| OLD | NEW |
| (Empty) |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #include "v8.h" | |
| 29 | |
| 30 #include "grisu3.h" | |
| 31 | |
| 32 #include "cached_powers.h" | |
| 33 #include "diy_fp.h" | |
| 34 #include "double.h" | |
| 35 | |
| 36 namespace v8 { | |
| 37 namespace internal { | |
| 38 | |
| 39 template <int alpha = -60, int gamma = -32> | |
| 40 class Grisu3 { | |
| 41 public: | |
| 42 // Provides a decimal representation of v. | |
| 43 // Returns true if it succeeds, otherwise the result can not be trusted. | |
| 44 // There will be *length digits inside the buffer (not null-terminated). | |
| 45 // If the function returns true then | |
| 46 // v == (double) (buffer * 10^decimal_exponent). | |
| 47 // The digits in the buffer are the shortest representation possible: no | |
| 48 // 0.099999999999 instead of 0.1. | |
| 49 // The last digit will be closest to the actual v. That is, even if several | |
| 50 // digits might correctly yield 'v' when read again, the closest will be | |
| 51 // computed. | |
| 52 static bool grisu3(double v, | |
| 53 char* buffer, int* length, int* decimal_exponent); | |
| 54 | |
| 55 private: | |
| 56 // Rounds the buffer according to the rest. | |
| 57 // If there is too much imprecision to round then false is returned. | |
| 58 // Similarily false is returned when the buffer is not within Delta. | |
| 59 static bool RoundWeed(char* buffer, int len, uint64_t wp_W, uint64_t Delta, | |
| 60 uint64_t rest, uint64_t ten_kappa, uint64_t ulp); | |
| 61 // Dispatches to the a specialized digit-generation routine. The chosen | |
| 62 // routine depends on w.e (which in turn depends on alpha and gamma). | |
| 63 // Currently there is only one digit-generation routine, but it would be easy | |
| 64 // to add others. | |
| 65 static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, | |
| 66 char* buffer, int* len, int* kappa); | |
| 67 // Generates w's digits. The result is the shortest in the interval low-high. | |
| 68 // All DiyFp are assumed to be imprecise and this function takes this | |
| 69 // imprecision into account. If the function cannot compute the best | |
| 70 // representation (due to the imprecision) then false is returned. | |
| 71 static bool DigitGen_m60_m32(DiyFp low, DiyFp w, DiyFp high, | |
| 72 char* buffer, int* length, int* kappa); | |
| 73 }; | |
| 74 | |
| 75 | |
| 76 template<int alpha, int gamma> | |
| 77 bool Grisu3<alpha, gamma>::grisu3( | |
| 78 double v, char* buffer, int* length, int* decimal_exponent) { | |
| 79 DiyFp w = Double(v).AsNormalizedDiyFp(); | |
| 80 // boundary_minus and boundary_plus are the boundaries between v and its | |
| 81 // neighbors. Any number strictly between boundary_minus and boundary_plus | |
| 82 // will round to v when read as double. | |
| 83 // Grisu3 will never output representations that lie exactly on a boundary. | |
| 84 DiyFp boundary_minus, boundary_plus; | |
| 85 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); | |
| 86 ASSERT(boundary_plus.e() == w.e()); | |
| 87 DiyFp ten_mk; // Cached power of ten: 10^-k | |
| 88 int mk; // -k | |
| 89 GetCachedPower(w.e() + DiyFp::kSignificandSize, alpha, gamma, &mk, &ten_mk); | |
| 90 ASSERT(alpha <= w.e() + ten_mk.e() + DiyFp::kSignificandSize && | |
| 91 gamma >= w.e() + ten_mk.e() + DiyFp::kSignificandSize); | |
| 92 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a | |
| 93 // 64 bit significand and ten_mk is thus only precise up to 64 bits. | |
| 94 | |
| 95 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated | |
| 96 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now | |
| 97 // off by a small amount. | |
| 98 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. | |
| 99 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then | |
| 100 // (f-1) * 2^e < w*10^k < (f+1) * 2^e | |
| 101 DiyFp scaled_w = DiyFp::Times(w, ten_mk); | |
| 102 ASSERT(scaled_w.e() == | |
| 103 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); | |
| 104 // In theory it would be possible to avoid some recomputations by computing | |
| 105 // the difference between w and boundary_minus/plus (a power of 2) and to | |
| 106 // compute scaled_boundary_minus/plus by subtracting/adding from | |
| 107 // scaled_w. However the code becomes much less readable and the speed | |
| 108 // enhancements are not terriffic. | |
| 109 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); | |
| 110 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); | |
| 111 | |
| 112 // DigitGen will generate the digits of scaled_w. Therefore we have | |
| 113 // v == (double) (scaled_w * 10^-mk). | |
| 114 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an | |
| 115 // integer than it will be updated. For instance if scaled_w == 1.23 then | |
| 116 // the buffer will be filled with "123" und the decimal_exponent will be | |
| 117 // decreased by 2. | |
| 118 int kappa; | |
| 119 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, | |
| 120 buffer, length, &kappa); | |
| 121 *decimal_exponent = -mk + kappa; | |
| 122 return result; | |
| 123 } | |
| 124 | |
| 125 // Generates the digits of input number w. | |
| 126 // w is a floating-point number (DiyFp), consisting of a significand and an | |
| 127 // exponent. Its exponent is bounded by alpha and gamma. Typically alpha >= -63 | |
| 128 // and gamma <= 3. | |
| 129 // Returns false if it fails, in which case the generated digits in the buffer | |
| 130 // should not be used. | |
| 131 // Preconditions: | |
| 132 // * low, w and high are correct up to 1 ulp (unit in the last place). That | |
| 133 // is, their error must be less that a unit of their last digits. | |
| 134 // * low.e() == w.e() == high.e() | |
| 135 // * low < w < high, and taking into account their error: low~ <= high~ | |
| 136 // * alpha <= w.e() <= gamma | |
| 137 // Postconditions: returns false if procedure fails. | |
| 138 // otherwise: | |
| 139 // * buffer is not null-terminated, but len contains the number of digits. | |
| 140 // * buffer contains the shortest possible decimal digit-sequence | |
| 141 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the | |
| 142 // correct values of low and high (without their error). | |
| 143 // * if more than one decimal representation gives the minimal number of | |
| 144 // decimal digits then the one closest to W (where W is the correct value | |
| 145 // of w) is chosen. | |
| 146 // Remark: this procedure takes into account the imprecision of its input | |
| 147 // numbers. If the precision is not enough to guarantee all the postconditions | |
| 148 // then false is returned. This usually happens rarely (~0.5%). | |
| 149 template<int alpha, int gamma> | |
| 150 bool Grisu3<alpha, gamma>::DigitGen( | |
| 151 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* len, int* kappa) { | |
| 152 ASSERT(low.e() == w.e() && w.e() == high.e()); | |
| 153 ASSERT(low.f() + 1 <= high.f() - 1); | |
| 154 ASSERT(alpha <= w.e() && w.e() <= gamma); | |
| 155 // The following tests use alpha and gamma to avoid unnecessary dynamic tests. | |
| 156 if ((alpha >= -60 && gamma <= -32) || // -60 <= w.e() <= -32 | |
| 157 (alpha <= -32 && gamma >= -60 && // Alpha/gamma overlaps -60/-32 region. | |
| 158 -60 <= w.e() && w.e() <= -32)) { | |
| 159 return DigitGen_m60_m32(low, w, high, buffer, len, kappa); | |
| 160 } else { | |
| 161 // A simple adaption of the special case -60/-32 would allow greater ranges | |
| 162 // of alpha/gamma and thus reduce the number of precomputed cached powers of | |
| 163 // ten. | |
| 164 UNIMPLEMENTED(); | |
| 165 return false; | |
| 166 } | |
| 167 } | |
| 168 | |
| 169 static const uint32_t kTen4 = 10000; | |
| 170 static const uint32_t kTen5 = 100000; | |
| 171 static const uint32_t kTen6 = 1000000; | |
| 172 static const uint32_t kTen7 = 10000000; | |
| 173 static const uint32_t kTen8 = 100000000; | |
| 174 static const uint32_t kTen9 = 1000000000; | |
| 175 | |
| 176 // Returns the biggest power of ten that is <= than the given number. We | |
| 177 // furthermore receive the maximum number of bits 'number' has. | |
| 178 // If number_bits == 0 then 0^-1 is returned | |
| 179 // The number of bits must be <= 32. | |
| 180 static void BiggestPowerTen(uint32_t number, int number_bits, | |
| 181 uint32_t* power, int* exponent) { | |
| 182 switch (number_bits) { | |
| 183 case 32: | |
| 184 case 31: | |
| 185 case 30: | |
| 186 if (kTen9 <= number) { | |
| 187 *power = kTen9; | |
| 188 *exponent = 9; | |
| 189 break; | |
| 190 } // else fallthrough | |
| 191 case 29: | |
| 192 case 28: | |
| 193 case 27: | |
| 194 if (kTen8 <= number) { | |
| 195 *power = kTen8; | |
| 196 *exponent = 8; | |
| 197 break; | |
| 198 } // else fallthrough | |
| 199 case 26: | |
| 200 case 25: | |
| 201 case 24: | |
| 202 if (kTen7 <= number) { | |
| 203 *power = kTen7; | |
| 204 *exponent = 7; | |
| 205 break; | |
| 206 } // else fallthrough | |
| 207 case 23: | |
| 208 case 22: | |
| 209 case 21: | |
| 210 case 20: | |
| 211 if (kTen6 <= number) { | |
| 212 *power = kTen6; | |
| 213 *exponent = 6; | |
| 214 break; | |
| 215 } // else fallthrough | |
| 216 case 19: | |
| 217 case 18: | |
| 218 case 17: | |
| 219 if (kTen5 <= number) { | |
| 220 *power = kTen5; | |
| 221 *exponent = 5; | |
| 222 break; | |
| 223 } // else fallthrough | |
| 224 case 16: | |
| 225 case 15: | |
| 226 case 14: | |
| 227 if (kTen4 <= number) { | |
| 228 *power = kTen4; | |
| 229 *exponent = 4; | |
| 230 break; | |
| 231 } // else fallthrough | |
| 232 case 13: | |
| 233 case 12: | |
| 234 case 11: | |
| 235 case 10: | |
| 236 if (1000 <= number) { | |
| 237 *power = 1000; | |
| 238 *exponent = 3; | |
| 239 break; | |
| 240 } // else fallthrough | |
| 241 case 9: | |
| 242 case 8: | |
| 243 case 7: | |
| 244 if (100 <= number) { | |
| 245 *power = 100; | |
| 246 *exponent = 2; | |
| 247 break; | |
| 248 } // else fallthrough | |
| 249 case 6: | |
| 250 case 5: | |
| 251 case 4: | |
| 252 if (10 <= number) { | |
| 253 *power = 10; | |
| 254 *exponent = 1; | |
| 255 break; | |
| 256 } // else fallthrough | |
| 257 case 3: | |
| 258 case 2: | |
| 259 case 1: | |
| 260 if (1 <= number) { | |
| 261 *power = 1; | |
| 262 *exponent = 0; | |
| 263 break; | |
| 264 } // else fallthrough | |
| 265 case 0: | |
| 266 *power = 0; | |
| 267 *exponent = -1; | |
| 268 break; | |
| 269 default: | |
| 270 // Following assignments are here to silence compiler warnings. | |
| 271 *power = 0; | |
| 272 *exponent = 0; | |
| 273 UNREACHABLE(); | |
| 274 } | |
| 275 } | |
| 276 | |
| 277 | |
| 278 // Same comments as for DigitGen but with additional precondition: | |
| 279 // -60 <= w.e() <= -32 | |
| 280 // | |
| 281 // Say, for the sake of example, that | |
| 282 // w.e() == -48, and w.f() == 0x1234567890abcdef | |
| 283 // w's value can be computed by w.f() * 2^w.e() | |
| 284 // We can obtain w's integral digits by simply shifting w.f() by -w.e(). | |
| 285 // -> w's integral part is 0x1234 | |
| 286 // w's fractional part is therefore 0x567890abcdef. | |
| 287 // Printing w's integral part is easy (simply print 0x1234 in decimal). | |
| 288 // In order to print its fraction we repeatedly multiply the fraction by 10 and | |
| 289 // get each digit. Example the first digit after the comma would be computed by | |
| 290 // (0x567890abcdef * 10) >> 48. -> 3 | |
| 291 // The whole thing becomes slightly more complicated because we want to stop | |
| 292 // once we have enough digits. That is, once the digits inside the buffer | |
| 293 // represent 'w' we can stop. Everything inside the interval low - high | |
| 294 // represents w. However we have to pay attention to low, high and w's | |
| 295 // imprecision. | |
| 296 template<int alpha, int gamma> | |
| 297 bool Grisu3<alpha, gamma>::DigitGen_m60_m32( | |
| 298 DiyFp low, DiyFp w, DiyFp high, char* buffer, int* length, int* kappa) { | |
| 299 // low, w and high are imprecise, but by less than one ulp (unit in the last | |
| 300 // place). | |
| 301 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that | |
| 302 // the new numbers are outside of the interval we want the final | |
| 303 // representation to lie in. | |
| 304 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield | |
| 305 // numbers that are certain to lie in the interval. We will use this fact | |
| 306 // later on. | |
| 307 // We will now start by generating the digits within the uncertain | |
| 308 // interval. Later we will weed out representations that lie outside the safe | |
| 309 // interval and thus _might_ lie outside the correct interval. | |
| 310 uint64_t unit = 1; | |
| 311 DiyFp too_low = DiyFp(low.f() - unit, low.e()); | |
| 312 DiyFp too_high = DiyFp(high.f() + unit, high.e()); | |
| 313 // too_low and too_high are guaranteed to lie outside the interval we want the | |
| 314 // generated number in. | |
| 315 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); | |
| 316 // We now cut the input number into two parts: the integral digits and the | |
| 317 // fractionals. We will not write any decimal separator though, but adapt | |
| 318 // kappa instead. | |
| 319 // Reminder: we are currently computing the digits (stored inside the buffer) | |
| 320 // such that: too_low < buffer * 10^kappa < too_high | |
| 321 // We use too_high for the digit_generation and stop as soon as possible. | |
| 322 // If we stop early we effectively round down. | |
| 323 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); | |
| 324 uint32_t integrals = too_high.f() >> -one.e(); // Division by one. | |
| 325 uint64_t fractionals = too_high.f() & (one.f() - 1); // Modulo by one. | |
| 326 uint32_t divider; | |
| 327 int divider_exponent; | |
| 328 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), | |
| 329 ÷r, ÷r_exponent); | |
| 330 *kappa = divider_exponent + 1; | |
| 331 *length = 0; | |
| 332 // Loop invariant: buffer = too_high / 10^kappa (integer division) | |
| 333 // The invariant holds for the first iteration: kappa has been initialized | |
| 334 // with the divider exponent + 1. And the divider is the biggest power of ten | |
| 335 // that fits into the bits that had been reserved for the integrals. | |
| 336 while (*kappa > 0) { | |
| 337 int digit = integrals / divider; | |
| 338 buffer[*length] = '0' + digit; | |
| 339 (*length)++; | |
| 340 integrals %= divider; | |
| 341 (*kappa)--; | |
| 342 // Note that kappa now equals the exponent of the divider and that the | |
| 343 // invariant thus holds again. | |
| 344 uint64_t rest = | |
| 345 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; | |
| 346 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) | |
| 347 // Reminder: unsafe_interval.e() == one.e() | |
| 348 if (rest < unsafe_interval.f()) { | |
| 349 // Rounding down (by not emitting the remaining digits) yields a number | |
| 350 // that lies within the unsafe interval. | |
| 351 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), | |
| 352 unsafe_interval.f(), rest, | |
| 353 static_cast<uint64_t>(divider) << -one.e(), unit); | |
| 354 } | |
| 355 divider /= 10; | |
| 356 } | |
| 357 | |
| 358 // The integrals have been generated. We are at the point of the decimal | |
| 359 // separator. In the following loop we simply multiply the remaining digits by | |
| 360 // 10 and divide by one. We just need to pay attention to multiply associated | |
| 361 // data (like the interval or 'unit'), too. | |
| 362 // Instead of multiplying by 10 we multiply by 5 (cheaper operation) and | |
| 363 // increase its (imaginary) exponent. At the same time we decrease the | |
| 364 // divider's (one's) exponent and shift its significand. | |
| 365 // Basically, if fractionals was a DiyFp (with fractionals.e == one.e): | |
| 366 // fractionals.f *= 10; | |
| 367 // fractionals.f >>= 1; fractionals.e++; // value remains unchanged. | |
| 368 // one.f >>= 1; one.e++; // value remains unchanged. | |
| 369 // and we have again fractionals.e == one.e which allows us to divide | |
| 370 // fractionals.f() by one.f() | |
| 371 // We simply combine the *= 10 and the >>= 1. | |
| 372 while (true) { | |
| 373 fractionals *= 5; | |
| 374 unit *= 5; | |
| 375 unsafe_interval.set_f(unsafe_interval.f() * 5); | |
| 376 unsafe_interval.set_e(unsafe_interval.e() + 1); // Will be optimized out. | |
| 377 one.set_f(one.f() >> 1); | |
| 378 one.set_e(one.e() + 1); | |
| 379 int digit = fractionals >> -one.e(); // Integer division by one. | |
| 380 buffer[*length] = '0' + digit; | |
| 381 (*length)++; | |
| 382 fractionals &= one.f() - 1; // Modulo by one. | |
| 383 (*kappa)--; | |
| 384 if (fractionals < unsafe_interval.f()) { | |
| 385 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, | |
| 386 unsafe_interval.f(), fractionals, one.f(), unit); | |
| 387 } | |
| 388 } | |
| 389 } | |
| 390 | |
| 391 | |
| 392 // Rounds the given generated digits in the buffer and weeds out generated | |
| 393 // digits that are not in the safe interval, or where we cannot find a rounded | |
| 394 // representation. | |
| 395 // Input: * buffer containing the digits of too_high / 10^kappa | |
| 396 // * the buffer's length | |
| 397 // * distance_too_high_w == (too_high - w).f() * unit | |
| 398 // * unsafe_interval == (too_high - too_low).f() * unit | |
| 399 // * rest = (too_high - buffer * 10^kappa).f() * unit | |
| 400 // * ten_kappa = 10^kappa * unit | |
| 401 // * unit = the common multiplier | |
| 402 // Output: returns true on success. | |
| 403 // Modifies the generated digits in the buffer to approach (round towards) w. | |
| 404 template<int alpha, int gamma> | |
| 405 bool Grisu3<alpha, gamma>::RoundWeed( | |
| 406 char* buffer, int length, uint64_t distance_too_high_w, | |
| 407 uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa, | |
| 408 uint64_t unit) { | |
| 409 uint64_t small_distance = distance_too_high_w - unit; | |
| 410 uint64_t big_distance = distance_too_high_w + unit; | |
| 411 // Let w- = too_high - big_distance, and | |
| 412 // w+ = too_high - small_distance. | |
| 413 // Note: w- < w < w+ | |
| 414 // | |
| 415 // The real w (* unit) must lie somewhere inside the interval | |
| 416 // ]w-; w+[ (often written as "(w-; w+)") | |
| 417 | |
| 418 // Basically the buffer currently contains a number in the unsafe interval | |
| 419 // ]too_low; too_high[ with too_low < w < too_high | |
| 420 // | |
| 421 // By generating the digits of too_high we got the biggest last digit. | |
| 422 // In the case that w+ < buffer < too_high we try to decrement the buffer. | |
| 423 // This way the buffer approaches (rounds towards) w. | |
| 424 // There are 3 conditions that stop the decrementation process: | |
| 425 // 1) the buffer is already below w+ | |
| 426 // 2) decrementing the buffer would make it leave the unsafe interval | |
| 427 // 3) decrementing the buffer would yield a number below w+ and farther away | |
| 428 // than the current number. In other words: | |
| 429 // (buffer{-1} < w+) && w+ - buffer{-1} > buffer - w+ | |
| 430 // Instead of using the buffer directly we use its distance to too_high. | |
| 431 // Conceptually rest ~= too_high - buffer | |
| 432 while (rest < small_distance && // Negated condition 1 | |
| 433 unsafe_interval - rest >= ten_kappa && // Negated condition 2 | |
| 434 (rest + ten_kappa < small_distance || // buffer{-1} > w+ | |
| 435 small_distance - rest >= rest + ten_kappa - small_distance)) { | |
| 436 buffer[length - 1]--; | |
| 437 rest += ten_kappa; | |
| 438 } | |
| 439 | |
| 440 // We have approached w+ as much as possible. We now test if approaching w- | |
| 441 // would require changing the buffer. If yes, then we have two possible | |
| 442 // representations close to w, but we cannot decide which one is closer. | |
| 443 if (rest < big_distance && | |
| 444 unsafe_interval - rest >= ten_kappa && | |
| 445 (rest + ten_kappa < big_distance || | |
| 446 big_distance - rest > rest + ten_kappa - big_distance)) { | |
| 447 return false; | |
| 448 } | |
| 449 | |
| 450 // Weeding test. | |
| 451 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] | |
| 452 // Since too_low = too_high - unsafe_interval this is equivalent too | |
| 453 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] | |
| 454 // Conceptually we have: rest ~= too_high - buffer | |
| 455 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); | |
| 456 } | |
| 457 | |
| 458 | |
| 459 bool grisu3(double v, | |
| 460 char* buffer, int* sign, int* length, int* decimal_point) { | |
| 461 ASSERT(v != 0); | |
| 462 ASSERT(!Double(v).IsSpecial()); | |
| 463 | |
| 464 if (v < 0) { | |
| 465 v = -v; | |
| 466 *sign = 1; | |
| 467 } else { | |
| 468 *sign = 0; | |
| 469 } | |
| 470 int decimal_exponent; | |
| 471 bool result = Grisu3<-60, -32>::grisu3(v, buffer, length, &decimal_exponent); | |
| 472 *decimal_point = *length + decimal_exponent; | |
| 473 buffer[*length] = '\0'; | |
| 474 return result; | |
| 475 } | |
| 476 | |
| 477 } } // namespace v8::internal | |
| OLD | NEW |