Index: src/double.h |
=================================================================== |
--- src/double.h (revision 4091) |
+++ src/double.h (working copy) |
@@ -1,169 +0,0 @@ |
-// Copyright 2010 the V8 project authors. All rights reserved. |
-// Redistribution and use in source and binary forms, with or without |
-// modification, are permitted provided that the following conditions are |
-// met: |
-// |
-// * Redistributions of source code must retain the above copyright |
-// notice, this list of conditions and the following disclaimer. |
-// * Redistributions in binary form must reproduce the above |
-// copyright notice, this list of conditions and the following |
-// disclaimer in the documentation and/or other materials provided |
-// with the distribution. |
-// * Neither the name of Google Inc. nor the names of its |
-// contributors may be used to endorse or promote products derived |
-// from this software without specific prior written permission. |
-// |
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
- |
-#ifndef V8_DOUBLE_H_ |
-#define V8_DOUBLE_H_ |
- |
-#include "diy_fp.h" |
- |
-namespace v8 { |
-namespace internal { |
- |
-// We assume that doubles and uint64_t have the same endianness. |
-static uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); } |
-static double uint64_to_double(uint64_t d64) { return bit_cast<double>(d64); } |
- |
-// Helper functions for doubles. |
-class Double { |
- public: |
- static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000); |
- static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000); |
- static const uint64_t kSignificandMask = |
- V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); |
- static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000); |
- |
- Double() : d64_(0.0) {} |
- explicit Double(double d) : d64_(double_to_uint64(d)) {} |
- explicit Double(uint64_t d64) : d64_(d64) {} |
- |
- DiyFp AsDiyFp() const { |
- ASSERT(!IsSpecial()); |
- return DiyFp(Significand(), Exponent()); |
- } |
- |
- // this->Significand() must not be 0. |
- DiyFp AsNormalizedDiyFp() const { |
- uint64_t f = Significand(); |
- int e = Exponent(); |
- |
- ASSERT(f != 0); |
- |
- // The current double could be a denormal. |
- while ((f & kHiddenBit) == 0) { |
- f <<= 1; |
- e--; |
- } |
- // Do the final shifts in one go. Don't forget the hidden bit (the '-1'). |
- f <<= DiyFp::kSignificandSize - kSignificandSize - 1; |
- e -= DiyFp::kSignificandSize - kSignificandSize - 1; |
- return DiyFp(f, e); |
- } |
- |
- // Returns the double's bit as uint64. |
- uint64_t AsUint64() const { |
- return d64_; |
- } |
- |
- int Exponent() const { |
- if (IsDenormal()) return kDenormalExponent; |
- |
- uint64_t d64 = AsUint64(); |
- int biased_e = (d64 & kExponentMask) >> kSignificandSize; |
- return biased_e - kExponentBias; |
- } |
- |
- uint64_t Significand() const { |
- uint64_t d64 = AsUint64(); |
- uint64_t significand = d64 & kSignificandMask; |
- if (!IsDenormal()) { |
- return significand + kHiddenBit; |
- } else { |
- return significand; |
- } |
- } |
- |
- // Returns true if the double is a denormal. |
- bool IsDenormal() const { |
- uint64_t d64 = AsUint64(); |
- return (d64 & kExponentMask) == 0; |
- } |
- |
- // We consider denormals not to be special. |
- // Hence only Infinity and NaN are special. |
- bool IsSpecial() const { |
- uint64_t d64 = AsUint64(); |
- return (d64 & kExponentMask) == kExponentMask; |
- } |
- |
- bool IsNan() const { |
- uint64_t d64 = AsUint64(); |
- return ((d64 & kExponentMask) == kExponentMask) && |
- ((d64 & kSignificandMask) != 0); |
- } |
- |
- |
- bool IsInfinite() const { |
- uint64_t d64 = AsUint64(); |
- return ((d64 & kExponentMask) == kExponentMask) && |
- ((d64 & kSignificandMask) == 0); |
- } |
- |
- |
- int Sign() const { |
- uint64_t d64 = AsUint64(); |
- return (d64 & kSignMask) == 0? 1: -1; |
- } |
- |
- |
- // Returns the two boundaries of this. |
- // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
- // exponent as m_plus. |
- void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
- DiyFp v = this->AsDiyFp(); |
- bool significand_is_zero = (v.f() == kHiddenBit); |
- DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); |
- DiyFp m_minus; |
- if (significand_is_zero && v.e() != kDenormalExponent) { |
- // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. |
- // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
- // at a distance of 1e8. |
- // The only exception is for the smallest normal: the largest denormal is |
- // at the same distance as its successor. |
- // Note: denormals have the same exponent as the smallest normals. |
- m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
- } else { |
- m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
- } |
- m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
- m_minus.set_e(m_plus.e()); |
- *out_m_plus = m_plus; |
- *out_m_minus = m_minus; |
- } |
- |
- double value() const { return uint64_to_double(d64_); } |
- |
- private: |
- static const int kSignificandSize = 52; // Excludes the hidden bit. |
- static const int kExponentBias = 0x3FF + kSignificandSize; |
- static const int kDenormalExponent = -kExponentBias + 1; |
- |
- uint64_t d64_; |
-}; |
- |
-} } // namespace v8::internal |
- |
-#endif // V8_DOUBLE_H_ |