Index: src/spaces-inl.h |
=================================================================== |
--- src/spaces-inl.h (revision 9327) |
+++ src/spaces-inl.h (working copy) |
@@ -1,4 +1,4 @@ |
-// Copyright 2006-2010 the V8 project authors. All rights reserved. |
+// Copyright 2011 the V8 project authors. All rights reserved. |
// Redistribution and use in source and binary forms, with or without |
// modification, are permitted provided that the following conditions are |
// met: |
@@ -37,358 +37,216 @@ |
// ----------------------------------------------------------------------------- |
-// PageIterator |
+// Bitmap |
-bool PageIterator::has_next() { |
- return prev_page_ != stop_page_; |
+void Bitmap::Clear(MemoryChunk* chunk) { |
+ Bitmap* bitmap = chunk->markbits(); |
+ for (int i = 0; i < bitmap->CellsCount(); i++) bitmap->cells()[i] = 0; |
+ chunk->ResetLiveBytes(); |
} |
-Page* PageIterator::next() { |
- ASSERT(has_next()); |
- prev_page_ = (prev_page_ == NULL) |
- ? space_->first_page_ |
- : prev_page_->next_page(); |
- return prev_page_; |
-} |
- |
- |
// ----------------------------------------------------------------------------- |
-// Page |
+// PageIterator |
-Page* Page::next_page() { |
- return heap_->isolate()->memory_allocator()->GetNextPage(this); |
-} |
+PageIterator::PageIterator(PagedSpace* space) |
+ : space_(space), |
+ prev_page_(&space->anchor_), |
+ next_page_(prev_page_->next_page()) { } |
-Address Page::AllocationTop() { |
- PagedSpace* owner = heap_->isolate()->memory_allocator()->PageOwner(this); |
- return owner->PageAllocationTop(this); |
-} |
- |
-Address Page::AllocationWatermark() { |
- PagedSpace* owner = heap_->isolate()->memory_allocator()->PageOwner(this); |
- if (this == owner->AllocationTopPage()) { |
- return owner->top(); |
- } |
- return address() + AllocationWatermarkOffset(); |
+bool PageIterator::has_next() { |
+ return next_page_ != &space_->anchor_; |
} |
-uint32_t Page::AllocationWatermarkOffset() { |
- return static_cast<uint32_t>((flags_ & kAllocationWatermarkOffsetMask) >> |
- kAllocationWatermarkOffsetShift); |
+Page* PageIterator::next() { |
+ ASSERT(has_next()); |
+ prev_page_ = next_page_; |
+ next_page_ = next_page_->next_page(); |
+ return prev_page_; |
} |
-void Page::SetAllocationWatermark(Address allocation_watermark) { |
- if ((heap_->gc_state() == Heap::SCAVENGE) && IsWatermarkValid()) { |
- // When iterating intergenerational references during scavenge |
- // we might decide to promote an encountered young object. |
- // We will allocate a space for such an object and put it |
- // into the promotion queue to process it later. |
- // If space for object was allocated somewhere beyond allocation |
- // watermark this might cause garbage pointers to appear under allocation |
- // watermark. To avoid visiting them during dirty regions iteration |
- // which might be still in progress we store a valid allocation watermark |
- // value and mark this page as having an invalid watermark. |
- SetCachedAllocationWatermark(AllocationWatermark()); |
- InvalidateWatermark(true); |
- } |
+// ----------------------------------------------------------------------------- |
+// NewSpacePageIterator |
- flags_ = (flags_ & kFlagsMask) | |
- Offset(allocation_watermark) << kAllocationWatermarkOffsetShift; |
- ASSERT(AllocationWatermarkOffset() |
- == static_cast<uint32_t>(Offset(allocation_watermark))); |
-} |
+NewSpacePageIterator::NewSpacePageIterator(NewSpace* space) |
+ : prev_page_(NewSpacePage::FromAddress(space->ToSpaceStart())->prev_page()), |
+ next_page_(NewSpacePage::FromAddress(space->ToSpaceStart())), |
+ last_page_(NewSpacePage::FromLimit(space->ToSpaceEnd())) { } |
-void Page::SetCachedAllocationWatermark(Address allocation_watermark) { |
- mc_first_forwarded = allocation_watermark; |
-} |
+NewSpacePageIterator::NewSpacePageIterator(SemiSpace* space) |
+ : prev_page_(space->anchor()), |
+ next_page_(prev_page_->next_page()), |
+ last_page_(prev_page_->prev_page()) { } |
- |
-Address Page::CachedAllocationWatermark() { |
- return mc_first_forwarded; |
+NewSpacePageIterator::NewSpacePageIterator(Address start, Address limit) |
+ : prev_page_(NewSpacePage::FromAddress(start)->prev_page()), |
+ next_page_(NewSpacePage::FromAddress(start)), |
+ last_page_(NewSpacePage::FromLimit(limit)) { |
+ SemiSpace::AssertValidRange(start, limit); |
} |
-uint32_t Page::GetRegionMarks() { |
- return dirty_regions_; |
+bool NewSpacePageIterator::has_next() { |
+ return prev_page_ != last_page_; |
} |
-void Page::SetRegionMarks(uint32_t marks) { |
- dirty_regions_ = marks; |
+NewSpacePage* NewSpacePageIterator::next() { |
+ ASSERT(has_next()); |
+ prev_page_ = next_page_; |
+ next_page_ = next_page_->next_page(); |
+ return prev_page_; |
} |
-int Page::GetRegionNumberForAddress(Address addr) { |
- // Each page is divided into 256 byte regions. Each region has a corresponding |
- // dirty mark bit in the page header. Region can contain intergenerational |
- // references iff its dirty mark is set. |
- // A normal 8K page contains exactly 32 regions so all region marks fit |
- // into 32-bit integer field. To calculate a region number we just divide |
- // offset inside page by region size. |
- // A large page can contain more then 32 regions. But we want to avoid |
- // additional write barrier code for distinguishing between large and normal |
- // pages so we just ignore the fact that addr points into a large page and |
- // calculate region number as if addr pointed into a normal 8K page. This way |
- // we get a region number modulo 32 so for large pages several regions might |
- // be mapped to a single dirty mark. |
- ASSERT_PAGE_ALIGNED(this->address()); |
- STATIC_ASSERT((kPageAlignmentMask >> kRegionSizeLog2) < kBitsPerInt); |
- |
- // We are using masking with kPageAlignmentMask instead of Page::Offset() |
- // to get an offset to the beginning of 8K page containing addr not to the |
- // beginning of actual page which can be bigger then 8K. |
- intptr_t offset_inside_normal_page = OffsetFrom(addr) & kPageAlignmentMask; |
- return static_cast<int>(offset_inside_normal_page >> kRegionSizeLog2); |
-} |
- |
- |
-uint32_t Page::GetRegionMaskForAddress(Address addr) { |
- return 1 << GetRegionNumberForAddress(addr); |
-} |
- |
- |
-uint32_t Page::GetRegionMaskForSpan(Address start, int length_in_bytes) { |
- uint32_t result = 0; |
- static const intptr_t kRegionMask = (1 << kRegionSizeLog2) - 1; |
- if (length_in_bytes + (OffsetFrom(start) & kRegionMask) >= kPageSize) { |
- result = kAllRegionsDirtyMarks; |
- } else if (length_in_bytes > 0) { |
- int start_region = GetRegionNumberForAddress(start); |
- int end_region = |
- GetRegionNumberForAddress(start + length_in_bytes - kPointerSize); |
- uint32_t start_mask = (~0) << start_region; |
- uint32_t end_mask = ~((~1) << end_region); |
- result = start_mask & end_mask; |
- // if end_region < start_region, the mask is ored. |
- if (result == 0) result = start_mask | end_mask; |
- } |
-#ifdef DEBUG |
- if (FLAG_enable_slow_asserts) { |
- uint32_t expected = 0; |
- for (Address a = start; a < start + length_in_bytes; a += kPointerSize) { |
- expected |= GetRegionMaskForAddress(a); |
+// ----------------------------------------------------------------------------- |
+// HeapObjectIterator |
+HeapObject* HeapObjectIterator::FromCurrentPage() { |
+ while (cur_addr_ != cur_end_) { |
+ if (cur_addr_ == space_->top() && cur_addr_ != space_->limit()) { |
+ cur_addr_ = space_->limit(); |
+ continue; |
} |
- ASSERT(expected == result); |
+ HeapObject* obj = HeapObject::FromAddress(cur_addr_); |
+ int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj); |
+ cur_addr_ += obj_size; |
+ ASSERT(cur_addr_ <= cur_end_); |
+ if (!obj->IsFiller()) { |
+ ASSERT_OBJECT_SIZE(obj_size); |
+ return obj; |
+ } |
} |
-#endif |
- return result; |
+ return NULL; |
} |
-void Page::MarkRegionDirty(Address address) { |
- SetRegionMarks(GetRegionMarks() | GetRegionMaskForAddress(address)); |
-} |
+// ----------------------------------------------------------------------------- |
+// MemoryAllocator |
+#ifdef ENABLE_HEAP_PROTECTION |
-bool Page::IsRegionDirty(Address address) { |
- return GetRegionMarks() & GetRegionMaskForAddress(address); |
+void MemoryAllocator::Protect(Address start, size_t size) { |
+ OS::Protect(start, size); |
} |
-void Page::ClearRegionMarks(Address start, Address end, bool reaches_limit) { |
- int rstart = GetRegionNumberForAddress(start); |
- int rend = GetRegionNumberForAddress(end); |
+void MemoryAllocator::Unprotect(Address start, |
+ size_t size, |
+ Executability executable) { |
+ OS::Unprotect(start, size, executable); |
+} |
- if (reaches_limit) { |
- end += 1; |
- } |
- if ((rend - rstart) == 0) { |
- return; |
- } |
- |
- uint32_t bitmask = 0; |
- |
- if ((OffsetFrom(start) & kRegionAlignmentMask) == 0 |
- || (start == ObjectAreaStart())) { |
- // First region is fully covered |
- bitmask = 1 << rstart; |
- } |
- |
- while (++rstart < rend) { |
- bitmask |= 1 << rstart; |
- } |
- |
- if (bitmask) { |
- SetRegionMarks(GetRegionMarks() & ~bitmask); |
- } |
+void MemoryAllocator::ProtectChunkFromPage(Page* page) { |
+ int id = GetChunkId(page); |
+ OS::Protect(chunks_[id].address(), chunks_[id].size()); |
} |
-void Page::FlipMeaningOfInvalidatedWatermarkFlag(Heap* heap) { |
- heap->page_watermark_invalidated_mark_ ^= 1 << WATERMARK_INVALIDATED; |
+void MemoryAllocator::UnprotectChunkFromPage(Page* page) { |
+ int id = GetChunkId(page); |
+ OS::Unprotect(chunks_[id].address(), chunks_[id].size(), |
+ chunks_[id].owner()->executable() == EXECUTABLE); |
} |
+#endif |
-bool Page::IsWatermarkValid() { |
- return (flags_ & (1 << WATERMARK_INVALIDATED)) != |
- heap_->page_watermark_invalidated_mark_; |
-} |
+// -------------------------------------------------------------------------- |
+// PagedSpace |
+Page* Page::Initialize(Heap* heap, |
+ MemoryChunk* chunk, |
+ Executability executable, |
+ PagedSpace* owner) { |
+ Page* page = reinterpret_cast<Page*>(chunk); |
+ ASSERT(chunk->size() == static_cast<size_t>(kPageSize)); |
+ ASSERT(chunk->owner() == owner); |
+ owner->IncreaseCapacity(Page::kObjectAreaSize); |
+ owner->Free(page->ObjectAreaStart(), |
+ static_cast<int>(page->ObjectAreaEnd() - |
+ page->ObjectAreaStart())); |
-void Page::InvalidateWatermark(bool value) { |
- if (value) { |
- flags_ = (flags_ & ~(1 << WATERMARK_INVALIDATED)) | |
- heap_->page_watermark_invalidated_mark_; |
- } else { |
- flags_ = |
- (flags_ & ~(1 << WATERMARK_INVALIDATED)) | |
- (heap_->page_watermark_invalidated_mark_ ^ |
- (1 << WATERMARK_INVALIDATED)); |
- } |
+ heap->incremental_marking()->SetOldSpacePageFlags(chunk); |
- ASSERT(IsWatermarkValid() == !value); |
+ return page; |
} |
-bool Page::GetPageFlag(PageFlag flag) { |
- return (flags_ & static_cast<intptr_t>(1 << flag)) != 0; |
+bool PagedSpace::Contains(Address addr) { |
+ Page* p = Page::FromAddress(addr); |
+ if (!p->is_valid()) return false; |
+ return p->owner() == this; |
} |
-void Page::SetPageFlag(PageFlag flag, bool value) { |
- if (value) { |
- flags_ |= static_cast<intptr_t>(1 << flag); |
+void MemoryChunk::set_scan_on_scavenge(bool scan) { |
+ if (scan) { |
+ if (!scan_on_scavenge()) heap_->increment_scan_on_scavenge_pages(); |
+ SetFlag(SCAN_ON_SCAVENGE); |
} else { |
- flags_ &= ~static_cast<intptr_t>(1 << flag); |
+ if (scan_on_scavenge()) heap_->decrement_scan_on_scavenge_pages(); |
+ ClearFlag(SCAN_ON_SCAVENGE); |
} |
+ heap_->incremental_marking()->SetOldSpacePageFlags(this); |
} |
-void Page::ClearPageFlags() { |
- flags_ = 0; |
-} |
- |
- |
-void Page::ClearGCFields() { |
- InvalidateWatermark(true); |
- SetAllocationWatermark(ObjectAreaStart()); |
- if (heap_->gc_state() == Heap::SCAVENGE) { |
- SetCachedAllocationWatermark(ObjectAreaStart()); |
+MemoryChunk* MemoryChunk::FromAnyPointerAddress(Address addr) { |
+ MemoryChunk* maybe = reinterpret_cast<MemoryChunk*>( |
+ OffsetFrom(addr) & ~Page::kPageAlignmentMask); |
+ if (maybe->owner() != NULL) return maybe; |
+ LargeObjectIterator iterator(HEAP->lo_space()); |
+ for (HeapObject* o = iterator.Next(); o != NULL; o = iterator.Next()) { |
+ // Fixed arrays are the only pointer-containing objects in large object |
+ // space. |
+ if (o->IsFixedArray()) { |
+ MemoryChunk* chunk = MemoryChunk::FromAddress(o->address()); |
+ if (chunk->Contains(addr)) { |
+ return chunk; |
+ } |
+ } |
} |
- SetRegionMarks(kAllRegionsCleanMarks); |
+ UNREACHABLE(); |
+ return NULL; |
} |
-bool Page::WasInUseBeforeMC() { |
- return GetPageFlag(WAS_IN_USE_BEFORE_MC); |
-} |
+PointerChunkIterator::PointerChunkIterator(Heap* heap) |
+ : state_(kOldPointerState), |
+ old_pointer_iterator_(heap->old_pointer_space()), |
+ map_iterator_(heap->map_space()), |
+ lo_iterator_(heap->lo_space()) { } |
-void Page::SetWasInUseBeforeMC(bool was_in_use) { |
- SetPageFlag(WAS_IN_USE_BEFORE_MC, was_in_use); |
+Page* Page::next_page() { |
+ ASSERT(next_chunk()->owner() == owner()); |
+ return static_cast<Page*>(next_chunk()); |
} |
-bool Page::IsLargeObjectPage() { |
- return !GetPageFlag(IS_NORMAL_PAGE); |
+Page* Page::prev_page() { |
+ ASSERT(prev_chunk()->owner() == owner()); |
+ return static_cast<Page*>(prev_chunk()); |
} |
-void Page::SetIsLargeObjectPage(bool is_large_object_page) { |
- SetPageFlag(IS_NORMAL_PAGE, !is_large_object_page); |
+void Page::set_next_page(Page* page) { |
+ ASSERT(page->owner() == owner()); |
+ set_next_chunk(page); |
} |
-Executability Page::PageExecutability() { |
- return GetPageFlag(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; |
-} |
- |
-void Page::SetPageExecutability(Executability executable) { |
- SetPageFlag(IS_EXECUTABLE, executable == EXECUTABLE); |
+void Page::set_prev_page(Page* page) { |
+ ASSERT(page->owner() == owner()); |
+ set_prev_chunk(page); |
} |
-// ----------------------------------------------------------------------------- |
-// MemoryAllocator |
- |
-void MemoryAllocator::ChunkInfo::init(Address a, size_t s, PagedSpace* o) { |
- address_ = a; |
- size_ = s; |
- owner_ = o; |
- executable_ = (o == NULL) ? NOT_EXECUTABLE : o->executable(); |
- owner_identity_ = (o == NULL) ? FIRST_SPACE : o->identity(); |
-} |
- |
- |
-bool MemoryAllocator::IsValidChunk(int chunk_id) { |
- if (!IsValidChunkId(chunk_id)) return false; |
- |
- ChunkInfo& c = chunks_[chunk_id]; |
- return (c.address() != NULL) && (c.size() != 0) && (c.owner() != NULL); |
-} |
- |
- |
-bool MemoryAllocator::IsValidChunkId(int chunk_id) { |
- return (0 <= chunk_id) && (chunk_id < max_nof_chunks_); |
-} |
- |
- |
-bool MemoryAllocator::IsPageInSpace(Page* p, PagedSpace* space) { |
- ASSERT(p->is_valid()); |
- |
- int chunk_id = GetChunkId(p); |
- if (!IsValidChunkId(chunk_id)) return false; |
- |
- ChunkInfo& c = chunks_[chunk_id]; |
- return (c.address() <= p->address()) && |
- (p->address() < c.address() + c.size()) && |
- (space == c.owner()); |
-} |
- |
- |
-Page* MemoryAllocator::GetNextPage(Page* p) { |
- ASSERT(p->is_valid()); |
- intptr_t raw_addr = p->opaque_header & ~Page::kPageAlignmentMask; |
- return Page::FromAddress(AddressFrom<Address>(raw_addr)); |
-} |
- |
- |
-int MemoryAllocator::GetChunkId(Page* p) { |
- ASSERT(p->is_valid()); |
- return static_cast<int>(p->opaque_header & Page::kPageAlignmentMask); |
-} |
- |
- |
-void MemoryAllocator::SetNextPage(Page* prev, Page* next) { |
- ASSERT(prev->is_valid()); |
- int chunk_id = GetChunkId(prev); |
- ASSERT_PAGE_ALIGNED(next->address()); |
- prev->opaque_header = OffsetFrom(next->address()) | chunk_id; |
-} |
- |
- |
-PagedSpace* MemoryAllocator::PageOwner(Page* page) { |
- int chunk_id = GetChunkId(page); |
- ASSERT(IsValidChunk(chunk_id)); |
- return chunks_[chunk_id].owner(); |
-} |
- |
- |
-bool MemoryAllocator::InInitialChunk(Address address) { |
- if (initial_chunk_ == NULL) return false; |
- |
- Address start = static_cast<Address>(initial_chunk_->address()); |
- return (start <= address) && (address < start + initial_chunk_->size()); |
-} |
- |
- |
-// -------------------------------------------------------------------------- |
-// PagedSpace |
- |
-bool PagedSpace::Contains(Address addr) { |
- Page* p = Page::FromAddress(addr); |
- if (!p->is_valid()) return false; |
- return heap()->isolate()->memory_allocator()->IsPageInSpace(p, this); |
-} |
- |
- |
// Try linear allocation in the page of alloc_info's allocation top. Does |
// not contain slow case logic (eg, move to the next page or try free list |
// allocation) so it can be used by all the allocation functions and for all |
@@ -401,7 +259,7 @@ |
alloc_info->top = new_top; |
ASSERT(alloc_info->VerifyPagedAllocation()); |
- accounting_stats_.AllocateBytes(size_in_bytes); |
+ ASSERT(current_top != NULL); |
return HeapObject::FromAddress(current_top); |
} |
@@ -411,53 +269,77 @@ |
ASSERT(HasBeenSetup()); |
ASSERT_OBJECT_SIZE(size_in_bytes); |
HeapObject* object = AllocateLinearly(&allocation_info_, size_in_bytes); |
- if (object != NULL) return object; |
+ if (object != NULL) { |
+ if (identity() == CODE_SPACE) { |
+ SkipList::Update(object->address(), size_in_bytes); |
+ } |
+ return object; |
+ } |
+ object = free_list_.Allocate(size_in_bytes); |
+ if (object != NULL) { |
+ if (identity() == CODE_SPACE) { |
+ SkipList::Update(object->address(), size_in_bytes); |
+ } |
+ return object; |
+ } |
+ |
object = SlowAllocateRaw(size_in_bytes); |
- if (object != NULL) return object; |
+ if (object != NULL) { |
+ if (identity() == CODE_SPACE) { |
+ SkipList::Update(object->address(), size_in_bytes); |
+ } |
+ return object; |
+ } |
return Failure::RetryAfterGC(identity()); |
} |
-// Reallocating (and promoting) objects during a compacting collection. |
-MaybeObject* PagedSpace::MCAllocateRaw(int size_in_bytes) { |
- ASSERT(HasBeenSetup()); |
- ASSERT_OBJECT_SIZE(size_in_bytes); |
- HeapObject* object = AllocateLinearly(&mc_forwarding_info_, size_in_bytes); |
- if (object != NULL) return object; |
- |
- object = SlowMCAllocateRaw(size_in_bytes); |
- if (object != NULL) return object; |
- |
- return Failure::RetryAfterGC(identity()); |
-} |
- |
- |
// ----------------------------------------------------------------------------- |
// NewSpace |
+MaybeObject* NewSpace::AllocateRawInternal(int size_in_bytes) { |
+ Address old_top = allocation_info_.top; |
+ if (allocation_info_.limit - old_top < size_in_bytes) { |
+ Address new_top = old_top + size_in_bytes; |
+ Address high = to_space_.page_high(); |
+ if (allocation_info_.limit < high) { |
+ // Incremental marking has lowered the limit to get a |
+ // chance to do a step. |
+ allocation_info_.limit = Min( |
+ allocation_info_.limit + inline_allocation_limit_step_, |
+ high); |
+ int bytes_allocated = static_cast<int>(new_top - top_on_previous_step_); |
+ heap()->incremental_marking()->Step(bytes_allocated); |
+ top_on_previous_step_ = new_top; |
+ return AllocateRawInternal(size_in_bytes); |
+ } else if (AddFreshPage()) { |
+ // Switched to new page. Try allocating again. |
+ int bytes_allocated = static_cast<int>(old_top - top_on_previous_step_); |
+ heap()->incremental_marking()->Step(bytes_allocated); |
+ top_on_previous_step_ = to_space_.page_low(); |
+ return AllocateRawInternal(size_in_bytes); |
+ } else { |
+ return Failure::RetryAfterGC(); |
+ } |
+ } |
-MaybeObject* NewSpace::AllocateRawInternal(int size_in_bytes, |
- AllocationInfo* alloc_info) { |
- Address new_top = alloc_info->top + size_in_bytes; |
- if (new_top > alloc_info->limit) return Failure::RetryAfterGC(); |
+ Object* obj = HeapObject::FromAddress(allocation_info_.top); |
+ allocation_info_.top += size_in_bytes; |
+ ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
- Object* obj = HeapObject::FromAddress(alloc_info->top); |
- alloc_info->top = new_top; |
-#ifdef DEBUG |
- SemiSpace* space = |
- (alloc_info == &allocation_info_) ? &to_space_ : &from_space_; |
- ASSERT(space->low() <= alloc_info->top |
- && alloc_info->top <= space->high() |
- && alloc_info->limit == space->high()); |
-#endif |
return obj; |
} |
+LargePage* LargePage::Initialize(Heap* heap, MemoryChunk* chunk) { |
+ heap->incremental_marking()->SetOldSpacePageFlags(chunk); |
+ return static_cast<LargePage*>(chunk); |
+} |
+ |
+ |
intptr_t LargeObjectSpace::Available() { |
- return LargeObjectChunk::ObjectSizeFor( |
- heap()->isolate()->memory_allocator()->Available()); |
+ return ObjectSizeFor(heap()->isolate()->memory_allocator()->Available()); |
} |
@@ -467,16 +349,23 @@ |
ASSERT(string->IsSeqString()); |
ASSERT(string->address() + StringType::SizeFor(string->length()) == |
allocation_info_.top); |
+ Address old_top = allocation_info_.top; |
allocation_info_.top = |
string->address() + StringType::SizeFor(length); |
string->set_length(length); |
+ if (Marking::IsBlack(Marking::MarkBitFrom(string))) { |
+ int delta = static_cast<int>(old_top - allocation_info_.top); |
+ MemoryChunk::IncrementLiveBytes(string->address(), -delta); |
+ } |
} |
bool FreeListNode::IsFreeListNode(HeapObject* object) { |
- return object->map() == HEAP->raw_unchecked_byte_array_map() |
- || object->map() == HEAP->raw_unchecked_one_pointer_filler_map() |
- || object->map() == HEAP->raw_unchecked_two_pointer_filler_map(); |
+ Map* map = object->map(); |
+ Heap* heap = object->GetHeap(); |
+ return map == heap->raw_unchecked_free_space_map() |
+ || map == heap->raw_unchecked_one_pointer_filler_map() |
+ || map == heap->raw_unchecked_two_pointer_filler_map(); |
} |
} } // namespace v8::internal |