Index: src/spaces.h |
=================================================================== |
--- src/spaces.h (revision 9327) |
+++ src/spaces.h (working copy) |
@@ -49,45 +49,47 @@ |
// |
// The semispaces of the young generation are contiguous. The old and map |
// spaces consists of a list of pages. A page has a page header and an object |
-// area. A page size is deliberately chosen as 8K bytes. |
-// The first word of a page is an opaque page header that has the |
-// address of the next page and its ownership information. The second word may |
-// have the allocation top address of this page. Heap objects are aligned to the |
-// pointer size. |
+// area. |
// |
// There is a separate large object space for objects larger than |
// Page::kMaxHeapObjectSize, so that they do not have to move during |
// collection. The large object space is paged. Pages in large object space |
-// may be larger than 8K. |
+// may be larger than the page size. |
// |
-// A card marking write barrier is used to keep track of intergenerational |
-// references. Old space pages are divided into regions of Page::kRegionSize |
-// size. Each region has a corresponding dirty bit in the page header which is |
-// set if the region might contain pointers to new space. For details about |
-// dirty bits encoding see comments in the Page::GetRegionNumberForAddress() |
-// method body. |
+// A store-buffer based write barrier is used to keep track of intergenerational |
+// references. See store-buffer.h. |
// |
-// During scavenges and mark-sweep collections we iterate intergenerational |
-// pointers without decoding heap object maps so if the page belongs to old |
-// pointer space or large object space it is essential to guarantee that |
-// the page does not contain any garbage pointers to new space: every pointer |
-// aligned word which satisfies the Heap::InNewSpace() predicate must be a |
-// pointer to a live heap object in new space. Thus objects in old pointer |
-// and large object spaces should have a special layout (e.g. no bare integer |
-// fields). This requirement does not apply to map space which is iterated in |
-// a special fashion. However we still require pointer fields of dead maps to |
-// be cleaned. |
+// During scavenges and mark-sweep collections we sometimes (after a store |
+// buffer overflow) iterate intergenerational pointers without decoding heap |
+// object maps so if the page belongs to old pointer space or large object |
+// space it is essential to guarantee that the page does not contain any |
+// garbage pointers to new space: every pointer aligned word which satisfies |
+// the Heap::InNewSpace() predicate must be a pointer to a live heap object in |
+// new space. Thus objects in old pointer and large object spaces should have a |
+// special layout (e.g. no bare integer fields). This requirement does not |
+// apply to map space which is iterated in a special fashion. However we still |
+// require pointer fields of dead maps to be cleaned. |
// |
-// To enable lazy cleaning of old space pages we use a notion of allocation |
-// watermark. Every pointer under watermark is considered to be well formed. |
-// Page allocation watermark is not necessarily equal to page allocation top but |
-// all alive objects on page should reside under allocation watermark. |
-// During scavenge allocation watermark might be bumped and invalid pointers |
-// might appear below it. To avoid following them we store a valid watermark |
-// into special field in the page header and set a page WATERMARK_INVALIDATED |
-// flag. For details see comments in the Page::SetAllocationWatermark() method |
-// body. |
+// To enable lazy cleaning of old space pages we can mark chunks of the page |
+// as being garbage. Garbage sections are marked with a special map. These |
+// sections are skipped when scanning the page, even if we are otherwise |
+// scanning without regard for object boundaries. Garbage sections are chained |
+// together to form a free list after a GC. Garbage sections created outside |
+// of GCs by object trunctation etc. may not be in the free list chain. Very |
+// small free spaces are ignored, they need only be cleaned of bogus pointers |
+// into new space. |
// |
+// Each page may have up to one special garbage section. The start of this |
+// section is denoted by the top field in the space. The end of the section |
+// is denoted by the limit field in the space. This special garbage section |
+// is not marked with a free space map in the data. The point of this section |
+// is to enable linear allocation without having to constantly update the byte |
+// array every time the top field is updated and a new object is created. The |
+// special garbage section is not in the chain of garbage sections. |
+// |
+// Since the top and limit fields are in the space, not the page, only one page |
+// has a special garbage section, and if the top and limit are equal then there |
+// is no special garbage section. |
// Some assertion macros used in the debugging mode. |
@@ -114,30 +116,505 @@ |
class PagedSpace; |
class MemoryAllocator; |
class AllocationInfo; |
+class Space; |
+class FreeList; |
+class MemoryChunk; |
+class MarkBit { |
+ public: |
+ typedef uint32_t CellType; |
+ |
+ inline MarkBit(CellType* cell, CellType mask, bool data_only) |
+ : cell_(cell), mask_(mask), data_only_(data_only) { } |
+ |
+ inline CellType* cell() { return cell_; } |
+ inline CellType mask() { return mask_; } |
+ |
+#ifdef DEBUG |
+ bool operator==(const MarkBit& other) { |
+ return cell_ == other.cell_ && mask_ == other.mask_; |
+ } |
+#endif |
+ |
+ inline void Set() { *cell_ |= mask_; } |
+ inline bool Get() { return (*cell_ & mask_) != 0; } |
+ inline void Clear() { *cell_ &= ~mask_; } |
+ |
+ inline bool data_only() { return data_only_; } |
+ |
+ inline MarkBit Next() { |
+ CellType new_mask = mask_ << 1; |
+ if (new_mask == 0) { |
+ return MarkBit(cell_ + 1, 1, data_only_); |
+ } else { |
+ return MarkBit(cell_, new_mask, data_only_); |
+ } |
+ } |
+ |
+ private: |
+ CellType* cell_; |
+ CellType mask_; |
+ // This boolean indicates that the object is in a data-only space with no |
+ // pointers. This enables some optimizations when marking. |
+ // It is expected that this field is inlined and turned into control flow |
+ // at the place where the MarkBit object is created. |
+ bool data_only_; |
+}; |
+ |
+ |
+// Bitmap is a sequence of cells each containing fixed number of bits. |
+class Bitmap { |
+ public: |
+ static const uint32_t kBitsPerCell = 32; |
+ static const uint32_t kBitsPerCellLog2 = 5; |
+ static const uint32_t kBitIndexMask = kBitsPerCell - 1; |
+ static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte; |
+ static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2; |
+ |
+ static const size_t kLength = |
+ (1 << kPageSizeBits) >> (kPointerSizeLog2); |
+ |
+ static const size_t kSize = |
+ (1 << kPageSizeBits) >> (kPointerSizeLog2 + kBitsPerByteLog2); |
+ |
+ |
+ static int CellsForLength(int length) { |
+ return (length + kBitsPerCell - 1) >> kBitsPerCellLog2; |
+ } |
+ |
+ int CellsCount() { |
+ return CellsForLength(kLength); |
+ } |
+ |
+ static int SizeFor(int cells_count) { |
+ return sizeof(MarkBit::CellType)*cells_count; |
+ } |
+ |
+ INLINE(static uint32_t IndexToCell(uint32_t index)) { |
+ return index >> kBitsPerCellLog2; |
+ } |
+ |
+ INLINE(static uint32_t CellToIndex(uint32_t index)) { |
+ return index << kBitsPerCellLog2; |
+ } |
+ |
+ INLINE(static uint32_t CellAlignIndex(uint32_t index)) { |
+ return (index + kBitIndexMask) & ~kBitIndexMask; |
+ } |
+ |
+ INLINE(MarkBit::CellType* cells()) { |
+ return reinterpret_cast<MarkBit::CellType*>(this); |
+ } |
+ |
+ INLINE(Address address()) { |
+ return reinterpret_cast<Address>(this); |
+ } |
+ |
+ INLINE(static Bitmap* FromAddress(Address addr)) { |
+ return reinterpret_cast<Bitmap*>(addr); |
+ } |
+ |
+ inline MarkBit MarkBitFromIndex(uint32_t index, bool data_only = false) { |
+ MarkBit::CellType mask = 1 << (index & kBitIndexMask); |
+ MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2); |
+ return MarkBit(cell, mask, data_only); |
+ } |
+ |
+ static inline void Clear(MemoryChunk* chunk); |
+ |
+ static void PrintWord(uint32_t word, uint32_t himask = 0) { |
+ for (uint32_t mask = 1; mask != 0; mask <<= 1) { |
+ if ((mask & himask) != 0) PrintF("["); |
+ PrintF((mask & word) ? "1" : "0"); |
+ if ((mask & himask) != 0) PrintF("]"); |
+ } |
+ } |
+ |
+ class CellPrinter { |
+ public: |
+ CellPrinter() : seq_start(0), seq_type(0), seq_length(0) { } |
+ |
+ void Print(uint32_t pos, uint32_t cell) { |
+ if (cell == seq_type) { |
+ seq_length++; |
+ return; |
+ } |
+ |
+ Flush(); |
+ |
+ if (IsSeq(cell)) { |
+ seq_start = pos; |
+ seq_length = 0; |
+ seq_type = cell; |
+ return; |
+ } |
+ |
+ PrintF("%d: ", pos); |
+ PrintWord(cell); |
+ PrintF("\n"); |
+ } |
+ |
+ void Flush() { |
+ if (seq_length > 0) { |
+ PrintF("%d: %dx%d\n", |
+ seq_start, |
+ seq_type == 0 ? 0 : 1, |
+ seq_length * kBitsPerCell); |
+ seq_length = 0; |
+ } |
+ } |
+ |
+ static bool IsSeq(uint32_t cell) { return cell == 0 || cell == 0xFFFFFFFF; } |
+ private: |
+ uint32_t seq_start; |
+ uint32_t seq_type; |
+ uint32_t seq_length; |
+ }; |
+ |
+ void Print() { |
+ CellPrinter printer; |
+ for (int i = 0; i < CellsCount(); i++) { |
+ printer.Print(i, cells()[i]); |
+ } |
+ printer.Flush(); |
+ PrintF("\n"); |
+ } |
+ |
+ bool IsClean() { |
+ for (int i = 0; i < CellsCount(); i++) { |
+ if (cells()[i] != 0) return false; |
+ } |
+ return true; |
+ } |
+}; |
+ |
+ |
+class SkipList; |
+class SlotsBuffer; |
+ |
+// MemoryChunk represents a memory region owned by a specific space. |
+// It is divided into the header and the body. Chunk start is always |
+// 1MB aligned. Start of the body is aligned so it can accomodate |
+// any heap object. |
+class MemoryChunk { |
+ public: |
+ // Only works if the pointer is in the first kPageSize of the MemoryChunk. |
+ static MemoryChunk* FromAddress(Address a) { |
+ return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask); |
+ } |
+ |
+ // Only works for addresses in pointer spaces, not data or code spaces. |
+ static inline MemoryChunk* FromAnyPointerAddress(Address addr); |
+ |
+ Address address() { return reinterpret_cast<Address>(this); } |
+ |
+ bool is_valid() { return address() != NULL; } |
+ |
+ MemoryChunk* next_chunk() const { return next_chunk_; } |
+ MemoryChunk* prev_chunk() const { return prev_chunk_; } |
+ |
+ void set_next_chunk(MemoryChunk* next) { next_chunk_ = next; } |
+ void set_prev_chunk(MemoryChunk* prev) { prev_chunk_ = prev; } |
+ |
+ Space* owner() const { |
+ if ((reinterpret_cast<intptr_t>(owner_) & kFailureTagMask) == |
+ kFailureTag) { |
+ return reinterpret_cast<Space*>(owner_ - kFailureTag); |
+ } else { |
+ return NULL; |
+ } |
+ } |
+ |
+ void set_owner(Space* space) { |
+ ASSERT((reinterpret_cast<intptr_t>(space) & kFailureTagMask) == 0); |
+ owner_ = reinterpret_cast<Address>(space) + kFailureTag; |
+ ASSERT((reinterpret_cast<intptr_t>(owner_) & kFailureTagMask) == |
+ kFailureTag); |
+ } |
+ |
+ VirtualMemory* reserved_memory() { |
+ return &reservation_; |
+ } |
+ |
+ void InitializeReservedMemory() { |
+ reservation_.Reset(); |
+ } |
+ |
+ void set_reserved_memory(VirtualMemory* reservation) { |
+ ASSERT_NOT_NULL(reservation); |
+ reservation_.TakeControl(reservation); |
+ } |
+ |
+ bool scan_on_scavenge() { return IsFlagSet(SCAN_ON_SCAVENGE); } |
+ void initialize_scan_on_scavenge(bool scan) { |
+ if (scan) { |
+ SetFlag(SCAN_ON_SCAVENGE); |
+ } else { |
+ ClearFlag(SCAN_ON_SCAVENGE); |
+ } |
+ } |
+ inline void set_scan_on_scavenge(bool scan); |
+ |
+ int store_buffer_counter() { return store_buffer_counter_; } |
+ void set_store_buffer_counter(int counter) { |
+ store_buffer_counter_ = counter; |
+ } |
+ |
+ Address body() { return address() + kObjectStartOffset; } |
+ |
+ Address body_limit() { return address() + size(); } |
+ |
+ int body_size() { return static_cast<int>(size() - kObjectStartOffset); } |
+ |
+ bool Contains(Address addr) { |
+ return addr >= body() && addr < address() + size(); |
+ } |
+ |
+ // Checks whether addr can be a limit of addresses in this page. |
+ // It's a limit if it's in the page, or if it's just after the |
+ // last byte of the page. |
+ bool ContainsLimit(Address addr) { |
+ return addr >= body() && addr <= address() + size(); |
+ } |
+ |
+ enum MemoryChunkFlags { |
+ IS_EXECUTABLE, |
+ ABOUT_TO_BE_FREED, |
+ POINTERS_TO_HERE_ARE_INTERESTING, |
+ POINTERS_FROM_HERE_ARE_INTERESTING, |
+ SCAN_ON_SCAVENGE, |
+ IN_FROM_SPACE, // Mutually exclusive with IN_TO_SPACE. |
+ IN_TO_SPACE, // All pages in new space has one of these two set. |
+ NEW_SPACE_BELOW_AGE_MARK, |
+ CONTAINS_ONLY_DATA, |
+ EVACUATION_CANDIDATE, |
+ RESCAN_ON_EVACUATION, |
+ |
+ // Pages swept precisely can be iterated, hitting only the live objects. |
+ // Whereas those swept conservatively cannot be iterated over. Both flags |
+ // indicate that marking bits have been cleared by the sweeper, otherwise |
+ // marking bits are still intact. |
+ WAS_SWEPT_PRECISELY, |
+ WAS_SWEPT_CONSERVATIVELY, |
+ |
+ // Last flag, keep at bottom. |
+ NUM_MEMORY_CHUNK_FLAGS |
+ }; |
+ |
+ |
+ static const int kPointersToHereAreInterestingMask = |
+ 1 << POINTERS_TO_HERE_ARE_INTERESTING; |
+ |
+ static const int kPointersFromHereAreInterestingMask = |
+ 1 << POINTERS_FROM_HERE_ARE_INTERESTING; |
+ |
+ static const int kEvacuationCandidateMask = |
+ 1 << EVACUATION_CANDIDATE; |
+ |
+ static const int kSkipEvacuationSlotsRecordingMask = |
+ (1 << EVACUATION_CANDIDATE) | |
+ (1 << RESCAN_ON_EVACUATION) | |
+ (1 << IN_FROM_SPACE) | |
+ (1 << IN_TO_SPACE); |
+ |
+ |
+ void SetFlag(int flag) { |
+ flags_ |= static_cast<uintptr_t>(1) << flag; |
+ } |
+ |
+ void ClearFlag(int flag) { |
+ flags_ &= ~(static_cast<uintptr_t>(1) << flag); |
+ } |
+ |
+ void SetFlagTo(int flag, bool value) { |
+ if (value) { |
+ SetFlag(flag); |
+ } else { |
+ ClearFlag(flag); |
+ } |
+ } |
+ |
+ bool IsFlagSet(int flag) { |
+ return (flags_ & (static_cast<uintptr_t>(1) << flag)) != 0; |
+ } |
+ |
+ // Set or clear multiple flags at a time. The flags in the mask |
+ // are set to the value in "flags", the rest retain the current value |
+ // in flags_. |
+ void SetFlags(intptr_t flags, intptr_t mask) { |
+ flags_ = (flags_ & ~mask) | (flags & mask); |
+ } |
+ |
+ // Return all current flags. |
+ intptr_t GetFlags() { return flags_; } |
+ |
+ // Manage live byte count (count of bytes known to be live, |
+ // because they are marked black). |
+ void ResetLiveBytes() { |
+ live_byte_count_ = 0; |
+ } |
+ void IncrementLiveBytes(int by) { |
+ live_byte_count_ += by; |
+ } |
+ int LiveBytes() { return live_byte_count_; } |
+ static void IncrementLiveBytes(Address address, int by) { |
+ MemoryChunk::FromAddress(address)->IncrementLiveBytes(by); |
+ } |
+ |
+ static const intptr_t kAlignment = |
+ (static_cast<uintptr_t>(1) << kPageSizeBits); |
+ |
+ static const intptr_t kAlignmentMask = kAlignment - 1; |
+ |
+ static const intptr_t kLiveBytesOffset = |
+ kPointerSize + kPointerSize + kPointerSize + kPointerSize + |
+ kPointerSize + kPointerSize + kPointerSize + kPointerSize + |
+ kIntSize; |
+ |
+ static const size_t kSlotsBufferOffset = kLiveBytesOffset + kIntSize; |
+ |
+ static const size_t kHeaderSize = |
+ kSlotsBufferOffset + kPointerSize + kPointerSize; |
+ |
+ static const int kBodyOffset = |
+ CODE_POINTER_ALIGN(MAP_POINTER_ALIGN(kHeaderSize + Bitmap::kSize)); |
+ |
+ // The start offset of the object area in a page. Aligned to both maps and |
+ // code alignment to be suitable for both. Also aligned to 32 words because |
+ // the marking bitmap is arranged in 32 bit chunks. |
+ static const int kObjectStartAlignment = 32 * kPointerSize; |
+ static const int kObjectStartOffset = kBodyOffset - 1 + |
+ (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment); |
+ |
+ size_t size() const { return size_; } |
+ |
+ Executability executable() { |
+ return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; |
+ } |
+ |
+ bool ContainsOnlyData() { |
+ return IsFlagSet(CONTAINS_ONLY_DATA); |
+ } |
+ |
+ bool InNewSpace() { |
+ return (flags_ & ((1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE))) != 0; |
+ } |
+ |
+ bool InToSpace() { |
+ return IsFlagSet(IN_TO_SPACE); |
+ } |
+ |
+ bool InFromSpace() { |
+ return IsFlagSet(IN_FROM_SPACE); |
+ } |
+ |
+ // --------------------------------------------------------------------- |
+ // Markbits support |
+ |
+ inline Bitmap* markbits() { |
+ return Bitmap::FromAddress(address() + kHeaderSize); |
+ } |
+ |
+ void PrintMarkbits() { markbits()->Print(); } |
+ |
+ inline uint32_t AddressToMarkbitIndex(Address addr) { |
+ return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2; |
+ } |
+ |
+ inline static uint32_t FastAddressToMarkbitIndex(Address addr) { |
+ const intptr_t offset = |
+ reinterpret_cast<intptr_t>(addr) & kAlignmentMask; |
+ |
+ return static_cast<uint32_t>(offset) >> kPointerSizeLog2; |
+ } |
+ |
+ inline Address MarkbitIndexToAddress(uint32_t index) { |
+ return this->address() + (index << kPointerSizeLog2); |
+ } |
+ |
+ void InsertAfter(MemoryChunk* other); |
+ void Unlink(); |
+ |
+ inline Heap* heap() { return heap_; } |
+ |
+ static const int kFlagsOffset = kPointerSize * 3; |
+ |
+ bool IsEvacuationCandidate() { return IsFlagSet(EVACUATION_CANDIDATE); } |
+ |
+ bool ShouldSkipEvacuationSlotRecording() { |
+ return (flags_ & kSkipEvacuationSlotsRecordingMask) != 0; |
+ } |
+ |
+ inline SkipList* skip_list() { |
+ return skip_list_; |
+ } |
+ |
+ inline void set_skip_list(SkipList* skip_list) { |
+ skip_list_ = skip_list; |
+ } |
+ |
+ inline SlotsBuffer* slots_buffer() { |
+ return slots_buffer_; |
+ } |
+ |
+ inline SlotsBuffer** slots_buffer_address() { |
+ return &slots_buffer_; |
+ } |
+ |
+ void MarkEvacuationCandidate() { |
+ ASSERT(slots_buffer_ == NULL); |
+ SetFlag(EVACUATION_CANDIDATE); |
+ } |
+ |
+ void ClearEvacuationCandidate() { |
+ ASSERT(slots_buffer_ == NULL); |
+ ClearFlag(EVACUATION_CANDIDATE); |
+ } |
+ |
+ |
+ protected: |
+ MemoryChunk* next_chunk_; |
+ MemoryChunk* prev_chunk_; |
+ size_t size_; |
+ intptr_t flags_; |
+ // If the chunk needs to remember its memory reservation, it is stored here. |
+ VirtualMemory reservation_; |
+ // The identity of the owning space. This is tagged as a failure pointer, but |
+ // no failure can be in an object, so this can be distinguished from any entry |
+ // in a fixed array. |
+ Address owner_; |
+ Heap* heap_; |
+ // Used by the store buffer to keep track of which pages to mark scan-on- |
+ // scavenge. |
+ int store_buffer_counter_; |
+ // Count of bytes marked black on page. |
+ int live_byte_count_; |
+ SlotsBuffer* slots_buffer_; |
+ SkipList* skip_list_; |
+ |
+ static MemoryChunk* Initialize(Heap* heap, |
+ Address base, |
+ size_t size, |
+ Executability executable, |
+ Space* owner); |
+ |
+ friend class MemoryAllocator; |
+}; |
+ |
+STATIC_CHECK(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize); |
+ |
// ----------------------------------------------------------------------------- |
-// A page normally has 8K bytes. Large object pages may be larger. A page |
-// address is always aligned to the 8K page size. |
+// A page is a memory chunk of a size 1MB. Large object pages may be larger. |
// |
-// Each page starts with a header of Page::kPageHeaderSize size which contains |
-// bookkeeping data. |
-// |
-// The mark-compact collector transforms a map pointer into a page index and a |
-// page offset. The exact encoding is described in the comments for |
-// class MapWord in objects.h. |
-// |
// The only way to get a page pointer is by calling factory methods: |
// Page* p = Page::FromAddress(addr); or |
// Page* p = Page::FromAllocationTop(top); |
-class Page { |
+class Page : public MemoryChunk { |
public: |
// Returns the page containing a given address. The address ranges |
// from [page_addr .. page_addr + kPageSize[ |
- // |
- // Note that this function only works for addresses in normal paged |
- // spaces and addresses in the first 8K of large object pages (i.e., |
- // the start of large objects but not necessarily derived pointers |
- // within them). |
+ // This only works if the object is in fact in a page. See also MemoryChunk:: |
+ // FromAddress() and FromAnyAddress(). |
INLINE(static Page* FromAddress(Address a)) { |
return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask); |
} |
@@ -152,31 +629,12 @@ |
return p; |
} |
- // Returns the start address of this page. |
- Address address() { return reinterpret_cast<Address>(this); } |
- |
- // Checks whether this is a valid page address. |
- bool is_valid() { return address() != NULL; } |
- |
- // Returns the next page of this page. |
+ // Returns the next page in the chain of pages owned by a space. |
inline Page* next_page(); |
+ inline Page* prev_page(); |
+ inline void set_next_page(Page* page); |
+ inline void set_prev_page(Page* page); |
- // Return the end of allocation in this page. Undefined for unused pages. |
- inline Address AllocationTop(); |
- |
- // Return the allocation watermark for the page. |
- // For old space pages it is guaranteed that the area under the watermark |
- // does not contain any garbage pointers to new space. |
- inline Address AllocationWatermark(); |
- |
- // Return the allocation watermark offset from the beginning of the page. |
- inline uint32_t AllocationWatermarkOffset(); |
- |
- inline void SetAllocationWatermark(Address allocation_watermark); |
- |
- inline void SetCachedAllocationWatermark(Address allocation_watermark); |
- inline Address CachedAllocationWatermark(); |
- |
// Returns the start address of the object area in this page. |
Address ObjectAreaStart() { return address() + kObjectStartOffset; } |
@@ -188,22 +646,6 @@ |
return 0 == (OffsetFrom(a) & kPageAlignmentMask); |
} |
- // True if this page was in use before current compaction started. |
- // Result is valid only for pages owned by paged spaces and |
- // only after PagedSpace::PrepareForMarkCompact was called. |
- inline bool WasInUseBeforeMC(); |
- |
- inline void SetWasInUseBeforeMC(bool was_in_use); |
- |
- // True if this page is a large object page. |
- inline bool IsLargeObjectPage(); |
- |
- inline void SetIsLargeObjectPage(bool is_large_object_page); |
- |
- inline Executability PageExecutability(); |
- |
- inline void SetPageExecutability(Executability executable); |
- |
// Returns the offset of a given address to this page. |
INLINE(int Offset(Address a)) { |
int offset = static_cast<int>(a - address()); |
@@ -218,143 +660,72 @@ |
} |
// --------------------------------------------------------------------- |
- // Card marking support |
- static const uint32_t kAllRegionsCleanMarks = 0x0; |
- static const uint32_t kAllRegionsDirtyMarks = 0xFFFFFFFF; |
- |
- inline uint32_t GetRegionMarks(); |
- inline void SetRegionMarks(uint32_t dirty); |
- |
- inline uint32_t GetRegionMaskForAddress(Address addr); |
- inline uint32_t GetRegionMaskForSpan(Address start, int length_in_bytes); |
- inline int GetRegionNumberForAddress(Address addr); |
- |
- inline void MarkRegionDirty(Address addr); |
- inline bool IsRegionDirty(Address addr); |
- |
- inline void ClearRegionMarks(Address start, |
- Address end, |
- bool reaches_limit); |
- |
// Page size in bytes. This must be a multiple of the OS page size. |
static const int kPageSize = 1 << kPageSizeBits; |
// Page size mask. |
static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1; |
- static const int kPageHeaderSize = kPointerSize + kPointerSize + kIntSize + |
- kIntSize + kPointerSize + kPointerSize; |
- |
- // The start offset of the object area in a page. Aligned to both maps and |
- // code alignment to be suitable for both. |
- static const int kObjectStartOffset = |
- CODE_POINTER_ALIGN(MAP_POINTER_ALIGN(kPageHeaderSize)); |
- |
// Object area size in bytes. |
static const int kObjectAreaSize = kPageSize - kObjectStartOffset; |
// Maximum object size that fits in a page. |
static const int kMaxHeapObjectSize = kObjectAreaSize; |
- static const int kDirtyFlagOffset = 2 * kPointerSize; |
- static const int kRegionSizeLog2 = 8; |
- static const int kRegionSize = 1 << kRegionSizeLog2; |
- static const intptr_t kRegionAlignmentMask = (kRegionSize - 1); |
+ static const int kFirstUsedCell = |
+ (kObjectStartOffset/kPointerSize) >> Bitmap::kBitsPerCellLog2; |
- STATIC_CHECK(kRegionSize == kPageSize / kBitsPerInt); |
+ static const int kLastUsedCell = |
+ ((kPageSize - kPointerSize)/kPointerSize) >> |
+ Bitmap::kBitsPerCellLog2; |
- enum PageFlag { |
- IS_NORMAL_PAGE = 0, |
- WAS_IN_USE_BEFORE_MC, |
+ inline void ClearGCFields(); |
- // Page allocation watermark was bumped by preallocation during scavenge. |
- // Correct watermark can be retrieved by CachedAllocationWatermark() method |
- WATERMARK_INVALIDATED, |
- IS_EXECUTABLE, |
- NUM_PAGE_FLAGS // Must be last |
- }; |
- static const int kPageFlagMask = (1 << NUM_PAGE_FLAGS) - 1; |
+ static inline Page* Initialize(Heap* heap, |
+ MemoryChunk* chunk, |
+ Executability executable, |
+ PagedSpace* owner); |
- // To avoid an additional WATERMARK_INVALIDATED flag clearing pass during |
- // scavenge we just invalidate the watermark on each old space page after |
- // processing it. And then we flip the meaning of the WATERMARK_INVALIDATED |
- // flag at the beginning of the next scavenge and each page becomes marked as |
- // having a valid watermark. |
- // |
- // The following invariant must hold for pages in old pointer and map spaces: |
- // If page is in use then page is marked as having invalid watermark at |
- // the beginning and at the end of any GC. |
- // |
- // This invariant guarantees that after flipping flag meaning at the |
- // beginning of scavenge all pages in use will be marked as having valid |
- // watermark. |
- static inline void FlipMeaningOfInvalidatedWatermarkFlag(Heap* heap); |
+ void InitializeAsAnchor(PagedSpace* owner); |
- // Returns true if the page allocation watermark was not altered during |
- // scavenge. |
- inline bool IsWatermarkValid(); |
+ bool WasSweptPrecisely() { return IsFlagSet(WAS_SWEPT_PRECISELY); } |
+ bool WasSweptConservatively() { return IsFlagSet(WAS_SWEPT_CONSERVATIVELY); } |
+ bool WasSwept() { return WasSweptPrecisely() || WasSweptConservatively(); } |
- inline void InvalidateWatermark(bool value); |
+ void MarkSweptPrecisely() { SetFlag(WAS_SWEPT_PRECISELY); } |
+ void MarkSweptConservatively() { SetFlag(WAS_SWEPT_CONSERVATIVELY); } |
- inline bool GetPageFlag(PageFlag flag); |
- inline void SetPageFlag(PageFlag flag, bool value); |
- inline void ClearPageFlags(); |
+ void ClearSweptPrecisely() { ClearFlag(WAS_SWEPT_PRECISELY); } |
+ void ClearSweptConservatively() { ClearFlag(WAS_SWEPT_CONSERVATIVELY); } |
- inline void ClearGCFields(); |
+ friend class MemoryAllocator; |
+}; |
- static const int kAllocationWatermarkOffsetShift = WATERMARK_INVALIDATED + 1; |
- static const int kAllocationWatermarkOffsetBits = kPageSizeBits + 1; |
- static const uint32_t kAllocationWatermarkOffsetMask = |
- ((1 << kAllocationWatermarkOffsetBits) - 1) << |
- kAllocationWatermarkOffsetShift; |
- static const uint32_t kFlagsMask = |
- ((1 << kAllocationWatermarkOffsetShift) - 1); |
+STATIC_CHECK(sizeof(Page) <= MemoryChunk::kHeaderSize); |
- STATIC_CHECK(kBitsPerInt - kAllocationWatermarkOffsetShift >= |
- kAllocationWatermarkOffsetBits); |
- //--------------------------------------------------------------------------- |
- // Page header description. |
- // |
- // If a page is not in the large object space, the first word, |
- // opaque_header, encodes the next page address (aligned to kPageSize 8K) |
- // and the chunk number (0 ~ 8K-1). Only MemoryAllocator should use |
- // opaque_header. The value range of the opaque_header is [0..kPageSize[, |
- // or [next_page_start, next_page_end[. It cannot point to a valid address |
- // in the current page. If a page is in the large object space, the first |
- // word *may* (if the page start and large object chunk start are the |
- // same) contain the address of the next large object chunk. |
- intptr_t opaque_header; |
+class LargePage : public MemoryChunk { |
+ public: |
+ HeapObject* GetObject() { |
+ return HeapObject::FromAddress(body()); |
+ } |
- // If the page is not in the large object space, the low-order bit of the |
- // second word is set. If the page is in the large object space, the |
- // second word *may* (if the page start and large object chunk start are |
- // the same) contain the large object chunk size. In either case, the |
- // low-order bit for large object pages will be cleared. |
- // For normal pages this word is used to store page flags and |
- // offset of allocation top. |
- intptr_t flags_; |
+ inline LargePage* next_page() const { |
+ return static_cast<LargePage*>(next_chunk()); |
+ } |
- // This field contains dirty marks for regions covering the page. Only dirty |
- // regions might contain intergenerational references. |
- // Only 32 dirty marks are supported so for large object pages several regions |
- // might be mapped to a single dirty mark. |
- uint32_t dirty_regions_; |
+ inline void set_next_page(LargePage* page) { |
+ set_next_chunk(page); |
+ } |
+ private: |
+ static inline LargePage* Initialize(Heap* heap, MemoryChunk* chunk); |
- // The index of the page in its owner space. |
- int mc_page_index; |
- |
- // During mark-compact collections this field contains the forwarding address |
- // of the first live object in this page. |
- // During scavenge collection this field is used to store allocation watermark |
- // if it is altered during scavenge. |
- Address mc_first_forwarded; |
- |
- Heap* heap_; |
+ friend class MemoryAllocator; |
}; |
+STATIC_CHECK(sizeof(LargePage) <= MemoryChunk::kHeaderSize); |
// ---------------------------------------------------------------------------- |
// Space is the abstract superclass for all allocation spaces. |
@@ -380,6 +751,14 @@ |
// (e.g. see LargeObjectSpace). |
virtual intptr_t SizeOfObjects() { return Size(); } |
+ virtual int RoundSizeDownToObjectAlignment(int size) { |
+ if (id_ == CODE_SPACE) { |
+ return RoundDown(size, kCodeAlignment); |
+ } else { |
+ return RoundDown(size, kPointerSize); |
+ } |
+ } |
+ |
#ifdef DEBUG |
virtual void Print() = 0; |
#endif |
@@ -430,9 +809,9 @@ |
// Allocates a chunk of memory from the large-object portion of |
// the code range. On platforms with no separate code range, should |
// not be called. |
- MUST_USE_RESULT void* AllocateRawMemory(const size_t requested, |
- size_t* allocated); |
- void FreeRawMemory(void* buf, size_t length); |
+ MUST_USE_RESULT Address AllocateRawMemory(const size_t requested, |
+ size_t* allocated); |
+ void FreeRawMemory(Address buf, size_t length); |
private: |
Isolate* isolate_; |
@@ -443,9 +822,15 @@ |
class FreeBlock { |
public: |
FreeBlock(Address start_arg, size_t size_arg) |
- : start(start_arg), size(size_arg) {} |
+ : start(start_arg), size(size_arg) { |
+ ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment)); |
+ ASSERT(size >= static_cast<size_t>(Page::kPageSize)); |
+ } |
FreeBlock(void* start_arg, size_t size_arg) |
- : start(static_cast<Address>(start_arg)), size(size_arg) {} |
+ : start(static_cast<Address>(start_arg)), size(size_arg) { |
+ ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment)); |
+ ASSERT(size >= static_cast<size_t>(Page::kPageSize)); |
+ } |
Address start; |
size_t size; |
@@ -473,30 +858,63 @@ |
}; |
+class SkipList { |
+ public: |
+ SkipList() { |
+ Clear(); |
+ } |
+ |
+ void Clear() { |
+ for (int idx = 0; idx < kSize; idx++) { |
+ starts_[idx] = reinterpret_cast<Address>(-1); |
+ } |
+ } |
+ |
+ Address StartFor(Address addr) { |
+ return starts_[RegionNumber(addr)]; |
+ } |
+ |
+ void AddObject(Address addr, int size) { |
+ int start_region = RegionNumber(addr); |
+ int end_region = RegionNumber(addr + size - kPointerSize); |
+ for (int idx = start_region; idx <= end_region; idx++) { |
+ if (starts_[idx] > addr) starts_[idx] = addr; |
+ } |
+ } |
+ |
+ static inline int RegionNumber(Address addr) { |
+ return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2; |
+ } |
+ |
+ static void Update(Address addr, int size) { |
+ Page* page = Page::FromAddress(addr); |
+ SkipList* list = page->skip_list(); |
+ if (list == NULL) { |
+ list = new SkipList(); |
+ page->set_skip_list(list); |
+ } |
+ |
+ list->AddObject(addr, size); |
+ } |
+ |
+ private: |
+ static const int kRegionSizeLog2 = 13; |
+ static const int kRegionSize = 1 << kRegionSizeLog2; |
+ static const int kSize = Page::kPageSize / kRegionSize; |
+ |
+ STATIC_ASSERT(Page::kPageSize % kRegionSize == 0); |
+ |
+ Address starts_[kSize]; |
+}; |
+ |
+ |
// ---------------------------------------------------------------------------- |
// A space acquires chunks of memory from the operating system. The memory |
-// allocator manages chunks for the paged heap spaces (old space and map |
-// space). A paged chunk consists of pages. Pages in a chunk have contiguous |
-// addresses and are linked as a list. |
+// allocator allocated and deallocates pages for the paged heap spaces and large |
+// pages for large object space. |
// |
-// The allocator keeps an initial chunk which is used for the new space. The |
-// leftover regions of the initial chunk are used for the initial chunks of |
-// old space and map space if they are big enough to hold at least one page. |
-// The allocator assumes that there is one old space and one map space, each |
-// expands the space by allocating kPagesPerChunk pages except the last |
-// expansion (before running out of space). The first chunk may contain fewer |
-// than kPagesPerChunk pages as well. |
+// Each space has to manage it's own pages. |
// |
-// The memory allocator also allocates chunks for the large object space, but |
-// they are managed by the space itself. The new space does not expand. |
-// |
-// The fact that pages for paged spaces are allocated and deallocated in chunks |
-// induces a constraint on the order of pages in a linked lists. We say that |
-// pages are linked in the chunk-order if and only if every two consecutive |
-// pages from the same chunk are consecutive in the linked list. |
-// |
- |
- |
class MemoryAllocator { |
public: |
explicit MemoryAllocator(Isolate* isolate); |
@@ -505,92 +923,16 @@ |
// Max capacity of the total space and executable memory limit. |
bool Setup(intptr_t max_capacity, intptr_t capacity_executable); |
- // Deletes valid chunks. |
void TearDown(); |
- // Reserves an initial address range of virtual memory to be split between |
- // the two new space semispaces, the old space, and the map space. The |
- // memory is not yet committed or assigned to spaces and split into pages. |
- // The initial chunk is unmapped when the memory allocator is torn down. |
- // This function should only be called when there is not already a reserved |
- // initial chunk (initial_chunk_ should be NULL). It returns the start |
- // address of the initial chunk if successful, with the side effect of |
- // setting the initial chunk, or else NULL if unsuccessful and leaves the |
- // initial chunk NULL. |
- void* ReserveInitialChunk(const size_t requested); |
+ Page* AllocatePage(PagedSpace* owner, Executability executable); |
- // Commits pages from an as-yet-unmanaged block of virtual memory into a |
- // paged space. The block should be part of the initial chunk reserved via |
- // a call to ReserveInitialChunk. The number of pages is always returned in |
- // the output parameter num_pages. This function assumes that the start |
- // address is non-null and that it is big enough to hold at least one |
- // page-aligned page. The call always succeeds, and num_pages is always |
- // greater than zero. |
- Page* CommitPages(Address start, size_t size, PagedSpace* owner, |
- int* num_pages); |
+ LargePage* AllocateLargePage(intptr_t object_size, |
+ Executability executable, |
+ Space* owner); |
- // Commit a contiguous block of memory from the initial chunk. Assumes that |
- // the address is not NULL, the size is greater than zero, and that the |
- // block is contained in the initial chunk. Returns true if it succeeded |
- // and false otherwise. |
- bool CommitBlock(Address start, size_t size, Executability executable); |
+ void Free(MemoryChunk* chunk); |
- // Uncommit a contiguous block of memory [start..(start+size)[. |
- // start is not NULL, the size is greater than zero, and the |
- // block is contained in the initial chunk. Returns true if it succeeded |
- // and false otherwise. |
- bool UncommitBlock(Address start, size_t size); |
- |
- // Zaps a contiguous block of memory [start..(start+size)[ thus |
- // filling it up with a recognizable non-NULL bit pattern. |
- void ZapBlock(Address start, size_t size); |
- |
- // Attempts to allocate the requested (non-zero) number of pages from the |
- // OS. Fewer pages might be allocated than requested. If it fails to |
- // allocate memory for the OS or cannot allocate a single page, this |
- // function returns an invalid page pointer (NULL). The caller must check |
- // whether the returned page is valid (by calling Page::is_valid()). It is |
- // guaranteed that allocated pages have contiguous addresses. The actual |
- // number of allocated pages is returned in the output parameter |
- // allocated_pages. If the PagedSpace owner is executable and there is |
- // a code range, the pages are allocated from the code range. |
- Page* AllocatePages(int requested_pages, int* allocated_pages, |
- PagedSpace* owner); |
- |
- // Frees pages from a given page and after. Requires pages to be |
- // linked in chunk-order (see comment for class). |
- // If 'p' is the first page of a chunk, pages from 'p' are freed |
- // and this function returns an invalid page pointer. |
- // Otherwise, the function searches a page after 'p' that is |
- // the first page of a chunk. Pages after the found page |
- // are freed and the function returns 'p'. |
- Page* FreePages(Page* p); |
- |
- // Frees all pages owned by given space. |
- void FreeAllPages(PagedSpace* space); |
- |
- // Allocates and frees raw memory of certain size. |
- // These are just thin wrappers around OS::Allocate and OS::Free, |
- // but keep track of allocated bytes as part of heap. |
- // If the flag is EXECUTABLE and a code range exists, the requested |
- // memory is allocated from the code range. If a code range exists |
- // and the freed memory is in it, the code range manages the freed memory. |
- MUST_USE_RESULT void* AllocateRawMemory(const size_t requested, |
- size_t* allocated, |
- Executability executable); |
- void FreeRawMemory(void* buf, |
- size_t length, |
- Executability executable); |
- void PerformAllocationCallback(ObjectSpace space, |
- AllocationAction action, |
- size_t size); |
- |
- void AddMemoryAllocationCallback(MemoryAllocationCallback callback, |
- ObjectSpace space, |
- AllocationAction action); |
- void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback); |
- bool MemoryAllocationCallbackRegistered(MemoryAllocationCallback callback); |
- |
// Returns the maximum available bytes of heaps. |
intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; } |
@@ -611,67 +953,68 @@ |
return (Available() / Page::kPageSize) * Page::kObjectAreaSize; |
} |
- // Links two pages. |
- inline void SetNextPage(Page* prev, Page* next); |
+#ifdef DEBUG |
+ // Reports statistic info of the space. |
+ void ReportStatistics(); |
+#endif |
- // Returns the next page of a given page. |
- inline Page* GetNextPage(Page* p); |
+ MemoryChunk* AllocateChunk(intptr_t body_size, |
+ Executability executable, |
+ Space* space); |
- // Checks whether a page belongs to a space. |
- inline bool IsPageInSpace(Page* p, PagedSpace* space); |
+ Address ReserveAlignedMemory(size_t requested, |
+ size_t alignment, |
+ VirtualMemory* controller); |
+ Address AllocateAlignedMemory(size_t requested, |
+ size_t alignment, |
+ Executability executable, |
+ VirtualMemory* controller); |
- // Returns the space that owns the given page. |
- inline PagedSpace* PageOwner(Page* page); |
+ void FreeMemory(VirtualMemory* reservation, Executability executable); |
+ void FreeMemory(Address addr, size_t size, Executability executable); |
- // Finds the first/last page in the same chunk as a given page. |
- Page* FindFirstPageInSameChunk(Page* p); |
- Page* FindLastPageInSameChunk(Page* p); |
+ // Commit a contiguous block of memory from the initial chunk. Assumes that |
+ // the address is not NULL, the size is greater than zero, and that the |
+ // block is contained in the initial chunk. Returns true if it succeeded |
+ // and false otherwise. |
+ bool CommitBlock(Address start, size_t size, Executability executable); |
- // Relinks list of pages owned by space to make it chunk-ordered. |
- // Returns new first and last pages of space. |
- // Also returns last page in relinked list which has WasInUsedBeforeMC |
- // flag set. |
- void RelinkPageListInChunkOrder(PagedSpace* space, |
- Page** first_page, |
- Page** last_page, |
- Page** last_page_in_use); |
+ // Uncommit a contiguous block of memory [start..(start+size)[. |
+ // start is not NULL, the size is greater than zero, and the |
+ // block is contained in the initial chunk. Returns true if it succeeded |
+ // and false otherwise. |
+ bool UncommitBlock(Address start, size_t size); |
-#ifdef DEBUG |
- // Reports statistic info of the space. |
- void ReportStatistics(); |
-#endif |
+ // Zaps a contiguous block of memory [start..(start+size)[ thus |
+ // filling it up with a recognizable non-NULL bit pattern. |
+ void ZapBlock(Address start, size_t size); |
- // Due to encoding limitation, we can only have 8K chunks. |
- static const int kMaxNofChunks = 1 << kPageSizeBits; |
- // If a chunk has at least 16 pages, the maximum heap size is about |
- // 8K * 8K * 16 = 1G bytes. |
-#ifdef V8_TARGET_ARCH_X64 |
- static const int kPagesPerChunk = 32; |
- // On 64 bit the chunk table consists of 4 levels of 4096-entry tables. |
- static const int kChunkTableLevels = 4; |
- static const int kChunkTableBitsPerLevel = 12; |
-#else |
- static const int kPagesPerChunk = 16; |
- // On 32 bit the chunk table consists of 2 levels of 256-entry tables. |
- static const int kChunkTableLevels = 2; |
- static const int kChunkTableBitsPerLevel = 8; |
-#endif |
+ void PerformAllocationCallback(ObjectSpace space, |
+ AllocationAction action, |
+ size_t size); |
+ void AddMemoryAllocationCallback(MemoryAllocationCallback callback, |
+ ObjectSpace space, |
+ AllocationAction action); |
+ |
+ void RemoveMemoryAllocationCallback( |
+ MemoryAllocationCallback callback); |
+ |
+ bool MemoryAllocationCallbackRegistered( |
+ MemoryAllocationCallback callback); |
+ |
private: |
- static const int kChunkSize = kPagesPerChunk * Page::kPageSize; |
- |
Isolate* isolate_; |
// Maximum space size in bytes. |
- intptr_t capacity_; |
+ size_t capacity_; |
// Maximum subset of capacity_ that can be executable |
- intptr_t capacity_executable_; |
+ size_t capacity_executable_; |
// Allocated space size in bytes. |
- intptr_t size_; |
- |
+ size_t size_; |
// Allocated executable space size in bytes. |
- intptr_t size_executable_; |
+ size_t size_executable_; |
struct MemoryAllocationCallbackRegistration { |
MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback, |
@@ -683,64 +1026,11 @@ |
ObjectSpace space; |
AllocationAction action; |
}; |
+ |
// A List of callback that are triggered when memory is allocated or free'd |
List<MemoryAllocationCallbackRegistration> |
memory_allocation_callbacks_; |
- // The initial chunk of virtual memory. |
- VirtualMemory* initial_chunk_; |
- |
- // Allocated chunk info: chunk start address, chunk size, and owning space. |
- class ChunkInfo BASE_EMBEDDED { |
- public: |
- ChunkInfo() : address_(NULL), |
- size_(0), |
- owner_(NULL), |
- executable_(NOT_EXECUTABLE), |
- owner_identity_(FIRST_SPACE) {} |
- inline void init(Address a, size_t s, PagedSpace* o); |
- Address address() { return address_; } |
- size_t size() { return size_; } |
- PagedSpace* owner() { return owner_; } |
- // We save executability of the owner to allow using it |
- // when collecting stats after the owner has been destroyed. |
- Executability executable() const { return executable_; } |
- AllocationSpace owner_identity() const { return owner_identity_; } |
- |
- private: |
- Address address_; |
- size_t size_; |
- PagedSpace* owner_; |
- Executability executable_; |
- AllocationSpace owner_identity_; |
- }; |
- |
- // Chunks_, free_chunk_ids_ and top_ act as a stack of free chunk ids. |
- List<ChunkInfo> chunks_; |
- List<int> free_chunk_ids_; |
- int max_nof_chunks_; |
- int top_; |
- |
- // Push/pop a free chunk id onto/from the stack. |
- void Push(int free_chunk_id); |
- int Pop(); |
- bool OutOfChunkIds() { return top_ == 0; } |
- |
- // Frees a chunk. |
- void DeleteChunk(int chunk_id); |
- |
- // Basic check whether a chunk id is in the valid range. |
- inline bool IsValidChunkId(int chunk_id); |
- |
- // Checks whether a chunk id identifies an allocated chunk. |
- inline bool IsValidChunk(int chunk_id); |
- |
- // Returns the chunk id that a page belongs to. |
- inline int GetChunkId(Page* p); |
- |
- // True if the address lies in the initial chunk. |
- inline bool InInitialChunk(Address address); |
- |
// Initializes pages in a chunk. Returns the first page address. |
// This function and GetChunkId() are provided for the mark-compact |
// collector to rebuild page headers in the from space, which is |
@@ -748,13 +1038,7 @@ |
Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk, |
PagedSpace* owner); |
- Page* RelinkPagesInChunk(int chunk_id, |
- Address chunk_start, |
- size_t chunk_size, |
- Page* prev, |
- Page** last_page_in_use); |
- |
- DISALLOW_COPY_AND_ASSIGN(MemoryAllocator); |
+ DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator); |
}; |
@@ -777,71 +1061,58 @@ |
// ----------------------------------------------------------------------------- |
// Heap object iterator in new/old/map spaces. |
// |
-// A HeapObjectIterator iterates objects from a given address to the |
-// top of a space. The given address must be below the current |
-// allocation pointer (space top). There are some caveats. |
+// A HeapObjectIterator iterates objects from the bottom of the given space |
+// to its top or from the bottom of the given page to its top. |
// |
-// (1) If the space top changes upward during iteration (because of |
-// allocating new objects), the iterator does not iterate objects |
-// above the original space top. The caller must create a new |
-// iterator starting from the old top in order to visit these new |
-// objects. |
-// |
-// (2) If new objects are allocated below the original allocation top |
-// (e.g., free-list allocation in paged spaces), the new objects |
-// may or may not be iterated depending on their position with |
-// respect to the current point of iteration. |
-// |
-// (3) The space top should not change downward during iteration, |
-// otherwise the iterator will return not-necessarily-valid |
-// objects. |
- |
+// If objects are allocated in the page during iteration the iterator may |
+// or may not iterate over those objects. The caller must create a new |
+// iterator in order to be sure to visit these new objects. |
class HeapObjectIterator: public ObjectIterator { |
public: |
- // Creates a new object iterator in a given space. If a start |
- // address is not given, the iterator starts from the space bottom. |
+ // Creates a new object iterator in a given space. |
// If the size function is not given, the iterator calls the default |
// Object::Size(). |
explicit HeapObjectIterator(PagedSpace* space); |
HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func); |
- HeapObjectIterator(PagedSpace* space, Address start); |
- HeapObjectIterator(PagedSpace* space, |
- Address start, |
- HeapObjectCallback size_func); |
HeapObjectIterator(Page* page, HeapObjectCallback size_func); |
- inline HeapObject* next() { |
- return (cur_addr_ < cur_limit_) ? FromCurrentPage() : FromNextPage(); |
+ // Advance to the next object, skipping free spaces and other fillers and |
+ // skipping the special garbage section of which there is one per space. |
+ // Returns NULL when the iteration has ended. |
+ inline HeapObject* Next() { |
+ do { |
+ HeapObject* next_obj = FromCurrentPage(); |
+ if (next_obj != NULL) return next_obj; |
+ } while (AdvanceToNextPage()); |
+ return NULL; |
} |
- // implementation of ObjectIterator. |
- virtual HeapObject* next_object() { return next(); } |
+ virtual HeapObject* next_object() { |
+ return Next(); |
+ } |
private: |
- Address cur_addr_; // current iteration point |
- Address end_addr_; // end iteration point |
- Address cur_limit_; // current page limit |
- HeapObjectCallback size_func_; // size function |
- Page* end_page_; // caches the page of the end address |
+ enum PageMode { kOnePageOnly, kAllPagesInSpace }; |
- HeapObject* FromCurrentPage() { |
- ASSERT(cur_addr_ < cur_limit_); |
+ Address cur_addr_; // Current iteration point. |
+ Address cur_end_; // End iteration point. |
+ HeapObjectCallback size_func_; // Size function or NULL. |
+ PagedSpace* space_; |
+ PageMode page_mode_; |
- HeapObject* obj = HeapObject::FromAddress(cur_addr_); |
- int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj); |
- ASSERT_OBJECT_SIZE(obj_size); |
+ // Fast (inlined) path of next(). |
+ inline HeapObject* FromCurrentPage(); |
- cur_addr_ += obj_size; |
- ASSERT(cur_addr_ <= cur_limit_); |
+ // Slow path of next(), goes into the next page. Returns false if the |
+ // iteration has ended. |
+ bool AdvanceToNextPage(); |
- return obj; |
- } |
- |
- // Slow path of next, goes into the next page. |
- HeapObject* FromNextPage(); |
- |
// Initializes fields. |
- void Initialize(Address start, Address end, HeapObjectCallback size_func); |
+ inline void Initialize(PagedSpace* owner, |
+ Address start, |
+ Address end, |
+ PageMode mode, |
+ HeapObjectCallback size_func); |
#ifdef DEBUG |
// Verifies whether fields have valid values. |
@@ -852,59 +1123,37 @@ |
// ----------------------------------------------------------------------------- |
// A PageIterator iterates the pages in a paged space. |
-// |
-// The PageIterator class provides three modes for iterating pages in a space: |
-// PAGES_IN_USE iterates pages containing allocated objects. |
-// PAGES_USED_BY_MC iterates pages that hold relocated objects during a |
-// mark-compact collection. |
-// ALL_PAGES iterates all pages in the space. |
-// |
-// There are some caveats. |
-// |
-// (1) If the space expands during iteration, new pages will not be |
-// returned by the iterator in any mode. |
-// |
-// (2) If new objects are allocated during iteration, they will appear |
-// in pages returned by the iterator. Allocation may cause the |
-// allocation pointer or MC allocation pointer in the last page to |
-// change between constructing the iterator and iterating the last |
-// page. |
-// |
-// (3) The space should not shrink during iteration, otherwise the |
-// iterator will return deallocated pages. |
class PageIterator BASE_EMBEDDED { |
public: |
- enum Mode { |
- PAGES_IN_USE, |
- PAGES_USED_BY_MC, |
- ALL_PAGES |
- }; |
+ explicit inline PageIterator(PagedSpace* space); |
- PageIterator(PagedSpace* space, Mode mode); |
- |
inline bool has_next(); |
inline Page* next(); |
private: |
PagedSpace* space_; |
Page* prev_page_; // Previous page returned. |
- Page* stop_page_; // Page to stop at (last page returned by the iterator). |
+ // Next page that will be returned. Cached here so that we can use this |
+ // iterator for operations that deallocate pages. |
+ Page* next_page_; |
}; |
// ----------------------------------------------------------------------------- |
-// A space has a list of pages. The next page can be accessed via |
-// Page::next_page() call. The next page of the last page is an |
-// invalid page pointer. A space can expand and shrink dynamically. |
+// A space has a circular list of pages. The next page can be accessed via |
+// Page::next_page() call. |
// An abstraction of allocation and relocation pointers in a page-structured |
// space. |
class AllocationInfo { |
public: |
- Address top; // current allocation top |
- Address limit; // current allocation limit |
+ AllocationInfo() : top(NULL), limit(NULL) { |
+ } |
+ Address top; // Current allocation top. |
+ Address limit; // Current allocation limit. |
+ |
#ifdef DEBUG |
bool VerifyPagedAllocation() { |
return (Page::FromAllocationTop(top) == Page::FromAllocationTop(limit)) |
@@ -935,70 +1184,190 @@ |
// Zero out all the allocation statistics (ie, no capacity). |
void Clear() { |
capacity_ = 0; |
- available_ = 0; |
size_ = 0; |
waste_ = 0; |
} |
+ void ClearSizeWaste() { |
+ size_ = capacity_; |
+ waste_ = 0; |
+ } |
+ |
// Reset the allocation statistics (ie, available = capacity with no |
// wasted or allocated bytes). |
void Reset() { |
- available_ = capacity_; |
size_ = 0; |
waste_ = 0; |
} |
// Accessors for the allocation statistics. |
intptr_t Capacity() { return capacity_; } |
- intptr_t Available() { return available_; } |
intptr_t Size() { return size_; } |
intptr_t Waste() { return waste_; } |
- // Grow the space by adding available bytes. |
+ // Grow the space by adding available bytes. They are initially marked as |
+ // being in use (part of the size), but will normally be immediately freed, |
+ // putting them on the free list and removing them from size_. |
void ExpandSpace(int size_in_bytes) { |
capacity_ += size_in_bytes; |
- available_ += size_in_bytes; |
+ size_ += size_in_bytes; |
+ ASSERT(size_ >= 0); |
} |
- // Shrink the space by removing available bytes. |
- void ShrinkSpace(int size_in_bytes) { |
- capacity_ -= size_in_bytes; |
- available_ -= size_in_bytes; |
- } |
- |
// Allocate from available bytes (available -> size). |
void AllocateBytes(intptr_t size_in_bytes) { |
- available_ -= size_in_bytes; |
size_ += size_in_bytes; |
+ ASSERT(size_ >= 0); |
} |
// Free allocated bytes, making them available (size -> available). |
void DeallocateBytes(intptr_t size_in_bytes) { |
size_ -= size_in_bytes; |
- available_ += size_in_bytes; |
+ ASSERT(size_ >= 0); |
} |
// Waste free bytes (available -> waste). |
void WasteBytes(int size_in_bytes) { |
- available_ -= size_in_bytes; |
+ size_ -= size_in_bytes; |
waste_ += size_in_bytes; |
+ ASSERT(size_ >= 0); |
} |
- // Consider the wasted bytes to be allocated, as they contain filler |
- // objects (waste -> size). |
- void FillWastedBytes(intptr_t size_in_bytes) { |
- waste_ -= size_in_bytes; |
- size_ += size_in_bytes; |
- } |
- |
private: |
intptr_t capacity_; |
- intptr_t available_; |
intptr_t size_; |
intptr_t waste_; |
}; |
+// ----------------------------------------------------------------------------- |
+// Free lists for old object spaces |
+// |
+// Free-list nodes are free blocks in the heap. They look like heap objects |
+// (free-list node pointers have the heap object tag, and they have a map like |
+// a heap object). They have a size and a next pointer. The next pointer is |
+// the raw address of the next free list node (or NULL). |
+class FreeListNode: public HeapObject { |
+ public: |
+ // Obtain a free-list node from a raw address. This is not a cast because |
+ // it does not check nor require that the first word at the address is a map |
+ // pointer. |
+ static FreeListNode* FromAddress(Address address) { |
+ return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address)); |
+ } |
+ |
+ static inline bool IsFreeListNode(HeapObject* object); |
+ |
+ // Set the size in bytes, which can be read with HeapObject::Size(). This |
+ // function also writes a map to the first word of the block so that it |
+ // looks like a heap object to the garbage collector and heap iteration |
+ // functions. |
+ void set_size(Heap* heap, int size_in_bytes); |
+ |
+ // Accessors for the next field. |
+ inline FreeListNode* next(); |
+ inline FreeListNode** next_address(); |
+ inline void set_next(FreeListNode* next); |
+ |
+ inline void Zap(); |
+ |
+ private: |
+ static const int kNextOffset = POINTER_SIZE_ALIGN(FreeSpace::kHeaderSize); |
+ |
+ DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode); |
+}; |
+ |
+ |
+// The free list for the old space. The free list is organized in such a way |
+// as to encourage objects allocated around the same time to be near each |
+// other. The normal way to allocate is intended to be by bumping a 'top' |
+// pointer until it hits a 'limit' pointer. When the limit is hit we need to |
+// find a new space to allocate from. This is done with the free list, which |
+// is divided up into rough categories to cut down on waste. Having finer |
+// categories would scatter allocation more. |
+ |
+// The old space free list is organized in categories. |
+// 1-31 words: Such small free areas are discarded for efficiency reasons. |
+// They can be reclaimed by the compactor. However the distance between top |
+// and limit may be this small. |
+// 32-255 words: There is a list of spaces this large. It is used for top and |
+// limit when the object we need to allocate is 1-31 words in size. These |
+// spaces are called small. |
+// 256-2047 words: There is a list of spaces this large. It is used for top and |
+// limit when the object we need to allocate is 32-255 words in size. These |
+// spaces are called medium. |
+// 1048-16383 words: There is a list of spaces this large. It is used for top |
+// and limit when the object we need to allocate is 256-2047 words in size. |
+// These spaces are call large. |
+// At least 16384 words. This list is for objects of 2048 words or larger. |
+// Empty pages are added to this list. These spaces are called huge. |
+class FreeList BASE_EMBEDDED { |
+ public: |
+ explicit FreeList(PagedSpace* owner); |
+ |
+ // Clear the free list. |
+ void Reset(); |
+ |
+ // Return the number of bytes available on the free list. |
+ intptr_t available() { return available_; } |
+ |
+ // Place a node on the free list. The block of size 'size_in_bytes' |
+ // starting at 'start' is placed on the free list. The return value is the |
+ // number of bytes that have been lost due to internal fragmentation by |
+ // freeing the block. Bookkeeping information will be written to the block, |
+ // ie, its contents will be destroyed. The start address should be word |
+ // aligned, and the size should be a non-zero multiple of the word size. |
+ int Free(Address start, int size_in_bytes); |
+ |
+ // Allocate a block of size 'size_in_bytes' from the free list. The block |
+ // is unitialized. A failure is returned if no block is available. The |
+ // number of bytes lost to fragmentation is returned in the output parameter |
+ // 'wasted_bytes'. The size should be a non-zero multiple of the word size. |
+ MUST_USE_RESULT HeapObject* Allocate(int size_in_bytes); |
+ |
+ void MarkNodes(); |
+ |
+#ifdef DEBUG |
+ void Zap(); |
+ static intptr_t SumFreeList(FreeListNode* node); |
+ static int FreeListLength(FreeListNode* cur); |
+ intptr_t SumFreeLists(); |
+ bool IsVeryLong(); |
+#endif |
+ |
+ void CountFreeListItems(Page* p, intptr_t* sizes); |
+ |
+ private: |
+ // The size range of blocks, in bytes. |
+ static const int kMinBlockSize = 3 * kPointerSize; |
+ static const int kMaxBlockSize = Page::kMaxHeapObjectSize; |
+ |
+ FreeListNode* PickNodeFromList(FreeListNode** list, int* node_size); |
+ |
+ FreeListNode* FindNodeFor(int size_in_bytes, int* node_size); |
+ |
+ PagedSpace* owner_; |
+ Heap* heap_; |
+ |
+ // Total available bytes in all blocks on this free list. |
+ int available_; |
+ |
+ static const int kSmallListMin = 0x20 * kPointerSize; |
+ static const int kSmallListMax = 0xff * kPointerSize; |
+ static const int kMediumListMax = 0x7ff * kPointerSize; |
+ static const int kLargeListMax = 0x3fff * kPointerSize; |
+ static const int kSmallAllocationMax = kSmallListMin - kPointerSize; |
+ static const int kMediumAllocationMax = kSmallListMax; |
+ static const int kLargeAllocationMax = kMediumListMax; |
+ FreeListNode* small_list_; |
+ FreeListNode* medium_list_; |
+ FreeListNode* large_list_; |
+ FreeListNode* huge_list_; |
+ |
+ DISALLOW_IMPLICIT_CONSTRUCTORS(FreeList); |
+}; |
+ |
+ |
class PagedSpace : public Space { |
public: |
// Creates a space with a maximum capacity, and an id. |
@@ -1013,7 +1382,7 @@ |
// the memory allocator's initial chunk) if possible. If the block of |
// addresses is not big enough to contain a single page-aligned page, a |
// fresh chunk will be allocated. |
- bool Setup(Address start, size_t size); |
+ bool Setup(); |
// Returns true if the space has been successfully set up and not |
// subsequently torn down. |
@@ -1026,8 +1395,6 @@ |
// Checks whether an object/address is in this space. |
inline bool Contains(Address a); |
bool Contains(HeapObject* o) { return Contains(o->address()); } |
- // Never crashes even if a is not a valid pointer. |
- inline bool SafeContains(Address a); |
// Given an address occupied by a live object, return that object if it is |
// in this space, or Failure::Exception() if it is not. The implementation |
@@ -1035,105 +1402,94 @@ |
// linear in the number of objects in the page. It may be slow. |
MUST_USE_RESULT MaybeObject* FindObject(Address addr); |
- // Checks whether page is currently in use by this space. |
- bool IsUsed(Page* page); |
- |
- void MarkAllPagesClean(); |
- |
// Prepares for a mark-compact GC. |
- virtual void PrepareForMarkCompact(bool will_compact); |
+ virtual void PrepareForMarkCompact(); |
- // The top of allocation in a page in this space. Undefined if page is unused. |
- Address PageAllocationTop(Page* page) { |
- return page == TopPageOf(allocation_info_) ? top() |
- : PageAllocationLimit(page); |
- } |
- |
- // The limit of allocation for a page in this space. |
- virtual Address PageAllocationLimit(Page* page) = 0; |
- |
- void FlushTopPageWatermark() { |
- AllocationTopPage()->SetCachedAllocationWatermark(top()); |
- AllocationTopPage()->InvalidateWatermark(true); |
- } |
- |
- // Current capacity without growing (Size() + Available() + Waste()). |
+ // Current capacity without growing (Size() + Available()). |
intptr_t Capacity() { return accounting_stats_.Capacity(); } |
// Total amount of memory committed for this space. For paged |
// spaces this equals the capacity. |
intptr_t CommittedMemory() { return Capacity(); } |
- // Available bytes without growing. |
- intptr_t Available() { return accounting_stats_.Available(); } |
+ // Sets the capacity, the available space and the wasted space to zero. |
+ // The stats are rebuilt during sweeping by adding each page to the |
+ // capacity and the size when it is encountered. As free spaces are |
+ // discovered during the sweeping they are subtracted from the size and added |
+ // to the available and wasted totals. |
+ void ClearStats() { |
+ accounting_stats_.ClearSizeWaste(); |
+ } |
- // Allocated bytes in this space. |
+ // Available bytes without growing. These are the bytes on the free list. |
+ // The bytes in the linear allocation area are not included in this total |
+ // because updating the stats would slow down allocation. New pages are |
+ // immediately added to the free list so they show up here. |
+ intptr_t Available() { return free_list_.available(); } |
+ |
+ // Allocated bytes in this space. Garbage bytes that were not found due to |
+ // lazy sweeping are counted as being allocated! The bytes in the current |
+ // linear allocation area (between top and limit) are also counted here. |
virtual intptr_t Size() { return accounting_stats_.Size(); } |
- // Wasted bytes due to fragmentation and not recoverable until the |
- // next GC of this space. |
- intptr_t Waste() { return accounting_stats_.Waste(); } |
+ // As size, but the bytes in the current linear allocation area are not |
+ // included. |
+ virtual intptr_t SizeOfObjects() { return Size() - (limit() - top()); } |
- // Returns the address of the first object in this space. |
- Address bottom() { return first_page_->ObjectAreaStart(); } |
+ // Wasted bytes in this space. These are just the bytes that were thrown away |
+ // due to being too small to use for allocation. They do not include the |
+ // free bytes that were not found at all due to lazy sweeping. |
+ virtual intptr_t Waste() { return accounting_stats_.Waste(); } |
// Returns the allocation pointer in this space. |
- Address top() { return allocation_info_.top; } |
+ Address top() { |
+ return allocation_info_.top; |
+ } |
+ Address limit() { return allocation_info_.limit; } |
// Allocate the requested number of bytes in the space if possible, return a |
// failure object if not. |
MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes); |
- // Allocate the requested number of bytes for relocation during mark-compact |
- // collection. |
- MUST_USE_RESULT inline MaybeObject* MCAllocateRaw(int size_in_bytes); |
- |
virtual bool ReserveSpace(int bytes); |
- // Used by ReserveSpace. |
- virtual void PutRestOfCurrentPageOnFreeList(Page* current_page) = 0; |
+ // Give a block of memory to the space's free list. It might be added to |
+ // the free list or accounted as waste. |
+ // If add_to_freelist is false then just accounting stats are updated and |
+ // no attempt to add area to free list is made. |
+ int Free(Address start, int size_in_bytes) { |
+ int wasted = free_list_.Free(start, size_in_bytes); |
+ accounting_stats_.DeallocateBytes(size_in_bytes - wasted); |
+ return size_in_bytes - wasted; |
+ } |
- // Free all pages in range from prev (exclusive) to last (inclusive). |
- // Freed pages are moved to the end of page list. |
- void FreePages(Page* prev, Page* last); |
+ int FreeOrUnmapPage(Page* page, Address start, int size_in_bytes); |
- // Deallocates a block. |
- virtual void DeallocateBlock(Address start, |
- int size_in_bytes, |
- bool add_to_freelist) = 0; |
- |
// Set space allocation info. |
- void SetTop(Address top) { |
+ void SetTop(Address top, Address limit) { |
+ ASSERT(top == limit || |
+ Page::FromAddress(top) == Page::FromAddress(limit - 1)); |
allocation_info_.top = top; |
- allocation_info_.limit = PageAllocationLimit(Page::FromAllocationTop(top)); |
+ allocation_info_.limit = limit; |
} |
- // --------------------------------------------------------------------------- |
- // Mark-compact collection support functions |
+ void Allocate(int bytes) { |
+ accounting_stats_.AllocateBytes(bytes); |
+ } |
- // Set the relocation point to the beginning of the space. |
- void MCResetRelocationInfo(); |
- |
- // Writes relocation info to the top page. |
- void MCWriteRelocationInfoToPage() { |
- TopPageOf(mc_forwarding_info_)-> |
- SetAllocationWatermark(mc_forwarding_info_.top); |
+ void IncreaseCapacity(int size) { |
+ accounting_stats_.ExpandSpace(size); |
} |
- // Computes the offset of a given address in this space to the beginning |
- // of the space. |
- int MCSpaceOffsetForAddress(Address addr); |
- |
- // Updates the allocation pointer to the relocation top after a mark-compact |
- // collection. |
- virtual void MCCommitRelocationInfo() = 0; |
- |
// Releases half of unused pages. |
void Shrink(); |
// Ensures that the capacity is at least 'capacity'. Returns false on failure. |
bool EnsureCapacity(int capacity); |
+ // The dummy page that anchors the linked list of pages. |
+ Page* anchor() { return &anchor_; } |
+ |
#ifdef DEBUG |
// Print meta info and objects in this space. |
virtual void Print(); |
@@ -1141,6 +1497,9 @@ |
// Verify integrity of this space. |
virtual void Verify(ObjectVisitor* visitor); |
+ // Reports statistics for the space |
+ void ReportStatistics(); |
+ |
// Overridden by subclasses to verify space-specific object |
// properties (e.g., only maps or free-list nodes are in map space). |
virtual void VerifyObject(HeapObject* obj) {} |
@@ -1151,11 +1510,67 @@ |
static void ResetCodeStatistics(); |
#endif |
- // Returns the page of the allocation pointer. |
- Page* AllocationTopPage() { return TopPageOf(allocation_info_); } |
+ bool was_swept_conservatively() { return was_swept_conservatively_; } |
+ void set_was_swept_conservatively(bool b) { was_swept_conservatively_ = b; } |
- void RelinkPageListInChunkOrder(bool deallocate_blocks); |
+ // Evacuation candidates are swept by evacuator. Needs to return a valid |
+ // result before _and_ after evacuation has finished. |
+ static bool ShouldBeSweptLazily(Page* p) { |
+ return !p->IsEvacuationCandidate() && |
+ !p->IsFlagSet(Page::RESCAN_ON_EVACUATION) && |
+ !p->WasSweptPrecisely(); |
+ } |
+ void SetPagesToSweep(Page* first, Page* last) { |
+ first_unswept_page_ = first; |
+ last_unswept_page_ = last; |
+ } |
+ |
+ bool AdvanceSweeper(intptr_t bytes_to_sweep); |
+ |
+ bool IsSweepingComplete() { |
+ return !first_unswept_page_->is_valid(); |
+ } |
+ |
+ Page* FirstPage() { return anchor_.next_page(); } |
+ Page* LastPage() { return anchor_.prev_page(); } |
+ |
+ bool IsFragmented(Page* p) { |
+ intptr_t sizes[4]; |
+ free_list_.CountFreeListItems(p, sizes); |
+ |
+ intptr_t ratio; |
+ intptr_t ratio_threshold; |
+ if (identity() == CODE_SPACE) { |
+ ratio = (sizes[1] * 10 + sizes[2] * 2) * 100 / Page::kObjectAreaSize; |
+ ratio_threshold = 10; |
+ } else { |
+ ratio = (sizes[0] * 5 + sizes[1]) * 100 / Page::kObjectAreaSize; |
+ ratio_threshold = 15; |
+ } |
+ |
+ if (FLAG_trace_fragmentation) { |
+ PrintF("%p [%d]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n", |
+ reinterpret_cast<void*>(p), |
+ identity(), |
+ static_cast<int>(sizes[0]), |
+ static_cast<double>(sizes[0] * 100) / Page::kObjectAreaSize, |
+ static_cast<int>(sizes[1]), |
+ static_cast<double>(sizes[1] * 100) / Page::kObjectAreaSize, |
+ static_cast<int>(sizes[2]), |
+ static_cast<double>(sizes[2] * 100) / Page::kObjectAreaSize, |
+ static_cast<int>(sizes[3]), |
+ static_cast<double>(sizes[3] * 100) / Page::kObjectAreaSize, |
+ (ratio > ratio_threshold) ? "[fragmented]" : ""); |
+ } |
+ |
+ return (ratio > ratio_threshold) || FLAG_always_compact; |
+ } |
+ |
+ void EvictEvacuationCandidatesFromFreeLists(); |
+ |
+ bool CanExpand(); |
+ |
protected: |
// Maximum capacity of this space. |
intptr_t max_capacity_; |
@@ -1163,80 +1578,43 @@ |
// Accounting information for this space. |
AllocationStats accounting_stats_; |
- // The first page in this space. |
- Page* first_page_; |
+ // The dummy page that anchors the double linked list of pages. |
+ Page anchor_; |
- // The last page in this space. Initially set in Setup, updated in |
- // Expand and Shrink. |
- Page* last_page_; |
+ // The space's free list. |
+ FreeList free_list_; |
- // True if pages owned by this space are linked in chunk-order. |
- // See comment for class MemoryAllocator for definition of chunk-order. |
- bool page_list_is_chunk_ordered_; |
- |
// Normal allocation information. |
AllocationInfo allocation_info_; |
- // Relocation information during mark-compact collections. |
- AllocationInfo mc_forwarding_info_; |
- |
// Bytes of each page that cannot be allocated. Possibly non-zero |
// for pages in spaces with only fixed-size objects. Always zero |
// for pages in spaces with variable sized objects (those pages are |
// padded with free-list nodes). |
int page_extra_; |
- // Sets allocation pointer to a page bottom. |
- static void SetAllocationInfo(AllocationInfo* alloc_info, Page* p); |
+ bool was_swept_conservatively_; |
- // Returns the top page specified by an allocation info structure. |
- static Page* TopPageOf(AllocationInfo alloc_info) { |
- return Page::FromAllocationTop(alloc_info.limit); |
- } |
+ Page* first_unswept_page_; |
+ Page* last_unswept_page_; |
- int CountPagesToTop() { |
- Page* p = Page::FromAllocationTop(allocation_info_.top); |
- PageIterator it(this, PageIterator::ALL_PAGES); |
- int counter = 1; |
- while (it.has_next()) { |
- if (it.next() == p) return counter; |
- counter++; |
- } |
- UNREACHABLE(); |
- return -1; |
- } |
- |
// Expands the space by allocating a fixed number of pages. Returns false if |
- // it cannot allocate requested number of pages from OS. Newly allocated |
- // pages are append to the last_page; |
- bool Expand(Page* last_page); |
+ // it cannot allocate requested number of pages from OS. |
+ bool Expand(); |
- // Generic fast case allocation function that tries linear allocation in |
- // the top page of 'alloc_info'. Returns NULL on failure. |
+ // Generic fast case allocation function that tries linear allocation at the |
+ // address denoted by top in allocation_info_. |
inline HeapObject* AllocateLinearly(AllocationInfo* alloc_info, |
int size_in_bytes); |
- // During normal allocation or deserialization, roll to the next page in |
- // the space (there is assumed to be one) and allocate there. This |
- // function is space-dependent. |
- virtual HeapObject* AllocateInNextPage(Page* current_page, |
- int size_in_bytes) = 0; |
- |
// Slow path of AllocateRaw. This function is space-dependent. |
- MUST_USE_RESULT virtual HeapObject* SlowAllocateRaw(int size_in_bytes) = 0; |
+ MUST_USE_RESULT virtual HeapObject* SlowAllocateRaw(int size_in_bytes); |
- // Slow path of MCAllocateRaw. |
- MUST_USE_RESULT HeapObject* SlowMCAllocateRaw(int size_in_bytes); |
- |
#ifdef DEBUG |
// Returns the number of total pages in this space. |
int CountTotalPages(); |
#endif |
- private: |
- // Returns a pointer to the page of the relocation pointer. |
- Page* MCRelocationTopPage() { return TopPageOf(mc_forwarding_info_); } |
- |
friend class PageIterator; |
}; |
@@ -1276,20 +1654,113 @@ |
}; |
+enum SemiSpaceId { |
+ kFromSpace = 0, |
+ kToSpace = 1 |
+}; |
+ |
+ |
+class SemiSpace; |
+ |
+ |
+class NewSpacePage : public MemoryChunk { |
+ public: |
+ // GC related flags copied from from-space to to-space when |
+ // flipping semispaces. |
+ static const intptr_t kCopyOnFlipFlagsMask = |
+ (1 << MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) | |
+ (1 << MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) | |
+ (1 << MemoryChunk::SCAN_ON_SCAVENGE); |
+ |
+ inline NewSpacePage* next_page() const { |
+ return static_cast<NewSpacePage*>(next_chunk()); |
+ } |
+ |
+ inline void set_next_page(NewSpacePage* page) { |
+ set_next_chunk(page); |
+ } |
+ |
+ inline NewSpacePage* prev_page() const { |
+ return static_cast<NewSpacePage*>(prev_chunk()); |
+ } |
+ |
+ inline void set_prev_page(NewSpacePage* page) { |
+ set_prev_chunk(page); |
+ } |
+ |
+ SemiSpace* semi_space() { |
+ return reinterpret_cast<SemiSpace*>(owner()); |
+ } |
+ |
+ bool is_anchor() { return !this->InNewSpace(); } |
+ |
+ static bool IsAtStart(Address addr) { |
+ return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask) |
+ == kObjectStartOffset; |
+ } |
+ |
+ static bool IsAtEnd(Address addr) { |
+ return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask) == 0; |
+ } |
+ |
+ Address address() { |
+ return reinterpret_cast<Address>(this); |
+ } |
+ |
+ // Finds the NewSpacePage containg the given address. |
+ static inline NewSpacePage* FromAddress(Address address_in_page) { |
+ Address page_start = |
+ reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address_in_page) & |
+ ~Page::kPageAlignmentMask); |
+ NewSpacePage* page = reinterpret_cast<NewSpacePage*>(page_start); |
+ ASSERT(page->InNewSpace()); |
+ return page; |
+ } |
+ |
+ // Find the page for a limit address. A limit address is either an address |
+ // inside a page, or the address right after the last byte of a page. |
+ static inline NewSpacePage* FromLimit(Address address_limit) { |
+ return NewSpacePage::FromAddress(address_limit - 1); |
+ } |
+ |
+ private: |
+ // Create a NewSpacePage object that is only used as anchor |
+ // for the doubly-linked list of real pages. |
+ explicit NewSpacePage(SemiSpace* owner) { |
+ InitializeAsAnchor(owner); |
+ } |
+ |
+ static NewSpacePage* Initialize(Heap* heap, |
+ Address start, |
+ SemiSpace* semi_space); |
+ |
+ // Intialize a fake NewSpacePage used as sentinel at the ends |
+ // of a doubly-linked list of real NewSpacePages. |
+ // Only uses the prev/next links, and sets flags to not be in new-space. |
+ void InitializeAsAnchor(SemiSpace* owner); |
+ |
+ friend class SemiSpace; |
+ friend class SemiSpaceIterator; |
+}; |
+ |
+ |
// ----------------------------------------------------------------------------- |
// SemiSpace in young generation |
// |
-// A semispace is a contiguous chunk of memory. The mark-compact collector |
-// uses the memory in the from space as a marking stack when tracing live |
-// objects. |
+// A semispace is a contiguous chunk of memory holding page-like memory |
+// chunks. The mark-compact collector uses the memory of the first page in |
+// the from space as a marking stack when tracing live objects. |
class SemiSpace : public Space { |
public: |
// Constructor. |
- explicit SemiSpace(Heap* heap) : Space(heap, NEW_SPACE, NOT_EXECUTABLE) { |
- start_ = NULL; |
- age_mark_ = NULL; |
- } |
+ SemiSpace(Heap* heap, SemiSpaceId semispace) |
+ : Space(heap, NEW_SPACE, NOT_EXECUTABLE), |
+ start_(NULL), |
+ age_mark_(NULL), |
+ id_(semispace), |
+ anchor_(this), |
+ current_page_(NULL) { } |
// Sets up the semispace using the given chunk. |
bool Setup(Address start, int initial_capacity, int maximum_capacity); |
@@ -1316,14 +1787,41 @@ |
// semispace and less than the current capacity. |
bool ShrinkTo(int new_capacity); |
- // Returns the start address of the space. |
- Address low() { return start_; } |
+ // Returns the start address of the first page of the space. |
+ Address space_start() { |
+ ASSERT(anchor_.next_page() != &anchor_); |
+ return anchor_.next_page()->body(); |
+ } |
+ |
+ // Returns the start address of the current page of the space. |
+ Address page_low() { |
+ ASSERT(anchor_.next_page() != &anchor_); |
+ return current_page_->body(); |
+ } |
+ |
// Returns one past the end address of the space. |
- Address high() { return low() + capacity_; } |
+ Address space_end() { |
+ return anchor_.prev_page()->body_limit(); |
+ } |
+ // Returns one past the end address of the current page of the space. |
+ Address page_high() { |
+ return current_page_->body_limit(); |
+ } |
+ |
+ bool AdvancePage() { |
+ NewSpacePage* next_page = current_page_->next_page(); |
+ if (next_page == anchor()) return false; |
+ current_page_ = next_page; |
+ return true; |
+ } |
+ |
+ // Resets the space to using the first page. |
+ void Reset(); |
+ |
// Age mark accessors. |
Address age_mark() { return age_mark_; } |
- void set_age_mark(Address mark) { age_mark_ = mark; } |
+ void set_age_mark(Address mark); |
// True if the address is in the address range of this semispace (not |
// necessarily below the allocation pointer). |
@@ -1338,11 +1836,6 @@ |
return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_; |
} |
- // The offset of an address from the beginning of the space. |
- int SpaceOffsetForAddress(Address addr) { |
- return static_cast<int>(addr - low()); |
- } |
- |
// If we don't have these here then SemiSpace will be abstract. However |
// they should never be called. |
virtual intptr_t Size() { |
@@ -1359,9 +1852,19 @@ |
bool Commit(); |
bool Uncommit(); |
+ NewSpacePage* first_page() { return anchor_.next_page(); } |
+ NewSpacePage* current_page() { return current_page_; } |
+ |
#ifdef DEBUG |
virtual void Print(); |
virtual void Verify(); |
+ // Validate a range of of addresses in a SemiSpace. |
+ // The "from" address must be on a page prior to the "to" address, |
+ // in the linked page order, or it must be earlier on the same page. |
+ static void AssertValidRange(Address from, Address to); |
+#else |
+ // Do nothing. |
+ inline static void AssertValidRange(Address from, Address to) {} |
#endif |
// Returns the current capacity of the semi space. |
@@ -1373,7 +1876,17 @@ |
// Returns the initial capacity of the semi space. |
int InitialCapacity() { return initial_capacity_; } |
+ SemiSpaceId id() { return id_; } |
+ |
+ static void Swap(SemiSpace* from, SemiSpace* to); |
+ |
private: |
+ // Flips the semispace between being from-space and to-space. |
+ // Copies the flags into the masked positions on all pages in the space. |
+ void FlipPages(intptr_t flags, intptr_t flag_mask); |
+ |
+ NewSpacePage* anchor() { return &anchor_; } |
+ |
// The current and maximum capacity of the space. |
int capacity_; |
int maximum_capacity_; |
@@ -1390,7 +1903,13 @@ |
uintptr_t object_expected_; |
bool committed_; |
+ SemiSpaceId id_; |
+ NewSpacePage anchor_; |
+ NewSpacePage* current_page_; |
+ |
+ friend class SemiSpaceIterator; |
+ friend class NewSpacePageIterator; |
public: |
TRACK_MEMORY("SemiSpace") |
}; |
@@ -1406,12 +1925,26 @@ |
// Create an iterator over the objects in the given space. If no start |
// address is given, the iterator starts from the bottom of the space. If |
// no size function is given, the iterator calls Object::Size(). |
+ |
+ // Iterate over all of allocated to-space. |
explicit SemiSpaceIterator(NewSpace* space); |
+ // Iterate over all of allocated to-space, with a custome size function. |
SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func); |
+ // Iterate over part of allocated to-space, from start to the end |
+ // of allocation. |
SemiSpaceIterator(NewSpace* space, Address start); |
+ // Iterate from one address to another in the same semi-space. |
+ SemiSpaceIterator(Address from, Address to); |
- HeapObject* next() { |
+ HeapObject* Next() { |
if (current_ == limit_) return NULL; |
+ if (NewSpacePage::IsAtEnd(current_)) { |
+ NewSpacePage* page = NewSpacePage::FromLimit(current_); |
+ page = page->next_page(); |
+ ASSERT(!page->is_anchor()); |
+ current_ = page->body(); |
+ if (current_ == limit_) return NULL; |
+ } |
HeapObject* object = HeapObject::FromAddress(current_); |
int size = (size_func_ == NULL) ? object->Size() : size_func_(object); |
@@ -1421,14 +1954,13 @@ |
} |
// Implementation of the ObjectIterator functions. |
- virtual HeapObject* next_object() { return next(); } |
+ virtual HeapObject* next_object() { return Next(); } |
private: |
- void Initialize(NewSpace* space, Address start, Address end, |
+ void Initialize(Address start, |
+ Address end, |
HeapObjectCallback size_func); |
- // The semispace. |
- SemiSpace* space_; |
// The current iteration point. |
Address current_; |
// The end of iteration. |
@@ -1439,6 +1971,34 @@ |
// ----------------------------------------------------------------------------- |
+// A PageIterator iterates the pages in a semi-space. |
+class NewSpacePageIterator BASE_EMBEDDED { |
+ public: |
+ // Make an iterator that runs over all pages in to-space. |
+ explicit inline NewSpacePageIterator(NewSpace* space); |
+ |
+ // Make an iterator that runs over all pages in the given semispace, |
+ // even those not used in allocation. |
+ explicit inline NewSpacePageIterator(SemiSpace* space); |
+ |
+ // Make iterator that iterates from the page containing start |
+ // to the page that contains limit in the same semispace. |
+ inline NewSpacePageIterator(Address start, Address limit); |
+ |
+ inline bool has_next(); |
+ inline NewSpacePage* next(); |
+ |
+ private: |
+ NewSpacePage* prev_page_; // Previous page returned. |
+ // Next page that will be returned. Cached here so that we can use this |
+ // iterator for operations that deallocate pages. |
+ NewSpacePage* next_page_; |
+ // Last page returned. |
+ NewSpacePage* last_page_; |
+}; |
+ |
+ |
+// ----------------------------------------------------------------------------- |
// The young generation space. |
// |
// The new space consists of a contiguous pair of semispaces. It simply |
@@ -1449,11 +2009,13 @@ |
// Constructor. |
explicit NewSpace(Heap* heap) |
: Space(heap, NEW_SPACE, NOT_EXECUTABLE), |
- to_space_(heap), |
- from_space_(heap) {} |
+ to_space_(heap, kToSpace), |
+ from_space_(heap, kFromSpace), |
+ reservation_(), |
+ inline_allocation_limit_step_(0) {} |
// Sets up the new space using the given chunk. |
- bool Setup(Address start, int size); |
+ bool Setup(int reserved_semispace_size_, int max_semispace_size); |
// Tears down the space. Heap memory was not allocated by the space, so it |
// is not deallocated here. |
@@ -1480,18 +2042,30 @@ |
return (reinterpret_cast<uintptr_t>(a) & address_mask_) |
== reinterpret_cast<uintptr_t>(start_); |
} |
+ |
bool Contains(Object* o) { |
- return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_; |
+ Address a = reinterpret_cast<Address>(o); |
+ return (reinterpret_cast<uintptr_t>(a) & object_mask_) == object_expected_; |
} |
// Return the allocated bytes in the active semispace. |
- virtual intptr_t Size() { return static_cast<int>(top() - bottom()); } |
+ virtual intptr_t Size() { |
+ return pages_used_ * Page::kObjectAreaSize + |
+ static_cast<int>(top() - to_space_.page_low()); |
+ } |
+ |
// The same, but returning an int. We have to have the one that returns |
// intptr_t because it is inherited, but if we know we are dealing with the |
// new space, which can't get as big as the other spaces then this is useful: |
int SizeAsInt() { return static_cast<int>(Size()); } |
// Return the current capacity of a semispace. |
+ intptr_t EffectiveCapacity() { |
+ ASSERT(to_space_.Capacity() == from_space_.Capacity()); |
+ return (to_space_.Capacity() / Page::kPageSize) * Page::kObjectAreaSize; |
+ } |
+ |
+ // Return the current capacity of a semispace. |
intptr_t Capacity() { |
ASSERT(to_space_.Capacity() == from_space_.Capacity()); |
return to_space_.Capacity(); |
@@ -1503,8 +2077,11 @@ |
return Capacity(); |
} |
- // Return the available bytes without growing in the active semispace. |
- intptr_t Available() { return Capacity() - Size(); } |
+ // Return the available bytes without growing or switching page in the |
+ // active semispace. |
+ intptr_t Available() { |
+ return allocation_info_.limit - allocation_info_.top; |
+ } |
// Return the maximum capacity of a semispace. |
int MaximumCapacity() { |
@@ -1519,9 +2096,12 @@ |
} |
// Return the address of the allocation pointer in the active semispace. |
- Address top() { return allocation_info_.top; } |
+ Address top() { |
+ ASSERT(to_space_.current_page()->ContainsLimit(allocation_info_.top)); |
+ return allocation_info_.top; |
+ } |
// Return the address of the first object in the active semispace. |
- Address bottom() { return to_space_.low(); } |
+ Address bottom() { return to_space_.space_start(); } |
// Get the age mark of the inactive semispace. |
Address age_mark() { return from_space_.age_mark(); } |
@@ -1533,54 +2113,70 @@ |
Address start() { return start_; } |
uintptr_t mask() { return address_mask_; } |
+ INLINE(uint32_t AddressToMarkbitIndex(Address addr)) { |
+ ASSERT(Contains(addr)); |
+ ASSERT(IsAligned(OffsetFrom(addr), kPointerSize) || |
+ IsAligned(OffsetFrom(addr) - 1, kPointerSize)); |
+ return static_cast<uint32_t>(addr - start_) >> kPointerSizeLog2; |
+ } |
+ |
+ INLINE(Address MarkbitIndexToAddress(uint32_t index)) { |
+ return reinterpret_cast<Address>(index << kPointerSizeLog2); |
+ } |
+ |
// The allocation top and limit addresses. |
Address* allocation_top_address() { return &allocation_info_.top; } |
Address* allocation_limit_address() { return &allocation_info_.limit; } |
MUST_USE_RESULT MaybeObject* AllocateRaw(int size_in_bytes) { |
- return AllocateRawInternal(size_in_bytes, &allocation_info_); |
+ return AllocateRawInternal(size_in_bytes); |
} |
- // Allocate the requested number of bytes for relocation during mark-compact |
- // collection. |
- MUST_USE_RESULT MaybeObject* MCAllocateRaw(int size_in_bytes) { |
- return AllocateRawInternal(size_in_bytes, &mc_forwarding_info_); |
- } |
- |
// Reset the allocation pointer to the beginning of the active semispace. |
void ResetAllocationInfo(); |
- // Reset the reloction pointer to the bottom of the inactive semispace in |
- // preparation for mark-compact collection. |
- void MCResetRelocationInfo(); |
- // Update the allocation pointer in the active semispace after a |
- // mark-compact collection. |
- void MCCommitRelocationInfo(); |
- // Get the extent of the inactive semispace (for use as a marking stack). |
- Address FromSpaceLow() { return from_space_.low(); } |
- Address FromSpaceHigh() { return from_space_.high(); } |
+ void LowerInlineAllocationLimit(intptr_t step) { |
+ inline_allocation_limit_step_ = step; |
+ if (step == 0) { |
+ allocation_info_.limit = to_space_.page_high(); |
+ } else { |
+ allocation_info_.limit = Min( |
+ allocation_info_.top + inline_allocation_limit_step_, |
+ allocation_info_.limit); |
+ } |
+ top_on_previous_step_ = allocation_info_.top; |
+ } |
- // Get the extent of the active semispace (to sweep newly copied objects |
- // during a scavenge collection). |
- Address ToSpaceLow() { return to_space_.low(); } |
- Address ToSpaceHigh() { return to_space_.high(); } |
+ // Get the extent of the inactive semispace (for use as a marking stack, |
+ // or to zap it). Notice: space-addresses are not necessarily on the |
+ // same page, so FromSpaceStart() might be above FromSpaceEnd(). |
+ Address FromSpacePageLow() { return from_space_.page_low(); } |
+ Address FromSpacePageHigh() { return from_space_.page_high(); } |
+ Address FromSpaceStart() { return from_space_.space_start(); } |
+ Address FromSpaceEnd() { return from_space_.space_end(); } |
- // Offsets from the beginning of the semispaces. |
- int ToSpaceOffsetForAddress(Address a) { |
- return to_space_.SpaceOffsetForAddress(a); |
+ // Get the extent of the active semispace's pages' memory. |
+ Address ToSpaceStart() { return to_space_.space_start(); } |
+ Address ToSpaceEnd() { return to_space_.space_end(); } |
+ |
+ inline bool ToSpaceContains(Address address) { |
+ return to_space_.Contains(address); |
} |
- int FromSpaceOffsetForAddress(Address a) { |
- return from_space_.SpaceOffsetForAddress(a); |
+ inline bool FromSpaceContains(Address address) { |
+ return from_space_.Contains(address); |
} |
// True if the object is a heap object in the address range of the |
// respective semispace (not necessarily below the allocation pointer of the |
// semispace). |
- bool ToSpaceContains(Object* o) { return to_space_.Contains(o); } |
- bool FromSpaceContains(Object* o) { return from_space_.Contains(o); } |
+ inline bool ToSpaceContains(Object* o) { return to_space_.Contains(o); } |
+ inline bool FromSpaceContains(Object* o) { return from_space_.Contains(o); } |
- bool ToSpaceContains(Address a) { return to_space_.Contains(a); } |
- bool FromSpaceContains(Address a) { return from_space_.Contains(a); } |
+ // Try to switch the active semispace to a new, empty, page. |
+ // Returns false if this isn't possible or reasonable (i.e., there |
+ // are no pages, or the current page is already empty), or true |
+ // if successful. |
+ bool AddFreshPage(); |
virtual bool ReserveSpace(int bytes); |
@@ -1620,10 +2216,24 @@ |
return from_space_.Uncommit(); |
} |
+ inline intptr_t inline_allocation_limit_step() { |
+ return inline_allocation_limit_step_; |
+ } |
+ |
+ SemiSpace* active_space() { return &to_space_; } |
+ |
private: |
+ // Update allocation info to match the current to-space page. |
+ void UpdateAllocationInfo(); |
+ |
+ Address chunk_base_; |
+ uintptr_t chunk_size_; |
+ |
// The semispaces. |
SemiSpace to_space_; |
SemiSpace from_space_; |
+ VirtualMemory reservation_; |
+ int pages_used_; |
// Start address and bit mask for containment testing. |
Address start_; |
@@ -1634,15 +2244,20 @@ |
// Allocation pointer and limit for normal allocation and allocation during |
// mark-compact collection. |
AllocationInfo allocation_info_; |
- AllocationInfo mc_forwarding_info_; |
+ // When incremental marking is active we will set allocation_info_.limit |
+ // to be lower than actual limit and then will gradually increase it |
+ // in steps to guarantee that we do incremental marking steps even |
+ // when all allocation is performed from inlined generated code. |
+ intptr_t inline_allocation_limit_step_; |
+ |
+ Address top_on_previous_step_; |
+ |
HistogramInfo* allocated_histogram_; |
HistogramInfo* promoted_histogram_; |
- // Implementation of AllocateRaw and MCAllocateRaw. |
- MUST_USE_RESULT inline MaybeObject* AllocateRawInternal( |
- int size_in_bytes, |
- AllocationInfo* alloc_info); |
+ // Implementation of AllocateRaw. |
+ MUST_USE_RESULT inline MaybeObject* AllocateRawInternal(int size_in_bytes); |
friend class SemiSpaceIterator; |
@@ -1652,193 +2267,6 @@ |
// ----------------------------------------------------------------------------- |
-// Free lists for old object spaces |
-// |
-// Free-list nodes are free blocks in the heap. They look like heap objects |
-// (free-list node pointers have the heap object tag, and they have a map like |
-// a heap object). They have a size and a next pointer. The next pointer is |
-// the raw address of the next free list node (or NULL). |
-class FreeListNode: public HeapObject { |
- public: |
- // Obtain a free-list node from a raw address. This is not a cast because |
- // it does not check nor require that the first word at the address is a map |
- // pointer. |
- static FreeListNode* FromAddress(Address address) { |
- return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address)); |
- } |
- |
- static inline bool IsFreeListNode(HeapObject* object); |
- |
- // Set the size in bytes, which can be read with HeapObject::Size(). This |
- // function also writes a map to the first word of the block so that it |
- // looks like a heap object to the garbage collector and heap iteration |
- // functions. |
- void set_size(Heap* heap, int size_in_bytes); |
- |
- // Accessors for the next field. |
- inline Address next(Heap* heap); |
- inline void set_next(Heap* heap, Address next); |
- |
- private: |
- static const int kNextOffset = POINTER_SIZE_ALIGN(ByteArray::kHeaderSize); |
- |
- DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode); |
-}; |
- |
- |
-// The free list for the old space. |
-class OldSpaceFreeList BASE_EMBEDDED { |
- public: |
- OldSpaceFreeList(Heap* heap, AllocationSpace owner); |
- |
- // Clear the free list. |
- void Reset(); |
- |
- // Return the number of bytes available on the free list. |
- intptr_t available() { return available_; } |
- |
- // Place a node on the free list. The block of size 'size_in_bytes' |
- // starting at 'start' is placed on the free list. The return value is the |
- // number of bytes that have been lost due to internal fragmentation by |
- // freeing the block. Bookkeeping information will be written to the block, |
- // ie, its contents will be destroyed. The start address should be word |
- // aligned, and the size should be a non-zero multiple of the word size. |
- int Free(Address start, int size_in_bytes); |
- |
- // Allocate a block of size 'size_in_bytes' from the free list. The block |
- // is unitialized. A failure is returned if no block is available. The |
- // number of bytes lost to fragmentation is returned in the output parameter |
- // 'wasted_bytes'. The size should be a non-zero multiple of the word size. |
- MUST_USE_RESULT MaybeObject* Allocate(int size_in_bytes, int* wasted_bytes); |
- |
- void MarkNodes(); |
- |
- private: |
- // The size range of blocks, in bytes. (Smaller allocations are allowed, but |
- // will always result in waste.) |
- static const int kMinBlockSize = 2 * kPointerSize; |
- static const int kMaxBlockSize = Page::kMaxHeapObjectSize; |
- |
- Heap* heap_; |
- |
- // The identity of the owning space, for building allocation Failure |
- // objects. |
- AllocationSpace owner_; |
- |
- // Total available bytes in all blocks on this free list. |
- int available_; |
- |
- // Blocks are put on exact free lists in an array, indexed by size in words. |
- // The available sizes are kept in an increasingly ordered list. Entries |
- // corresponding to sizes < kMinBlockSize always have an empty free list |
- // (but index kHead is used for the head of the size list). |
- struct SizeNode { |
- // Address of the head FreeListNode of the implied block size or NULL. |
- Address head_node_; |
- // Size (words) of the next larger available size if head_node_ != NULL. |
- int next_size_; |
- }; |
- static const int kFreeListsLength = kMaxBlockSize / kPointerSize + 1; |
- SizeNode free_[kFreeListsLength]; |
- |
- // Sentinel elements for the size list. Real elements are in ]kHead..kEnd[. |
- static const int kHead = kMinBlockSize / kPointerSize - 1; |
- static const int kEnd = kMaxInt; |
- |
- // We keep a "finger" in the size list to speed up a common pattern: |
- // repeated requests for the same or increasing sizes. |
- int finger_; |
- |
- // Starting from *prev, find and return the smallest size >= index (words), |
- // or kEnd. Update *prev to be the largest size < index, or kHead. |
- int FindSize(int index, int* prev) { |
- int cur = free_[*prev].next_size_; |
- while (cur < index) { |
- *prev = cur; |
- cur = free_[cur].next_size_; |
- } |
- return cur; |
- } |
- |
- // Remove an existing element from the size list. |
- void RemoveSize(int index) { |
- int prev = kHead; |
- int cur = FindSize(index, &prev); |
- ASSERT(cur == index); |
- free_[prev].next_size_ = free_[cur].next_size_; |
- finger_ = prev; |
- } |
- |
- // Insert a new element into the size list. |
- void InsertSize(int index) { |
- int prev = kHead; |
- int cur = FindSize(index, &prev); |
- ASSERT(cur != index); |
- free_[prev].next_size_ = index; |
- free_[index].next_size_ = cur; |
- } |
- |
- // The size list is not updated during a sequence of calls to Free, but is |
- // rebuilt before the next allocation. |
- void RebuildSizeList(); |
- bool needs_rebuild_; |
- |
-#ifdef DEBUG |
- // Does this free list contain a free block located at the address of 'node'? |
- bool Contains(FreeListNode* node); |
-#endif |
- |
- DISALLOW_COPY_AND_ASSIGN(OldSpaceFreeList); |
-}; |
- |
- |
-// The free list for the map space. |
-class FixedSizeFreeList BASE_EMBEDDED { |
- public: |
- FixedSizeFreeList(Heap* heap, AllocationSpace owner, int object_size); |
- |
- // Clear the free list. |
- void Reset(); |
- |
- // Return the number of bytes available on the free list. |
- intptr_t available() { return available_; } |
- |
- // Place a node on the free list. The block starting at 'start' (assumed to |
- // have size object_size_) is placed on the free list. Bookkeeping |
- // information will be written to the block, ie, its contents will be |
- // destroyed. The start address should be word aligned. |
- void Free(Address start); |
- |
- // Allocate a fixed sized block from the free list. The block is unitialized. |
- // A failure is returned if no block is available. |
- MUST_USE_RESULT MaybeObject* Allocate(); |
- |
- void MarkNodes(); |
- |
- private: |
- Heap* heap_; |
- |
- // Available bytes on the free list. |
- intptr_t available_; |
- |
- // The head of the free list. |
- Address head_; |
- |
- // The tail of the free list. |
- Address tail_; |
- |
- // The identity of the owning space, for building allocation Failure |
- // objects. |
- AllocationSpace owner_; |
- |
- // The size of the objects in this space. |
- int object_size_; |
- |
- DISALLOW_COPY_AND_ASSIGN(FixedSizeFreeList); |
-}; |
- |
- |
-// ----------------------------------------------------------------------------- |
// Old object space (excluding map objects) |
class OldSpace : public PagedSpace { |
@@ -1849,71 +2277,28 @@ |
intptr_t max_capacity, |
AllocationSpace id, |
Executability executable) |
- : PagedSpace(heap, max_capacity, id, executable), |
- free_list_(heap, id) { |
+ : PagedSpace(heap, max_capacity, id, executable) { |
page_extra_ = 0; |
} |
- // The bytes available on the free list (ie, not above the linear allocation |
- // pointer). |
- intptr_t AvailableFree() { return free_list_.available(); } |
- |
// The limit of allocation for a page in this space. |
virtual Address PageAllocationLimit(Page* page) { |
return page->ObjectAreaEnd(); |
} |
- // Give a block of memory to the space's free list. It might be added to |
- // the free list or accounted as waste. |
- // If add_to_freelist is false then just accounting stats are updated and |
- // no attempt to add area to free list is made. |
- void Free(Address start, int size_in_bytes, bool add_to_freelist) { |
- accounting_stats_.DeallocateBytes(size_in_bytes); |
- |
- if (add_to_freelist) { |
- int wasted_bytes = free_list_.Free(start, size_in_bytes); |
- accounting_stats_.WasteBytes(wasted_bytes); |
- } |
- } |
- |
- virtual void DeallocateBlock(Address start, |
- int size_in_bytes, |
- bool add_to_freelist); |
- |
- // Prepare for full garbage collection. Resets the relocation pointer and |
- // clears the free list. |
- virtual void PrepareForMarkCompact(bool will_compact); |
- |
- // Updates the allocation pointer to the relocation top after a mark-compact |
- // collection. |
- virtual void MCCommitRelocationInfo(); |
- |
- virtual void PutRestOfCurrentPageOnFreeList(Page* current_page); |
- |
- void MarkFreeListNodes() { free_list_.MarkNodes(); } |
- |
-#ifdef DEBUG |
- // Reports statistics for the space |
- void ReportStatistics(); |
-#endif |
- |
- protected: |
- // Virtual function in the superclass. Slow path of AllocateRaw. |
- MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes); |
- |
- // Virtual function in the superclass. Allocate linearly at the start of |
- // the page after current_page (there is assumed to be one). |
- HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes); |
- |
- private: |
- // The space's free list. |
- OldSpaceFreeList free_list_; |
- |
public: |
TRACK_MEMORY("OldSpace") |
}; |
+// For contiguous spaces, top should be in the space (or at the end) and limit |
+// should be the end of the space. |
+#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \ |
+ ASSERT((space).page_low() <= (info).top \ |
+ && (info).top <= (space).page_high() \ |
+ && (info).limit <= (space).page_high()) |
+ |
+ |
// ----------------------------------------------------------------------------- |
// Old space for objects of a fixed size |
@@ -1926,8 +2311,7 @@ |
const char* name) |
: PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE), |
object_size_in_bytes_(object_size_in_bytes), |
- name_(name), |
- free_list_(heap, id, object_size_in_bytes) { |
+ name_(name) { |
page_extra_ = Page::kObjectAreaSize % object_size_in_bytes; |
} |
@@ -1938,44 +2322,12 @@ |
int object_size_in_bytes() { return object_size_in_bytes_; } |
- // Give a fixed sized block of memory to the space's free list. |
- // If add_to_freelist is false then just accounting stats are updated and |
- // no attempt to add area to free list is made. |
- void Free(Address start, bool add_to_freelist) { |
- if (add_to_freelist) { |
- free_list_.Free(start); |
- } |
- accounting_stats_.DeallocateBytes(object_size_in_bytes_); |
- } |
- |
// Prepares for a mark-compact GC. |
- virtual void PrepareForMarkCompact(bool will_compact); |
+ virtual void PrepareForMarkCompact(); |
- // Updates the allocation pointer to the relocation top after a mark-compact |
- // collection. |
- virtual void MCCommitRelocationInfo(); |
- |
- virtual void PutRestOfCurrentPageOnFreeList(Page* current_page); |
- |
- virtual void DeallocateBlock(Address start, |
- int size_in_bytes, |
- bool add_to_freelist); |
- |
void MarkFreeListNodes() { free_list_.MarkNodes(); } |
-#ifdef DEBUG |
- // Reports statistic info of the space |
- void ReportStatistics(); |
-#endif |
- |
protected: |
- // Virtual function in the superclass. Slow path of AllocateRaw. |
- MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes); |
- |
- // Virtual function in the superclass. Allocate linearly at the start of |
- // the page after current_page (there is assumed to be one). |
- HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes); |
- |
void ResetFreeList() { |
free_list_.Reset(); |
} |
@@ -1986,9 +2338,6 @@ |
// The name of this space. |
const char* name_; |
- |
- // The space's free list. |
- FixedSizeFreeList free_list_; |
}; |
@@ -2004,85 +2353,20 @@ |
AllocationSpace id) |
: FixedSpace(heap, max_capacity, id, Map::kSize, "map"), |
max_map_space_pages_(max_map_space_pages) { |
- ASSERT(max_map_space_pages < kMaxMapPageIndex); |
} |
- // Prepares for a mark-compact GC. |
- virtual void PrepareForMarkCompact(bool will_compact); |
- |
// Given an index, returns the page address. |
- Address PageAddress(int page_index) { return page_addresses_[page_index]; } |
+ // TODO(1600): this limit is artifical just to keep code compilable |
+ static const int kMaxMapPageIndex = 1 << 16; |
- static const int kMaxMapPageIndex = 1 << MapWord::kMapPageIndexBits; |
- |
- // Are map pointers encodable into map word? |
- bool MapPointersEncodable() { |
- if (!FLAG_use_big_map_space) { |
- ASSERT(CountPagesToTop() <= kMaxMapPageIndex); |
- return true; |
+ virtual int RoundSizeDownToObjectAlignment(int size) { |
+ if (IsPowerOf2(Map::kSize)) { |
+ return RoundDown(size, Map::kSize); |
+ } else { |
+ return (size / Map::kSize) * Map::kSize; |
} |
- return CountPagesToTop() <= max_map_space_pages_; |
} |
- // Should be called after forced sweep to find out if map space needs |
- // compaction. |
- bool NeedsCompaction(int live_maps) { |
- return !MapPointersEncodable() && live_maps <= CompactionThreshold(); |
- } |
- |
- Address TopAfterCompaction(int live_maps) { |
- ASSERT(NeedsCompaction(live_maps)); |
- |
- int pages_left = live_maps / kMapsPerPage; |
- PageIterator it(this, PageIterator::ALL_PAGES); |
- while (pages_left-- > 0) { |
- ASSERT(it.has_next()); |
- it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks); |
- } |
- ASSERT(it.has_next()); |
- Page* top_page = it.next(); |
- top_page->SetRegionMarks(Page::kAllRegionsCleanMarks); |
- ASSERT(top_page->is_valid()); |
- |
- int offset = live_maps % kMapsPerPage * Map::kSize; |
- Address top = top_page->ObjectAreaStart() + offset; |
- ASSERT(top < top_page->ObjectAreaEnd()); |
- ASSERT(Contains(top)); |
- |
- return top; |
- } |
- |
- void FinishCompaction(Address new_top, int live_maps) { |
- Page* top_page = Page::FromAddress(new_top); |
- ASSERT(top_page->is_valid()); |
- |
- SetAllocationInfo(&allocation_info_, top_page); |
- allocation_info_.top = new_top; |
- |
- int new_size = live_maps * Map::kSize; |
- accounting_stats_.DeallocateBytes(accounting_stats_.Size()); |
- accounting_stats_.AllocateBytes(new_size); |
- |
- // Flush allocation watermarks. |
- for (Page* p = first_page_; p != top_page; p = p->next_page()) { |
- p->SetAllocationWatermark(p->AllocationTop()); |
- } |
- top_page->SetAllocationWatermark(new_top); |
- |
-#ifdef DEBUG |
- if (FLAG_enable_slow_asserts) { |
- intptr_t actual_size = 0; |
- for (Page* p = first_page_; p != top_page; p = p->next_page()) |
- actual_size += kMapsPerPage * Map::kSize; |
- actual_size += (new_top - top_page->ObjectAreaStart()); |
- ASSERT(accounting_stats_.Size() == actual_size); |
- } |
-#endif |
- |
- Shrink(); |
- ResetFreeList(); |
- } |
- |
protected: |
#ifdef DEBUG |
virtual void VerifyObject(HeapObject* obj); |
@@ -2098,9 +2382,6 @@ |
const int max_map_space_pages_; |
- // An array of page start address in a map space. |
- Address page_addresses_[kMaxMapPageIndex]; |
- |
public: |
TRACK_MEMORY("MapSpace") |
}; |
@@ -2116,6 +2397,14 @@ |
: FixedSpace(heap, max_capacity, id, JSGlobalPropertyCell::kSize, "cell") |
{} |
+ virtual int RoundSizeDownToObjectAlignment(int size) { |
+ if (IsPowerOf2(JSGlobalPropertyCell::kSize)) { |
+ return RoundDown(size, JSGlobalPropertyCell::kSize); |
+ } else { |
+ return (size / JSGlobalPropertyCell::kSize) * JSGlobalPropertyCell::kSize; |
+ } |
+ } |
+ |
protected: |
#ifdef DEBUG |
virtual void VerifyObject(HeapObject* obj); |
@@ -2133,64 +2422,6 @@ |
// A large object always starts at Page::kObjectStartOffset to a page. |
// Large objects do not move during garbage collections. |
-// A LargeObjectChunk holds exactly one large object page with exactly one |
-// large object. |
-class LargeObjectChunk { |
- public: |
- // Allocates a new LargeObjectChunk that contains a large object page |
- // (Page::kPageSize aligned) that has at least size_in_bytes (for a large |
- // object) bytes after the object area start of that page. |
- static LargeObjectChunk* New(int size_in_bytes, Executability executable); |
- |
- // Free the memory associated with the chunk. |
- void Free(Executability executable); |
- |
- // Interpret a raw address as a large object chunk. |
- static LargeObjectChunk* FromAddress(Address address) { |
- return reinterpret_cast<LargeObjectChunk*>(address); |
- } |
- |
- // Returns the address of this chunk. |
- Address address() { return reinterpret_cast<Address>(this); } |
- |
- Page* GetPage() { |
- return Page::FromAddress(RoundUp(address(), Page::kPageSize)); |
- } |
- |
- // Accessors for the fields of the chunk. |
- LargeObjectChunk* next() { return next_; } |
- void set_next(LargeObjectChunk* chunk) { next_ = chunk; } |
- size_t size() { return size_ & ~Page::kPageFlagMask; } |
- |
- // Compute the start address in the chunk. |
- Address GetStartAddress() { return GetPage()->ObjectAreaStart(); } |
- |
- // Returns the object in this chunk. |
- HeapObject* GetObject() { return HeapObject::FromAddress(GetStartAddress()); } |
- |
- // Given a requested size returns the physical size of a chunk to be |
- // allocated. |
- static int ChunkSizeFor(int size_in_bytes); |
- |
- // Given a chunk size, returns the object size it can accommodate. Used by |
- // LargeObjectSpace::Available. |
- static intptr_t ObjectSizeFor(intptr_t chunk_size) { |
- if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0; |
- return chunk_size - Page::kPageSize - Page::kObjectStartOffset; |
- } |
- |
- private: |
- // A pointer to the next large object chunk in the space or NULL. |
- LargeObjectChunk* next_; |
- |
- // The total size of this chunk. |
- size_t size_; |
- |
- public: |
- TRACK_MEMORY("LargeObjectChunk") |
-}; |
- |
- |
class LargeObjectSpace : public Space { |
public: |
LargeObjectSpace(Heap* heap, AllocationSpace id); |
@@ -2202,13 +2433,16 @@ |
// Releases internal resources, frees objects in this space. |
void TearDown(); |
- // Allocates a (non-FixedArray, non-Code) large object. |
- MUST_USE_RESULT MaybeObject* AllocateRaw(int size_in_bytes); |
- // Allocates a large Code object. |
- MUST_USE_RESULT MaybeObject* AllocateRawCode(int size_in_bytes); |
- // Allocates a large FixedArray. |
- MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int size_in_bytes); |
+ static intptr_t ObjectSizeFor(intptr_t chunk_size) { |
+ if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0; |
+ return chunk_size - Page::kPageSize - Page::kObjectStartOffset; |
+ } |
+ // Shared implementation of AllocateRaw, AllocateRawCode and |
+ // AllocateRawFixedArray. |
+ MUST_USE_RESULT MaybeObject* AllocateRaw(int object_size, |
+ Executability executable); |
+ |
// Available bytes for objects in this space. |
inline intptr_t Available(); |
@@ -2231,11 +2465,8 @@ |
// Finds a large object page containing the given pc, returns NULL |
// if such a page doesn't exist. |
- LargeObjectChunk* FindChunkContainingPc(Address pc); |
+ LargePage* FindPageContainingPc(Address pc); |
- // Iterates objects covered by dirty regions. |
- void IterateDirtyRegions(ObjectSlotCallback func); |
- |
// Frees unmarked objects. |
void FreeUnmarkedObjects(); |
@@ -2243,13 +2474,15 @@ |
bool Contains(HeapObject* obj); |
// Checks whether the space is empty. |
- bool IsEmpty() { return first_chunk_ == NULL; } |
+ bool IsEmpty() { return first_page_ == NULL; } |
// See the comments for ReserveSpace in the Space class. This has to be |
// called after ReserveSpace has been called on the paged spaces, since they |
// may use some memory, leaving less for large objects. |
virtual bool ReserveSpace(int bytes); |
+ LargePage* first_page() { return first_page_; } |
+ |
#ifdef DEBUG |
virtual void Verify(); |
virtual void Print(); |
@@ -2262,17 +2495,11 @@ |
private: |
// The head of the linked list of large object chunks. |
- LargeObjectChunk* first_chunk_; |
+ LargePage* first_page_; |
intptr_t size_; // allocated bytes |
int page_count_; // number of chunks |
intptr_t objects_size_; // size of objects |
- // Shared implementation of AllocateRaw, AllocateRawCode and |
- // AllocateRawFixedArray. |
- MUST_USE_RESULT MaybeObject* AllocateRawInternal(int requested_size, |
- int object_size, |
- Executability executable); |
- |
friend class LargeObjectIterator; |
public: |
@@ -2285,17 +2512,78 @@ |
explicit LargeObjectIterator(LargeObjectSpace* space); |
LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func); |
- HeapObject* next(); |
+ HeapObject* Next(); |
// implementation of ObjectIterator. |
- virtual HeapObject* next_object() { return next(); } |
+ virtual HeapObject* next_object() { return Next(); } |
private: |
- LargeObjectChunk* current_; |
+ LargePage* current_; |
HeapObjectCallback size_func_; |
}; |
+// Iterates over the chunks (pages and large object pages) that can contain |
+// pointers to new space. |
+class PointerChunkIterator BASE_EMBEDDED { |
+ public: |
+ inline explicit PointerChunkIterator(Heap* heap); |
+ |
+ // Return NULL when the iterator is done. |
+ MemoryChunk* next() { |
+ switch (state_) { |
+ case kOldPointerState: { |
+ if (old_pointer_iterator_.has_next()) { |
+ return old_pointer_iterator_.next(); |
+ } |
+ state_ = kMapState; |
+ // Fall through. |
+ } |
+ case kMapState: { |
+ if (map_iterator_.has_next()) { |
+ return map_iterator_.next(); |
+ } |
+ state_ = kLargeObjectState; |
+ // Fall through. |
+ } |
+ case kLargeObjectState: { |
+ HeapObject* heap_object; |
+ do { |
+ heap_object = lo_iterator_.Next(); |
+ if (heap_object == NULL) { |
+ state_ = kFinishedState; |
+ return NULL; |
+ } |
+ // Fixed arrays are the only pointer-containing objects in large |
+ // object space. |
+ } while (!heap_object->IsFixedArray()); |
+ MemoryChunk* answer = MemoryChunk::FromAddress(heap_object->address()); |
+ return answer; |
+ } |
+ case kFinishedState: |
+ return NULL; |
+ default: |
+ break; |
+ } |
+ UNREACHABLE(); |
+ return NULL; |
+ } |
+ |
+ |
+ private: |
+ enum State { |
+ kOldPointerState, |
+ kMapState, |
+ kLargeObjectState, |
+ kFinishedState |
+ }; |
+ State state_; |
+ PageIterator old_pointer_iterator_; |
+ PageIterator map_iterator_; |
+ LargeObjectIterator lo_iterator_; |
+}; |
+ |
+ |
#ifdef DEBUG |
struct CommentStatistic { |
const char* comment; |