| OLD | NEW |
| (Empty) |
| 1 #include <xmmintrin.h> | |
| 2 | |
| 3 #include "qcmsint.h" | |
| 4 | |
| 5 /* pre-shuffled: just load these into XMM reg instead of load-scalar/shufps sequ
ence */ | |
| 6 #define FLOATSCALE (float)(PRECACHE_OUTPUT_SIZE) | |
| 7 #define CLAMPMAXVAL ( ((float) (PRECACHE_OUTPUT_SIZE - 1)) / PRECACHE_OUTPUT_SIZ
E ) | |
| 8 static const ALIGN float floatScaleX4[4] = | |
| 9 { FLOATSCALE, FLOATSCALE, FLOATSCALE, FLOATSCALE}; | |
| 10 static const ALIGN float clampMaxValueX4[4] = | |
| 11 { CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL, CLAMPMAXVAL}; | |
| 12 | |
| 13 void qcms_transform_data_rgb_out_lut_sse1(qcms_transform *transform, | |
| 14 unsigned char *src, | |
| 15 unsigned char *dest, | |
| 16 size_t length) | |
| 17 { | |
| 18 unsigned int i; | |
| 19 float (*mat)[4] = transform->matrix; | |
| 20 char input_back[32]; | |
| 21 /* Ensure we have a buffer that's 16 byte aligned regardless of the original | |
| 22 * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(
align(32)) | |
| 23 * because they don't work on stack variables. gcc 4.4 does do the right thi
ng | |
| 24 * on x86 but that's too new for us right now. For more info: gcc bug #16660
*/ | |
| 25 float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); | |
| 26 /* share input and output locations to save having to keep the | |
| 27 * locations in separate registers */ | |
| 28 uint32_t const * output = (uint32_t*)input; | |
| 29 | |
| 30 /* deref *transform now to avoid it in loop */ | |
| 31 const float *igtbl_r = transform->input_gamma_table_r; | |
| 32 const float *igtbl_g = transform->input_gamma_table_g; | |
| 33 const float *igtbl_b = transform->input_gamma_table_b; | |
| 34 | |
| 35 /* deref *transform now to avoid it in loop */ | |
| 36 const uint8_t *otdata_r = &transform->output_table_r->data[0]; | |
| 37 const uint8_t *otdata_g = &transform->output_table_g->data[0]; | |
| 38 const uint8_t *otdata_b = &transform->output_table_b->data[0]; | |
| 39 | |
| 40 /* input matrix values never change */ | |
| 41 const __m128 mat0 = _mm_load_ps(mat[0]); | |
| 42 const __m128 mat1 = _mm_load_ps(mat[1]); | |
| 43 const __m128 mat2 = _mm_load_ps(mat[2]); | |
| 44 | |
| 45 /* these values don't change, either */ | |
| 46 const __m128 max = _mm_load_ps(clampMaxValueX4); | |
| 47 const __m128 min = _mm_setzero_ps(); | |
| 48 const __m128 scale = _mm_load_ps(floatScaleX4); | |
| 49 | |
| 50 /* working variables */ | |
| 51 __m128 vec_r, vec_g, vec_b, result; | |
| 52 | |
| 53 /* CYA */ | |
| 54 if (!length) | |
| 55 return; | |
| 56 | |
| 57 /* one pixel is handled outside of the loop */ | |
| 58 length--; | |
| 59 | |
| 60 /* setup for transforming 1st pixel */ | |
| 61 vec_r = _mm_load_ss(&igtbl_r[src[0]]); | |
| 62 vec_g = _mm_load_ss(&igtbl_g[src[1]]); | |
| 63 vec_b = _mm_load_ss(&igtbl_b[src[2]]); | |
| 64 src += 3; | |
| 65 | |
| 66 /* transform all but final pixel */ | |
| 67 | |
| 68 for (i=0; i<length; i++) | |
| 69 { | |
| 70 /* position values from gamma tables */ | |
| 71 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); | |
| 72 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); | |
| 73 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); | |
| 74 | |
| 75 /* gamma * matrix */ | |
| 76 vec_r = _mm_mul_ps(vec_r, mat0); | |
| 77 vec_g = _mm_mul_ps(vec_g, mat1); | |
| 78 vec_b = _mm_mul_ps(vec_b, mat2); | |
| 79 | |
| 80 /* crunch, crunch, crunch */ | |
| 81 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); | |
| 82 vec_r = _mm_max_ps(min, vec_r); | |
| 83 vec_r = _mm_min_ps(max, vec_r); | |
| 84 result = _mm_mul_ps(vec_r, scale); | |
| 85 | |
| 86 /* store calc'd output tables indices */ | |
| 87 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); | |
| 88 result = _mm_movehl_ps(result, result); | |
| 89 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result) ; | |
| 90 | |
| 91 /* load for next loop while store completes */ | |
| 92 vec_r = _mm_load_ss(&igtbl_r[src[0]]); | |
| 93 vec_g = _mm_load_ss(&igtbl_g[src[1]]); | |
| 94 vec_b = _mm_load_ss(&igtbl_b[src[2]]); | |
| 95 src += 3; | |
| 96 | |
| 97 /* use calc'd indices to output RGB values */ | |
| 98 dest[0] = otdata_r[output[0]]; | |
| 99 dest[1] = otdata_g[output[1]]; | |
| 100 dest[2] = otdata_b[output[2]]; | |
| 101 dest += 3; | |
| 102 } | |
| 103 | |
| 104 /* handle final (maybe only) pixel */ | |
| 105 | |
| 106 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); | |
| 107 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); | |
| 108 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); | |
| 109 | |
| 110 vec_r = _mm_mul_ps(vec_r, mat0); | |
| 111 vec_g = _mm_mul_ps(vec_g, mat1); | |
| 112 vec_b = _mm_mul_ps(vec_b, mat2); | |
| 113 | |
| 114 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); | |
| 115 vec_r = _mm_max_ps(min, vec_r); | |
| 116 vec_r = _mm_min_ps(max, vec_r); | |
| 117 result = _mm_mul_ps(vec_r, scale); | |
| 118 | |
| 119 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); | |
| 120 result = _mm_movehl_ps(result, result); | |
| 121 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); | |
| 122 | |
| 123 dest[0] = otdata_r[output[0]]; | |
| 124 dest[1] = otdata_g[output[1]]; | |
| 125 dest[2] = otdata_b[output[2]]; | |
| 126 | |
| 127 _mm_empty(); | |
| 128 } | |
| 129 | |
| 130 void qcms_transform_data_rgba_out_lut_sse1(qcms_transform *transform, | |
| 131 unsigned char *src, | |
| 132 unsigned char *dest, | |
| 133 size_t length) | |
| 134 { | |
| 135 unsigned int i; | |
| 136 float (*mat)[4] = transform->matrix; | |
| 137 char input_back[32]; | |
| 138 /* Ensure we have a buffer that's 16 byte aligned regardless of the original | |
| 139 * stack alignment. We can't use __attribute__((aligned(16))) or __declspec(
align(32)) | |
| 140 * because they don't work on stack variables. gcc 4.4 does do the right thi
ng | |
| 141 * on x86 but that's too new for us right now. For more info: gcc bug #16660
*/ | |
| 142 float const * input = (float*)(((uintptr_t)&input_back[16]) & ~0xf); | |
| 143 /* share input and output locations to save having to keep the | |
| 144 * locations in separate registers */ | |
| 145 uint32_t const * output = (uint32_t*)input; | |
| 146 | |
| 147 /* deref *transform now to avoid it in loop */ | |
| 148 const float *igtbl_r = transform->input_gamma_table_r; | |
| 149 const float *igtbl_g = transform->input_gamma_table_g; | |
| 150 const float *igtbl_b = transform->input_gamma_table_b; | |
| 151 | |
| 152 /* deref *transform now to avoid it in loop */ | |
| 153 const uint8_t *otdata_r = &transform->output_table_r->data[0]; | |
| 154 const uint8_t *otdata_g = &transform->output_table_g->data[0]; | |
| 155 const uint8_t *otdata_b = &transform->output_table_b->data[0]; | |
| 156 | |
| 157 /* input matrix values never change */ | |
| 158 const __m128 mat0 = _mm_load_ps(mat[0]); | |
| 159 const __m128 mat1 = _mm_load_ps(mat[1]); | |
| 160 const __m128 mat2 = _mm_load_ps(mat[2]); | |
| 161 | |
| 162 /* these values don't change, either */ | |
| 163 const __m128 max = _mm_load_ps(clampMaxValueX4); | |
| 164 const __m128 min = _mm_setzero_ps(); | |
| 165 const __m128 scale = _mm_load_ps(floatScaleX4); | |
| 166 | |
| 167 /* working variables */ | |
| 168 __m128 vec_r, vec_g, vec_b, result; | |
| 169 unsigned char alpha; | |
| 170 | |
| 171 /* CYA */ | |
| 172 if (!length) | |
| 173 return; | |
| 174 | |
| 175 /* one pixel is handled outside of the loop */ | |
| 176 length--; | |
| 177 | |
| 178 /* setup for transforming 1st pixel */ | |
| 179 vec_r = _mm_load_ss(&igtbl_r[src[0]]); | |
| 180 vec_g = _mm_load_ss(&igtbl_g[src[1]]); | |
| 181 vec_b = _mm_load_ss(&igtbl_b[src[2]]); | |
| 182 alpha = src[3]; | |
| 183 src += 4; | |
| 184 | |
| 185 /* transform all but final pixel */ | |
| 186 | |
| 187 for (i=0; i<length; i++) | |
| 188 { | |
| 189 /* position values from gamma tables */ | |
| 190 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); | |
| 191 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); | |
| 192 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); | |
| 193 | |
| 194 /* gamma * matrix */ | |
| 195 vec_r = _mm_mul_ps(vec_r, mat0); | |
| 196 vec_g = _mm_mul_ps(vec_g, mat1); | |
| 197 vec_b = _mm_mul_ps(vec_b, mat2); | |
| 198 | |
| 199 /* store alpha for this pixel; load alpha for next */ | |
| 200 dest[3] = alpha; | |
| 201 alpha = src[3]; | |
| 202 | |
| 203 /* crunch, crunch, crunch */ | |
| 204 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); | |
| 205 vec_r = _mm_max_ps(min, vec_r); | |
| 206 vec_r = _mm_min_ps(max, vec_r); | |
| 207 result = _mm_mul_ps(vec_r, scale); | |
| 208 | |
| 209 /* store calc'd output tables indices */ | |
| 210 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); | |
| 211 result = _mm_movehl_ps(result, result); | |
| 212 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); | |
| 213 | |
| 214 /* load gamma values for next loop while store completes */ | |
| 215 vec_r = _mm_load_ss(&igtbl_r[src[0]]); | |
| 216 vec_g = _mm_load_ss(&igtbl_g[src[1]]); | |
| 217 vec_b = _mm_load_ss(&igtbl_b[src[2]]); | |
| 218 src += 4; | |
| 219 | |
| 220 /* use calc'd indices to output RGB values */ | |
| 221 dest[0] = otdata_r[output[0]]; | |
| 222 dest[1] = otdata_g[output[1]]; | |
| 223 dest[2] = otdata_b[output[2]]; | |
| 224 dest += 4; | |
| 225 } | |
| 226 | |
| 227 /* handle final (maybe only) pixel */ | |
| 228 | |
| 229 vec_r = _mm_shuffle_ps(vec_r, vec_r, 0); | |
| 230 vec_g = _mm_shuffle_ps(vec_g, vec_g, 0); | |
| 231 vec_b = _mm_shuffle_ps(vec_b, vec_b, 0); | |
| 232 | |
| 233 vec_r = _mm_mul_ps(vec_r, mat0); | |
| 234 vec_g = _mm_mul_ps(vec_g, mat1); | |
| 235 vec_b = _mm_mul_ps(vec_b, mat2); | |
| 236 | |
| 237 dest[3] = alpha; | |
| 238 | |
| 239 vec_r = _mm_add_ps(vec_r, _mm_add_ps(vec_g, vec_b)); | |
| 240 vec_r = _mm_max_ps(min, vec_r); | |
| 241 vec_r = _mm_min_ps(max, vec_r); | |
| 242 result = _mm_mul_ps(vec_r, scale); | |
| 243 | |
| 244 *((__m64 *)&output[0]) = _mm_cvtps_pi32(result); | |
| 245 result = _mm_movehl_ps(result, result); | |
| 246 *((__m64 *)&output[2]) = _mm_cvtps_pi32(result); | |
| 247 | |
| 248 dest[0] = otdata_r[output[0]]; | |
| 249 dest[1] = otdata_g[output[1]]; | |
| 250 dest[2] = otdata_b[output[2]]; | |
| 251 | |
| 252 _mm_empty(); | |
| 253 } | |
| OLD | NEW |