp_u8(out_linear_b*255); | |
| 938 } | |
| 939 } | |
| 940 #endif | |
| 941 | |
| 942 static struct precache_output *precache_reference(struct precache_output *p) | |
| 943 { | |
| 944 p->ref_count++; | |
| 945 return p; | |
| 946 } | |
| 947 | |
| 948 static struct precache_output *precache_create() | |
| 949 { | |
| 950 struct precache_output *p = malloc(sizeof(struct precache_output)); | |
| 951 if (p) | |
| 952 p->ref_count = 1; | |
| 953 return p; | |
| 954 } | |
| 955 | |
| 956 void precache_release(struct precache_output *p) | |
| 957 { | |
| 958 if (--p->ref_count == 0) { | |
| 959 free(p); | |
| 960 } | |
| 961 } | |
| 962 | |
| 963 #ifdef HAS_POSIX_MEMALIGN | |
| 964 static qcms_transform *transform_alloc(void) | |
| 965 { | |
| 966 qcms_transform *t; | |
| 967 if (!posix_memalign(&t, 16, sizeof(*t))) { | |
| 968 return t; | |
| 969 } else { | |
| 970 return NULL; | |
| 971 } | |
| 972 } | |
| 973 static void transform_free(qcms_transform *t) | |
| 974 { | |
| 975 free(t); | |
| 976 } | |
| 977 #else | |
| 978 static qcms_transform *transform_alloc(void) | |
| 979 { | |
| 980 /* transform needs to be aligned on a 16byte boundrary */ | |
| 981 char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 1
6, 1); | |
| 982 /* make room for a pointer to the block returned by calloc */ | |
| 983 void *transform_start = original_block + sizeof(void*); | |
| 984 /* align transform_start */ | |
| 985 qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transf
orm_start + 15) & ~0xf); | |
| 986 | |
| 987 /* store a pointer to the block returned by calloc so that we can free i
t later */ | |
| 988 void **(original_block_ptr) = (void**)transform_aligned; | |
| 989 if (!original_block) | |
| 990 return NULL; | |
| 991 original_block_ptr--; | |
| 992 *original_block_ptr = original_block; | |
| 993 | |
| 994 return transform_aligned; | |
| 995 } | |
| 996 static void transform_free(qcms_transform *t) | |
| 997 { | |
| 998 /* get at the pointer to the unaligned block returned by calloc */ | |
| 999 void **p = (void**)t; | |
| 1000 p--; | |
| 1001 free(*p); | |
| 1002 } | |
| 1003 #endif | |
| 1004 | |
| 1005 void qcms_transform_release(qcms_transform *t) | |
| 1006 { | |
| 1007 /* ensure we only free the gamma tables once even if there are | |
| 1008 * multiple references to the same data */ | |
| 1009 | |
| 1010 if (t->output_table_r) | |
| 1011 precache_release(t->output_table_r); | |
| 1012 if (t->output_table_g) | |
| 1013 precache_release(t->output_table_g); | |
| 1014 if (t->output_table_b) | |
| 1015 precache_release(t->output_table_b); | |
| 1016 | |
| 1017 free(t->input_gamma_table_r); | |
| 1018 if (t->input_gamma_table_g != t->input_gamma_table_r) | |
| 1019 free(t->input_gamma_table_g); | |
| 1020 if (t->input_gamma_table_g != t->input_gamma_table_r && | |
| 1021 t->input_gamma_table_g != t->input_gamma_table_b) | |
| 1022 free(t->input_gamma_table_b); | |
| 1023 | |
| 1024 free(t->input_gamma_table_gray); | |
| 1025 | |
| 1026 free(t->output_gamma_lut_r); | |
| 1027 free(t->output_gamma_lut_g); | |
| 1028 free(t->output_gamma_lut_b); | |
| 1029 | |
| 1030 transform_free(t); | |
| 1031 } | |
| 1032 | |
| 1033 static void compute_precache_pow(uint8_t *output, float gamma) | |
| 1034 { | |
| 1035 uint32_t v = 0; | |
| 1036 for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { | |
| 1037 //XXX: don't do integer/float conversion... and round? | |
| 1038 output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma); | |
| 1039 } | |
| 1040 } | |
| 1041 | |
| 1042 void compute_precache_lut(uint8_t *output, uint16_t *table, int length) | |
| 1043 { | |
| 1044 uint32_t v = 0; | |
| 1045 for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { | |
| 1046 output[v] = lut_interp_linear_precache_output(v, table, length); | |
| 1047 } | |
| 1048 } | |
| 1049 | |
| 1050 void compute_precache_linear(uint8_t *output) | |
| 1051 { | |
| 1052 uint32_t v = 0; | |
| 1053 for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { | |
| 1054 //XXX: round? | |
| 1055 output[v] = v / (PRECACHE_OUTPUT_SIZE/256); | |
| 1056 } | |
| 1057 } | |
| 1058 | |
| 1059 qcms_bool compute_precache(struct curveType *trc, uint8_t *output) | |
| 1060 { | |
| 1061 if (trc->count == 0) { | |
| 1062 compute_precache_linear(output); | |
| 1063 } else if (trc->count == 1) { | |
| 1064 compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->dat
a[0])); | |
| 1065 } else { | |
| 1066 uint16_t *inverted; | |
| 1067 int inverted_size = trc->count; | |
| 1068 //XXX: the choice of a minimum of 256 here is not backed by any
theory, measurement or data, however it is what lcms uses. | |
| 1069 // the maximum number we would need is 65535 because that's the
accuracy used for computing the precache table | |
| 1070 if (inverted_size < 256) | |
| 1071 inverted_size = 256; | |
| 1072 | |
| 1073 inverted = invert_lut(trc->data, trc->count, inverted_size); | |
| 1074 if (!inverted) | |
| 1075 return false; | |
| 1076 compute_precache_lut(output, inverted, inverted_size); | |
| 1077 free(inverted); | |
| 1078 } | |
| 1079 return true; | |
| 1080 } | |
| 1081 | |
| 1082 #ifdef X86 | |
| 1083 // Determine if we can build with SSE2 (this was partly copied from jmorecfg.h i
n | |
| 1084 // mozilla/jpeg) | |
| 1085 // ------------------------------------------------------------------------- | |
| 1086 #if defined(_M_IX86) && defined(_MSC_VER) | |
| 1087 #define HAS_CPUID | |
| 1088 /* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC | |
| 1089 register - I'm not sure if that ever happens on windows, but cpuid isn't | |
| 1090 on the critical path so we just preserve the register to be safe and to be | |
| 1091 consistent with the non-windows version. */ | |
| 1092 static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t
*d) { | |
| 1093 uint32_t a_, b_, c_, d_; | |
| 1094 __asm { | |
| 1095 xchg ebx, esi | |
| 1096 mov eax, fxn | |
| 1097 cpuid | |
| 1098 mov a_, eax | |
| 1099 mov b_, ebx | |
| 1100 mov c_, ecx | |
| 1101 mov d_, edx | |
| 1102 xchg ebx, esi | |
| 1103 } | |
| 1104 *a = a_; | |
| 1105 *b = b_; | |
| 1106 *c = c_; | |
| 1107 *d = d_; | |
| 1108 } | |
| 1109 #elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || define
d(__i386)) | |
| 1110 #define HAS_CPUID | |
| 1111 /* Get us a CPUID function. We can't use ebx because it's the PIC register on | |
| 1112 some platforms, so we use ESI instead and save ebx to avoid clobbering it. */ | |
| 1113 static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t
*d) { | |
| 1114 | |
| 1115 uint32_t a_, b_, c_, d_; | |
| 1116 __asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;" | |
| 1117 : "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a"
(fxn)); | |
| 1118 *a = a_; | |
| 1119 *b = b_; | |
| 1120 *c = c_; | |
| 1121 *d = d_; | |
| 1122 } | |
| 1123 #endif | |
| 1124 | |
| 1125 // -------------------------Runtime SSEx Detection----------------------------- | |
| 1126 | |
| 1127 /* MMX is always supported per | |
| 1128 * Gecko v1.9.1 minimum CPU requirements */ | |
| 1129 #define SSE1_EDX_MASK (1UL << 25) | |
| 1130 #define SSE2_EDX_MASK (1UL << 26) | |
| 1131 #define SSE3_ECX_MASK (1UL << 0) | |
| 1132 | |
| 1133 static int sse_version_available(void) | |
| 1134 { | |
| 1135 #if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64) | |
| 1136 /* we know at build time that 64-bit CPUs always have SSE2 | |
| 1137 * this tells the compiler that non-SSE2 branches will never be | |
| 1138 * taken (i.e. OK to optimze away the SSE1 and non-SIMD code */ | |
| 1139 return 2; | |
| 1140 #elif defined(HAS_CPUID) | |
| 1141 static int sse_version = -1; | |
| 1142 uint32_t a, b, c, d; | |
| 1143 uint32_t function = 0x00000001; | |
| 1144 | |
| 1145 if (sse_version == -1) { | |
| 1146 sse_version = 0; | |
| 1147 cpuid(function, &a, &b, &c, &d); | |
| 1148 if (c & SSE3_ECX_MASK) | |
| 1149 sse_version = 3; | |
| 1150 else if (d & SSE2_EDX_MASK) | |
| 1151 sse_version = 2; | |
| 1152 else if (d & SSE1_EDX_MASK) | |
| 1153 sse_version = 1; | |
| 1154 } | |
| 1155 | |
| 1156 return sse_version; | |
| 1157 #else | |
| 1158 return 0; | |
| 1159 #endif | |
| 1160 } | |
| 1161 #endif | |
| 1162 | |
| 1163 void build_output_lut(struct curveType *trc, | |
| 1164 uint16_t **output_gamma_lut, size_t *output_gamma_lut_length) | |
| 1165 { | |
| 1166 if (trc->count == 0) { | |
| 1167 *output_gamma_lut = build_linear_table(4096); | |
| 1168 *output_gamma_lut_length = 4096; | |
| 1169 } else if (trc->count == 1) { | |
| 1170 float gamma = 1./u8Fixed8Number_to_float(trc->data[0]); | |
| 1171 *output_gamma_lut = build_pow_table(gamma, 4096); | |
| 1172 *output_gamma_lut_length = 4096; | |
| 1173 } else { | |
| 1174 //XXX: the choice of a minimum of 256 here is not backed by any
theory, measurement or data, however it is what lcms uses. | |
| 1175 *output_gamma_lut_length = trc->count; | |
| 1176 if (*output_gamma_lut_length < 256) | |
| 1177 *output_gamma_lut_length = 256; | |
| 1178 | |
| 1179 *output_gamma_lut = invert_lut(trc->data, trc->count, *output_ga
mma_lut_length); | |
| 1180 } | |
| 1181 | |
| 1182 } | |
| 1183 | |
| 1184 void qcms_profile_precache_output_transform(qcms_profile *profile) | |
| 1185 { | |
| 1186 /* we only support precaching on rgb profiles */ | |
| 1187 if (profile->color_space != RGB_SIGNATURE) | |
| 1188 return; | |
| 1189 | |
| 1190 if (!profile->output_table_r) { | |
| 1191 profile->output_table_r = precache_create(); | |
| 1192 if (profile->output_table_r && | |
| 1193 !compute_precache(profile->redTRC, profile->outp
ut_table_r->data)) { | |
| 1194 precache_release(profile->output_table_r); | |
| 1195 profile->output_table_r = NULL; | |
| 1196 } | |
| 1197 } | |
| 1198 if (!profile->output_table_g) { | |
| 1199 profile->output_table_g = precache_create(); | |
| 1200 if (profile->output_table_g && | |
| 1201 !compute_precache(profile->greenTRC, profile->ou
tput_table_g->data)) { | |
| 1202 precache_release(profile->output_table_g); | |
| 1203 profile->output_table_g = NULL; | |
| 1204 } | |
| 1205 } | |
| 1206 if (!profile->output_table_b) { | |
| 1207 profile->output_table_b = precache_create(); | |
| 1208 if (profile->output_table_b && | |
| 1209 !compute_precache(profile->blueTRC, profile->out
put_table_b->data)) { | |
| 1210 precache_release(profile->output_table_b); | |
| 1211 profile->output_table_b = NULL; | |
| 1212 } | |
| 1213 } | |
| 1214 } | |
| 1215 | |
| 1216 #define NO_MEM_TRANSFORM NULL | |
| 1217 | |
| 1218 qcms_transform* qcms_transform_create( | |
| 1219 qcms_profile *in, qcms_data_type in_type, | |
| 1220 qcms_profile* out, qcms_data_type out_type, | |
| 1221 qcms_intent intent) | |
| 1222 { | |
| 1223 bool precache = false; | |
| 1224 | |
| 1225 qcms_transform *transform = transform_alloc(); | |
| 1226 if (!transform) { | |
| 1227 return NULL; | |
| 1228 } | |
| 1229 if (out_type != QCMS_DATA_RGB_8 && | |
| 1230 out_type != QCMS_DATA_RGBA_8) { | |
| 1231 assert(0 && "output type"); | |
| 1232 transform_free(transform); | |
| 1233 return NULL; | |
| 1234 } | |
| 1235 | |
| 1236 if (out->output_table_r && | |
| 1237 out->output_table_g && | |
| 1238 out->output_table_b) { | |
| 1239 precache = true; | |
| 1240 } | |
| 1241 | |
| 1242 if (precache) { | |
| 1243 transform->output_table_r = precache_reference(out->output_table
_r); | |
| 1244 transform->output_table_g = precache_reference(out->output_table
_g); | |
| 1245 transform->output_table_b = precache_reference(out->output_table
_b); | |
| 1246 } else { | |
| 1247 build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &t
ransform->output_gamma_lut_r_length); | |
| 1248 build_output_lut(out->greenTRC, &transform->output_gamma_lut_g,
&transform->output_gamma_lut_g_length); | |
| 1249 build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &
transform->output_gamma_lut_b_length); | |
| 1250 if (!transform->output_gamma_lut_r || !transform->output_gamma_l
ut_g || !transform->output_gamma_lut_b) { | |
| 1251 qcms_transform_release(transform); | |
| 1252 return NO_MEM_TRANSFORM; | |
| 1253 } | |
| 1254 } | |
| 1255 | |
| 1256 if (in->color_space == RGB_SIGNATURE) { | |
| 1257 struct matrix in_matrix, out_matrix, result; | |
| 1258 | |
| 1259 if (in_type != QCMS_DATA_RGB_8 && | |
| 1260 in_type != QCMS_DATA_RGBA_8){ | |
| 1261 assert(0 && "input type"); | |
| 1262 transform_free(transform); | |
| 1263 return NULL; | |
| 1264 } | |
| 1265 if (precache) { | |
| 1266 #ifdef X86 | |
| 1267 if (sse_version_available() >= 2) { | |
| 1268 if (in_type == QCMS_DATA_RGB_8) | |
| 1269 transform->transform_fn = qcms_transform_dat
a_rgb_out_lut_sse2; | |
| 1270 else | |
| 1271 transform->transform_fn = qcms_transform_dat
a_rgba_out_lut_sse2; | |
| 1272 | |
| 1273 #if !(defined(_MSC_VER) && defined(_M_AMD64)) | |
| 1274 /* Microsoft Compiler for x64 doesn't support MMX. | |
| 1275 * SSE code uses MMX so that we disable on x64 */ | |
| 1276 } else | |
| 1277 if (sse_version_available() >= 1) { | |
| 1278 if (in_type == QCMS_DATA_RGB_8) | |
| 1279 transform->transform_fn = qcms_transform_dat
a_rgb_out_lut_sse1; | |
| 1280 else | |
| 1281 transform->transform_fn = qcms_transform_dat
a_rgba_out_lut_sse1; | |
| 1282 #endif | |
| 1283 } else | |
| 1284 #endif | |
| 1285 { | |
| 1286 if (in_type == QCMS_DATA_RGB_8) | |
| 1287 transform->transform_fn = qcms_transform_dat
a_rgb_out_lut_precache; | |
| 1288 else | |
| 1289 transform->transform_fn = qcms_transform_dat
a_rgba_out_lut_precache; | |
| 1290 } | |
| 1291 } else { | |
| 1292 if (in_type == QCMS_DATA_RGB_8) | |
| 1293 transform->transform_fn = qcms_transform_data_rgb_ou
t_lut; | |
| 1294 else | |
| 1295 transform->transform_fn = qcms_transform_data_rgba_o
ut_lut; | |
| 1296 } | |
| 1297 | |
| 1298 //XXX: avoid duplicating tables if we can | |
| 1299 transform->input_gamma_table_r = build_input_gamma_table(in->redTRC)
; | |
| 1300 transform->input_gamma_table_g = build_input_gamma_table(in->greenTR
C); | |
| 1301 transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC
); | |
| 1302 | |
| 1303 if (!transform->input_gamma_table_r || !transform->input_gamma_table
_g || !transform->input_gamma_table_b) { | |
| 1304 qcms_transform_release(transform); | |
| 1305 return NO_MEM_TRANSFORM; | |
| 1306 } | |
| 1307 | |
| 1308 /* build combined colorant matrix */ | |
| 1309 in_matrix = build_colorant_matrix(in); | |
| 1310 out_matrix = build_colorant_matrix(out); | |
| 1311 out_matrix = matrix_invert(out_matrix); | |
| 1312 if (out_matrix.invalid) { | |
| 1313 qcms_transform_release(transform); | |
| 1314 return NULL; | |
| 1315 } | |
| 1316 result = matrix_multiply(out_matrix, in_matrix); | |
| 1317 | |
| 1318 /* store the results in column major mode | |
| 1319 * this makes doing the multiplication with sse easier */ | |
| 1320 transform->matrix[0][0] = result.m[0][0]; | |
| 1321 transform->matrix[1][0] = result.m[0][1]; | |
| 1322 transform->matrix[2][0] = result.m[0][2]; | |
| 1323 transform->matrix[0][1] = result.m[1][0]; | |
| 1324 transform->matrix[1][1] = result.m[1][1]; | |
| 1325 transform->matrix[2][1] = result.m[1][2]; | |
| 1326 transform->matrix[0][2] = result.m[2][0]; | |
| 1327 transform->matrix[1][2] = result.m[2][1]; | |
| 1328 transform->matrix[2][2] = result.m[2][2]; | |
| 1329 | |
| 1330 } else if (in->color_space == GRAY_SIGNATURE) { | |
| 1331 if (in_type != QCMS_DATA_GRAY_8 && | |
| 1332 in_type != QCMS_DATA_GRAYA_8){ | |
| 1333 assert(0 && "input type"); | |
| 1334 transform_free(transform); | |
| 1335 return NULL; | |
| 1336 } | |
| 1337 | |
| 1338 transform->input_gamma_table_gray = build_input_gamma_table(in->gray
TRC); | |
| 1339 if (!transform->input_gamma_table_gray) { | |
| 1340 qcms_transform_release(transform); | |
| 1341 return NO_MEM_TRANSFORM; | |
| 1342 } | |
| 1343 | |
| 1344 if (precache) { | |
| 1345 if (in_type == QCMS_DATA_GRAY_8) { | |
| 1346 transform->transform_fn = qcms_transform_data_gray_o
ut_precache; | |
| 1347 } else { | |
| 1348 transform->transform_fn = qcms_transform_data_graya_
out_precache; | |
| 1349 } | |
| 1350 } else { | |
| 1351 if (in_type == QCMS_DATA_GRAY_8) { | |
| 1352 transform->transform_fn = qcms_transform_data_gray_o
ut_lut; | |
| 1353 } else { | |
| 1354 transform->transform_fn = qcms_transform_data_graya_
out_lut; | |
| 1355 } | |
| 1356 } | |
| 1357 } else { | |
| 1358 assert(0 && "unexpected colorspace"); | |
| 1359 qcms_transform_release(transform); | |
| 1360 return NO_MEM_TRANSFORM; | |
| 1361 } | |
| 1362 return transform; | |
| 1363 } | |
| 1364 | |
| 1365 #if defined(__GNUC__) && !defined(__x86_64__) && !defined(__amd64__) | |
| 1366 /* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */ | |
| 1367 __attribute__((__force_align_arg_pointer__)) | |
| 1368 #endif | |
| 1369 void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_
t length) | |
| 1370 { | |
| 1371 transform->transform_fn(transform, src, dest, length); | |
| 1372 } | |
| OLD | NEW |