OLD | NEW |
1 // Copyright 2006-2008 the V8 project authors. All rights reserved. | 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 427 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
438 Object* obj = code_space_->FindObject(a); | 438 Object* obj = code_space_->FindObject(a); |
439 if (obj->IsFailure()) { | 439 if (obj->IsFailure()) { |
440 obj = lo_space_->FindObject(a); | 440 obj = lo_space_->FindObject(a); |
441 } | 441 } |
442 ASSERT(!obj->IsFailure()); | 442 ASSERT(!obj->IsFailure()); |
443 return obj; | 443 return obj; |
444 } | 444 } |
445 | 445 |
446 | 446 |
447 // Helper class for copying HeapObjects | 447 // Helper class for copying HeapObjects |
448 class CopyVisitor: public ObjectVisitor { | 448 class ScavengeVisitor: public ObjectVisitor { |
449 public: | 449 public: |
450 | 450 |
451 void VisitPointer(Object** p) { | 451 void VisitPointer(Object** p) { ScavengePointer(p); } |
452 CopyObject(p); | |
453 } | |
454 | 452 |
455 void VisitPointers(Object** start, Object** end) { | 453 void VisitPointers(Object** start, Object** end) { |
456 // Copy all HeapObject pointers in [start, end) | 454 // Copy all HeapObject pointers in [start, end) |
457 for (Object** p = start; p < end; p++) CopyObject(p); | 455 for (Object** p = start; p < end; p++) ScavengePointer(p); |
458 } | 456 } |
459 | 457 |
460 private: | 458 private: |
461 void CopyObject(Object** p) { | 459 void ScavengePointer(Object** p) { |
462 if (!Heap::InNewSpace(*p)) return; | 460 Object* object = *p; |
463 Heap::CopyObject(reinterpret_cast<HeapObject**>(p)); | 461 if (!Heap::InNewSpace(object)) return; |
| 462 Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p), |
| 463 reinterpret_cast<HeapObject*>(object)); |
464 } | 464 } |
465 }; | 465 }; |
466 | 466 |
467 | 467 |
468 // Shared state read by the scavenge collector and set by CopyObject. | 468 // Shared state read by the scavenge collector and set by ScavengeObject. |
469 static Address promoted_top = NULL; | 469 static Address promoted_top = NULL; |
470 | 470 |
471 | 471 |
472 #ifdef DEBUG | 472 #ifdef DEBUG |
473 // Visitor class to verify pointers in code or data space do not point into | 473 // Visitor class to verify pointers in code or data space do not point into |
474 // new space. | 474 // new space. |
475 class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor { | 475 class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor { |
476 public: | 476 public: |
477 void VisitPointers(Object** start, Object**end) { | 477 void VisitPointers(Object** start, Object**end) { |
478 for (Object** current = start; current < end; current++) { | 478 for (Object** current = start; current < end; current++) { |
(...skipping 56 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
535 // There is guaranteed to be enough room at the top of the to space for the | 535 // There is guaranteed to be enough room at the top of the to space for the |
536 // addresses of promoted objects: every object promoted frees up its size in | 536 // addresses of promoted objects: every object promoted frees up its size in |
537 // bytes from the top of the new space, and objects are at least one pointer | 537 // bytes from the top of the new space, and objects are at least one pointer |
538 // in size. Using the new space to record promoted addresses makes the | 538 // in size. Using the new space to record promoted addresses makes the |
539 // scavenge collector agnostic to the allocation strategy (eg, linear or | 539 // scavenge collector agnostic to the allocation strategy (eg, linear or |
540 // free-list) used in old space. | 540 // free-list) used in old space. |
541 Address new_mark = new_space_.ToSpaceLow(); | 541 Address new_mark = new_space_.ToSpaceLow(); |
542 Address promoted_mark = new_space_.ToSpaceHigh(); | 542 Address promoted_mark = new_space_.ToSpaceHigh(); |
543 promoted_top = new_space_.ToSpaceHigh(); | 543 promoted_top = new_space_.ToSpaceHigh(); |
544 | 544 |
545 CopyVisitor copy_visitor; | 545 ScavengeVisitor scavenge_visitor; |
546 // Copy roots. | 546 // Copy roots. |
547 IterateRoots(©_visitor); | 547 IterateRoots(&scavenge_visitor); |
548 | 548 |
549 // Copy objects reachable from the old generation. By definition, there | 549 // Copy objects reachable from the old generation. By definition, there |
550 // are no intergenerational pointers in code or data spaces. | 550 // are no intergenerational pointers in code or data spaces. |
551 IterateRSet(old_pointer_space_, &CopyObject); | 551 IterateRSet(old_pointer_space_, &ScavengePointer); |
552 IterateRSet(map_space_, &CopyObject); | 552 IterateRSet(map_space_, &ScavengePointer); |
553 lo_space_->IterateRSet(&CopyObject); | 553 lo_space_->IterateRSet(&ScavengePointer); |
554 | 554 |
555 bool has_processed_weak_pointers = false; | 555 bool has_processed_weak_pointers = false; |
556 | 556 |
557 while (true) { | 557 while (true) { |
558 ASSERT(new_mark <= new_space_.top()); | 558 ASSERT(new_mark <= new_space_.top()); |
559 ASSERT(promoted_mark >= promoted_top); | 559 ASSERT(promoted_mark >= promoted_top); |
560 | 560 |
561 // Copy objects reachable from newly copied objects. | 561 // Copy objects reachable from newly copied objects. |
562 while (new_mark < new_space_.top() || promoted_mark > promoted_top) { | 562 while (new_mark < new_space_.top() || promoted_mark > promoted_top) { |
563 // Sweep newly copied objects in the to space. The allocation pointer | 563 // Sweep newly copied objects in the to space. The allocation pointer |
564 // can change during sweeping. | 564 // can change during sweeping. |
565 Address previous_top = new_space_.top(); | 565 Address previous_top = new_space_.top(); |
566 SemiSpaceIterator new_it(new_space(), new_mark); | 566 SemiSpaceIterator new_it(new_space(), new_mark); |
567 while (new_it.has_next()) { | 567 while (new_it.has_next()) { |
568 new_it.next()->Iterate(©_visitor); | 568 new_it.next()->Iterate(&scavenge_visitor); |
569 } | 569 } |
570 new_mark = previous_top; | 570 new_mark = previous_top; |
571 | 571 |
572 // Sweep newly copied objects in the old space. The promotion 'top' | 572 // Sweep newly copied objects in the old space. The promotion 'top' |
573 // pointer could change during sweeping. | 573 // pointer could change during sweeping. |
574 previous_top = promoted_top; | 574 previous_top = promoted_top; |
575 for (Address current = promoted_mark - kPointerSize; | 575 for (Address current = promoted_mark - kPointerSize; |
576 current >= previous_top; | 576 current >= previous_top; |
577 current -= kPointerSize) { | 577 current -= kPointerSize) { |
578 HeapObject* object = HeapObject::cast(Memory::Object_at(current)); | 578 HeapObject* object = HeapObject::cast(Memory::Object_at(current)); |
579 object->Iterate(©_visitor); | 579 object->Iterate(&scavenge_visitor); |
580 UpdateRSet(object); | 580 UpdateRSet(object); |
581 } | 581 } |
582 promoted_mark = previous_top; | 582 promoted_mark = previous_top; |
583 } | 583 } |
584 | 584 |
585 if (has_processed_weak_pointers) break; // We are done. | 585 if (has_processed_weak_pointers) break; // We are done. |
586 // Copy objects reachable from weak pointers. | 586 // Copy objects reachable from weak pointers. |
587 GlobalHandles::IterateWeakRoots(©_visitor); | 587 GlobalHandles::IterateWeakRoots(&scavenge_visitor); |
588 has_processed_weak_pointers = true; | 588 has_processed_weak_pointers = true; |
589 } | 589 } |
590 | 590 |
591 // Set age mark. | 591 // Set age mark. |
592 new_space_.set_age_mark(new_mark); | 592 new_space_.set_age_mark(new_mark); |
593 | 593 |
594 LOG(ResourceEvent("scavenge", "end")); | 594 LOG(ResourceEvent("scavenge", "end")); |
595 | 595 |
596 gc_state_ = NOT_IN_GC; | 596 gc_state_ = NOT_IN_GC; |
597 } | 597 } |
(...skipping 153 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
751 | 751 |
752 // Update NewSpace stats if necessary. | 752 // Update NewSpace stats if necessary. |
753 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 753 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
754 RecordCopiedObject(target); | 754 RecordCopiedObject(target); |
755 #endif | 755 #endif |
756 | 756 |
757 return target; | 757 return target; |
758 } | 758 } |
759 | 759 |
760 | 760 |
761 void Heap::CopyObject(HeapObject** p) { | 761 // Inlined function. |
762 ASSERT(InFromSpace(*p)); | 762 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) { |
763 | 763 ASSERT(InFromSpace(object)); |
764 HeapObject* object = *p; | |
765 | 764 |
766 // We use the first word (where the map pointer usually is) of a heap | 765 // We use the first word (where the map pointer usually is) of a heap |
767 // object to record the forwarding pointer. A forwarding pointer can | 766 // object to record the forwarding pointer. A forwarding pointer can |
768 // point to an old space, the code space, or the to space of the new | 767 // point to an old space, the code space, or the to space of the new |
769 // generation. | 768 // generation. |
770 MapWord first_word = object->map_word(); | 769 MapWord first_word = object->map_word(); |
771 | 770 |
772 // If the first word is a forwarding address, the object has already been | 771 // If the first word is a forwarding address, the object has already been |
773 // copied. | 772 // copied. |
774 if (first_word.IsForwardingAddress()) { | 773 if (first_word.IsForwardingAddress()) { |
775 *p = first_word.ToForwardingAddress(); | 774 *p = first_word.ToForwardingAddress(); |
776 return; | 775 return; |
777 } | 776 } |
778 | 777 |
779 // Optimization: Bypass ConsString objects where the right-hand side is | 778 // Call the slow part of scavenge object. |
780 // Heap::empty_string(). We do not use object->IsConsString because we | 779 return ScavengeObjectSlow(p, object); |
781 // already know that object has the heap object tag. | 780 } |
782 InstanceType type = first_word.ToMap()->instance_type(); | 781 |
783 if (type < FIRST_NONSTRING_TYPE && | 782 static inline bool IsShortcutCandidate(HeapObject* object, Map* map) { |
784 String::cast(object)->representation_tag() == kConsStringTag && | 783 // A ConString object with Heap::empty_string() as the right side |
785 ConsString::cast(object)->second() == Heap::empty_string()) { | 784 // is a candidate for being shortcut by the scavenger. |
| 785 ASSERT(object->map() == map); |
| 786 return (map->instance_type() < FIRST_NONSTRING_TYPE) && |
| 787 (String::cast(object)->map_representation_tag(map) == kConsStringTag) && |
| 788 (ConsString::cast(object)->second() == Heap::empty_string()); |
| 789 } |
| 790 |
| 791 |
| 792 void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) { |
| 793 ASSERT(InFromSpace(object)); |
| 794 MapWord first_word = object->map_word(); |
| 795 ASSERT(!first_word.IsForwardingAddress()); |
| 796 |
| 797 // Optimization: Bypass flattened ConsString objects. |
| 798 if (IsShortcutCandidate(object, first_word.ToMap())) { |
786 object = HeapObject::cast(ConsString::cast(object)->first()); | 799 object = HeapObject::cast(ConsString::cast(object)->first()); |
787 *p = object; | 800 *p = object; |
788 // After patching *p we have to repeat the checks that object is in the | 801 // After patching *p we have to repeat the checks that object is in the |
789 // active semispace of the young generation and not already copied. | 802 // active semispace of the young generation and not already copied. |
790 if (!InNewSpace(object)) return; | 803 if (!InNewSpace(object)) return; |
791 first_word = object->map_word(); | 804 first_word = object->map_word(); |
792 if (first_word.IsForwardingAddress()) { | 805 if (first_word.IsForwardingAddress()) { |
793 *p = first_word.ToForwardingAddress(); | 806 *p = first_word.ToForwardingAddress(); |
794 return; | 807 return; |
795 } | 808 } |
796 type = first_word.ToMap()->instance_type(); | |
797 } | 809 } |
798 | 810 |
799 int object_size = object->SizeFromMap(first_word.ToMap()); | 811 int object_size = object->SizeFromMap(first_word.ToMap()); |
800 Object* result; | |
801 // If the object should be promoted, we try to copy it to old space. | 812 // If the object should be promoted, we try to copy it to old space. |
802 if (ShouldBePromoted(object->address(), object_size)) { | 813 if (ShouldBePromoted(object->address(), object_size)) { |
803 OldSpace* target_space = Heap::TargetSpace(object); | 814 OldSpace* target_space = Heap::TargetSpace(object); |
804 ASSERT(target_space == Heap::old_pointer_space_ || | 815 ASSERT(target_space == Heap::old_pointer_space_ || |
805 target_space == Heap::old_data_space_); | 816 target_space == Heap::old_data_space_); |
806 result = target_space->AllocateRaw(object_size); | 817 Object* result = target_space->AllocateRaw(object_size); |
807 | |
808 if (!result->IsFailure()) { | 818 if (!result->IsFailure()) { |
809 *p = MigrateObject(object, HeapObject::cast(result), object_size); | 819 *p = MigrateObject(object, HeapObject::cast(result), object_size); |
810 if (target_space == Heap::old_pointer_space_) { | 820 if (target_space == Heap::old_pointer_space_) { |
811 // Record the object's address at the top of the to space, to allow | 821 // Record the object's address at the top of the to space, to allow |
812 // it to be swept by the scavenger. | 822 // it to be swept by the scavenger. |
813 promoted_top -= kPointerSize; | 823 promoted_top -= kPointerSize; |
814 Memory::Object_at(promoted_top) = *p; | 824 Memory::Object_at(promoted_top) = *p; |
815 } else { | 825 } else { |
816 #ifdef DEBUG | 826 #ifdef DEBUG |
817 // Objects promoted to the data space should not have pointers to | 827 // Objects promoted to the data space should not have pointers to |
818 // new space. | 828 // new space. |
819 VerifyNonPointerSpacePointersVisitor v; | 829 VerifyNonPointerSpacePointersVisitor v; |
820 (*p)->Iterate(&v); | 830 (*p)->Iterate(&v); |
821 #endif | 831 #endif |
822 } | 832 } |
823 return; | 833 return; |
824 } | 834 } |
825 } | 835 } |
826 | 836 |
827 // The object should remain in new space or the old space allocation failed. | 837 // The object should remain in new space or the old space allocation failed. |
828 result = new_space_.AllocateRaw(object_size); | 838 Object* result = new_space_.AllocateRaw(object_size); |
829 // Failed allocation at this point is utterly unexpected. | 839 // Failed allocation at this point is utterly unexpected. |
830 ASSERT(!result->IsFailure()); | 840 ASSERT(!result->IsFailure()); |
831 *p = MigrateObject(object, HeapObject::cast(result), object_size); | 841 *p = MigrateObject(object, HeapObject::cast(result), object_size); |
832 } | 842 } |
833 | 843 |
834 | 844 |
| 845 void Heap::ScavengePointer(HeapObject** p) { |
| 846 ScavengeObject(p, *p); |
| 847 } |
| 848 |
| 849 |
835 Object* Heap::AllocatePartialMap(InstanceType instance_type, | 850 Object* Heap::AllocatePartialMap(InstanceType instance_type, |
836 int instance_size) { | 851 int instance_size) { |
837 Object* result = AllocateRawMap(Map::kSize); | 852 Object* result = AllocateRawMap(Map::kSize); |
838 if (result->IsFailure()) return result; | 853 if (result->IsFailure()) return result; |
839 | 854 |
840 // Map::cast cannot be used due to uninitialized map field. | 855 // Map::cast cannot be used due to uninitialized map field. |
841 reinterpret_cast<Map*>(result)->set_map(meta_map()); | 856 reinterpret_cast<Map*>(result)->set_map(meta_map()); |
842 reinterpret_cast<Map*>(result)->set_instance_type(instance_type); | 857 reinterpret_cast<Map*>(result)->set_instance_type(instance_type); |
843 reinterpret_cast<Map*>(result)->set_instance_size(instance_size); | 858 reinterpret_cast<Map*>(result)->set_instance_size(instance_size); |
844 reinterpret_cast<Map*>(result)->set_inobject_properties(0); | 859 reinterpret_cast<Map*>(result)->set_inobject_properties(0); |
(...skipping 2264 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3109 #ifdef DEBUG | 3124 #ifdef DEBUG |
3110 bool Heap::GarbageCollectionGreedyCheck() { | 3125 bool Heap::GarbageCollectionGreedyCheck() { |
3111 ASSERT(FLAG_gc_greedy); | 3126 ASSERT(FLAG_gc_greedy); |
3112 if (Bootstrapper::IsActive()) return true; | 3127 if (Bootstrapper::IsActive()) return true; |
3113 if (disallow_allocation_failure()) return true; | 3128 if (disallow_allocation_failure()) return true; |
3114 return CollectGarbage(0, NEW_SPACE); | 3129 return CollectGarbage(0, NEW_SPACE); |
3115 } | 3130 } |
3116 #endif | 3131 #endif |
3117 | 3132 |
3118 } } // namespace v8::internal | 3133 } } // namespace v8::internal |
OLD | NEW |