OLD | NEW |
| (Empty) |
1 // qcms | |
2 // Copyright (C) 2009 Mozilla Corporation | |
3 // Copyright (C) 1998-2007 Marti Maria | |
4 // | |
5 // Permission is hereby granted, free of charge, to any person obtaining | |
6 // a copy of this software and associated documentation files (the "Software"), | |
7 // to deal in the Software without restriction, including without limitation | |
8 // the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
9 // and/or sell copies of the Software, and to permit persons to whom the Softwar
e | |
10 // is furnished to do so, subject to the following conditions: | |
11 // | |
12 // The above copyright notice and this permission notice shall be included in | |
13 // all copies or substantial portions of the Software. | |
14 // | |
15 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
16 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | |
17 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
18 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |
19 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
20 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
21 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
22 | |
23 #include <stdlib.h> | |
24 #include <math.h> | |
25 #include <assert.h> | |
26 #include "qcmsint.h" | |
27 | |
28 /* for MSVC, GCC, Intel, and Sun compilers */ | |
29 #if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64
) || defined(__x86_64__) || defined(__x86_64) | |
30 #define X86 | |
31 #endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */ | |
32 | |
33 //XXX: could use a bettername | |
34 typedef uint16_t uint16_fract_t; | |
35 | |
36 /* value must be a value between 0 and 1 */ | |
37 //XXX: is the above a good restriction to have? | |
38 float lut_interp_linear(double value, uint16_t *table, int length) | |
39 { | |
40 int upper, lower; | |
41 value = value * (length - 1); // scale to length of the array | |
42 upper = ceil(value); | |
43 lower = floor(value); | |
44 //XXX: can we be more performant here? | |
45 value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - valu
e); | |
46 /* scale the value */ | |
47 return value * (1./65535.); | |
48 } | |
49 | |
50 /* same as above but takes and returns a uint16_t value representing a range fro
m 0..1 */ | |
51 uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) | |
52 { | |
53 /* Start scaling input_value to the length of the array: 65535*(length-1
). | |
54 * We'll divide out the 65535 next */ | |
55 uint32_t value = (input_value * (length - 1)); | |
56 uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65
535) */ | |
57 uint32_t lower = value / 65535; /* equivalent to floor(value/6
5535) */ | |
58 /* interp is the distance from upper to value scaled to 0..65535 */ | |
59 uint32_t interp = value % 65535; | |
60 | |
61 value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; /
/ 0..65535*65535 | |
62 | |
63 return value; | |
64 } | |
65 | |
66 /* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX | |
67 * and returns a uint8_t value representing a range from 0..1 */ | |
68 static | |
69 uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table,
int length) | |
70 { | |
71 /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT
_MAX*(length-1). | |
72 * We'll divide out the PRECACHE_OUTPUT_MAX next */ | |
73 uint32_t value = (input_value * (length - 1)); | |
74 | |
75 /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */ | |
76 uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX; | |
77 /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */ | |
78 uint32_t lower = value / PRECACHE_OUTPUT_MAX; | |
79 /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTP
UT_MAX */ | |
80 uint32_t interp = value % PRECACHE_OUTPUT_MAX; | |
81 | |
82 /* the table values range from 0..65535 */ | |
83 value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - int
erp)); // 0..(65535*PRECACHE_OUTPUT_MAX) | |
84 | |
85 /* round and scale */ | |
86 value += (PRECACHE_OUTPUT_MAX*65535/255)/2; | |
87 value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255 | |
88 return value; | |
89 } | |
90 | |
91 #if 0 | |
92 /* if we use a different representation i.e. one that goes from 0 to 0x1000 we c
an be more efficient | |
93 * because we can avoid the divisions and use a shifting instead */ | |
94 /* same as above but takes and returns a uint16_t value representing a range fro
m 0..1 */ | |
95 uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) | |
96 { | |
97 uint32_t value = (input_value * (length - 1)); | |
98 uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096
) */ | |
99 uint32_t lower = value / 4096; /* equivalent to floor(value/40
96) */ | |
100 uint32_t interp = value % 4096; | |
101 | |
102 value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; //
0..4096*4096 | |
103 | |
104 return value; | |
105 } | |
106 #endif | |
107 | |
108 void compute_curve_gamma_table_type1(float gamma_table[256], double gamma) | |
109 { | |
110 unsigned int i; | |
111 for (i = 0; i < 256; i++) { | |
112 gamma_table[i] = pow(i/255., gamma); | |
113 } | |
114 } | |
115 | |
116 void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, in
t length) | |
117 { | |
118 unsigned int i; | |
119 for (i = 0; i < 256; i++) { | |
120 gamma_table[i] = lut_interp_linear(i/255., table, length); | |
121 } | |
122 } | |
123 | |
124 void compute_curve_gamma_table_type0(float gamma_table[256]) | |
125 { | |
126 unsigned int i; | |
127 for (i = 0; i < 256; i++) { | |
128 gamma_table[i] = i/255.; | |
129 } | |
130 } | |
131 | |
132 unsigned char clamp_u8(float v) | |
133 { | |
134 if (v > 255.) | |
135 return 255; | |
136 else if (v < 0) | |
137 return 0; | |
138 else | |
139 return floor(v+.5); | |
140 } | |
141 | |
142 struct vector { | |
143 float v[3]; | |
144 }; | |
145 | |
146 struct matrix { | |
147 float m[3][3]; | |
148 bool invalid; | |
149 }; | |
150 | |
151 struct vector matrix_eval(struct matrix mat, struct vector v) | |
152 { | |
153 struct vector result; | |
154 result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[
2]; | |
155 result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[
2]; | |
156 result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[
2]; | |
157 return result; | |
158 } | |
159 | |
160 //XXX: should probably pass by reference and we could | |
161 //probably reuse this computation in matrix_invert | |
162 float matrix_det(struct matrix mat) | |
163 { | |
164 float det; | |
165 det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] + | |
166 mat.m[0][1]*mat.m[1][2]*mat.m[2][0] + | |
167 mat.m[0][2]*mat.m[1][0]*mat.m[2][1] - | |
168 mat.m[0][0]*mat.m[1][2]*mat.m[2][1] - | |
169 mat.m[0][1]*mat.m[1][0]*mat.m[2][2] - | |
170 mat.m[0][2]*mat.m[1][1]*mat.m[2][0]; | |
171 return det; | |
172 } | |
173 | |
174 /* from pixman and cairo and Mathematics for Game Programmers */ | |
175 /* lcms uses gauss-jordan elimination with partial pivoting which is | |
176 * less efficient and not as numerically stable. See Mathematics for | |
177 * Game Programmers. */ | |
178 struct matrix matrix_invert(struct matrix mat) | |
179 { | |
180 struct matrix dest_mat; | |
181 int i,j; | |
182 static int a[3] = { 2, 2, 1 }; | |
183 static int b[3] = { 1, 0, 0 }; | |
184 | |
185 /* inv (A) = 1/det (A) * adj (A) */ | |
186 float det = matrix_det(mat); | |
187 | |
188 if (det == 0) { | |
189 dest_mat.invalid = true; | |
190 } else { | |
191 dest_mat.invalid = false; | |
192 } | |
193 | |
194 det = 1/det; | |
195 | |
196 for (j = 0; j < 3; j++) { | |
197 for (i = 0; i < 3; i++) { | |
198 double p; | |
199 int ai = a[i]; | |
200 int aj = a[j]; | |
201 int bi = b[i]; | |
202 int bj = b[j]; | |
203 | |
204 p = mat.m[ai][aj] * mat.m[bi][bj] - | |
205 mat.m[ai][bj] * mat.m[bi][aj]; | |
206 if (((i + j) & 1) != 0) | |
207 p = -p; | |
208 | |
209 dest_mat.m[j][i] = det * p; | |
210 } | |
211 } | |
212 return dest_mat; | |
213 } | |
214 | |
215 struct matrix matrix_identity(void) | |
216 { | |
217 struct matrix i; | |
218 i.m[0][0] = 1; | |
219 i.m[0][1] = 0; | |
220 i.m[0][2] = 0; | |
221 i.m[1][0] = 0; | |
222 i.m[1][1] = 1; | |
223 i.m[1][2] = 0; | |
224 i.m[2][0] = 0; | |
225 i.m[2][1] = 0; | |
226 i.m[2][2] = 1; | |
227 i.invalid = false; | |
228 return i; | |
229 } | |
230 | |
231 static struct matrix matrix_invalid(void) | |
232 { | |
233 struct matrix inv = matrix_identity(); | |
234 inv.invalid = true; | |
235 return inv; | |
236 } | |
237 | |
238 | |
239 /* from pixman */ | |
240 /* MAT3per... */ | |
241 struct matrix matrix_multiply(struct matrix a, struct matrix b) | |
242 { | |
243 struct matrix result; | |
244 int dx, dy; | |
245 int o; | |
246 for (dy = 0; dy < 3; dy++) { | |
247 for (dx = 0; dx < 3; dx++) { | |
248 double v = 0; | |
249 for (o = 0; o < 3; o++) { | |
250 v += a.m[dy][o] * b.m[o][dx]; | |
251 } | |
252 result.m[dy][dx] = v; | |
253 } | |
254 } | |
255 result.invalid = a.invalid || b.invalid; | |
256 return result; | |
257 } | |
258 | |
259 float u8Fixed8Number_to_float(uint16_t x) | |
260 { | |
261 // 0x0000 = 0. | |
262 // 0x0100 = 1. | |
263 // 0xffff = 255 + 255/256 | |
264 return x/256.; | |
265 } | |
266 | |
267 float *build_input_gamma_table(struct curveType *TRC) | |
268 { | |
269 float *gamma_table = malloc(sizeof(float)*256); | |
270 if (gamma_table) { | |
271 if (TRC->count == 0) { | |
272 compute_curve_gamma_table_type0(gamma_table); | |
273 } else if (TRC->count == 1) { | |
274 compute_curve_gamma_table_type1(gamma_table, u8Fixed8Num
ber_to_float(TRC->data[0])); | |
275 } else { | |
276 compute_curve_gamma_table_type2(gamma_table, TRC->data,
TRC->count); | |
277 } | |
278 } | |
279 return gamma_table; | |
280 } | |
281 | |
282 struct matrix build_colorant_matrix(qcms_profile *p) | |
283 { | |
284 struct matrix result; | |
285 result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X); | |
286 result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X); | |
287 result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X); | |
288 result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y); | |
289 result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y); | |
290 result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y); | |
291 result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z); | |
292 result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z); | |
293 result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z); | |
294 result.invalid = false; | |
295 return result; | |
296 } | |
297 | |
298 /* The following code is copied nearly directly from lcms. | |
299 * I think it could be much better. For example, Argyll seems to have better cod
e in | |
300 * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick
way | |
301 * to a working solution and allows for easy comparing with lcms. */ | |
302 uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int len
gth) | |
303 { | |
304 int l = 1; | |
305 int r = 0x10000; | |
306 int x = 0, res; // 'int' Give spacing for negative values | |
307 int NumZeroes, NumPoles; | |
308 int cell0, cell1; | |
309 double val2; | |
310 double y0, y1, x0, x1; | |
311 double a, b, f; | |
312 | |
313 // July/27 2001 - Expanded to handle degenerated curves with an arbitrar
y | |
314 // number of elements containing 0 at the begining of the table (Zeroes) | |
315 // and another arbitrary number of poles (FFFFh) at the end. | |
316 // First the zero and pole extents are computed, then value is compared. | |
317 | |
318 NumZeroes = 0; | |
319 while (LutTable[NumZeroes] == 0 && NumZeroes < length-1) | |
320 NumZeroes++; | |
321 | |
322 // There are no zeros at the beginning and we are trying to find a zero,
so | |
323 // return anything. It seems zero would be the less destructive choice | |
324 /* I'm not sure that this makes sense, but oh well... */ | |
325 if (NumZeroes == 0 && Value == 0) | |
326 return 0; | |
327 | |
328 NumPoles = 0; | |
329 while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1) | |
330 NumPoles++; | |
331 | |
332 // Does the curve belong to this case? | |
333 if (NumZeroes > 1 || NumPoles > 1) | |
334 { | |
335 int a, b; | |
336 | |
337 // Identify if value fall downto 0 or FFFF zone | |
338 if (Value == 0) return 0; | |
339 // if (Value == 0xFFFF) return 0xFFFF; | |
340 | |
341 // else restrict to valid zone | |
342 | |
343 a = ((NumZeroes-1) * 0xFFFF) / (length-1); | |
344 b = ((length-1 - NumPoles) * 0xFFFF) / (length-1); | |
345 | |
346 l = a - 1; | |
347 r = b + 1; | |
348 } | |
349 | |
350 | |
351 // Seems not a degenerated case... apply binary search | |
352 | |
353 while (r > l) { | |
354 | |
355 x = (l + r) / 2; | |
356 | |
357 res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable
, length); | |
358 | |
359 if (res == Value) { | |
360 | |
361 // Found exact match. | |
362 | |
363 return (uint16_fract_t) (x - 1); | |
364 } | |
365 | |
366 if (res > Value) r = x - 1; | |
367 else l = x + 1; | |
368 } | |
369 | |
370 // Not found, should we interpolate? | |
371 | |
372 | |
373 // Get surrounding nodes | |
374 | |
375 val2 = (length-1) * ((double) (x - 1) / 65535.0); | |
376 | |
377 cell0 = (int) floor(val2); | |
378 cell1 = (int) ceil(val2); | |
379 | |
380 if (cell0 == cell1) return (uint16_fract_t) x; | |
381 | |
382 y0 = LutTable[cell0] ; | |
383 x0 = (65535.0 * cell0) / (length-1); | |
384 | |
385 y1 = LutTable[cell1] ; | |
386 x1 = (65535.0 * cell1) / (length-1); | |
387 | |
388 a = (y1 - y0) / (x1 - x0); | |
389 b = y0 - a * x0; | |
390 | |
391 if (fabs(a) < 0.01) return (uint16_fract_t) x; | |
392 | |
393 f = ((Value - b) / a); | |
394 | |
395 if (f < 0.0) return (uint16_fract_t) 0; | |
396 if (f >= 65535.0) return (uint16_fract_t) 0xFFFF; | |
397 | |
398 return (uint16_fract_t) floor(f + 0.5); | |
399 | |
400 } | |
401 | |
402 // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ | |
403 // This is just an approximation, I am not handling all the non-linear | |
404 // aspects of the RGB to XYZ process, and assumming that the gamma correction | |
405 // has transitive property in the tranformation chain. | |
406 // | |
407 // the alghoritm: | |
408 // | |
409 // - First I build the absolute conversion matrix using | |
410 // primaries in XYZ. This matrix is next inverted | |
411 // - Then I eval the source white point across this matrix | |
412 // obtaining the coeficients of the transformation | |
413 // - Then, I apply these coeficients to the original matrix | |
414 static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_C
IE_xyYTRIPLE primrs) | |
415 { | |
416 struct matrix primaries; | |
417 struct matrix primaries_invert; | |
418 struct matrix result; | |
419 struct vector white_point; | |
420 struct vector coefs; | |
421 | |
422 double xn, yn; | |
423 double xr, yr; | |
424 double xg, yg; | |
425 double xb, yb; | |
426 | |
427 xn = white.x; | |
428 yn = white.y; | |
429 | |
430 if (yn == 0.0) | |
431 return matrix_invalid(); | |
432 | |
433 xr = primrs.red.x; | |
434 yr = primrs.red.y; | |
435 xg = primrs.green.x; | |
436 yg = primrs.green.y; | |
437 xb = primrs.blue.x; | |
438 yb = primrs.blue.y; | |
439 | |
440 primaries.m[0][0] = xr; | |
441 primaries.m[0][1] = xg; | |
442 primaries.m[0][2] = xb; | |
443 | |
444 primaries.m[1][0] = yr; | |
445 primaries.m[1][1] = yg; | |
446 primaries.m[1][2] = yb; | |
447 | |
448 primaries.m[2][0] = 1 - xr - yr; | |
449 primaries.m[2][1] = 1 - xg - yg; | |
450 primaries.m[2][2] = 1 - xb - yb; | |
451 primaries.invalid = false; | |
452 | |
453 white_point.v[0] = xn/yn; | |
454 white_point.v[1] = 1.; | |
455 white_point.v[2] = (1.0-xn-yn)/yn; | |
456 | |
457 primaries_invert = matrix_invert(primaries); | |
458 | |
459 coefs = matrix_eval(primaries_invert, white_point); | |
460 | |
461 result.m[0][0] = coefs.v[0]*xr; | |
462 result.m[0][1] = coefs.v[1]*xg; | |
463 result.m[0][2] = coefs.v[2]*xb; | |
464 | |
465 result.m[1][0] = coefs.v[0]*yr; | |
466 result.m[1][1] = coefs.v[1]*yg; | |
467 result.m[1][2] = coefs.v[2]*yb; | |
468 | |
469 result.m[2][0] = coefs.v[0]*(1.-xr-yr); | |
470 result.m[2][1] = coefs.v[1]*(1.-xg-yg); | |
471 result.m[2][2] = coefs.v[2]*(1.-xb-yb); | |
472 result.invalid = primaries_invert.invalid; | |
473 | |
474 return result; | |
475 } | |
476 | |
477 struct CIE_XYZ { | |
478 double X; | |
479 double Y; | |
480 double Z; | |
481 }; | |
482 | |
483 /* CIE Illuminant D50 */ | |
484 static const struct CIE_XYZ D50_XYZ = { | |
485 0.9642, | |
486 1.0000, | |
487 0.8249 | |
488 }; | |
489 | |
490 /* from lcms: xyY2XYZ() | |
491 * corresponds to argyll: icmYxy2XYZ() */ | |
492 static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source) | |
493 { | |
494 struct CIE_XYZ dest; | |
495 dest.X = (source.x / source.y) * source.Y; | |
496 dest.Y = source.Y; | |
497 dest.Z = ((1 - source.x - source.y) / source.y) * source.Y; | |
498 return dest; | |
499 } | |
500 | |
501 /* from lcms: ComputeChromaticAdaption */ | |
502 // Compute chromatic adaption matrix using chad as cone matrix | |
503 static struct matrix | |
504 compute_chromatic_adaption(struct CIE_XYZ source_white_point, | |
505 struct CIE_XYZ dest_white_point, | |
506 struct matrix chad) | |
507 { | |
508 struct matrix chad_inv; | |
509 struct vector cone_source_XYZ, cone_source_rgb; | |
510 struct vector cone_dest_XYZ, cone_dest_rgb; | |
511 struct matrix cone, tmp; | |
512 | |
513 tmp = chad; | |
514 chad_inv = matrix_invert(tmp); | |
515 | |
516 cone_source_XYZ.v[0] = source_white_point.X; | |
517 cone_source_XYZ.v[1] = source_white_point.Y; | |
518 cone_source_XYZ.v[2] = source_white_point.Z; | |
519 | |
520 cone_dest_XYZ.v[0] = dest_white_point.X; | |
521 cone_dest_XYZ.v[1] = dest_white_point.Y; | |
522 cone_dest_XYZ.v[2] = dest_white_point.Z; | |
523 | |
524 cone_source_rgb = matrix_eval(chad, cone_source_XYZ); | |
525 cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ); | |
526 | |
527 cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0]; | |
528 cone.m[0][1] = 0; | |
529 cone.m[0][2] = 0; | |
530 cone.m[1][0] = 0; | |
531 cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1]; | |
532 cone.m[1][2] = 0; | |
533 cone.m[2][0] = 0; | |
534 cone.m[2][1] = 0; | |
535 cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2]; | |
536 cone.invalid = false; | |
537 | |
538 // Normalize | |
539 return matrix_multiply(chad_inv, matrix_multiply(cone, chad)); | |
540 } | |
541 | |
542 /* from lcms: cmsAdaptionMatrix */ | |
543 // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant T
oIll | |
544 // Bradford is assumed | |
545 static struct matrix | |
546 adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumi
nation) | |
547 { | |
548 struct matrix lam_rigg = {{ // Bradford matrix | |
549 { 0.8951, 0.2664, -0.1614 }, | |
550 { -0.7502, 1.7135, 0.0367 }, | |
551 { 0.0389, -0.0685, 1.0296 } | |
552 }}; | |
553 return compute_chromatic_adaption(source_illumination, target_illuminati
on, lam_rigg); | |
554 } | |
555 | |
556 /* from lcms: cmsAdaptMatrixToD50 */ | |
557 static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_wh
ite_pt) | |
558 { | |
559 struct CIE_XYZ Dn; | |
560 struct matrix Bradford; | |
561 | |
562 if (source_white_pt.y == 0.0) | |
563 return matrix_invalid(); | |
564 | |
565 Dn = xyY2XYZ(source_white_pt); | |
566 | |
567 Bradford = adaption_matrix(Dn, D50_XYZ); | |
568 return matrix_multiply(Bradford, r); | |
569 } | |
570 | |
571 qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcm
s_CIE_xyYTRIPLE primaries) | |
572 { | |
573 struct matrix colorants; | |
574 colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries); | |
575 colorants = adapt_matrix_to_D50(colorants, white_point); | |
576 | |
577 if (colorants.invalid) | |
578 return false; | |
579 | |
580 /* note: there's a transpose type of operation going on here */ | |
581 profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]); | |
582 profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]); | |
583 profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]); | |
584 | |
585 profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1])
; | |
586 profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1])
; | |
587 profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1])
; | |
588 | |
589 profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]); | |
590 profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]); | |
591 profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]); | |
592 | |
593 return true; | |
594 } | |
595 | |
596 /* | |
597 The number of entries needed to invert a lookup table should not | |
598 necessarily be the same as the original number of entries. This is | |
599 especially true of lookup tables that have a small number of entries. | |
600 | |
601 For example: | |
602 Using a table like: | |
603 {0, 3104, 14263, 34802, 65535} | |
604 invert_lut will produce an inverse of: | |
605 {3, 34459, 47529, 56801, 65535} | |
606 which has an maximum error of about 9855 (pixel difference of ~38.346) | |
607 | |
608 For now, we punt the decision of output size to the caller. */ | |
609 static uint16_t *invert_lut(uint16_t *table, int length, int out_length) | |
610 { | |
611 int i; | |
612 /* for now we invert the lut by creating a lut of size out_length | |
613 * and attempting to lookup a value for each entry using lut_inverse_int
erp16 */ | |
614 uint16_t *output = malloc(sizeof(uint16_t)*out_length); | |
615 if (!output) | |
616 return NULL; | |
617 | |
618 for (i = 0; i < out_length; i++) { | |
619 double x = ((double) i * 65535.) / (double) (out_length - 1); | |
620 uint16_fract_t input = floor(x + .5); | |
621 output[i] = lut_inverse_interp16(input, table, length); | |
622 } | |
623 return output; | |
624 } | |
625 | |
626 static uint16_t *build_linear_table(int length) | |
627 { | |
628 int i; | |
629 uint16_t *output = malloc(sizeof(uint16_t)*length); | |
630 if (!output) | |
631 return NULL; | |
632 | |
633 for (i = 0; i < length; i++) { | |
634 double x = ((double) i * 65535.) / (double) (length - 1); | |
635 uint16_fract_t input = floor(x + .5); | |
636 output[i] = input; | |
637 } | |
638 return output; | |
639 } | |
640 | |
641 static uint16_t *build_pow_table(float gamma, int length) | |
642 { | |
643 int i; | |
644 uint16_t *output = malloc(sizeof(uint16_t)*length); | |
645 if (!output) | |
646 return NULL; | |
647 | |
648 for (i = 0; i < length; i++) { | |
649 uint16_fract_t result; | |
650 double x = ((double) i) / (double) (length - 1); | |
651 x = pow(x, gamma); | |
652 //XXX turn this conversion into a function | |
653 result = floor(x*65535. + .5); | |
654 output[i] = result; | |
655 } | |
656 return output; | |
657 } | |
658 | |
659 static float clamp_float(float a) | |
660 { | |
661 if (a > 1.) | |
662 return 1.; | |
663 else if (a < 0) | |
664 return 0; | |
665 else | |
666 return a; | |
667 } | |
668 | |
669 #if 0 | |
670 static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned
char *src, unsigned char *dest, size_t length) | |
671 { | |
672 int i; | |
673 float (*mat)[4] = transform->matrix; | |
674 for (i=0; i<length; i++) { | |
675 unsigned char device_r = *src++; | |
676 unsigned char device_g = *src++; | |
677 unsigned char device_b = *src++; | |
678 | |
679 float linear_r = transform->input_gamma_table_r[device_r]; | |
680 float linear_g = transform->input_gamma_table_g[device_g]; | |
681 float linear_b = transform->input_gamma_table_b[device_b]; | |
682 | |
683 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
684 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
685 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
686 | |
687 float out_device_r = pow(out_linear_r, transform->out_gamma_r); | |
688 float out_device_g = pow(out_linear_g, transform->out_gamma_g); | |
689 float out_device_b = pow(out_linear_b, transform->out_gamma_b); | |
690 | |
691 *dest++ = clamp_u8(255*out_device_r); | |
692 *dest++ = clamp_u8(255*out_device_g); | |
693 *dest++ = clamp_u8(255*out_device_b); | |
694 } | |
695 } | |
696 #endif | |
697 | |
698 static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned
char *src, unsigned char *dest, size_t length) | |
699 { | |
700 unsigned int i; | |
701 for (i = 0; i < length; i++) { | |
702 float out_device_r, out_device_g, out_device_b; | |
703 unsigned char device = *src++; | |
704 | |
705 float linear = transform->input_gamma_table_gray[device]; | |
706 | |
707 out_device_r = lut_interp_linear(linear, transform->output_gamma
_lut_r, transform->output_gamma_lut_r_length); | |
708 out_device_g = lut_interp_linear(linear, transform->output_gamma
_lut_g, transform->output_gamma_lut_g_length); | |
709 out_device_b = lut_interp_linear(linear, transform->output_gamma
_lut_b, transform->output_gamma_lut_b_length); | |
710 | |
711 *dest++ = clamp_u8(out_device_r*255); | |
712 *dest++ = clamp_u8(out_device_g*255); | |
713 *dest++ = clamp_u8(out_device_b*255); | |
714 } | |
715 } | |
716 | |
717 /* Alpha is not corrected. | |
718 A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If | |
719 RGB Is?" Tech Memo 17 (December 14, 1998). | |
720 See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf | |
721 */ | |
722 | |
723 static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigne
d char *src, unsigned char *dest, size_t length) | |
724 { | |
725 unsigned int i; | |
726 for (i = 0; i < length; i++) { | |
727 float out_device_r, out_device_g, out_device_b; | |
728 unsigned char device = *src++; | |
729 unsigned char alpha = *src++; | |
730 | |
731 float linear = transform->input_gamma_table_gray[device]; | |
732 | |
733 out_device_r = lut_interp_linear(linear, transform->output_gamma
_lut_r, transform->output_gamma_lut_r_length); | |
734 out_device_g = lut_interp_linear(linear, transform->output_gamma
_lut_g, transform->output_gamma_lut_g_length); | |
735 out_device_b = lut_interp_linear(linear, transform->output_gamma
_lut_b, transform->output_gamma_lut_b_length); | |
736 | |
737 *dest++ = clamp_u8(out_device_r*255); | |
738 *dest++ = clamp_u8(out_device_g*255); | |
739 *dest++ = clamp_u8(out_device_b*255); | |
740 *dest++ = alpha; | |
741 } | |
742 } | |
743 | |
744 | |
745 static void qcms_transform_data_gray_out_precache(qcms_transform *transform, uns
igned char *src, unsigned char *dest, size_t length) | |
746 { | |
747 unsigned int i; | |
748 for (i = 0; i < length; i++) { | |
749 unsigned char device = *src++; | |
750 uint16_t gray; | |
751 | |
752 float linear = transform->input_gamma_table_gray[device]; | |
753 | |
754 /* we could round here... */ | |
755 gray = linear * PRECACHE_OUTPUT_MAX; | |
756 | |
757 *dest++ = transform->output_table_r->data[gray]; | |
758 *dest++ = transform->output_table_g->data[gray]; | |
759 *dest++ = transform->output_table_b->data[gray]; | |
760 } | |
761 } | |
762 | |
763 static void qcms_transform_data_graya_out_precache(qcms_transform *transform, un
signed char *src, unsigned char *dest, size_t length) | |
764 { | |
765 unsigned int i; | |
766 for (i = 0; i < length; i++) { | |
767 unsigned char device = *src++; | |
768 unsigned char alpha = *src++; | |
769 uint16_t gray; | |
770 | |
771 float linear = transform->input_gamma_table_gray[device]; | |
772 | |
773 /* we could round here... */ | |
774 gray = linear * PRECACHE_OUTPUT_MAX; | |
775 | |
776 *dest++ = transform->output_table_r->data[gray]; | |
777 *dest++ = transform->output_table_g->data[gray]; | |
778 *dest++ = transform->output_table_b->data[gray]; | |
779 *dest++ = alpha; | |
780 } | |
781 } | |
782 | |
783 static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform,
unsigned char *src, unsigned char *dest, size_t length) | |
784 { | |
785 unsigned int i; | |
786 float (*mat)[4] = transform->matrix; | |
787 for (i = 0; i < length; i++) { | |
788 unsigned char device_r = *src++; | |
789 unsigned char device_g = *src++; | |
790 unsigned char device_b = *src++; | |
791 uint16_t r, g, b; | |
792 | |
793 float linear_r = transform->input_gamma_table_r[device_r]; | |
794 float linear_g = transform->input_gamma_table_g[device_g]; | |
795 float linear_b = transform->input_gamma_table_b[device_b]; | |
796 | |
797 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
798 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
799 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
800 | |
801 out_linear_r = clamp_float(out_linear_r); | |
802 out_linear_g = clamp_float(out_linear_g); | |
803 out_linear_b = clamp_float(out_linear_b); | |
804 | |
805 /* we could round here... */ | |
806 r = out_linear_r * PRECACHE_OUTPUT_MAX; | |
807 g = out_linear_g * PRECACHE_OUTPUT_MAX; | |
808 b = out_linear_b * PRECACHE_OUTPUT_MAX; | |
809 | |
810 *dest++ = transform->output_table_r->data[r]; | |
811 *dest++ = transform->output_table_g->data[g]; | |
812 *dest++ = transform->output_table_b->data[b]; | |
813 } | |
814 } | |
815 | |
816 static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform,
unsigned char *src, unsigned char *dest, size_t length) | |
817 { | |
818 unsigned int i; | |
819 float (*mat)[4] = transform->matrix; | |
820 for (i = 0; i < length; i++) { | |
821 unsigned char device_r = *src++; | |
822 unsigned char device_g = *src++; | |
823 unsigned char device_b = *src++; | |
824 unsigned char alpha = *src++; | |
825 uint16_t r, g, b; | |
826 | |
827 float linear_r = transform->input_gamma_table_r[device_r]; | |
828 float linear_g = transform->input_gamma_table_g[device_g]; | |
829 float linear_b = transform->input_gamma_table_b[device_b]; | |
830 | |
831 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
832 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
833 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
834 | |
835 out_linear_r = clamp_float(out_linear_r); | |
836 out_linear_g = clamp_float(out_linear_g); | |
837 out_linear_b = clamp_float(out_linear_b); | |
838 | |
839 /* we could round here... */ | |
840 r = out_linear_r * PRECACHE_OUTPUT_MAX; | |
841 g = out_linear_g * PRECACHE_OUTPUT_MAX; | |
842 b = out_linear_b * PRECACHE_OUTPUT_MAX; | |
843 | |
844 *dest++ = transform->output_table_r->data[r]; | |
845 *dest++ = transform->output_table_g->data[g]; | |
846 *dest++ = transform->output_table_b->data[b]; | |
847 *dest++ = alpha; | |
848 } | |
849 } | |
850 | |
851 static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned
char *src, unsigned char *dest, size_t length) | |
852 { | |
853 unsigned int i; | |
854 float (*mat)[4] = transform->matrix; | |
855 for (i = 0; i < length; i++) { | |
856 unsigned char device_r = *src++; | |
857 unsigned char device_g = *src++; | |
858 unsigned char device_b = *src++; | |
859 float out_device_r, out_device_g, out_device_b; | |
860 | |
861 float linear_r = transform->input_gamma_table_r[device_r]; | |
862 float linear_g = transform->input_gamma_table_g[device_g]; | |
863 float linear_b = transform->input_gamma_table_b[device_b]; | |
864 | |
865 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
866 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
867 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
868 | |
869 out_linear_r = clamp_float(out_linear_r); | |
870 out_linear_g = clamp_float(out_linear_g); | |
871 out_linear_b = clamp_float(out_linear_b); | |
872 | |
873 out_device_r = lut_interp_linear(out_linear_r, transform->output
_gamma_lut_r, transform->output_gamma_lut_r_length); | |
874 out_device_g = lut_interp_linear(out_linear_g, transform->output
_gamma_lut_g, transform->output_gamma_lut_g_length); | |
875 out_device_b = lut_interp_linear(out_linear_b, transform->output
_gamma_lut_b, transform->output_gamma_lut_b_length); | |
876 | |
877 *dest++ = clamp_u8(out_device_r*255); | |
878 *dest++ = clamp_u8(out_device_g*255); | |
879 *dest++ = clamp_u8(out_device_b*255); | |
880 } | |
881 } | |
882 | |
883 static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned
char *src, unsigned char *dest, size_t length) | |
884 { | |
885 unsigned int i; | |
886 float (*mat)[4] = transform->matrix; | |
887 for (i = 0; i < length; i++) { | |
888 unsigned char device_r = *src++; | |
889 unsigned char device_g = *src++; | |
890 unsigned char device_b = *src++; | |
891 unsigned char alpha = *src++; | |
892 float out_device_r, out_device_g, out_device_b; | |
893 | |
894 float linear_r = transform->input_gamma_table_r[device_r]; | |
895 float linear_g = transform->input_gamma_table_g[device_g]; | |
896 float linear_b = transform->input_gamma_table_b[device_b]; | |
897 | |
898 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
899 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
900 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
901 | |
902 out_linear_r = clamp_float(out_linear_r); | |
903 out_linear_g = clamp_float(out_linear_g); | |
904 out_linear_b = clamp_float(out_linear_b); | |
905 | |
906 out_device_r = lut_interp_linear(out_linear_r, transform->output
_gamma_lut_r, transform->output_gamma_lut_r_length); | |
907 out_device_g = lut_interp_linear(out_linear_g, transform->output
_gamma_lut_g, transform->output_gamma_lut_g_length); | |
908 out_device_b = lut_interp_linear(out_linear_b, transform->output
_gamma_lut_b, transform->output_gamma_lut_b_length); | |
909 | |
910 *dest++ = clamp_u8(out_device_r*255); | |
911 *dest++ = clamp_u8(out_device_g*255); | |
912 *dest++ = clamp_u8(out_device_b*255); | |
913 *dest++ = alpha; | |
914 } | |
915 } | |
916 | |
917 #if 0 | |
918 static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsign
ed char *src, unsigned char *dest, size_t length) | |
919 { | |
920 int i; | |
921 float (*mat)[4] = transform->matrix; | |
922 for (i = 0; i < length; i++) { | |
923 unsigned char device_r = *src++; | |
924 unsigned char device_g = *src++; | |
925 unsigned char device_b = *src++; | |
926 | |
927 float linear_r = transform->input_gamma_table_r[device_r]; | |
928 float linear_g = transform->input_gamma_table_g[device_g]; | |
929 float linear_b = transform->input_gamma_table_b[device_b]; | |
930 | |
931 float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + m
at[2][0]*linear_b; | |
932 float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + m
at[2][1]*linear_b; | |
933 float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + m
at[2][2]*linear_b; | |
934 | |
935 *dest++ = clamp_u8(out_linear_r*255); | |
936 *dest++ = clamp_u8(out_linear_g*255); | |
937 *dest++ = clamp_u8(out_linear_b*255); | |
938 } | |
939 } | |
940 #endif | |
941 | |
942 static struct precache_output *precache_reference(struct precache_output *p) | |
943 { | |
944 p->ref_count++; | |
945 return p; | |
946 } | |
947 | |
948 static struct precache_output *precache_create() | |
949 { | |
950 struct precache_output *p = malloc(sizeof(struct precache_output)); | |
951 if (p) | |
952 p->ref_count = 1; | |
953 return p; | |
954 } | |
955 | |
956 void precache_release(struct precache_output *p) | |
957 { | |
958 if (--p->ref_count == 0) { | |
959 free(p); | |
960 } | |
961 } | |
962 | |
963 #ifdef HAS_POSIX_MEMALIGN | |
964 static qcms_transform *transform_alloc(void) | |
965 { | |
966 qcms_transform *t; | |
967 if (!posix_memalign(&t, 16, sizeof(*t))) { | |
968 return t; | |
969 } else { | |
970 return NULL; | |
971 } | |
972 } | |
973 static void transform_free(qcms_transform *t) | |
974 { | |
975 free(t); | |
976 } | |
977 #else | |
978 static qcms_transform *transform_alloc(void) | |
979 { | |
980 /* transform needs to be aligned on a 16byte boundrary */ | |
981 char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 1
6, 1); | |
982 /* make room for a pointer to the block returned by calloc */ | |
983 void *transform_start = original_block + sizeof(void*); | |
984 /* align transform_start */ | |
985 qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transf
orm_start + 15) & ~0xf); | |
986 | |
987 /* store a pointer to the block returned by calloc so that we can free i
t later */ | |
988 void **(original_block_ptr) = (void**)transform_aligned; | |
989 if (!original_block) | |
990 return NULL; | |
991 original_block_ptr--; | |
992 *original_block_ptr = original_block; | |
993 | |
994 return transform_aligned; | |
995 } | |
996 static void transform_free(qcms_transform *t) | |
997 { | |
998 /* get at the pointer to the unaligned block returned by calloc */ | |
999 void **p = (void**)t; | |
1000 p--; | |
1001 free(*p); | |
1002 } | |
1003 #endif | |
1004 | |
1005 void qcms_transform_release(qcms_transform *t) | |
1006 { | |
1007 /* ensure we only free the gamma tables once even if there are | |
1008 * multiple references to the same data */ | |
1009 | |
1010 if (t->output_table_r) | |
1011 precache_release(t->output_table_r); | |
1012 if (t->output_table_g) | |
1013 precache_release(t->output_table_g); | |
1014 if (t->output_table_b) | |
1015 precache_release(t->output_table_b); | |
1016 | |
1017 free(t->input_gamma_table_r); | |
1018 if (t->input_gamma_table_g != t->input_gamma_table_r) | |
1019 free(t->input_gamma_table_g); | |
1020 if (t->input_gamma_table_g != t->input_gamma_table_r && | |
1021 t->input_gamma_table_g != t->input_gamma_table_b) | |
1022 free(t->input_gamma_table_b); | |
1023 | |
1024 free(t->input_gamma_table_gray); | |
1025 | |
1026 free(t->output_gamma_lut_r); | |
1027 free(t->output_gamma_lut_g); | |
1028 free(t->output_gamma_lut_b); | |
1029 | |
1030 transform_free(t); | |
1031 } | |
1032 | |
1033 static void compute_precache_pow(uint8_t *output, float gamma) | |
1034 { | |
1035 uint32_t v = 0; | |
1036 for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { | |
1037 //XXX: don't do integer/float conversion... and round? | |
1038 output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma); | |
1039 } | |
1040 } | |
1041 | |
1042 void compute_precache_lut(uint8_t *output, uint16_t *table, int length) | |
1043 { | |
1044 uint32_t v = 0; | |
1045 for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { | |
1046 output[v] = lut_interp_linear_precache_output(v, table, length); | |
1047 } | |
1048 } | |
1049 | |
1050 void compute_precache_linear(uint8_t *output) | |
1051 { | |
1052 uint32_t v = 0; | |
1053 for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { | |
1054 //XXX: round? | |
1055 output[v] = v / (PRECACHE_OUTPUT_SIZE/256); | |
1056 } | |
1057 } | |
1058 | |
1059 qcms_bool compute_precache(struct curveType *trc, uint8_t *output) | |
1060 { | |
1061 if (trc->count == 0) { | |
1062 compute_precache_linear(output); | |
1063 } else if (trc->count == 1) { | |
1064 compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->dat
a[0])); | |
1065 } else { | |
1066 uint16_t *inverted; | |
1067 int inverted_size = trc->count; | |
1068 //XXX: the choice of a minimum of 256 here is not backed by any
theory, measurement or data, however it is what lcms uses. | |
1069 // the maximum number we would need is 65535 because that's the
accuracy used for computing the precache table | |
1070 if (inverted_size < 256) | |
1071 inverted_size = 256; | |
1072 | |
1073 inverted = invert_lut(trc->data, trc->count, inverted_size); | |
1074 if (!inverted) | |
1075 return false; | |
1076 compute_precache_lut(output, inverted, inverted_size); | |
1077 free(inverted); | |
1078 } | |
1079 return true; | |
1080 } | |
1081 | |
1082 #ifdef X86 | |
1083 // Determine if we can build with SSE2 (this was partly copied from jmorecfg.h i
n | |
1084 // mozilla/jpeg) | |
1085 // ------------------------------------------------------------------------- | |
1086 #if defined(_M_IX86) && defined(_MSC_VER) | |
1087 #define HAS_CPUID | |
1088 /* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC | |
1089 register - I'm not sure if that ever happens on windows, but cpuid isn't | |
1090 on the critical path so we just preserve the register to be safe and to be | |
1091 consistent with the non-windows version. */ | |
1092 static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t
*d) { | |
1093 uint32_t a_, b_, c_, d_; | |
1094 __asm { | |
1095 xchg ebx, esi | |
1096 mov eax, fxn | |
1097 cpuid | |
1098 mov a_, eax | |
1099 mov b_, ebx | |
1100 mov c_, ecx | |
1101 mov d_, edx | |
1102 xchg ebx, esi | |
1103 } | |
1104 *a = a_; | |
1105 *b = b_; | |
1106 *c = c_; | |
1107 *d = d_; | |
1108 } | |
1109 #elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || define
d(__i386)) | |
1110 #define HAS_CPUID | |
1111 /* Get us a CPUID function. We can't use ebx because it's the PIC register on | |
1112 some platforms, so we use ESI instead and save ebx to avoid clobbering it. */ | |
1113 static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t
*d) { | |
1114 | |
1115 uint32_t a_, b_, c_, d_; | |
1116 __asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;" | |
1117 : "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a"
(fxn)); | |
1118 *a = a_; | |
1119 *b = b_; | |
1120 *c = c_; | |
1121 *d = d_; | |
1122 } | |
1123 #endif | |
1124 | |
1125 // -------------------------Runtime SSEx Detection----------------------------- | |
1126 | |
1127 /* MMX is always supported per | |
1128 * Gecko v1.9.1 minimum CPU requirements */ | |
1129 #define SSE1_EDX_MASK (1UL << 25) | |
1130 #define SSE2_EDX_MASK (1UL << 26) | |
1131 #define SSE3_ECX_MASK (1UL << 0) | |
1132 | |
1133 static int sse_version_available(void) | |
1134 { | |
1135 #if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64) | |
1136 /* we know at build time that 64-bit CPUs always have SSE2 | |
1137 * this tells the compiler that non-SSE2 branches will never be | |
1138 * taken (i.e. OK to optimze away the SSE1 and non-SIMD code */ | |
1139 return 2; | |
1140 #elif defined(HAS_CPUID) | |
1141 static int sse_version = -1; | |
1142 uint32_t a, b, c, d; | |
1143 uint32_t function = 0x00000001; | |
1144 | |
1145 if (sse_version == -1) { | |
1146 sse_version = 0; | |
1147 cpuid(function, &a, &b, &c, &d); | |
1148 if (c & SSE3_ECX_MASK) | |
1149 sse_version = 3; | |
1150 else if (d & SSE2_EDX_MASK) | |
1151 sse_version = 2; | |
1152 else if (d & SSE1_EDX_MASK) | |
1153 sse_version = 1; | |
1154 } | |
1155 | |
1156 return sse_version; | |
1157 #else | |
1158 return 0; | |
1159 #endif | |
1160 } | |
1161 #endif | |
1162 | |
1163 void build_output_lut(struct curveType *trc, | |
1164 uint16_t **output_gamma_lut, size_t *output_gamma_lut_length) | |
1165 { | |
1166 if (trc->count == 0) { | |
1167 *output_gamma_lut = build_linear_table(4096); | |
1168 *output_gamma_lut_length = 4096; | |
1169 } else if (trc->count == 1) { | |
1170 float gamma = 1./u8Fixed8Number_to_float(trc->data[0]); | |
1171 *output_gamma_lut = build_pow_table(gamma, 4096); | |
1172 *output_gamma_lut_length = 4096; | |
1173 } else { | |
1174 //XXX: the choice of a minimum of 256 here is not backed by any
theory, measurement or data, however it is what lcms uses. | |
1175 *output_gamma_lut_length = trc->count; | |
1176 if (*output_gamma_lut_length < 256) | |
1177 *output_gamma_lut_length = 256; | |
1178 | |
1179 *output_gamma_lut = invert_lut(trc->data, trc->count, *output_ga
mma_lut_length); | |
1180 } | |
1181 | |
1182 } | |
1183 | |
1184 void qcms_profile_precache_output_transform(qcms_profile *profile) | |
1185 { | |
1186 /* we only support precaching on rgb profiles */ | |
1187 if (profile->color_space != RGB_SIGNATURE) | |
1188 return; | |
1189 | |
1190 if (!profile->output_table_r) { | |
1191 profile->output_table_r = precache_create(); | |
1192 if (profile->output_table_r && | |
1193 !compute_precache(profile->redTRC, profile->outp
ut_table_r->data)) { | |
1194 precache_release(profile->output_table_r); | |
1195 profile->output_table_r = NULL; | |
1196 } | |
1197 } | |
1198 if (!profile->output_table_g) { | |
1199 profile->output_table_g = precache_create(); | |
1200 if (profile->output_table_g && | |
1201 !compute_precache(profile->greenTRC, profile->ou
tput_table_g->data)) { | |
1202 precache_release(profile->output_table_g); | |
1203 profile->output_table_g = NULL; | |
1204 } | |
1205 } | |
1206 if (!profile->output_table_b) { | |
1207 profile->output_table_b = precache_create(); | |
1208 if (profile->output_table_b && | |
1209 !compute_precache(profile->blueTRC, profile->out
put_table_b->data)) { | |
1210 precache_release(profile->output_table_b); | |
1211 profile->output_table_b = NULL; | |
1212 } | |
1213 } | |
1214 } | |
1215 | |
1216 #define NO_MEM_TRANSFORM NULL | |
1217 | |
1218 qcms_transform* qcms_transform_create( | |
1219 qcms_profile *in, qcms_data_type in_type, | |
1220 qcms_profile* out, qcms_data_type out_type, | |
1221 qcms_intent intent) | |
1222 { | |
1223 bool precache = false; | |
1224 | |
1225 qcms_transform *transform = transform_alloc(); | |
1226 if (!transform) { | |
1227 return NULL; | |
1228 } | |
1229 if (out_type != QCMS_DATA_RGB_8 && | |
1230 out_type != QCMS_DATA_RGBA_8) { | |
1231 assert(0 && "output type"); | |
1232 transform_free(transform); | |
1233 return NULL; | |
1234 } | |
1235 | |
1236 if (out->output_table_r && | |
1237 out->output_table_g && | |
1238 out->output_table_b) { | |
1239 precache = true; | |
1240 } | |
1241 | |
1242 if (precache) { | |
1243 transform->output_table_r = precache_reference(out->output_table
_r); | |
1244 transform->output_table_g = precache_reference(out->output_table
_g); | |
1245 transform->output_table_b = precache_reference(out->output_table
_b); | |
1246 } else { | |
1247 build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &t
ransform->output_gamma_lut_r_length); | |
1248 build_output_lut(out->greenTRC, &transform->output_gamma_lut_g,
&transform->output_gamma_lut_g_length); | |
1249 build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &
transform->output_gamma_lut_b_length); | |
1250 if (!transform->output_gamma_lut_r || !transform->output_gamma_l
ut_g || !transform->output_gamma_lut_b) { | |
1251 qcms_transform_release(transform); | |
1252 return NO_MEM_TRANSFORM; | |
1253 } | |
1254 } | |
1255 | |
1256 if (in->color_space == RGB_SIGNATURE) { | |
1257 struct matrix in_matrix, out_matrix, result; | |
1258 | |
1259 if (in_type != QCMS_DATA_RGB_8 && | |
1260 in_type != QCMS_DATA_RGBA_8){ | |
1261 assert(0 && "input type"); | |
1262 transform_free(transform); | |
1263 return NULL; | |
1264 } | |
1265 if (precache) { | |
1266 #ifdef X86 | |
1267 if (sse_version_available() >= 2) { | |
1268 if (in_type == QCMS_DATA_RGB_8) | |
1269 transform->transform_fn = qcms_transform_dat
a_rgb_out_lut_sse2; | |
1270 else | |
1271 transform->transform_fn = qcms_transform_dat
a_rgba_out_lut_sse2; | |
1272 | |
1273 #if !(defined(_MSC_VER) && defined(_M_AMD64)) | |
1274 /* Microsoft Compiler for x64 doesn't support MMX. | |
1275 * SSE code uses MMX so that we disable on x64 */ | |
1276 } else | |
1277 if (sse_version_available() >= 1) { | |
1278 if (in_type == QCMS_DATA_RGB_8) | |
1279 transform->transform_fn = qcms_transform_dat
a_rgb_out_lut_sse1; | |
1280 else | |
1281 transform->transform_fn = qcms_transform_dat
a_rgba_out_lut_sse1; | |
1282 #endif | |
1283 } else | |
1284 #endif | |
1285 { | |
1286 if (in_type == QCMS_DATA_RGB_8) | |
1287 transform->transform_fn = qcms_transform_dat
a_rgb_out_lut_precache; | |
1288 else | |
1289 transform->transform_fn = qcms_transform_dat
a_rgba_out_lut_precache; | |
1290 } | |
1291 } else { | |
1292 if (in_type == QCMS_DATA_RGB_8) | |
1293 transform->transform_fn = qcms_transform_data_rgb_ou
t_lut; | |
1294 else | |
1295 transform->transform_fn = qcms_transform_data_rgba_o
ut_lut; | |
1296 } | |
1297 | |
1298 //XXX: avoid duplicating tables if we can | |
1299 transform->input_gamma_table_r = build_input_gamma_table(in->redTRC)
; | |
1300 transform->input_gamma_table_g = build_input_gamma_table(in->greenTR
C); | |
1301 transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC
); | |
1302 | |
1303 if (!transform->input_gamma_table_r || !transform->input_gamma_table
_g || !transform->input_gamma_table_b) { | |
1304 qcms_transform_release(transform); | |
1305 return NO_MEM_TRANSFORM; | |
1306 } | |
1307 | |
1308 /* build combined colorant matrix */ | |
1309 in_matrix = build_colorant_matrix(in); | |
1310 out_matrix = build_colorant_matrix(out); | |
1311 out_matrix = matrix_invert(out_matrix); | |
1312 if (out_matrix.invalid) { | |
1313 qcms_transform_release(transform); | |
1314 return NULL; | |
1315 } | |
1316 result = matrix_multiply(out_matrix, in_matrix); | |
1317 | |
1318 /* store the results in column major mode | |
1319 * this makes doing the multiplication with sse easier */ | |
1320 transform->matrix[0][0] = result.m[0][0]; | |
1321 transform->matrix[1][0] = result.m[0][1]; | |
1322 transform->matrix[2][0] = result.m[0][2]; | |
1323 transform->matrix[0][1] = result.m[1][0]; | |
1324 transform->matrix[1][1] = result.m[1][1]; | |
1325 transform->matrix[2][1] = result.m[1][2]; | |
1326 transform->matrix[0][2] = result.m[2][0]; | |
1327 transform->matrix[1][2] = result.m[2][1]; | |
1328 transform->matrix[2][2] = result.m[2][2]; | |
1329 | |
1330 } else if (in->color_space == GRAY_SIGNATURE) { | |
1331 if (in_type != QCMS_DATA_GRAY_8 && | |
1332 in_type != QCMS_DATA_GRAYA_8){ | |
1333 assert(0 && "input type"); | |
1334 transform_free(transform); | |
1335 return NULL; | |
1336 } | |
1337 | |
1338 transform->input_gamma_table_gray = build_input_gamma_table(in->gray
TRC); | |
1339 if (!transform->input_gamma_table_gray) { | |
1340 qcms_transform_release(transform); | |
1341 return NO_MEM_TRANSFORM; | |
1342 } | |
1343 | |
1344 if (precache) { | |
1345 if (in_type == QCMS_DATA_GRAY_8) { | |
1346 transform->transform_fn = qcms_transform_data_gray_o
ut_precache; | |
1347 } else { | |
1348 transform->transform_fn = qcms_transform_data_graya_
out_precache; | |
1349 } | |
1350 } else { | |
1351 if (in_type == QCMS_DATA_GRAY_8) { | |
1352 transform->transform_fn = qcms_transform_data_gray_o
ut_lut; | |
1353 } else { | |
1354 transform->transform_fn = qcms_transform_data_graya_
out_lut; | |
1355 } | |
1356 } | |
1357 } else { | |
1358 assert(0 && "unexpected colorspace"); | |
1359 qcms_transform_release(transform); | |
1360 return NO_MEM_TRANSFORM; | |
1361 } | |
1362 return transform; | |
1363 } | |
1364 | |
1365 #if defined(__GNUC__) && !defined(__x86_64__) && !defined(__amd64__) | |
1366 /* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */ | |
1367 __attribute__((__force_align_arg_pointer__)) | |
1368 #endif | |
1369 void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_
t length) | |
1370 { | |
1371 transform->transform_fn(transform, src, dest, length); | |
1372 } | |
OLD | NEW |