| OLD | NEW |
| (Empty) |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #ifndef V8_DOUBLE_H_ | |
| 29 #define V8_DOUBLE_H_ | |
| 30 | |
| 31 #include "diy_fp.h" | |
| 32 | |
| 33 namespace v8 { | |
| 34 namespace internal { | |
| 35 | |
| 36 // We assume that doubles and uint64_t have the same endianness. | |
| 37 static uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); } | |
| 38 static double uint64_to_double(uint64_t d64) { return bit_cast<double>(d64); } | |
| 39 | |
| 40 // Helper functions for doubles. | |
| 41 class Double { | |
| 42 public: | |
| 43 static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000); | |
| 44 static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000); | |
| 45 static const uint64_t kSignificandMask = | |
| 46 V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); | |
| 47 static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000); | |
| 48 | |
| 49 Double() : d64_(0.0) {} | |
| 50 explicit Double(double d) : d64_(double_to_uint64(d)) {} | |
| 51 explicit Double(uint64_t d64) : d64_(d64) {} | |
| 52 | |
| 53 DiyFp AsDiyFp() const { | |
| 54 ASSERT(!IsSpecial()); | |
| 55 return DiyFp(Significand(), Exponent()); | |
| 56 } | |
| 57 | |
| 58 // this->Significand() must not be 0. | |
| 59 DiyFp AsNormalizedDiyFp() const { | |
| 60 uint64_t f = Significand(); | |
| 61 int e = Exponent(); | |
| 62 | |
| 63 ASSERT(f != 0); | |
| 64 | |
| 65 // The current double could be a denormal. | |
| 66 while ((f & kHiddenBit) == 0) { | |
| 67 f <<= 1; | |
| 68 e--; | |
| 69 } | |
| 70 // Do the final shifts in one go. Don't forget the hidden bit (the '-1'). | |
| 71 f <<= DiyFp::kSignificandSize - kSignificandSize - 1; | |
| 72 e -= DiyFp::kSignificandSize - kSignificandSize - 1; | |
| 73 return DiyFp(f, e); | |
| 74 } | |
| 75 | |
| 76 // Returns the double's bit as uint64. | |
| 77 uint64_t AsUint64() const { | |
| 78 return d64_; | |
| 79 } | |
| 80 | |
| 81 int Exponent() const { | |
| 82 if (IsDenormal()) return kDenormalExponent; | |
| 83 | |
| 84 uint64_t d64 = AsUint64(); | |
| 85 int biased_e = (d64 & kExponentMask) >> kSignificandSize; | |
| 86 return biased_e - kExponentBias; | |
| 87 } | |
| 88 | |
| 89 uint64_t Significand() const { | |
| 90 uint64_t d64 = AsUint64(); | |
| 91 uint64_t significand = d64 & kSignificandMask; | |
| 92 if (!IsDenormal()) { | |
| 93 return significand + kHiddenBit; | |
| 94 } else { | |
| 95 return significand; | |
| 96 } | |
| 97 } | |
| 98 | |
| 99 // Returns true if the double is a denormal. | |
| 100 bool IsDenormal() const { | |
| 101 uint64_t d64 = AsUint64(); | |
| 102 return (d64 & kExponentMask) == 0; | |
| 103 } | |
| 104 | |
| 105 // We consider denormals not to be special. | |
| 106 // Hence only Infinity and NaN are special. | |
| 107 bool IsSpecial() const { | |
| 108 uint64_t d64 = AsUint64(); | |
| 109 return (d64 & kExponentMask) == kExponentMask; | |
| 110 } | |
| 111 | |
| 112 bool IsNan() const { | |
| 113 uint64_t d64 = AsUint64(); | |
| 114 return ((d64 & kExponentMask) == kExponentMask) && | |
| 115 ((d64 & kSignificandMask) != 0); | |
| 116 } | |
| 117 | |
| 118 | |
| 119 bool IsInfinite() const { | |
| 120 uint64_t d64 = AsUint64(); | |
| 121 return ((d64 & kExponentMask) == kExponentMask) && | |
| 122 ((d64 & kSignificandMask) == 0); | |
| 123 } | |
| 124 | |
| 125 | |
| 126 int Sign() const { | |
| 127 uint64_t d64 = AsUint64(); | |
| 128 return (d64 & kSignMask) == 0? 1: -1; | |
| 129 } | |
| 130 | |
| 131 | |
| 132 // Returns the two boundaries of this. | |
| 133 // The bigger boundary (m_plus) is normalized. The lower boundary has the same | |
| 134 // exponent as m_plus. | |
| 135 void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { | |
| 136 DiyFp v = this->AsDiyFp(); | |
| 137 bool significand_is_zero = (v.f() == kHiddenBit); | |
| 138 DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); | |
| 139 DiyFp m_minus; | |
| 140 if (significand_is_zero && v.e() != kDenormalExponent) { | |
| 141 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. | |
| 142 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but | |
| 143 // at a distance of 1e8. | |
| 144 // The only exception is for the smallest normal: the largest denormal is | |
| 145 // at the same distance as its successor. | |
| 146 // Note: denormals have the same exponent as the smallest normals. | |
| 147 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); | |
| 148 } else { | |
| 149 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); | |
| 150 } | |
| 151 m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); | |
| 152 m_minus.set_e(m_plus.e()); | |
| 153 *out_m_plus = m_plus; | |
| 154 *out_m_minus = m_minus; | |
| 155 } | |
| 156 | |
| 157 double value() const { return uint64_to_double(d64_); } | |
| 158 | |
| 159 private: | |
| 160 static const int kSignificandSize = 52; // Excludes the hidden bit. | |
| 161 static const int kExponentBias = 0x3FF + kSignificandSize; | |
| 162 static const int kDenormalExponent = -kExponentBias + 1; | |
| 163 | |
| 164 uint64_t d64_; | |
| 165 }; | |
| 166 | |
| 167 } } // namespace v8::internal | |
| 168 | |
| 169 #endif // V8_DOUBLE_H_ | |
| OLD | NEW |