| Index: src/spaces.h
|
| ===================================================================
|
| --- src/spaces.h (revision 9327)
|
| +++ src/spaces.h (working copy)
|
| @@ -49,45 +49,47 @@
|
| //
|
| // The semispaces of the young generation are contiguous. The old and map
|
| // spaces consists of a list of pages. A page has a page header and an object
|
| -// area. A page size is deliberately chosen as 8K bytes.
|
| -// The first word of a page is an opaque page header that has the
|
| -// address of the next page and its ownership information. The second word may
|
| -// have the allocation top address of this page. Heap objects are aligned to the
|
| -// pointer size.
|
| +// area.
|
| //
|
| // There is a separate large object space for objects larger than
|
| // Page::kMaxHeapObjectSize, so that they do not have to move during
|
| // collection. The large object space is paged. Pages in large object space
|
| -// may be larger than 8K.
|
| +// may be larger than the page size.
|
| //
|
| -// A card marking write barrier is used to keep track of intergenerational
|
| -// references. Old space pages are divided into regions of Page::kRegionSize
|
| -// size. Each region has a corresponding dirty bit in the page header which is
|
| -// set if the region might contain pointers to new space. For details about
|
| -// dirty bits encoding see comments in the Page::GetRegionNumberForAddress()
|
| -// method body.
|
| +// A store-buffer based write barrier is used to keep track of intergenerational
|
| +// references. See store-buffer.h.
|
| //
|
| -// During scavenges and mark-sweep collections we iterate intergenerational
|
| -// pointers without decoding heap object maps so if the page belongs to old
|
| -// pointer space or large object space it is essential to guarantee that
|
| -// the page does not contain any garbage pointers to new space: every pointer
|
| -// aligned word which satisfies the Heap::InNewSpace() predicate must be a
|
| -// pointer to a live heap object in new space. Thus objects in old pointer
|
| -// and large object spaces should have a special layout (e.g. no bare integer
|
| -// fields). This requirement does not apply to map space which is iterated in
|
| -// a special fashion. However we still require pointer fields of dead maps to
|
| -// be cleaned.
|
| +// During scavenges and mark-sweep collections we sometimes (after a store
|
| +// buffer overflow) iterate intergenerational pointers without decoding heap
|
| +// object maps so if the page belongs to old pointer space or large object
|
| +// space it is essential to guarantee that the page does not contain any
|
| +// garbage pointers to new space: every pointer aligned word which satisfies
|
| +// the Heap::InNewSpace() predicate must be a pointer to a live heap object in
|
| +// new space. Thus objects in old pointer and large object spaces should have a
|
| +// special layout (e.g. no bare integer fields). This requirement does not
|
| +// apply to map space which is iterated in a special fashion. However we still
|
| +// require pointer fields of dead maps to be cleaned.
|
| //
|
| -// To enable lazy cleaning of old space pages we use a notion of allocation
|
| -// watermark. Every pointer under watermark is considered to be well formed.
|
| -// Page allocation watermark is not necessarily equal to page allocation top but
|
| -// all alive objects on page should reside under allocation watermark.
|
| -// During scavenge allocation watermark might be bumped and invalid pointers
|
| -// might appear below it. To avoid following them we store a valid watermark
|
| -// into special field in the page header and set a page WATERMARK_INVALIDATED
|
| -// flag. For details see comments in the Page::SetAllocationWatermark() method
|
| -// body.
|
| +// To enable lazy cleaning of old space pages we can mark chunks of the page
|
| +// as being garbage. Garbage sections are marked with a special map. These
|
| +// sections are skipped when scanning the page, even if we are otherwise
|
| +// scanning without regard for object boundaries. Garbage sections are chained
|
| +// together to form a free list after a GC. Garbage sections created outside
|
| +// of GCs by object trunctation etc. may not be in the free list chain. Very
|
| +// small free spaces are ignored, they need only be cleaned of bogus pointers
|
| +// into new space.
|
| //
|
| +// Each page may have up to one special garbage section. The start of this
|
| +// section is denoted by the top field in the space. The end of the section
|
| +// is denoted by the limit field in the space. This special garbage section
|
| +// is not marked with a free space map in the data. The point of this section
|
| +// is to enable linear allocation without having to constantly update the byte
|
| +// array every time the top field is updated and a new object is created. The
|
| +// special garbage section is not in the chain of garbage sections.
|
| +//
|
| +// Since the top and limit fields are in the space, not the page, only one page
|
| +// has a special garbage section, and if the top and limit are equal then there
|
| +// is no special garbage section.
|
|
|
| // Some assertion macros used in the debugging mode.
|
|
|
| @@ -114,30 +116,505 @@
|
| class PagedSpace;
|
| class MemoryAllocator;
|
| class AllocationInfo;
|
| +class Space;
|
| +class FreeList;
|
| +class MemoryChunk;
|
|
|
| +class MarkBit {
|
| + public:
|
| + typedef uint32_t CellType;
|
| +
|
| + inline MarkBit(CellType* cell, CellType mask, bool data_only)
|
| + : cell_(cell), mask_(mask), data_only_(data_only) { }
|
| +
|
| + inline CellType* cell() { return cell_; }
|
| + inline CellType mask() { return mask_; }
|
| +
|
| +#ifdef DEBUG
|
| + bool operator==(const MarkBit& other) {
|
| + return cell_ == other.cell_ && mask_ == other.mask_;
|
| + }
|
| +#endif
|
| +
|
| + inline void Set() { *cell_ |= mask_; }
|
| + inline bool Get() { return (*cell_ & mask_) != 0; }
|
| + inline void Clear() { *cell_ &= ~mask_; }
|
| +
|
| + inline bool data_only() { return data_only_; }
|
| +
|
| + inline MarkBit Next() {
|
| + CellType new_mask = mask_ << 1;
|
| + if (new_mask == 0) {
|
| + return MarkBit(cell_ + 1, 1, data_only_);
|
| + } else {
|
| + return MarkBit(cell_, new_mask, data_only_);
|
| + }
|
| + }
|
| +
|
| + private:
|
| + CellType* cell_;
|
| + CellType mask_;
|
| + // This boolean indicates that the object is in a data-only space with no
|
| + // pointers. This enables some optimizations when marking.
|
| + // It is expected that this field is inlined and turned into control flow
|
| + // at the place where the MarkBit object is created.
|
| + bool data_only_;
|
| +};
|
| +
|
| +
|
| +// Bitmap is a sequence of cells each containing fixed number of bits.
|
| +class Bitmap {
|
| + public:
|
| + static const uint32_t kBitsPerCell = 32;
|
| + static const uint32_t kBitsPerCellLog2 = 5;
|
| + static const uint32_t kBitIndexMask = kBitsPerCell - 1;
|
| + static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte;
|
| + static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2;
|
| +
|
| + static const size_t kLength =
|
| + (1 << kPageSizeBits) >> (kPointerSizeLog2);
|
| +
|
| + static const size_t kSize =
|
| + (1 << kPageSizeBits) >> (kPointerSizeLog2 + kBitsPerByteLog2);
|
| +
|
| +
|
| + static int CellsForLength(int length) {
|
| + return (length + kBitsPerCell - 1) >> kBitsPerCellLog2;
|
| + }
|
| +
|
| + int CellsCount() {
|
| + return CellsForLength(kLength);
|
| + }
|
| +
|
| + static int SizeFor(int cells_count) {
|
| + return sizeof(MarkBit::CellType)*cells_count;
|
| + }
|
| +
|
| + INLINE(static uint32_t IndexToCell(uint32_t index)) {
|
| + return index >> kBitsPerCellLog2;
|
| + }
|
| +
|
| + INLINE(static uint32_t CellToIndex(uint32_t index)) {
|
| + return index << kBitsPerCellLog2;
|
| + }
|
| +
|
| + INLINE(static uint32_t CellAlignIndex(uint32_t index)) {
|
| + return (index + kBitIndexMask) & ~kBitIndexMask;
|
| + }
|
| +
|
| + INLINE(MarkBit::CellType* cells()) {
|
| + return reinterpret_cast<MarkBit::CellType*>(this);
|
| + }
|
| +
|
| + INLINE(Address address()) {
|
| + return reinterpret_cast<Address>(this);
|
| + }
|
| +
|
| + INLINE(static Bitmap* FromAddress(Address addr)) {
|
| + return reinterpret_cast<Bitmap*>(addr);
|
| + }
|
| +
|
| + inline MarkBit MarkBitFromIndex(uint32_t index, bool data_only = false) {
|
| + MarkBit::CellType mask = 1 << (index & kBitIndexMask);
|
| + MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2);
|
| + return MarkBit(cell, mask, data_only);
|
| + }
|
| +
|
| + static inline void Clear(MemoryChunk* chunk);
|
| +
|
| + static void PrintWord(uint32_t word, uint32_t himask = 0) {
|
| + for (uint32_t mask = 1; mask != 0; mask <<= 1) {
|
| + if ((mask & himask) != 0) PrintF("[");
|
| + PrintF((mask & word) ? "1" : "0");
|
| + if ((mask & himask) != 0) PrintF("]");
|
| + }
|
| + }
|
| +
|
| + class CellPrinter {
|
| + public:
|
| + CellPrinter() : seq_start(0), seq_type(0), seq_length(0) { }
|
| +
|
| + void Print(uint32_t pos, uint32_t cell) {
|
| + if (cell == seq_type) {
|
| + seq_length++;
|
| + return;
|
| + }
|
| +
|
| + Flush();
|
| +
|
| + if (IsSeq(cell)) {
|
| + seq_start = pos;
|
| + seq_length = 0;
|
| + seq_type = cell;
|
| + return;
|
| + }
|
| +
|
| + PrintF("%d: ", pos);
|
| + PrintWord(cell);
|
| + PrintF("\n");
|
| + }
|
| +
|
| + void Flush() {
|
| + if (seq_length > 0) {
|
| + PrintF("%d: %dx%d\n",
|
| + seq_start,
|
| + seq_type == 0 ? 0 : 1,
|
| + seq_length * kBitsPerCell);
|
| + seq_length = 0;
|
| + }
|
| + }
|
| +
|
| + static bool IsSeq(uint32_t cell) { return cell == 0 || cell == 0xFFFFFFFF; }
|
| + private:
|
| + uint32_t seq_start;
|
| + uint32_t seq_type;
|
| + uint32_t seq_length;
|
| + };
|
| +
|
| + void Print() {
|
| + CellPrinter printer;
|
| + for (int i = 0; i < CellsCount(); i++) {
|
| + printer.Print(i, cells()[i]);
|
| + }
|
| + printer.Flush();
|
| + PrintF("\n");
|
| + }
|
| +
|
| + bool IsClean() {
|
| + for (int i = 0; i < CellsCount(); i++) {
|
| + if (cells()[i] != 0) return false;
|
| + }
|
| + return true;
|
| + }
|
| +};
|
| +
|
| +
|
| +class SkipList;
|
| +class SlotsBuffer;
|
| +
|
| +// MemoryChunk represents a memory region owned by a specific space.
|
| +// It is divided into the header and the body. Chunk start is always
|
| +// 1MB aligned. Start of the body is aligned so it can accomodate
|
| +// any heap object.
|
| +class MemoryChunk {
|
| + public:
|
| + // Only works if the pointer is in the first kPageSize of the MemoryChunk.
|
| + static MemoryChunk* FromAddress(Address a) {
|
| + return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask);
|
| + }
|
| +
|
| + // Only works for addresses in pointer spaces, not data or code spaces.
|
| + static inline MemoryChunk* FromAnyPointerAddress(Address addr);
|
| +
|
| + Address address() { return reinterpret_cast<Address>(this); }
|
| +
|
| + bool is_valid() { return address() != NULL; }
|
| +
|
| + MemoryChunk* next_chunk() const { return next_chunk_; }
|
| + MemoryChunk* prev_chunk() const { return prev_chunk_; }
|
| +
|
| + void set_next_chunk(MemoryChunk* next) { next_chunk_ = next; }
|
| + void set_prev_chunk(MemoryChunk* prev) { prev_chunk_ = prev; }
|
| +
|
| + Space* owner() const {
|
| + if ((reinterpret_cast<intptr_t>(owner_) & kFailureTagMask) ==
|
| + kFailureTag) {
|
| + return reinterpret_cast<Space*>(owner_ - kFailureTag);
|
| + } else {
|
| + return NULL;
|
| + }
|
| + }
|
| +
|
| + void set_owner(Space* space) {
|
| + ASSERT((reinterpret_cast<intptr_t>(space) & kFailureTagMask) == 0);
|
| + owner_ = reinterpret_cast<Address>(space) + kFailureTag;
|
| + ASSERT((reinterpret_cast<intptr_t>(owner_) & kFailureTagMask) ==
|
| + kFailureTag);
|
| + }
|
| +
|
| + VirtualMemory* reserved_memory() {
|
| + return &reservation_;
|
| + }
|
| +
|
| + void InitializeReservedMemory() {
|
| + reservation_.Reset();
|
| + }
|
| +
|
| + void set_reserved_memory(VirtualMemory* reservation) {
|
| + ASSERT_NOT_NULL(reservation);
|
| + reservation_.TakeControl(reservation);
|
| + }
|
| +
|
| + bool scan_on_scavenge() { return IsFlagSet(SCAN_ON_SCAVENGE); }
|
| + void initialize_scan_on_scavenge(bool scan) {
|
| + if (scan) {
|
| + SetFlag(SCAN_ON_SCAVENGE);
|
| + } else {
|
| + ClearFlag(SCAN_ON_SCAVENGE);
|
| + }
|
| + }
|
| + inline void set_scan_on_scavenge(bool scan);
|
| +
|
| + int store_buffer_counter() { return store_buffer_counter_; }
|
| + void set_store_buffer_counter(int counter) {
|
| + store_buffer_counter_ = counter;
|
| + }
|
| +
|
| + Address body() { return address() + kObjectStartOffset; }
|
| +
|
| + Address body_limit() { return address() + size(); }
|
| +
|
| + int body_size() { return static_cast<int>(size() - kObjectStartOffset); }
|
| +
|
| + bool Contains(Address addr) {
|
| + return addr >= body() && addr < address() + size();
|
| + }
|
| +
|
| + // Checks whether addr can be a limit of addresses in this page.
|
| + // It's a limit if it's in the page, or if it's just after the
|
| + // last byte of the page.
|
| + bool ContainsLimit(Address addr) {
|
| + return addr >= body() && addr <= address() + size();
|
| + }
|
| +
|
| + enum MemoryChunkFlags {
|
| + IS_EXECUTABLE,
|
| + ABOUT_TO_BE_FREED,
|
| + POINTERS_TO_HERE_ARE_INTERESTING,
|
| + POINTERS_FROM_HERE_ARE_INTERESTING,
|
| + SCAN_ON_SCAVENGE,
|
| + IN_FROM_SPACE, // Mutually exclusive with IN_TO_SPACE.
|
| + IN_TO_SPACE, // All pages in new space has one of these two set.
|
| + NEW_SPACE_BELOW_AGE_MARK,
|
| + CONTAINS_ONLY_DATA,
|
| + EVACUATION_CANDIDATE,
|
| + RESCAN_ON_EVACUATION,
|
| +
|
| + // Pages swept precisely can be iterated, hitting only the live objects.
|
| + // Whereas those swept conservatively cannot be iterated over. Both flags
|
| + // indicate that marking bits have been cleared by the sweeper, otherwise
|
| + // marking bits are still intact.
|
| + WAS_SWEPT_PRECISELY,
|
| + WAS_SWEPT_CONSERVATIVELY,
|
| +
|
| + // Last flag, keep at bottom.
|
| + NUM_MEMORY_CHUNK_FLAGS
|
| + };
|
| +
|
| +
|
| + static const int kPointersToHereAreInterestingMask =
|
| + 1 << POINTERS_TO_HERE_ARE_INTERESTING;
|
| +
|
| + static const int kPointersFromHereAreInterestingMask =
|
| + 1 << POINTERS_FROM_HERE_ARE_INTERESTING;
|
| +
|
| + static const int kEvacuationCandidateMask =
|
| + 1 << EVACUATION_CANDIDATE;
|
| +
|
| + static const int kSkipEvacuationSlotsRecordingMask =
|
| + (1 << EVACUATION_CANDIDATE) |
|
| + (1 << RESCAN_ON_EVACUATION) |
|
| + (1 << IN_FROM_SPACE) |
|
| + (1 << IN_TO_SPACE);
|
| +
|
| +
|
| + void SetFlag(int flag) {
|
| + flags_ |= static_cast<uintptr_t>(1) << flag;
|
| + }
|
| +
|
| + void ClearFlag(int flag) {
|
| + flags_ &= ~(static_cast<uintptr_t>(1) << flag);
|
| + }
|
| +
|
| + void SetFlagTo(int flag, bool value) {
|
| + if (value) {
|
| + SetFlag(flag);
|
| + } else {
|
| + ClearFlag(flag);
|
| + }
|
| + }
|
| +
|
| + bool IsFlagSet(int flag) {
|
| + return (flags_ & (static_cast<uintptr_t>(1) << flag)) != 0;
|
| + }
|
| +
|
| + // Set or clear multiple flags at a time. The flags in the mask
|
| + // are set to the value in "flags", the rest retain the current value
|
| + // in flags_.
|
| + void SetFlags(intptr_t flags, intptr_t mask) {
|
| + flags_ = (flags_ & ~mask) | (flags & mask);
|
| + }
|
| +
|
| + // Return all current flags.
|
| + intptr_t GetFlags() { return flags_; }
|
| +
|
| + // Manage live byte count (count of bytes known to be live,
|
| + // because they are marked black).
|
| + void ResetLiveBytes() {
|
| + live_byte_count_ = 0;
|
| + }
|
| + void IncrementLiveBytes(int by) {
|
| + live_byte_count_ += by;
|
| + }
|
| + int LiveBytes() { return live_byte_count_; }
|
| + static void IncrementLiveBytes(Address address, int by) {
|
| + MemoryChunk::FromAddress(address)->IncrementLiveBytes(by);
|
| + }
|
| +
|
| + static const intptr_t kAlignment =
|
| + (static_cast<uintptr_t>(1) << kPageSizeBits);
|
| +
|
| + static const intptr_t kAlignmentMask = kAlignment - 1;
|
| +
|
| + static const intptr_t kLiveBytesOffset =
|
| + kPointerSize + kPointerSize + kPointerSize + kPointerSize +
|
| + kPointerSize + kPointerSize + kPointerSize + kPointerSize +
|
| + kIntSize;
|
| +
|
| + static const size_t kSlotsBufferOffset = kLiveBytesOffset + kIntSize;
|
| +
|
| + static const size_t kHeaderSize =
|
| + kSlotsBufferOffset + kPointerSize + kPointerSize;
|
| +
|
| + static const int kBodyOffset =
|
| + CODE_POINTER_ALIGN(MAP_POINTER_ALIGN(kHeaderSize + Bitmap::kSize));
|
| +
|
| + // The start offset of the object area in a page. Aligned to both maps and
|
| + // code alignment to be suitable for both. Also aligned to 32 words because
|
| + // the marking bitmap is arranged in 32 bit chunks.
|
| + static const int kObjectStartAlignment = 32 * kPointerSize;
|
| + static const int kObjectStartOffset = kBodyOffset - 1 +
|
| + (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment);
|
| +
|
| + size_t size() const { return size_; }
|
| +
|
| + Executability executable() {
|
| + return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
|
| + }
|
| +
|
| + bool ContainsOnlyData() {
|
| + return IsFlagSet(CONTAINS_ONLY_DATA);
|
| + }
|
| +
|
| + bool InNewSpace() {
|
| + return (flags_ & ((1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE))) != 0;
|
| + }
|
| +
|
| + bool InToSpace() {
|
| + return IsFlagSet(IN_TO_SPACE);
|
| + }
|
| +
|
| + bool InFromSpace() {
|
| + return IsFlagSet(IN_FROM_SPACE);
|
| + }
|
| +
|
| + // ---------------------------------------------------------------------
|
| + // Markbits support
|
| +
|
| + inline Bitmap* markbits() {
|
| + return Bitmap::FromAddress(address() + kHeaderSize);
|
| + }
|
| +
|
| + void PrintMarkbits() { markbits()->Print(); }
|
| +
|
| + inline uint32_t AddressToMarkbitIndex(Address addr) {
|
| + return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2;
|
| + }
|
| +
|
| + inline static uint32_t FastAddressToMarkbitIndex(Address addr) {
|
| + const intptr_t offset =
|
| + reinterpret_cast<intptr_t>(addr) & kAlignmentMask;
|
| +
|
| + return static_cast<uint32_t>(offset) >> kPointerSizeLog2;
|
| + }
|
| +
|
| + inline Address MarkbitIndexToAddress(uint32_t index) {
|
| + return this->address() + (index << kPointerSizeLog2);
|
| + }
|
| +
|
| + void InsertAfter(MemoryChunk* other);
|
| + void Unlink();
|
| +
|
| + inline Heap* heap() { return heap_; }
|
| +
|
| + static const int kFlagsOffset = kPointerSize * 3;
|
| +
|
| + bool IsEvacuationCandidate() { return IsFlagSet(EVACUATION_CANDIDATE); }
|
| +
|
| + bool ShouldSkipEvacuationSlotRecording() {
|
| + return (flags_ & kSkipEvacuationSlotsRecordingMask) != 0;
|
| + }
|
| +
|
| + inline SkipList* skip_list() {
|
| + return skip_list_;
|
| + }
|
| +
|
| + inline void set_skip_list(SkipList* skip_list) {
|
| + skip_list_ = skip_list;
|
| + }
|
| +
|
| + inline SlotsBuffer* slots_buffer() {
|
| + return slots_buffer_;
|
| + }
|
| +
|
| + inline SlotsBuffer** slots_buffer_address() {
|
| + return &slots_buffer_;
|
| + }
|
| +
|
| + void MarkEvacuationCandidate() {
|
| + ASSERT(slots_buffer_ == NULL);
|
| + SetFlag(EVACUATION_CANDIDATE);
|
| + }
|
| +
|
| + void ClearEvacuationCandidate() {
|
| + ASSERT(slots_buffer_ == NULL);
|
| + ClearFlag(EVACUATION_CANDIDATE);
|
| + }
|
| +
|
| +
|
| + protected:
|
| + MemoryChunk* next_chunk_;
|
| + MemoryChunk* prev_chunk_;
|
| + size_t size_;
|
| + intptr_t flags_;
|
| + // If the chunk needs to remember its memory reservation, it is stored here.
|
| + VirtualMemory reservation_;
|
| + // The identity of the owning space. This is tagged as a failure pointer, but
|
| + // no failure can be in an object, so this can be distinguished from any entry
|
| + // in a fixed array.
|
| + Address owner_;
|
| + Heap* heap_;
|
| + // Used by the store buffer to keep track of which pages to mark scan-on-
|
| + // scavenge.
|
| + int store_buffer_counter_;
|
| + // Count of bytes marked black on page.
|
| + int live_byte_count_;
|
| + SlotsBuffer* slots_buffer_;
|
| + SkipList* skip_list_;
|
| +
|
| + static MemoryChunk* Initialize(Heap* heap,
|
| + Address base,
|
| + size_t size,
|
| + Executability executable,
|
| + Space* owner);
|
| +
|
| + friend class MemoryAllocator;
|
| +};
|
| +
|
| +STATIC_CHECK(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize);
|
| +
|
| // -----------------------------------------------------------------------------
|
| -// A page normally has 8K bytes. Large object pages may be larger. A page
|
| -// address is always aligned to the 8K page size.
|
| +// A page is a memory chunk of a size 1MB. Large object pages may be larger.
|
| //
|
| -// Each page starts with a header of Page::kPageHeaderSize size which contains
|
| -// bookkeeping data.
|
| -//
|
| -// The mark-compact collector transforms a map pointer into a page index and a
|
| -// page offset. The exact encoding is described in the comments for
|
| -// class MapWord in objects.h.
|
| -//
|
| // The only way to get a page pointer is by calling factory methods:
|
| // Page* p = Page::FromAddress(addr); or
|
| // Page* p = Page::FromAllocationTop(top);
|
| -class Page {
|
| +class Page : public MemoryChunk {
|
| public:
|
| // Returns the page containing a given address. The address ranges
|
| // from [page_addr .. page_addr + kPageSize[
|
| - //
|
| - // Note that this function only works for addresses in normal paged
|
| - // spaces and addresses in the first 8K of large object pages (i.e.,
|
| - // the start of large objects but not necessarily derived pointers
|
| - // within them).
|
| + // This only works if the object is in fact in a page. See also MemoryChunk::
|
| + // FromAddress() and FromAnyAddress().
|
| INLINE(static Page* FromAddress(Address a)) {
|
| return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask);
|
| }
|
| @@ -152,31 +629,12 @@
|
| return p;
|
| }
|
|
|
| - // Returns the start address of this page.
|
| - Address address() { return reinterpret_cast<Address>(this); }
|
| -
|
| - // Checks whether this is a valid page address.
|
| - bool is_valid() { return address() != NULL; }
|
| -
|
| - // Returns the next page of this page.
|
| + // Returns the next page in the chain of pages owned by a space.
|
| inline Page* next_page();
|
| + inline Page* prev_page();
|
| + inline void set_next_page(Page* page);
|
| + inline void set_prev_page(Page* page);
|
|
|
| - // Return the end of allocation in this page. Undefined for unused pages.
|
| - inline Address AllocationTop();
|
| -
|
| - // Return the allocation watermark for the page.
|
| - // For old space pages it is guaranteed that the area under the watermark
|
| - // does not contain any garbage pointers to new space.
|
| - inline Address AllocationWatermark();
|
| -
|
| - // Return the allocation watermark offset from the beginning of the page.
|
| - inline uint32_t AllocationWatermarkOffset();
|
| -
|
| - inline void SetAllocationWatermark(Address allocation_watermark);
|
| -
|
| - inline void SetCachedAllocationWatermark(Address allocation_watermark);
|
| - inline Address CachedAllocationWatermark();
|
| -
|
| // Returns the start address of the object area in this page.
|
| Address ObjectAreaStart() { return address() + kObjectStartOffset; }
|
|
|
| @@ -188,22 +646,6 @@
|
| return 0 == (OffsetFrom(a) & kPageAlignmentMask);
|
| }
|
|
|
| - // True if this page was in use before current compaction started.
|
| - // Result is valid only for pages owned by paged spaces and
|
| - // only after PagedSpace::PrepareForMarkCompact was called.
|
| - inline bool WasInUseBeforeMC();
|
| -
|
| - inline void SetWasInUseBeforeMC(bool was_in_use);
|
| -
|
| - // True if this page is a large object page.
|
| - inline bool IsLargeObjectPage();
|
| -
|
| - inline void SetIsLargeObjectPage(bool is_large_object_page);
|
| -
|
| - inline Executability PageExecutability();
|
| -
|
| - inline void SetPageExecutability(Executability executable);
|
| -
|
| // Returns the offset of a given address to this page.
|
| INLINE(int Offset(Address a)) {
|
| int offset = static_cast<int>(a - address());
|
| @@ -218,143 +660,72 @@
|
| }
|
|
|
| // ---------------------------------------------------------------------
|
| - // Card marking support
|
|
|
| - static const uint32_t kAllRegionsCleanMarks = 0x0;
|
| - static const uint32_t kAllRegionsDirtyMarks = 0xFFFFFFFF;
|
| -
|
| - inline uint32_t GetRegionMarks();
|
| - inline void SetRegionMarks(uint32_t dirty);
|
| -
|
| - inline uint32_t GetRegionMaskForAddress(Address addr);
|
| - inline uint32_t GetRegionMaskForSpan(Address start, int length_in_bytes);
|
| - inline int GetRegionNumberForAddress(Address addr);
|
| -
|
| - inline void MarkRegionDirty(Address addr);
|
| - inline bool IsRegionDirty(Address addr);
|
| -
|
| - inline void ClearRegionMarks(Address start,
|
| - Address end,
|
| - bool reaches_limit);
|
| -
|
| // Page size in bytes. This must be a multiple of the OS page size.
|
| static const int kPageSize = 1 << kPageSizeBits;
|
|
|
| // Page size mask.
|
| static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1;
|
|
|
| - static const int kPageHeaderSize = kPointerSize + kPointerSize + kIntSize +
|
| - kIntSize + kPointerSize + kPointerSize;
|
| -
|
| - // The start offset of the object area in a page. Aligned to both maps and
|
| - // code alignment to be suitable for both.
|
| - static const int kObjectStartOffset =
|
| - CODE_POINTER_ALIGN(MAP_POINTER_ALIGN(kPageHeaderSize));
|
| -
|
| // Object area size in bytes.
|
| static const int kObjectAreaSize = kPageSize - kObjectStartOffset;
|
|
|
| // Maximum object size that fits in a page.
|
| static const int kMaxHeapObjectSize = kObjectAreaSize;
|
|
|
| - static const int kDirtyFlagOffset = 2 * kPointerSize;
|
| - static const int kRegionSizeLog2 = 8;
|
| - static const int kRegionSize = 1 << kRegionSizeLog2;
|
| - static const intptr_t kRegionAlignmentMask = (kRegionSize - 1);
|
| + static const int kFirstUsedCell =
|
| + (kObjectStartOffset/kPointerSize) >> Bitmap::kBitsPerCellLog2;
|
|
|
| - STATIC_CHECK(kRegionSize == kPageSize / kBitsPerInt);
|
| + static const int kLastUsedCell =
|
| + ((kPageSize - kPointerSize)/kPointerSize) >>
|
| + Bitmap::kBitsPerCellLog2;
|
|
|
| - enum PageFlag {
|
| - IS_NORMAL_PAGE = 0,
|
| - WAS_IN_USE_BEFORE_MC,
|
| + inline void ClearGCFields();
|
|
|
| - // Page allocation watermark was bumped by preallocation during scavenge.
|
| - // Correct watermark can be retrieved by CachedAllocationWatermark() method
|
| - WATERMARK_INVALIDATED,
|
| - IS_EXECUTABLE,
|
| - NUM_PAGE_FLAGS // Must be last
|
| - };
|
| - static const int kPageFlagMask = (1 << NUM_PAGE_FLAGS) - 1;
|
| + static inline Page* Initialize(Heap* heap,
|
| + MemoryChunk* chunk,
|
| + Executability executable,
|
| + PagedSpace* owner);
|
|
|
| - // To avoid an additional WATERMARK_INVALIDATED flag clearing pass during
|
| - // scavenge we just invalidate the watermark on each old space page after
|
| - // processing it. And then we flip the meaning of the WATERMARK_INVALIDATED
|
| - // flag at the beginning of the next scavenge and each page becomes marked as
|
| - // having a valid watermark.
|
| - //
|
| - // The following invariant must hold for pages in old pointer and map spaces:
|
| - // If page is in use then page is marked as having invalid watermark at
|
| - // the beginning and at the end of any GC.
|
| - //
|
| - // This invariant guarantees that after flipping flag meaning at the
|
| - // beginning of scavenge all pages in use will be marked as having valid
|
| - // watermark.
|
| - static inline void FlipMeaningOfInvalidatedWatermarkFlag(Heap* heap);
|
| + void InitializeAsAnchor(PagedSpace* owner);
|
|
|
| - // Returns true if the page allocation watermark was not altered during
|
| - // scavenge.
|
| - inline bool IsWatermarkValid();
|
| + bool WasSweptPrecisely() { return IsFlagSet(WAS_SWEPT_PRECISELY); }
|
| + bool WasSweptConservatively() { return IsFlagSet(WAS_SWEPT_CONSERVATIVELY); }
|
| + bool WasSwept() { return WasSweptPrecisely() || WasSweptConservatively(); }
|
|
|
| - inline void InvalidateWatermark(bool value);
|
| + void MarkSweptPrecisely() { SetFlag(WAS_SWEPT_PRECISELY); }
|
| + void MarkSweptConservatively() { SetFlag(WAS_SWEPT_CONSERVATIVELY); }
|
|
|
| - inline bool GetPageFlag(PageFlag flag);
|
| - inline void SetPageFlag(PageFlag flag, bool value);
|
| - inline void ClearPageFlags();
|
| + void ClearSweptPrecisely() { ClearFlag(WAS_SWEPT_PRECISELY); }
|
| + void ClearSweptConservatively() { ClearFlag(WAS_SWEPT_CONSERVATIVELY); }
|
|
|
| - inline void ClearGCFields();
|
| + friend class MemoryAllocator;
|
| +};
|
|
|
| - static const int kAllocationWatermarkOffsetShift = WATERMARK_INVALIDATED + 1;
|
| - static const int kAllocationWatermarkOffsetBits = kPageSizeBits + 1;
|
| - static const uint32_t kAllocationWatermarkOffsetMask =
|
| - ((1 << kAllocationWatermarkOffsetBits) - 1) <<
|
| - kAllocationWatermarkOffsetShift;
|
|
|
| - static const uint32_t kFlagsMask =
|
| - ((1 << kAllocationWatermarkOffsetShift) - 1);
|
| +STATIC_CHECK(sizeof(Page) <= MemoryChunk::kHeaderSize);
|
|
|
| - STATIC_CHECK(kBitsPerInt - kAllocationWatermarkOffsetShift >=
|
| - kAllocationWatermarkOffsetBits);
|
|
|
| - //---------------------------------------------------------------------------
|
| - // Page header description.
|
| - //
|
| - // If a page is not in the large object space, the first word,
|
| - // opaque_header, encodes the next page address (aligned to kPageSize 8K)
|
| - // and the chunk number (0 ~ 8K-1). Only MemoryAllocator should use
|
| - // opaque_header. The value range of the opaque_header is [0..kPageSize[,
|
| - // or [next_page_start, next_page_end[. It cannot point to a valid address
|
| - // in the current page. If a page is in the large object space, the first
|
| - // word *may* (if the page start and large object chunk start are the
|
| - // same) contain the address of the next large object chunk.
|
| - intptr_t opaque_header;
|
| +class LargePage : public MemoryChunk {
|
| + public:
|
| + HeapObject* GetObject() {
|
| + return HeapObject::FromAddress(body());
|
| + }
|
|
|
| - // If the page is not in the large object space, the low-order bit of the
|
| - // second word is set. If the page is in the large object space, the
|
| - // second word *may* (if the page start and large object chunk start are
|
| - // the same) contain the large object chunk size. In either case, the
|
| - // low-order bit for large object pages will be cleared.
|
| - // For normal pages this word is used to store page flags and
|
| - // offset of allocation top.
|
| - intptr_t flags_;
|
| + inline LargePage* next_page() const {
|
| + return static_cast<LargePage*>(next_chunk());
|
| + }
|
|
|
| - // This field contains dirty marks for regions covering the page. Only dirty
|
| - // regions might contain intergenerational references.
|
| - // Only 32 dirty marks are supported so for large object pages several regions
|
| - // might be mapped to a single dirty mark.
|
| - uint32_t dirty_regions_;
|
| + inline void set_next_page(LargePage* page) {
|
| + set_next_chunk(page);
|
| + }
|
| + private:
|
| + static inline LargePage* Initialize(Heap* heap, MemoryChunk* chunk);
|
|
|
| - // The index of the page in its owner space.
|
| - int mc_page_index;
|
| -
|
| - // During mark-compact collections this field contains the forwarding address
|
| - // of the first live object in this page.
|
| - // During scavenge collection this field is used to store allocation watermark
|
| - // if it is altered during scavenge.
|
| - Address mc_first_forwarded;
|
| -
|
| - Heap* heap_;
|
| + friend class MemoryAllocator;
|
| };
|
|
|
| +STATIC_CHECK(sizeof(LargePage) <= MemoryChunk::kHeaderSize);
|
|
|
| // ----------------------------------------------------------------------------
|
| // Space is the abstract superclass for all allocation spaces.
|
| @@ -380,6 +751,14 @@
|
| // (e.g. see LargeObjectSpace).
|
| virtual intptr_t SizeOfObjects() { return Size(); }
|
|
|
| + virtual int RoundSizeDownToObjectAlignment(int size) {
|
| + if (id_ == CODE_SPACE) {
|
| + return RoundDown(size, kCodeAlignment);
|
| + } else {
|
| + return RoundDown(size, kPointerSize);
|
| + }
|
| + }
|
| +
|
| #ifdef DEBUG
|
| virtual void Print() = 0;
|
| #endif
|
| @@ -430,9 +809,9 @@
|
| // Allocates a chunk of memory from the large-object portion of
|
| // the code range. On platforms with no separate code range, should
|
| // not be called.
|
| - MUST_USE_RESULT void* AllocateRawMemory(const size_t requested,
|
| - size_t* allocated);
|
| - void FreeRawMemory(void* buf, size_t length);
|
| + MUST_USE_RESULT Address AllocateRawMemory(const size_t requested,
|
| + size_t* allocated);
|
| + void FreeRawMemory(Address buf, size_t length);
|
|
|
| private:
|
| Isolate* isolate_;
|
| @@ -443,9 +822,15 @@
|
| class FreeBlock {
|
| public:
|
| FreeBlock(Address start_arg, size_t size_arg)
|
| - : start(start_arg), size(size_arg) {}
|
| + : start(start_arg), size(size_arg) {
|
| + ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment));
|
| + ASSERT(size >= static_cast<size_t>(Page::kPageSize));
|
| + }
|
| FreeBlock(void* start_arg, size_t size_arg)
|
| - : start(static_cast<Address>(start_arg)), size(size_arg) {}
|
| + : start(static_cast<Address>(start_arg)), size(size_arg) {
|
| + ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment));
|
| + ASSERT(size >= static_cast<size_t>(Page::kPageSize));
|
| + }
|
|
|
| Address start;
|
| size_t size;
|
| @@ -473,30 +858,63 @@
|
| };
|
|
|
|
|
| +class SkipList {
|
| + public:
|
| + SkipList() {
|
| + Clear();
|
| + }
|
| +
|
| + void Clear() {
|
| + for (int idx = 0; idx < kSize; idx++) {
|
| + starts_[idx] = reinterpret_cast<Address>(-1);
|
| + }
|
| + }
|
| +
|
| + Address StartFor(Address addr) {
|
| + return starts_[RegionNumber(addr)];
|
| + }
|
| +
|
| + void AddObject(Address addr, int size) {
|
| + int start_region = RegionNumber(addr);
|
| + int end_region = RegionNumber(addr + size - kPointerSize);
|
| + for (int idx = start_region; idx <= end_region; idx++) {
|
| + if (starts_[idx] > addr) starts_[idx] = addr;
|
| + }
|
| + }
|
| +
|
| + static inline int RegionNumber(Address addr) {
|
| + return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2;
|
| + }
|
| +
|
| + static void Update(Address addr, int size) {
|
| + Page* page = Page::FromAddress(addr);
|
| + SkipList* list = page->skip_list();
|
| + if (list == NULL) {
|
| + list = new SkipList();
|
| + page->set_skip_list(list);
|
| + }
|
| +
|
| + list->AddObject(addr, size);
|
| + }
|
| +
|
| + private:
|
| + static const int kRegionSizeLog2 = 13;
|
| + static const int kRegionSize = 1 << kRegionSizeLog2;
|
| + static const int kSize = Page::kPageSize / kRegionSize;
|
| +
|
| + STATIC_ASSERT(Page::kPageSize % kRegionSize == 0);
|
| +
|
| + Address starts_[kSize];
|
| +};
|
| +
|
| +
|
| // ----------------------------------------------------------------------------
|
| // A space acquires chunks of memory from the operating system. The memory
|
| -// allocator manages chunks for the paged heap spaces (old space and map
|
| -// space). A paged chunk consists of pages. Pages in a chunk have contiguous
|
| -// addresses and are linked as a list.
|
| +// allocator allocated and deallocates pages for the paged heap spaces and large
|
| +// pages for large object space.
|
| //
|
| -// The allocator keeps an initial chunk which is used for the new space. The
|
| -// leftover regions of the initial chunk are used for the initial chunks of
|
| -// old space and map space if they are big enough to hold at least one page.
|
| -// The allocator assumes that there is one old space and one map space, each
|
| -// expands the space by allocating kPagesPerChunk pages except the last
|
| -// expansion (before running out of space). The first chunk may contain fewer
|
| -// than kPagesPerChunk pages as well.
|
| +// Each space has to manage it's own pages.
|
| //
|
| -// The memory allocator also allocates chunks for the large object space, but
|
| -// they are managed by the space itself. The new space does not expand.
|
| -//
|
| -// The fact that pages for paged spaces are allocated and deallocated in chunks
|
| -// induces a constraint on the order of pages in a linked lists. We say that
|
| -// pages are linked in the chunk-order if and only if every two consecutive
|
| -// pages from the same chunk are consecutive in the linked list.
|
| -//
|
| -
|
| -
|
| class MemoryAllocator {
|
| public:
|
| explicit MemoryAllocator(Isolate* isolate);
|
| @@ -505,92 +923,16 @@
|
| // Max capacity of the total space and executable memory limit.
|
| bool Setup(intptr_t max_capacity, intptr_t capacity_executable);
|
|
|
| - // Deletes valid chunks.
|
| void TearDown();
|
|
|
| - // Reserves an initial address range of virtual memory to be split between
|
| - // the two new space semispaces, the old space, and the map space. The
|
| - // memory is not yet committed or assigned to spaces and split into pages.
|
| - // The initial chunk is unmapped when the memory allocator is torn down.
|
| - // This function should only be called when there is not already a reserved
|
| - // initial chunk (initial_chunk_ should be NULL). It returns the start
|
| - // address of the initial chunk if successful, with the side effect of
|
| - // setting the initial chunk, or else NULL if unsuccessful and leaves the
|
| - // initial chunk NULL.
|
| - void* ReserveInitialChunk(const size_t requested);
|
| + Page* AllocatePage(PagedSpace* owner, Executability executable);
|
|
|
| - // Commits pages from an as-yet-unmanaged block of virtual memory into a
|
| - // paged space. The block should be part of the initial chunk reserved via
|
| - // a call to ReserveInitialChunk. The number of pages is always returned in
|
| - // the output parameter num_pages. This function assumes that the start
|
| - // address is non-null and that it is big enough to hold at least one
|
| - // page-aligned page. The call always succeeds, and num_pages is always
|
| - // greater than zero.
|
| - Page* CommitPages(Address start, size_t size, PagedSpace* owner,
|
| - int* num_pages);
|
| + LargePage* AllocateLargePage(intptr_t object_size,
|
| + Executability executable,
|
| + Space* owner);
|
|
|
| - // Commit a contiguous block of memory from the initial chunk. Assumes that
|
| - // the address is not NULL, the size is greater than zero, and that the
|
| - // block is contained in the initial chunk. Returns true if it succeeded
|
| - // and false otherwise.
|
| - bool CommitBlock(Address start, size_t size, Executability executable);
|
| + void Free(MemoryChunk* chunk);
|
|
|
| - // Uncommit a contiguous block of memory [start..(start+size)[.
|
| - // start is not NULL, the size is greater than zero, and the
|
| - // block is contained in the initial chunk. Returns true if it succeeded
|
| - // and false otherwise.
|
| - bool UncommitBlock(Address start, size_t size);
|
| -
|
| - // Zaps a contiguous block of memory [start..(start+size)[ thus
|
| - // filling it up with a recognizable non-NULL bit pattern.
|
| - void ZapBlock(Address start, size_t size);
|
| -
|
| - // Attempts to allocate the requested (non-zero) number of pages from the
|
| - // OS. Fewer pages might be allocated than requested. If it fails to
|
| - // allocate memory for the OS or cannot allocate a single page, this
|
| - // function returns an invalid page pointer (NULL). The caller must check
|
| - // whether the returned page is valid (by calling Page::is_valid()). It is
|
| - // guaranteed that allocated pages have contiguous addresses. The actual
|
| - // number of allocated pages is returned in the output parameter
|
| - // allocated_pages. If the PagedSpace owner is executable and there is
|
| - // a code range, the pages are allocated from the code range.
|
| - Page* AllocatePages(int requested_pages, int* allocated_pages,
|
| - PagedSpace* owner);
|
| -
|
| - // Frees pages from a given page and after. Requires pages to be
|
| - // linked in chunk-order (see comment for class).
|
| - // If 'p' is the first page of a chunk, pages from 'p' are freed
|
| - // and this function returns an invalid page pointer.
|
| - // Otherwise, the function searches a page after 'p' that is
|
| - // the first page of a chunk. Pages after the found page
|
| - // are freed and the function returns 'p'.
|
| - Page* FreePages(Page* p);
|
| -
|
| - // Frees all pages owned by given space.
|
| - void FreeAllPages(PagedSpace* space);
|
| -
|
| - // Allocates and frees raw memory of certain size.
|
| - // These are just thin wrappers around OS::Allocate and OS::Free,
|
| - // but keep track of allocated bytes as part of heap.
|
| - // If the flag is EXECUTABLE and a code range exists, the requested
|
| - // memory is allocated from the code range. If a code range exists
|
| - // and the freed memory is in it, the code range manages the freed memory.
|
| - MUST_USE_RESULT void* AllocateRawMemory(const size_t requested,
|
| - size_t* allocated,
|
| - Executability executable);
|
| - void FreeRawMemory(void* buf,
|
| - size_t length,
|
| - Executability executable);
|
| - void PerformAllocationCallback(ObjectSpace space,
|
| - AllocationAction action,
|
| - size_t size);
|
| -
|
| - void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
|
| - ObjectSpace space,
|
| - AllocationAction action);
|
| - void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
|
| - bool MemoryAllocationCallbackRegistered(MemoryAllocationCallback callback);
|
| -
|
| // Returns the maximum available bytes of heaps.
|
| intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; }
|
|
|
| @@ -611,67 +953,68 @@
|
| return (Available() / Page::kPageSize) * Page::kObjectAreaSize;
|
| }
|
|
|
| - // Links two pages.
|
| - inline void SetNextPage(Page* prev, Page* next);
|
| +#ifdef DEBUG
|
| + // Reports statistic info of the space.
|
| + void ReportStatistics();
|
| +#endif
|
|
|
| - // Returns the next page of a given page.
|
| - inline Page* GetNextPage(Page* p);
|
| + MemoryChunk* AllocateChunk(intptr_t body_size,
|
| + Executability executable,
|
| + Space* space);
|
|
|
| - // Checks whether a page belongs to a space.
|
| - inline bool IsPageInSpace(Page* p, PagedSpace* space);
|
| + Address ReserveAlignedMemory(size_t requested,
|
| + size_t alignment,
|
| + VirtualMemory* controller);
|
| + Address AllocateAlignedMemory(size_t requested,
|
| + size_t alignment,
|
| + Executability executable,
|
| + VirtualMemory* controller);
|
|
|
| - // Returns the space that owns the given page.
|
| - inline PagedSpace* PageOwner(Page* page);
|
| + void FreeMemory(VirtualMemory* reservation, Executability executable);
|
| + void FreeMemory(Address addr, size_t size, Executability executable);
|
|
|
| - // Finds the first/last page in the same chunk as a given page.
|
| - Page* FindFirstPageInSameChunk(Page* p);
|
| - Page* FindLastPageInSameChunk(Page* p);
|
| + // Commit a contiguous block of memory from the initial chunk. Assumes that
|
| + // the address is not NULL, the size is greater than zero, and that the
|
| + // block is contained in the initial chunk. Returns true if it succeeded
|
| + // and false otherwise.
|
| + bool CommitBlock(Address start, size_t size, Executability executable);
|
|
|
| - // Relinks list of pages owned by space to make it chunk-ordered.
|
| - // Returns new first and last pages of space.
|
| - // Also returns last page in relinked list which has WasInUsedBeforeMC
|
| - // flag set.
|
| - void RelinkPageListInChunkOrder(PagedSpace* space,
|
| - Page** first_page,
|
| - Page** last_page,
|
| - Page** last_page_in_use);
|
| + // Uncommit a contiguous block of memory [start..(start+size)[.
|
| + // start is not NULL, the size is greater than zero, and the
|
| + // block is contained in the initial chunk. Returns true if it succeeded
|
| + // and false otherwise.
|
| + bool UncommitBlock(Address start, size_t size);
|
|
|
| -#ifdef DEBUG
|
| - // Reports statistic info of the space.
|
| - void ReportStatistics();
|
| -#endif
|
| + // Zaps a contiguous block of memory [start..(start+size)[ thus
|
| + // filling it up with a recognizable non-NULL bit pattern.
|
| + void ZapBlock(Address start, size_t size);
|
|
|
| - // Due to encoding limitation, we can only have 8K chunks.
|
| - static const int kMaxNofChunks = 1 << kPageSizeBits;
|
| - // If a chunk has at least 16 pages, the maximum heap size is about
|
| - // 8K * 8K * 16 = 1G bytes.
|
| -#ifdef V8_TARGET_ARCH_X64
|
| - static const int kPagesPerChunk = 32;
|
| - // On 64 bit the chunk table consists of 4 levels of 4096-entry tables.
|
| - static const int kChunkTableLevels = 4;
|
| - static const int kChunkTableBitsPerLevel = 12;
|
| -#else
|
| - static const int kPagesPerChunk = 16;
|
| - // On 32 bit the chunk table consists of 2 levels of 256-entry tables.
|
| - static const int kChunkTableLevels = 2;
|
| - static const int kChunkTableBitsPerLevel = 8;
|
| -#endif
|
| + void PerformAllocationCallback(ObjectSpace space,
|
| + AllocationAction action,
|
| + size_t size);
|
|
|
| + void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
|
| + ObjectSpace space,
|
| + AllocationAction action);
|
| +
|
| + void RemoveMemoryAllocationCallback(
|
| + MemoryAllocationCallback callback);
|
| +
|
| + bool MemoryAllocationCallbackRegistered(
|
| + MemoryAllocationCallback callback);
|
| +
|
| private:
|
| - static const int kChunkSize = kPagesPerChunk * Page::kPageSize;
|
| -
|
| Isolate* isolate_;
|
|
|
| // Maximum space size in bytes.
|
| - intptr_t capacity_;
|
| + size_t capacity_;
|
| // Maximum subset of capacity_ that can be executable
|
| - intptr_t capacity_executable_;
|
| + size_t capacity_executable_;
|
|
|
| // Allocated space size in bytes.
|
| - intptr_t size_;
|
| -
|
| + size_t size_;
|
| // Allocated executable space size in bytes.
|
| - intptr_t size_executable_;
|
| + size_t size_executable_;
|
|
|
| struct MemoryAllocationCallbackRegistration {
|
| MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback,
|
| @@ -683,64 +1026,11 @@
|
| ObjectSpace space;
|
| AllocationAction action;
|
| };
|
| +
|
| // A List of callback that are triggered when memory is allocated or free'd
|
| List<MemoryAllocationCallbackRegistration>
|
| memory_allocation_callbacks_;
|
|
|
| - // The initial chunk of virtual memory.
|
| - VirtualMemory* initial_chunk_;
|
| -
|
| - // Allocated chunk info: chunk start address, chunk size, and owning space.
|
| - class ChunkInfo BASE_EMBEDDED {
|
| - public:
|
| - ChunkInfo() : address_(NULL),
|
| - size_(0),
|
| - owner_(NULL),
|
| - executable_(NOT_EXECUTABLE),
|
| - owner_identity_(FIRST_SPACE) {}
|
| - inline void init(Address a, size_t s, PagedSpace* o);
|
| - Address address() { return address_; }
|
| - size_t size() { return size_; }
|
| - PagedSpace* owner() { return owner_; }
|
| - // We save executability of the owner to allow using it
|
| - // when collecting stats after the owner has been destroyed.
|
| - Executability executable() const { return executable_; }
|
| - AllocationSpace owner_identity() const { return owner_identity_; }
|
| -
|
| - private:
|
| - Address address_;
|
| - size_t size_;
|
| - PagedSpace* owner_;
|
| - Executability executable_;
|
| - AllocationSpace owner_identity_;
|
| - };
|
| -
|
| - // Chunks_, free_chunk_ids_ and top_ act as a stack of free chunk ids.
|
| - List<ChunkInfo> chunks_;
|
| - List<int> free_chunk_ids_;
|
| - int max_nof_chunks_;
|
| - int top_;
|
| -
|
| - // Push/pop a free chunk id onto/from the stack.
|
| - void Push(int free_chunk_id);
|
| - int Pop();
|
| - bool OutOfChunkIds() { return top_ == 0; }
|
| -
|
| - // Frees a chunk.
|
| - void DeleteChunk(int chunk_id);
|
| -
|
| - // Basic check whether a chunk id is in the valid range.
|
| - inline bool IsValidChunkId(int chunk_id);
|
| -
|
| - // Checks whether a chunk id identifies an allocated chunk.
|
| - inline bool IsValidChunk(int chunk_id);
|
| -
|
| - // Returns the chunk id that a page belongs to.
|
| - inline int GetChunkId(Page* p);
|
| -
|
| - // True if the address lies in the initial chunk.
|
| - inline bool InInitialChunk(Address address);
|
| -
|
| // Initializes pages in a chunk. Returns the first page address.
|
| // This function and GetChunkId() are provided for the mark-compact
|
| // collector to rebuild page headers in the from space, which is
|
| @@ -748,13 +1038,7 @@
|
| Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
|
| PagedSpace* owner);
|
|
|
| - Page* RelinkPagesInChunk(int chunk_id,
|
| - Address chunk_start,
|
| - size_t chunk_size,
|
| - Page* prev,
|
| - Page** last_page_in_use);
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(MemoryAllocator);
|
| + DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator);
|
| };
|
|
|
|
|
| @@ -777,71 +1061,58 @@
|
| // -----------------------------------------------------------------------------
|
| // Heap object iterator in new/old/map spaces.
|
| //
|
| -// A HeapObjectIterator iterates objects from a given address to the
|
| -// top of a space. The given address must be below the current
|
| -// allocation pointer (space top). There are some caveats.
|
| +// A HeapObjectIterator iterates objects from the bottom of the given space
|
| +// to its top or from the bottom of the given page to its top.
|
| //
|
| -// (1) If the space top changes upward during iteration (because of
|
| -// allocating new objects), the iterator does not iterate objects
|
| -// above the original space top. The caller must create a new
|
| -// iterator starting from the old top in order to visit these new
|
| -// objects.
|
| -//
|
| -// (2) If new objects are allocated below the original allocation top
|
| -// (e.g., free-list allocation in paged spaces), the new objects
|
| -// may or may not be iterated depending on their position with
|
| -// respect to the current point of iteration.
|
| -//
|
| -// (3) The space top should not change downward during iteration,
|
| -// otherwise the iterator will return not-necessarily-valid
|
| -// objects.
|
| -
|
| +// If objects are allocated in the page during iteration the iterator may
|
| +// or may not iterate over those objects. The caller must create a new
|
| +// iterator in order to be sure to visit these new objects.
|
| class HeapObjectIterator: public ObjectIterator {
|
| public:
|
| - // Creates a new object iterator in a given space. If a start
|
| - // address is not given, the iterator starts from the space bottom.
|
| + // Creates a new object iterator in a given space.
|
| // If the size function is not given, the iterator calls the default
|
| // Object::Size().
|
| explicit HeapObjectIterator(PagedSpace* space);
|
| HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func);
|
| - HeapObjectIterator(PagedSpace* space, Address start);
|
| - HeapObjectIterator(PagedSpace* space,
|
| - Address start,
|
| - HeapObjectCallback size_func);
|
| HeapObjectIterator(Page* page, HeapObjectCallback size_func);
|
|
|
| - inline HeapObject* next() {
|
| - return (cur_addr_ < cur_limit_) ? FromCurrentPage() : FromNextPage();
|
| + // Advance to the next object, skipping free spaces and other fillers and
|
| + // skipping the special garbage section of which there is one per space.
|
| + // Returns NULL when the iteration has ended.
|
| + inline HeapObject* Next() {
|
| + do {
|
| + HeapObject* next_obj = FromCurrentPage();
|
| + if (next_obj != NULL) return next_obj;
|
| + } while (AdvanceToNextPage());
|
| + return NULL;
|
| }
|
|
|
| - // implementation of ObjectIterator.
|
| - virtual HeapObject* next_object() { return next(); }
|
| + virtual HeapObject* next_object() {
|
| + return Next();
|
| + }
|
|
|
| private:
|
| - Address cur_addr_; // current iteration point
|
| - Address end_addr_; // end iteration point
|
| - Address cur_limit_; // current page limit
|
| - HeapObjectCallback size_func_; // size function
|
| - Page* end_page_; // caches the page of the end address
|
| + enum PageMode { kOnePageOnly, kAllPagesInSpace };
|
|
|
| - HeapObject* FromCurrentPage() {
|
| - ASSERT(cur_addr_ < cur_limit_);
|
| + Address cur_addr_; // Current iteration point.
|
| + Address cur_end_; // End iteration point.
|
| + HeapObjectCallback size_func_; // Size function or NULL.
|
| + PagedSpace* space_;
|
| + PageMode page_mode_;
|
|
|
| - HeapObject* obj = HeapObject::FromAddress(cur_addr_);
|
| - int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj);
|
| - ASSERT_OBJECT_SIZE(obj_size);
|
| + // Fast (inlined) path of next().
|
| + inline HeapObject* FromCurrentPage();
|
|
|
| - cur_addr_ += obj_size;
|
| - ASSERT(cur_addr_ <= cur_limit_);
|
| + // Slow path of next(), goes into the next page. Returns false if the
|
| + // iteration has ended.
|
| + bool AdvanceToNextPage();
|
|
|
| - return obj;
|
| - }
|
| -
|
| - // Slow path of next, goes into the next page.
|
| - HeapObject* FromNextPage();
|
| -
|
| // Initializes fields.
|
| - void Initialize(Address start, Address end, HeapObjectCallback size_func);
|
| + inline void Initialize(PagedSpace* owner,
|
| + Address start,
|
| + Address end,
|
| + PageMode mode,
|
| + HeapObjectCallback size_func);
|
|
|
| #ifdef DEBUG
|
| // Verifies whether fields have valid values.
|
| @@ -852,59 +1123,37 @@
|
|
|
| // -----------------------------------------------------------------------------
|
| // A PageIterator iterates the pages in a paged space.
|
| -//
|
| -// The PageIterator class provides three modes for iterating pages in a space:
|
| -// PAGES_IN_USE iterates pages containing allocated objects.
|
| -// PAGES_USED_BY_MC iterates pages that hold relocated objects during a
|
| -// mark-compact collection.
|
| -// ALL_PAGES iterates all pages in the space.
|
| -//
|
| -// There are some caveats.
|
| -//
|
| -// (1) If the space expands during iteration, new pages will not be
|
| -// returned by the iterator in any mode.
|
| -//
|
| -// (2) If new objects are allocated during iteration, they will appear
|
| -// in pages returned by the iterator. Allocation may cause the
|
| -// allocation pointer or MC allocation pointer in the last page to
|
| -// change between constructing the iterator and iterating the last
|
| -// page.
|
| -//
|
| -// (3) The space should not shrink during iteration, otherwise the
|
| -// iterator will return deallocated pages.
|
|
|
| class PageIterator BASE_EMBEDDED {
|
| public:
|
| - enum Mode {
|
| - PAGES_IN_USE,
|
| - PAGES_USED_BY_MC,
|
| - ALL_PAGES
|
| - };
|
| + explicit inline PageIterator(PagedSpace* space);
|
|
|
| - PageIterator(PagedSpace* space, Mode mode);
|
| -
|
| inline bool has_next();
|
| inline Page* next();
|
|
|
| private:
|
| PagedSpace* space_;
|
| Page* prev_page_; // Previous page returned.
|
| - Page* stop_page_; // Page to stop at (last page returned by the iterator).
|
| + // Next page that will be returned. Cached here so that we can use this
|
| + // iterator for operations that deallocate pages.
|
| + Page* next_page_;
|
| };
|
|
|
|
|
| // -----------------------------------------------------------------------------
|
| -// A space has a list of pages. The next page can be accessed via
|
| -// Page::next_page() call. The next page of the last page is an
|
| -// invalid page pointer. A space can expand and shrink dynamically.
|
| +// A space has a circular list of pages. The next page can be accessed via
|
| +// Page::next_page() call.
|
|
|
| // An abstraction of allocation and relocation pointers in a page-structured
|
| // space.
|
| class AllocationInfo {
|
| public:
|
| - Address top; // current allocation top
|
| - Address limit; // current allocation limit
|
| + AllocationInfo() : top(NULL), limit(NULL) {
|
| + }
|
|
|
| + Address top; // Current allocation top.
|
| + Address limit; // Current allocation limit.
|
| +
|
| #ifdef DEBUG
|
| bool VerifyPagedAllocation() {
|
| return (Page::FromAllocationTop(top) == Page::FromAllocationTop(limit))
|
| @@ -935,70 +1184,190 @@
|
| // Zero out all the allocation statistics (ie, no capacity).
|
| void Clear() {
|
| capacity_ = 0;
|
| - available_ = 0;
|
| size_ = 0;
|
| waste_ = 0;
|
| }
|
|
|
| + void ClearSizeWaste() {
|
| + size_ = capacity_;
|
| + waste_ = 0;
|
| + }
|
| +
|
| // Reset the allocation statistics (ie, available = capacity with no
|
| // wasted or allocated bytes).
|
| void Reset() {
|
| - available_ = capacity_;
|
| size_ = 0;
|
| waste_ = 0;
|
| }
|
|
|
| // Accessors for the allocation statistics.
|
| intptr_t Capacity() { return capacity_; }
|
| - intptr_t Available() { return available_; }
|
| intptr_t Size() { return size_; }
|
| intptr_t Waste() { return waste_; }
|
|
|
| - // Grow the space by adding available bytes.
|
| + // Grow the space by adding available bytes. They are initially marked as
|
| + // being in use (part of the size), but will normally be immediately freed,
|
| + // putting them on the free list and removing them from size_.
|
| void ExpandSpace(int size_in_bytes) {
|
| capacity_ += size_in_bytes;
|
| - available_ += size_in_bytes;
|
| + size_ += size_in_bytes;
|
| + ASSERT(size_ >= 0);
|
| }
|
|
|
| - // Shrink the space by removing available bytes.
|
| - void ShrinkSpace(int size_in_bytes) {
|
| - capacity_ -= size_in_bytes;
|
| - available_ -= size_in_bytes;
|
| - }
|
| -
|
| // Allocate from available bytes (available -> size).
|
| void AllocateBytes(intptr_t size_in_bytes) {
|
| - available_ -= size_in_bytes;
|
| size_ += size_in_bytes;
|
| + ASSERT(size_ >= 0);
|
| }
|
|
|
| // Free allocated bytes, making them available (size -> available).
|
| void DeallocateBytes(intptr_t size_in_bytes) {
|
| size_ -= size_in_bytes;
|
| - available_ += size_in_bytes;
|
| + ASSERT(size_ >= 0);
|
| }
|
|
|
| // Waste free bytes (available -> waste).
|
| void WasteBytes(int size_in_bytes) {
|
| - available_ -= size_in_bytes;
|
| + size_ -= size_in_bytes;
|
| waste_ += size_in_bytes;
|
| + ASSERT(size_ >= 0);
|
| }
|
|
|
| - // Consider the wasted bytes to be allocated, as they contain filler
|
| - // objects (waste -> size).
|
| - void FillWastedBytes(intptr_t size_in_bytes) {
|
| - waste_ -= size_in_bytes;
|
| - size_ += size_in_bytes;
|
| - }
|
| -
|
| private:
|
| intptr_t capacity_;
|
| - intptr_t available_;
|
| intptr_t size_;
|
| intptr_t waste_;
|
| };
|
|
|
|
|
| +// -----------------------------------------------------------------------------
|
| +// Free lists for old object spaces
|
| +//
|
| +// Free-list nodes are free blocks in the heap. They look like heap objects
|
| +// (free-list node pointers have the heap object tag, and they have a map like
|
| +// a heap object). They have a size and a next pointer. The next pointer is
|
| +// the raw address of the next free list node (or NULL).
|
| +class FreeListNode: public HeapObject {
|
| + public:
|
| + // Obtain a free-list node from a raw address. This is not a cast because
|
| + // it does not check nor require that the first word at the address is a map
|
| + // pointer.
|
| + static FreeListNode* FromAddress(Address address) {
|
| + return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address));
|
| + }
|
| +
|
| + static inline bool IsFreeListNode(HeapObject* object);
|
| +
|
| + // Set the size in bytes, which can be read with HeapObject::Size(). This
|
| + // function also writes a map to the first word of the block so that it
|
| + // looks like a heap object to the garbage collector and heap iteration
|
| + // functions.
|
| + void set_size(Heap* heap, int size_in_bytes);
|
| +
|
| + // Accessors for the next field.
|
| + inline FreeListNode* next();
|
| + inline FreeListNode** next_address();
|
| + inline void set_next(FreeListNode* next);
|
| +
|
| + inline void Zap();
|
| +
|
| + private:
|
| + static const int kNextOffset = POINTER_SIZE_ALIGN(FreeSpace::kHeaderSize);
|
| +
|
| + DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode);
|
| +};
|
| +
|
| +
|
| +// The free list for the old space. The free list is organized in such a way
|
| +// as to encourage objects allocated around the same time to be near each
|
| +// other. The normal way to allocate is intended to be by bumping a 'top'
|
| +// pointer until it hits a 'limit' pointer. When the limit is hit we need to
|
| +// find a new space to allocate from. This is done with the free list, which
|
| +// is divided up into rough categories to cut down on waste. Having finer
|
| +// categories would scatter allocation more.
|
| +
|
| +// The old space free list is organized in categories.
|
| +// 1-31 words: Such small free areas are discarded for efficiency reasons.
|
| +// They can be reclaimed by the compactor. However the distance between top
|
| +// and limit may be this small.
|
| +// 32-255 words: There is a list of spaces this large. It is used for top and
|
| +// limit when the object we need to allocate is 1-31 words in size. These
|
| +// spaces are called small.
|
| +// 256-2047 words: There is a list of spaces this large. It is used for top and
|
| +// limit when the object we need to allocate is 32-255 words in size. These
|
| +// spaces are called medium.
|
| +// 1048-16383 words: There is a list of spaces this large. It is used for top
|
| +// and limit when the object we need to allocate is 256-2047 words in size.
|
| +// These spaces are call large.
|
| +// At least 16384 words. This list is for objects of 2048 words or larger.
|
| +// Empty pages are added to this list. These spaces are called huge.
|
| +class FreeList BASE_EMBEDDED {
|
| + public:
|
| + explicit FreeList(PagedSpace* owner);
|
| +
|
| + // Clear the free list.
|
| + void Reset();
|
| +
|
| + // Return the number of bytes available on the free list.
|
| + intptr_t available() { return available_; }
|
| +
|
| + // Place a node on the free list. The block of size 'size_in_bytes'
|
| + // starting at 'start' is placed on the free list. The return value is the
|
| + // number of bytes that have been lost due to internal fragmentation by
|
| + // freeing the block. Bookkeeping information will be written to the block,
|
| + // ie, its contents will be destroyed. The start address should be word
|
| + // aligned, and the size should be a non-zero multiple of the word size.
|
| + int Free(Address start, int size_in_bytes);
|
| +
|
| + // Allocate a block of size 'size_in_bytes' from the free list. The block
|
| + // is unitialized. A failure is returned if no block is available. The
|
| + // number of bytes lost to fragmentation is returned in the output parameter
|
| + // 'wasted_bytes'. The size should be a non-zero multiple of the word size.
|
| + MUST_USE_RESULT HeapObject* Allocate(int size_in_bytes);
|
| +
|
| + void MarkNodes();
|
| +
|
| +#ifdef DEBUG
|
| + void Zap();
|
| + static intptr_t SumFreeList(FreeListNode* node);
|
| + static int FreeListLength(FreeListNode* cur);
|
| + intptr_t SumFreeLists();
|
| + bool IsVeryLong();
|
| +#endif
|
| +
|
| + void CountFreeListItems(Page* p, intptr_t* sizes);
|
| +
|
| + private:
|
| + // The size range of blocks, in bytes.
|
| + static const int kMinBlockSize = 3 * kPointerSize;
|
| + static const int kMaxBlockSize = Page::kMaxHeapObjectSize;
|
| +
|
| + FreeListNode* PickNodeFromList(FreeListNode** list, int* node_size);
|
| +
|
| + FreeListNode* FindNodeFor(int size_in_bytes, int* node_size);
|
| +
|
| + PagedSpace* owner_;
|
| + Heap* heap_;
|
| +
|
| + // Total available bytes in all blocks on this free list.
|
| + int available_;
|
| +
|
| + static const int kSmallListMin = 0x20 * kPointerSize;
|
| + static const int kSmallListMax = 0xff * kPointerSize;
|
| + static const int kMediumListMax = 0x7ff * kPointerSize;
|
| + static const int kLargeListMax = 0x3fff * kPointerSize;
|
| + static const int kSmallAllocationMax = kSmallListMin - kPointerSize;
|
| + static const int kMediumAllocationMax = kSmallListMax;
|
| + static const int kLargeAllocationMax = kMediumListMax;
|
| + FreeListNode* small_list_;
|
| + FreeListNode* medium_list_;
|
| + FreeListNode* large_list_;
|
| + FreeListNode* huge_list_;
|
| +
|
| + DISALLOW_IMPLICIT_CONSTRUCTORS(FreeList);
|
| +};
|
| +
|
| +
|
| class PagedSpace : public Space {
|
| public:
|
| // Creates a space with a maximum capacity, and an id.
|
| @@ -1013,7 +1382,7 @@
|
| // the memory allocator's initial chunk) if possible. If the block of
|
| // addresses is not big enough to contain a single page-aligned page, a
|
| // fresh chunk will be allocated.
|
| - bool Setup(Address start, size_t size);
|
| + bool Setup();
|
|
|
| // Returns true if the space has been successfully set up and not
|
| // subsequently torn down.
|
| @@ -1026,8 +1395,6 @@
|
| // Checks whether an object/address is in this space.
|
| inline bool Contains(Address a);
|
| bool Contains(HeapObject* o) { return Contains(o->address()); }
|
| - // Never crashes even if a is not a valid pointer.
|
| - inline bool SafeContains(Address a);
|
|
|
| // Given an address occupied by a live object, return that object if it is
|
| // in this space, or Failure::Exception() if it is not. The implementation
|
| @@ -1035,105 +1402,94 @@
|
| // linear in the number of objects in the page. It may be slow.
|
| MUST_USE_RESULT MaybeObject* FindObject(Address addr);
|
|
|
| - // Checks whether page is currently in use by this space.
|
| - bool IsUsed(Page* page);
|
| -
|
| - void MarkAllPagesClean();
|
| -
|
| // Prepares for a mark-compact GC.
|
| - virtual void PrepareForMarkCompact(bool will_compact);
|
| + virtual void PrepareForMarkCompact();
|
|
|
| - // The top of allocation in a page in this space. Undefined if page is unused.
|
| - Address PageAllocationTop(Page* page) {
|
| - return page == TopPageOf(allocation_info_) ? top()
|
| - : PageAllocationLimit(page);
|
| - }
|
| -
|
| - // The limit of allocation for a page in this space.
|
| - virtual Address PageAllocationLimit(Page* page) = 0;
|
| -
|
| - void FlushTopPageWatermark() {
|
| - AllocationTopPage()->SetCachedAllocationWatermark(top());
|
| - AllocationTopPage()->InvalidateWatermark(true);
|
| - }
|
| -
|
| - // Current capacity without growing (Size() + Available() + Waste()).
|
| + // Current capacity without growing (Size() + Available()).
|
| intptr_t Capacity() { return accounting_stats_.Capacity(); }
|
|
|
| // Total amount of memory committed for this space. For paged
|
| // spaces this equals the capacity.
|
| intptr_t CommittedMemory() { return Capacity(); }
|
|
|
| - // Available bytes without growing.
|
| - intptr_t Available() { return accounting_stats_.Available(); }
|
| + // Sets the capacity, the available space and the wasted space to zero.
|
| + // The stats are rebuilt during sweeping by adding each page to the
|
| + // capacity and the size when it is encountered. As free spaces are
|
| + // discovered during the sweeping they are subtracted from the size and added
|
| + // to the available and wasted totals.
|
| + void ClearStats() {
|
| + accounting_stats_.ClearSizeWaste();
|
| + }
|
|
|
| - // Allocated bytes in this space.
|
| + // Available bytes without growing. These are the bytes on the free list.
|
| + // The bytes in the linear allocation area are not included in this total
|
| + // because updating the stats would slow down allocation. New pages are
|
| + // immediately added to the free list so they show up here.
|
| + intptr_t Available() { return free_list_.available(); }
|
| +
|
| + // Allocated bytes in this space. Garbage bytes that were not found due to
|
| + // lazy sweeping are counted as being allocated! The bytes in the current
|
| + // linear allocation area (between top and limit) are also counted here.
|
| virtual intptr_t Size() { return accounting_stats_.Size(); }
|
|
|
| - // Wasted bytes due to fragmentation and not recoverable until the
|
| - // next GC of this space.
|
| - intptr_t Waste() { return accounting_stats_.Waste(); }
|
| + // As size, but the bytes in the current linear allocation area are not
|
| + // included.
|
| + virtual intptr_t SizeOfObjects() { return Size() - (limit() - top()); }
|
|
|
| - // Returns the address of the first object in this space.
|
| - Address bottom() { return first_page_->ObjectAreaStart(); }
|
| + // Wasted bytes in this space. These are just the bytes that were thrown away
|
| + // due to being too small to use for allocation. They do not include the
|
| + // free bytes that were not found at all due to lazy sweeping.
|
| + virtual intptr_t Waste() { return accounting_stats_.Waste(); }
|
|
|
| // Returns the allocation pointer in this space.
|
| - Address top() { return allocation_info_.top; }
|
| + Address top() {
|
| + return allocation_info_.top;
|
| + }
|
| + Address limit() { return allocation_info_.limit; }
|
|
|
| // Allocate the requested number of bytes in the space if possible, return a
|
| // failure object if not.
|
| MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes);
|
|
|
| - // Allocate the requested number of bytes for relocation during mark-compact
|
| - // collection.
|
| - MUST_USE_RESULT inline MaybeObject* MCAllocateRaw(int size_in_bytes);
|
| -
|
| virtual bool ReserveSpace(int bytes);
|
|
|
| - // Used by ReserveSpace.
|
| - virtual void PutRestOfCurrentPageOnFreeList(Page* current_page) = 0;
|
| + // Give a block of memory to the space's free list. It might be added to
|
| + // the free list or accounted as waste.
|
| + // If add_to_freelist is false then just accounting stats are updated and
|
| + // no attempt to add area to free list is made.
|
| + int Free(Address start, int size_in_bytes) {
|
| + int wasted = free_list_.Free(start, size_in_bytes);
|
| + accounting_stats_.DeallocateBytes(size_in_bytes - wasted);
|
| + return size_in_bytes - wasted;
|
| + }
|
|
|
| - // Free all pages in range from prev (exclusive) to last (inclusive).
|
| - // Freed pages are moved to the end of page list.
|
| - void FreePages(Page* prev, Page* last);
|
| + int FreeOrUnmapPage(Page* page, Address start, int size_in_bytes);
|
|
|
| - // Deallocates a block.
|
| - virtual void DeallocateBlock(Address start,
|
| - int size_in_bytes,
|
| - bool add_to_freelist) = 0;
|
| -
|
| // Set space allocation info.
|
| - void SetTop(Address top) {
|
| + void SetTop(Address top, Address limit) {
|
| + ASSERT(top == limit ||
|
| + Page::FromAddress(top) == Page::FromAddress(limit - 1));
|
| allocation_info_.top = top;
|
| - allocation_info_.limit = PageAllocationLimit(Page::FromAllocationTop(top));
|
| + allocation_info_.limit = limit;
|
| }
|
|
|
| - // ---------------------------------------------------------------------------
|
| - // Mark-compact collection support functions
|
| + void Allocate(int bytes) {
|
| + accounting_stats_.AllocateBytes(bytes);
|
| + }
|
|
|
| - // Set the relocation point to the beginning of the space.
|
| - void MCResetRelocationInfo();
|
| -
|
| - // Writes relocation info to the top page.
|
| - void MCWriteRelocationInfoToPage() {
|
| - TopPageOf(mc_forwarding_info_)->
|
| - SetAllocationWatermark(mc_forwarding_info_.top);
|
| + void IncreaseCapacity(int size) {
|
| + accounting_stats_.ExpandSpace(size);
|
| }
|
|
|
| - // Computes the offset of a given address in this space to the beginning
|
| - // of the space.
|
| - int MCSpaceOffsetForAddress(Address addr);
|
| -
|
| - // Updates the allocation pointer to the relocation top after a mark-compact
|
| - // collection.
|
| - virtual void MCCommitRelocationInfo() = 0;
|
| -
|
| // Releases half of unused pages.
|
| void Shrink();
|
|
|
| // Ensures that the capacity is at least 'capacity'. Returns false on failure.
|
| bool EnsureCapacity(int capacity);
|
|
|
| + // The dummy page that anchors the linked list of pages.
|
| + Page* anchor() { return &anchor_; }
|
| +
|
| #ifdef DEBUG
|
| // Print meta info and objects in this space.
|
| virtual void Print();
|
| @@ -1141,6 +1497,9 @@
|
| // Verify integrity of this space.
|
| virtual void Verify(ObjectVisitor* visitor);
|
|
|
| + // Reports statistics for the space
|
| + void ReportStatistics();
|
| +
|
| // Overridden by subclasses to verify space-specific object
|
| // properties (e.g., only maps or free-list nodes are in map space).
|
| virtual void VerifyObject(HeapObject* obj) {}
|
| @@ -1151,11 +1510,67 @@
|
| static void ResetCodeStatistics();
|
| #endif
|
|
|
| - // Returns the page of the allocation pointer.
|
| - Page* AllocationTopPage() { return TopPageOf(allocation_info_); }
|
| + bool was_swept_conservatively() { return was_swept_conservatively_; }
|
| + void set_was_swept_conservatively(bool b) { was_swept_conservatively_ = b; }
|
|
|
| - void RelinkPageListInChunkOrder(bool deallocate_blocks);
|
| + // Evacuation candidates are swept by evacuator. Needs to return a valid
|
| + // result before _and_ after evacuation has finished.
|
| + static bool ShouldBeSweptLazily(Page* p) {
|
| + return !p->IsEvacuationCandidate() &&
|
| + !p->IsFlagSet(Page::RESCAN_ON_EVACUATION) &&
|
| + !p->WasSweptPrecisely();
|
| + }
|
|
|
| + void SetPagesToSweep(Page* first, Page* last) {
|
| + first_unswept_page_ = first;
|
| + last_unswept_page_ = last;
|
| + }
|
| +
|
| + bool AdvanceSweeper(intptr_t bytes_to_sweep);
|
| +
|
| + bool IsSweepingComplete() {
|
| + return !first_unswept_page_->is_valid();
|
| + }
|
| +
|
| + Page* FirstPage() { return anchor_.next_page(); }
|
| + Page* LastPage() { return anchor_.prev_page(); }
|
| +
|
| + bool IsFragmented(Page* p) {
|
| + intptr_t sizes[4];
|
| + free_list_.CountFreeListItems(p, sizes);
|
| +
|
| + intptr_t ratio;
|
| + intptr_t ratio_threshold;
|
| + if (identity() == CODE_SPACE) {
|
| + ratio = (sizes[1] * 10 + sizes[2] * 2) * 100 / Page::kObjectAreaSize;
|
| + ratio_threshold = 10;
|
| + } else {
|
| + ratio = (sizes[0] * 5 + sizes[1]) * 100 / Page::kObjectAreaSize;
|
| + ratio_threshold = 15;
|
| + }
|
| +
|
| + if (FLAG_trace_fragmentation) {
|
| + PrintF("%p [%d]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n",
|
| + reinterpret_cast<void*>(p),
|
| + identity(),
|
| + static_cast<int>(sizes[0]),
|
| + static_cast<double>(sizes[0] * 100) / Page::kObjectAreaSize,
|
| + static_cast<int>(sizes[1]),
|
| + static_cast<double>(sizes[1] * 100) / Page::kObjectAreaSize,
|
| + static_cast<int>(sizes[2]),
|
| + static_cast<double>(sizes[2] * 100) / Page::kObjectAreaSize,
|
| + static_cast<int>(sizes[3]),
|
| + static_cast<double>(sizes[3] * 100) / Page::kObjectAreaSize,
|
| + (ratio > ratio_threshold) ? "[fragmented]" : "");
|
| + }
|
| +
|
| + return (ratio > ratio_threshold) || FLAG_always_compact;
|
| + }
|
| +
|
| + void EvictEvacuationCandidatesFromFreeLists();
|
| +
|
| + bool CanExpand();
|
| +
|
| protected:
|
| // Maximum capacity of this space.
|
| intptr_t max_capacity_;
|
| @@ -1163,80 +1578,43 @@
|
| // Accounting information for this space.
|
| AllocationStats accounting_stats_;
|
|
|
| - // The first page in this space.
|
| - Page* first_page_;
|
| + // The dummy page that anchors the double linked list of pages.
|
| + Page anchor_;
|
|
|
| - // The last page in this space. Initially set in Setup, updated in
|
| - // Expand and Shrink.
|
| - Page* last_page_;
|
| + // The space's free list.
|
| + FreeList free_list_;
|
|
|
| - // True if pages owned by this space are linked in chunk-order.
|
| - // See comment for class MemoryAllocator for definition of chunk-order.
|
| - bool page_list_is_chunk_ordered_;
|
| -
|
| // Normal allocation information.
|
| AllocationInfo allocation_info_;
|
|
|
| - // Relocation information during mark-compact collections.
|
| - AllocationInfo mc_forwarding_info_;
|
| -
|
| // Bytes of each page that cannot be allocated. Possibly non-zero
|
| // for pages in spaces with only fixed-size objects. Always zero
|
| // for pages in spaces with variable sized objects (those pages are
|
| // padded with free-list nodes).
|
| int page_extra_;
|
|
|
| - // Sets allocation pointer to a page bottom.
|
| - static void SetAllocationInfo(AllocationInfo* alloc_info, Page* p);
|
| + bool was_swept_conservatively_;
|
|
|
| - // Returns the top page specified by an allocation info structure.
|
| - static Page* TopPageOf(AllocationInfo alloc_info) {
|
| - return Page::FromAllocationTop(alloc_info.limit);
|
| - }
|
| + Page* first_unswept_page_;
|
| + Page* last_unswept_page_;
|
|
|
| - int CountPagesToTop() {
|
| - Page* p = Page::FromAllocationTop(allocation_info_.top);
|
| - PageIterator it(this, PageIterator::ALL_PAGES);
|
| - int counter = 1;
|
| - while (it.has_next()) {
|
| - if (it.next() == p) return counter;
|
| - counter++;
|
| - }
|
| - UNREACHABLE();
|
| - return -1;
|
| - }
|
| -
|
| // Expands the space by allocating a fixed number of pages. Returns false if
|
| - // it cannot allocate requested number of pages from OS. Newly allocated
|
| - // pages are append to the last_page;
|
| - bool Expand(Page* last_page);
|
| + // it cannot allocate requested number of pages from OS.
|
| + bool Expand();
|
|
|
| - // Generic fast case allocation function that tries linear allocation in
|
| - // the top page of 'alloc_info'. Returns NULL on failure.
|
| + // Generic fast case allocation function that tries linear allocation at the
|
| + // address denoted by top in allocation_info_.
|
| inline HeapObject* AllocateLinearly(AllocationInfo* alloc_info,
|
| int size_in_bytes);
|
|
|
| - // During normal allocation or deserialization, roll to the next page in
|
| - // the space (there is assumed to be one) and allocate there. This
|
| - // function is space-dependent.
|
| - virtual HeapObject* AllocateInNextPage(Page* current_page,
|
| - int size_in_bytes) = 0;
|
| -
|
| // Slow path of AllocateRaw. This function is space-dependent.
|
| - MUST_USE_RESULT virtual HeapObject* SlowAllocateRaw(int size_in_bytes) = 0;
|
| + MUST_USE_RESULT virtual HeapObject* SlowAllocateRaw(int size_in_bytes);
|
|
|
| - // Slow path of MCAllocateRaw.
|
| - MUST_USE_RESULT HeapObject* SlowMCAllocateRaw(int size_in_bytes);
|
| -
|
| #ifdef DEBUG
|
| // Returns the number of total pages in this space.
|
| int CountTotalPages();
|
| #endif
|
|
|
| - private:
|
| - // Returns a pointer to the page of the relocation pointer.
|
| - Page* MCRelocationTopPage() { return TopPageOf(mc_forwarding_info_); }
|
| -
|
| friend class PageIterator;
|
| };
|
|
|
| @@ -1276,20 +1654,113 @@
|
| };
|
|
|
|
|
| +enum SemiSpaceId {
|
| + kFromSpace = 0,
|
| + kToSpace = 1
|
| +};
|
| +
|
| +
|
| +class SemiSpace;
|
| +
|
| +
|
| +class NewSpacePage : public MemoryChunk {
|
| + public:
|
| + // GC related flags copied from from-space to to-space when
|
| + // flipping semispaces.
|
| + static const intptr_t kCopyOnFlipFlagsMask =
|
| + (1 << MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) |
|
| + (1 << MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) |
|
| + (1 << MemoryChunk::SCAN_ON_SCAVENGE);
|
| +
|
| + inline NewSpacePage* next_page() const {
|
| + return static_cast<NewSpacePage*>(next_chunk());
|
| + }
|
| +
|
| + inline void set_next_page(NewSpacePage* page) {
|
| + set_next_chunk(page);
|
| + }
|
| +
|
| + inline NewSpacePage* prev_page() const {
|
| + return static_cast<NewSpacePage*>(prev_chunk());
|
| + }
|
| +
|
| + inline void set_prev_page(NewSpacePage* page) {
|
| + set_prev_chunk(page);
|
| + }
|
| +
|
| + SemiSpace* semi_space() {
|
| + return reinterpret_cast<SemiSpace*>(owner());
|
| + }
|
| +
|
| + bool is_anchor() { return !this->InNewSpace(); }
|
| +
|
| + static bool IsAtStart(Address addr) {
|
| + return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask)
|
| + == kObjectStartOffset;
|
| + }
|
| +
|
| + static bool IsAtEnd(Address addr) {
|
| + return (reinterpret_cast<intptr_t>(addr) & Page::kPageAlignmentMask) == 0;
|
| + }
|
| +
|
| + Address address() {
|
| + return reinterpret_cast<Address>(this);
|
| + }
|
| +
|
| + // Finds the NewSpacePage containg the given address.
|
| + static inline NewSpacePage* FromAddress(Address address_in_page) {
|
| + Address page_start =
|
| + reinterpret_cast<Address>(reinterpret_cast<uintptr_t>(address_in_page) &
|
| + ~Page::kPageAlignmentMask);
|
| + NewSpacePage* page = reinterpret_cast<NewSpacePage*>(page_start);
|
| + ASSERT(page->InNewSpace());
|
| + return page;
|
| + }
|
| +
|
| + // Find the page for a limit address. A limit address is either an address
|
| + // inside a page, or the address right after the last byte of a page.
|
| + static inline NewSpacePage* FromLimit(Address address_limit) {
|
| + return NewSpacePage::FromAddress(address_limit - 1);
|
| + }
|
| +
|
| + private:
|
| + // Create a NewSpacePage object that is only used as anchor
|
| + // for the doubly-linked list of real pages.
|
| + explicit NewSpacePage(SemiSpace* owner) {
|
| + InitializeAsAnchor(owner);
|
| + }
|
| +
|
| + static NewSpacePage* Initialize(Heap* heap,
|
| + Address start,
|
| + SemiSpace* semi_space);
|
| +
|
| + // Intialize a fake NewSpacePage used as sentinel at the ends
|
| + // of a doubly-linked list of real NewSpacePages.
|
| + // Only uses the prev/next links, and sets flags to not be in new-space.
|
| + void InitializeAsAnchor(SemiSpace* owner);
|
| +
|
| + friend class SemiSpace;
|
| + friend class SemiSpaceIterator;
|
| +};
|
| +
|
| +
|
| // -----------------------------------------------------------------------------
|
| // SemiSpace in young generation
|
| //
|
| -// A semispace is a contiguous chunk of memory. The mark-compact collector
|
| -// uses the memory in the from space as a marking stack when tracing live
|
| -// objects.
|
| +// A semispace is a contiguous chunk of memory holding page-like memory
|
| +// chunks. The mark-compact collector uses the memory of the first page in
|
| +// the from space as a marking stack when tracing live objects.
|
|
|
| class SemiSpace : public Space {
|
| public:
|
| // Constructor.
|
| - explicit SemiSpace(Heap* heap) : Space(heap, NEW_SPACE, NOT_EXECUTABLE) {
|
| - start_ = NULL;
|
| - age_mark_ = NULL;
|
| - }
|
| + SemiSpace(Heap* heap, SemiSpaceId semispace)
|
| + : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
|
| + start_(NULL),
|
| + age_mark_(NULL),
|
| + id_(semispace),
|
| + anchor_(this),
|
| + current_page_(NULL) { }
|
|
|
| // Sets up the semispace using the given chunk.
|
| bool Setup(Address start, int initial_capacity, int maximum_capacity);
|
| @@ -1316,14 +1787,41 @@
|
| // semispace and less than the current capacity.
|
| bool ShrinkTo(int new_capacity);
|
|
|
| - // Returns the start address of the space.
|
| - Address low() { return start_; }
|
| + // Returns the start address of the first page of the space.
|
| + Address space_start() {
|
| + ASSERT(anchor_.next_page() != &anchor_);
|
| + return anchor_.next_page()->body();
|
| + }
|
| +
|
| + // Returns the start address of the current page of the space.
|
| + Address page_low() {
|
| + ASSERT(anchor_.next_page() != &anchor_);
|
| + return current_page_->body();
|
| + }
|
| +
|
| // Returns one past the end address of the space.
|
| - Address high() { return low() + capacity_; }
|
| + Address space_end() {
|
| + return anchor_.prev_page()->body_limit();
|
| + }
|
|
|
| + // Returns one past the end address of the current page of the space.
|
| + Address page_high() {
|
| + return current_page_->body_limit();
|
| + }
|
| +
|
| + bool AdvancePage() {
|
| + NewSpacePage* next_page = current_page_->next_page();
|
| + if (next_page == anchor()) return false;
|
| + current_page_ = next_page;
|
| + return true;
|
| + }
|
| +
|
| + // Resets the space to using the first page.
|
| + void Reset();
|
| +
|
| // Age mark accessors.
|
| Address age_mark() { return age_mark_; }
|
| - void set_age_mark(Address mark) { age_mark_ = mark; }
|
| + void set_age_mark(Address mark);
|
|
|
| // True if the address is in the address range of this semispace (not
|
| // necessarily below the allocation pointer).
|
| @@ -1338,11 +1836,6 @@
|
| return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
|
| }
|
|
|
| - // The offset of an address from the beginning of the space.
|
| - int SpaceOffsetForAddress(Address addr) {
|
| - return static_cast<int>(addr - low());
|
| - }
|
| -
|
| // If we don't have these here then SemiSpace will be abstract. However
|
| // they should never be called.
|
| virtual intptr_t Size() {
|
| @@ -1359,9 +1852,19 @@
|
| bool Commit();
|
| bool Uncommit();
|
|
|
| + NewSpacePage* first_page() { return anchor_.next_page(); }
|
| + NewSpacePage* current_page() { return current_page_; }
|
| +
|
| #ifdef DEBUG
|
| virtual void Print();
|
| virtual void Verify();
|
| + // Validate a range of of addresses in a SemiSpace.
|
| + // The "from" address must be on a page prior to the "to" address,
|
| + // in the linked page order, or it must be earlier on the same page.
|
| + static void AssertValidRange(Address from, Address to);
|
| +#else
|
| + // Do nothing.
|
| + inline static void AssertValidRange(Address from, Address to) {}
|
| #endif
|
|
|
| // Returns the current capacity of the semi space.
|
| @@ -1373,7 +1876,17 @@
|
| // Returns the initial capacity of the semi space.
|
| int InitialCapacity() { return initial_capacity_; }
|
|
|
| + SemiSpaceId id() { return id_; }
|
| +
|
| + static void Swap(SemiSpace* from, SemiSpace* to);
|
| +
|
| private:
|
| + // Flips the semispace between being from-space and to-space.
|
| + // Copies the flags into the masked positions on all pages in the space.
|
| + void FlipPages(intptr_t flags, intptr_t flag_mask);
|
| +
|
| + NewSpacePage* anchor() { return &anchor_; }
|
| +
|
| // The current and maximum capacity of the space.
|
| int capacity_;
|
| int maximum_capacity_;
|
| @@ -1390,7 +1903,13 @@
|
| uintptr_t object_expected_;
|
|
|
| bool committed_;
|
| + SemiSpaceId id_;
|
|
|
| + NewSpacePage anchor_;
|
| + NewSpacePage* current_page_;
|
| +
|
| + friend class SemiSpaceIterator;
|
| + friend class NewSpacePageIterator;
|
| public:
|
| TRACK_MEMORY("SemiSpace")
|
| };
|
| @@ -1406,12 +1925,26 @@
|
| // Create an iterator over the objects in the given space. If no start
|
| // address is given, the iterator starts from the bottom of the space. If
|
| // no size function is given, the iterator calls Object::Size().
|
| +
|
| + // Iterate over all of allocated to-space.
|
| explicit SemiSpaceIterator(NewSpace* space);
|
| + // Iterate over all of allocated to-space, with a custome size function.
|
| SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func);
|
| + // Iterate over part of allocated to-space, from start to the end
|
| + // of allocation.
|
| SemiSpaceIterator(NewSpace* space, Address start);
|
| + // Iterate from one address to another in the same semi-space.
|
| + SemiSpaceIterator(Address from, Address to);
|
|
|
| - HeapObject* next() {
|
| + HeapObject* Next() {
|
| if (current_ == limit_) return NULL;
|
| + if (NewSpacePage::IsAtEnd(current_)) {
|
| + NewSpacePage* page = NewSpacePage::FromLimit(current_);
|
| + page = page->next_page();
|
| + ASSERT(!page->is_anchor());
|
| + current_ = page->body();
|
| + if (current_ == limit_) return NULL;
|
| + }
|
|
|
| HeapObject* object = HeapObject::FromAddress(current_);
|
| int size = (size_func_ == NULL) ? object->Size() : size_func_(object);
|
| @@ -1421,14 +1954,13 @@
|
| }
|
|
|
| // Implementation of the ObjectIterator functions.
|
| - virtual HeapObject* next_object() { return next(); }
|
| + virtual HeapObject* next_object() { return Next(); }
|
|
|
| private:
|
| - void Initialize(NewSpace* space, Address start, Address end,
|
| + void Initialize(Address start,
|
| + Address end,
|
| HeapObjectCallback size_func);
|
|
|
| - // The semispace.
|
| - SemiSpace* space_;
|
| // The current iteration point.
|
| Address current_;
|
| // The end of iteration.
|
| @@ -1439,6 +1971,34 @@
|
|
|
|
|
| // -----------------------------------------------------------------------------
|
| +// A PageIterator iterates the pages in a semi-space.
|
| +class NewSpacePageIterator BASE_EMBEDDED {
|
| + public:
|
| + // Make an iterator that runs over all pages in to-space.
|
| + explicit inline NewSpacePageIterator(NewSpace* space);
|
| +
|
| + // Make an iterator that runs over all pages in the given semispace,
|
| + // even those not used in allocation.
|
| + explicit inline NewSpacePageIterator(SemiSpace* space);
|
| +
|
| + // Make iterator that iterates from the page containing start
|
| + // to the page that contains limit in the same semispace.
|
| + inline NewSpacePageIterator(Address start, Address limit);
|
| +
|
| + inline bool has_next();
|
| + inline NewSpacePage* next();
|
| +
|
| + private:
|
| + NewSpacePage* prev_page_; // Previous page returned.
|
| + // Next page that will be returned. Cached here so that we can use this
|
| + // iterator for operations that deallocate pages.
|
| + NewSpacePage* next_page_;
|
| + // Last page returned.
|
| + NewSpacePage* last_page_;
|
| +};
|
| +
|
| +
|
| +// -----------------------------------------------------------------------------
|
| // The young generation space.
|
| //
|
| // The new space consists of a contiguous pair of semispaces. It simply
|
| @@ -1449,11 +2009,13 @@
|
| // Constructor.
|
| explicit NewSpace(Heap* heap)
|
| : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
|
| - to_space_(heap),
|
| - from_space_(heap) {}
|
| + to_space_(heap, kToSpace),
|
| + from_space_(heap, kFromSpace),
|
| + reservation_(),
|
| + inline_allocation_limit_step_(0) {}
|
|
|
| // Sets up the new space using the given chunk.
|
| - bool Setup(Address start, int size);
|
| + bool Setup(int reserved_semispace_size_, int max_semispace_size);
|
|
|
| // Tears down the space. Heap memory was not allocated by the space, so it
|
| // is not deallocated here.
|
| @@ -1480,18 +2042,30 @@
|
| return (reinterpret_cast<uintptr_t>(a) & address_mask_)
|
| == reinterpret_cast<uintptr_t>(start_);
|
| }
|
| +
|
| bool Contains(Object* o) {
|
| - return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
|
| + Address a = reinterpret_cast<Address>(o);
|
| + return (reinterpret_cast<uintptr_t>(a) & object_mask_) == object_expected_;
|
| }
|
|
|
| // Return the allocated bytes in the active semispace.
|
| - virtual intptr_t Size() { return static_cast<int>(top() - bottom()); }
|
| + virtual intptr_t Size() {
|
| + return pages_used_ * Page::kObjectAreaSize +
|
| + static_cast<int>(top() - to_space_.page_low());
|
| + }
|
| +
|
| // The same, but returning an int. We have to have the one that returns
|
| // intptr_t because it is inherited, but if we know we are dealing with the
|
| // new space, which can't get as big as the other spaces then this is useful:
|
| int SizeAsInt() { return static_cast<int>(Size()); }
|
|
|
| // Return the current capacity of a semispace.
|
| + intptr_t EffectiveCapacity() {
|
| + ASSERT(to_space_.Capacity() == from_space_.Capacity());
|
| + return (to_space_.Capacity() / Page::kPageSize) * Page::kObjectAreaSize;
|
| + }
|
| +
|
| + // Return the current capacity of a semispace.
|
| intptr_t Capacity() {
|
| ASSERT(to_space_.Capacity() == from_space_.Capacity());
|
| return to_space_.Capacity();
|
| @@ -1503,8 +2077,11 @@
|
| return Capacity();
|
| }
|
|
|
| - // Return the available bytes without growing in the active semispace.
|
| - intptr_t Available() { return Capacity() - Size(); }
|
| + // Return the available bytes without growing or switching page in the
|
| + // active semispace.
|
| + intptr_t Available() {
|
| + return allocation_info_.limit - allocation_info_.top;
|
| + }
|
|
|
| // Return the maximum capacity of a semispace.
|
| int MaximumCapacity() {
|
| @@ -1519,9 +2096,12 @@
|
| }
|
|
|
| // Return the address of the allocation pointer in the active semispace.
|
| - Address top() { return allocation_info_.top; }
|
| + Address top() {
|
| + ASSERT(to_space_.current_page()->ContainsLimit(allocation_info_.top));
|
| + return allocation_info_.top;
|
| + }
|
| // Return the address of the first object in the active semispace.
|
| - Address bottom() { return to_space_.low(); }
|
| + Address bottom() { return to_space_.space_start(); }
|
|
|
| // Get the age mark of the inactive semispace.
|
| Address age_mark() { return from_space_.age_mark(); }
|
| @@ -1533,54 +2113,70 @@
|
| Address start() { return start_; }
|
| uintptr_t mask() { return address_mask_; }
|
|
|
| + INLINE(uint32_t AddressToMarkbitIndex(Address addr)) {
|
| + ASSERT(Contains(addr));
|
| + ASSERT(IsAligned(OffsetFrom(addr), kPointerSize) ||
|
| + IsAligned(OffsetFrom(addr) - 1, kPointerSize));
|
| + return static_cast<uint32_t>(addr - start_) >> kPointerSizeLog2;
|
| + }
|
| +
|
| + INLINE(Address MarkbitIndexToAddress(uint32_t index)) {
|
| + return reinterpret_cast<Address>(index << kPointerSizeLog2);
|
| + }
|
| +
|
| // The allocation top and limit addresses.
|
| Address* allocation_top_address() { return &allocation_info_.top; }
|
| Address* allocation_limit_address() { return &allocation_info_.limit; }
|
|
|
| MUST_USE_RESULT MaybeObject* AllocateRaw(int size_in_bytes) {
|
| - return AllocateRawInternal(size_in_bytes, &allocation_info_);
|
| + return AllocateRawInternal(size_in_bytes);
|
| }
|
|
|
| - // Allocate the requested number of bytes for relocation during mark-compact
|
| - // collection.
|
| - MUST_USE_RESULT MaybeObject* MCAllocateRaw(int size_in_bytes) {
|
| - return AllocateRawInternal(size_in_bytes, &mc_forwarding_info_);
|
| - }
|
| -
|
| // Reset the allocation pointer to the beginning of the active semispace.
|
| void ResetAllocationInfo();
|
| - // Reset the reloction pointer to the bottom of the inactive semispace in
|
| - // preparation for mark-compact collection.
|
| - void MCResetRelocationInfo();
|
| - // Update the allocation pointer in the active semispace after a
|
| - // mark-compact collection.
|
| - void MCCommitRelocationInfo();
|
|
|
| - // Get the extent of the inactive semispace (for use as a marking stack).
|
| - Address FromSpaceLow() { return from_space_.low(); }
|
| - Address FromSpaceHigh() { return from_space_.high(); }
|
| + void LowerInlineAllocationLimit(intptr_t step) {
|
| + inline_allocation_limit_step_ = step;
|
| + if (step == 0) {
|
| + allocation_info_.limit = to_space_.page_high();
|
| + } else {
|
| + allocation_info_.limit = Min(
|
| + allocation_info_.top + inline_allocation_limit_step_,
|
| + allocation_info_.limit);
|
| + }
|
| + top_on_previous_step_ = allocation_info_.top;
|
| + }
|
|
|
| - // Get the extent of the active semispace (to sweep newly copied objects
|
| - // during a scavenge collection).
|
| - Address ToSpaceLow() { return to_space_.low(); }
|
| - Address ToSpaceHigh() { return to_space_.high(); }
|
| + // Get the extent of the inactive semispace (for use as a marking stack,
|
| + // or to zap it). Notice: space-addresses are not necessarily on the
|
| + // same page, so FromSpaceStart() might be above FromSpaceEnd().
|
| + Address FromSpacePageLow() { return from_space_.page_low(); }
|
| + Address FromSpacePageHigh() { return from_space_.page_high(); }
|
| + Address FromSpaceStart() { return from_space_.space_start(); }
|
| + Address FromSpaceEnd() { return from_space_.space_end(); }
|
|
|
| - // Offsets from the beginning of the semispaces.
|
| - int ToSpaceOffsetForAddress(Address a) {
|
| - return to_space_.SpaceOffsetForAddress(a);
|
| + // Get the extent of the active semispace's pages' memory.
|
| + Address ToSpaceStart() { return to_space_.space_start(); }
|
| + Address ToSpaceEnd() { return to_space_.space_end(); }
|
| +
|
| + inline bool ToSpaceContains(Address address) {
|
| + return to_space_.Contains(address);
|
| }
|
| - int FromSpaceOffsetForAddress(Address a) {
|
| - return from_space_.SpaceOffsetForAddress(a);
|
| + inline bool FromSpaceContains(Address address) {
|
| + return from_space_.Contains(address);
|
| }
|
|
|
| // True if the object is a heap object in the address range of the
|
| // respective semispace (not necessarily below the allocation pointer of the
|
| // semispace).
|
| - bool ToSpaceContains(Object* o) { return to_space_.Contains(o); }
|
| - bool FromSpaceContains(Object* o) { return from_space_.Contains(o); }
|
| + inline bool ToSpaceContains(Object* o) { return to_space_.Contains(o); }
|
| + inline bool FromSpaceContains(Object* o) { return from_space_.Contains(o); }
|
|
|
| - bool ToSpaceContains(Address a) { return to_space_.Contains(a); }
|
| - bool FromSpaceContains(Address a) { return from_space_.Contains(a); }
|
| + // Try to switch the active semispace to a new, empty, page.
|
| + // Returns false if this isn't possible or reasonable (i.e., there
|
| + // are no pages, or the current page is already empty), or true
|
| + // if successful.
|
| + bool AddFreshPage();
|
|
|
| virtual bool ReserveSpace(int bytes);
|
|
|
| @@ -1620,10 +2216,24 @@
|
| return from_space_.Uncommit();
|
| }
|
|
|
| + inline intptr_t inline_allocation_limit_step() {
|
| + return inline_allocation_limit_step_;
|
| + }
|
| +
|
| + SemiSpace* active_space() { return &to_space_; }
|
| +
|
| private:
|
| + // Update allocation info to match the current to-space page.
|
| + void UpdateAllocationInfo();
|
| +
|
| + Address chunk_base_;
|
| + uintptr_t chunk_size_;
|
| +
|
| // The semispaces.
|
| SemiSpace to_space_;
|
| SemiSpace from_space_;
|
| + VirtualMemory reservation_;
|
| + int pages_used_;
|
|
|
| // Start address and bit mask for containment testing.
|
| Address start_;
|
| @@ -1634,15 +2244,20 @@
|
| // Allocation pointer and limit for normal allocation and allocation during
|
| // mark-compact collection.
|
| AllocationInfo allocation_info_;
|
| - AllocationInfo mc_forwarding_info_;
|
|
|
| + // When incremental marking is active we will set allocation_info_.limit
|
| + // to be lower than actual limit and then will gradually increase it
|
| + // in steps to guarantee that we do incremental marking steps even
|
| + // when all allocation is performed from inlined generated code.
|
| + intptr_t inline_allocation_limit_step_;
|
| +
|
| + Address top_on_previous_step_;
|
| +
|
| HistogramInfo* allocated_histogram_;
|
| HistogramInfo* promoted_histogram_;
|
|
|
| - // Implementation of AllocateRaw and MCAllocateRaw.
|
| - MUST_USE_RESULT inline MaybeObject* AllocateRawInternal(
|
| - int size_in_bytes,
|
| - AllocationInfo* alloc_info);
|
| + // Implementation of AllocateRaw.
|
| + MUST_USE_RESULT inline MaybeObject* AllocateRawInternal(int size_in_bytes);
|
|
|
| friend class SemiSpaceIterator;
|
|
|
| @@ -1652,193 +2267,6 @@
|
|
|
|
|
| // -----------------------------------------------------------------------------
|
| -// Free lists for old object spaces
|
| -//
|
| -// Free-list nodes are free blocks in the heap. They look like heap objects
|
| -// (free-list node pointers have the heap object tag, and they have a map like
|
| -// a heap object). They have a size and a next pointer. The next pointer is
|
| -// the raw address of the next free list node (or NULL).
|
| -class FreeListNode: public HeapObject {
|
| - public:
|
| - // Obtain a free-list node from a raw address. This is not a cast because
|
| - // it does not check nor require that the first word at the address is a map
|
| - // pointer.
|
| - static FreeListNode* FromAddress(Address address) {
|
| - return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address));
|
| - }
|
| -
|
| - static inline bool IsFreeListNode(HeapObject* object);
|
| -
|
| - // Set the size in bytes, which can be read with HeapObject::Size(). This
|
| - // function also writes a map to the first word of the block so that it
|
| - // looks like a heap object to the garbage collector and heap iteration
|
| - // functions.
|
| - void set_size(Heap* heap, int size_in_bytes);
|
| -
|
| - // Accessors for the next field.
|
| - inline Address next(Heap* heap);
|
| - inline void set_next(Heap* heap, Address next);
|
| -
|
| - private:
|
| - static const int kNextOffset = POINTER_SIZE_ALIGN(ByteArray::kHeaderSize);
|
| -
|
| - DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode);
|
| -};
|
| -
|
| -
|
| -// The free list for the old space.
|
| -class OldSpaceFreeList BASE_EMBEDDED {
|
| - public:
|
| - OldSpaceFreeList(Heap* heap, AllocationSpace owner);
|
| -
|
| - // Clear the free list.
|
| - void Reset();
|
| -
|
| - // Return the number of bytes available on the free list.
|
| - intptr_t available() { return available_; }
|
| -
|
| - // Place a node on the free list. The block of size 'size_in_bytes'
|
| - // starting at 'start' is placed on the free list. The return value is the
|
| - // number of bytes that have been lost due to internal fragmentation by
|
| - // freeing the block. Bookkeeping information will be written to the block,
|
| - // ie, its contents will be destroyed. The start address should be word
|
| - // aligned, and the size should be a non-zero multiple of the word size.
|
| - int Free(Address start, int size_in_bytes);
|
| -
|
| - // Allocate a block of size 'size_in_bytes' from the free list. The block
|
| - // is unitialized. A failure is returned if no block is available. The
|
| - // number of bytes lost to fragmentation is returned in the output parameter
|
| - // 'wasted_bytes'. The size should be a non-zero multiple of the word size.
|
| - MUST_USE_RESULT MaybeObject* Allocate(int size_in_bytes, int* wasted_bytes);
|
| -
|
| - void MarkNodes();
|
| -
|
| - private:
|
| - // The size range of blocks, in bytes. (Smaller allocations are allowed, but
|
| - // will always result in waste.)
|
| - static const int kMinBlockSize = 2 * kPointerSize;
|
| - static const int kMaxBlockSize = Page::kMaxHeapObjectSize;
|
| -
|
| - Heap* heap_;
|
| -
|
| - // The identity of the owning space, for building allocation Failure
|
| - // objects.
|
| - AllocationSpace owner_;
|
| -
|
| - // Total available bytes in all blocks on this free list.
|
| - int available_;
|
| -
|
| - // Blocks are put on exact free lists in an array, indexed by size in words.
|
| - // The available sizes are kept in an increasingly ordered list. Entries
|
| - // corresponding to sizes < kMinBlockSize always have an empty free list
|
| - // (but index kHead is used for the head of the size list).
|
| - struct SizeNode {
|
| - // Address of the head FreeListNode of the implied block size or NULL.
|
| - Address head_node_;
|
| - // Size (words) of the next larger available size if head_node_ != NULL.
|
| - int next_size_;
|
| - };
|
| - static const int kFreeListsLength = kMaxBlockSize / kPointerSize + 1;
|
| - SizeNode free_[kFreeListsLength];
|
| -
|
| - // Sentinel elements for the size list. Real elements are in ]kHead..kEnd[.
|
| - static const int kHead = kMinBlockSize / kPointerSize - 1;
|
| - static const int kEnd = kMaxInt;
|
| -
|
| - // We keep a "finger" in the size list to speed up a common pattern:
|
| - // repeated requests for the same or increasing sizes.
|
| - int finger_;
|
| -
|
| - // Starting from *prev, find and return the smallest size >= index (words),
|
| - // or kEnd. Update *prev to be the largest size < index, or kHead.
|
| - int FindSize(int index, int* prev) {
|
| - int cur = free_[*prev].next_size_;
|
| - while (cur < index) {
|
| - *prev = cur;
|
| - cur = free_[cur].next_size_;
|
| - }
|
| - return cur;
|
| - }
|
| -
|
| - // Remove an existing element from the size list.
|
| - void RemoveSize(int index) {
|
| - int prev = kHead;
|
| - int cur = FindSize(index, &prev);
|
| - ASSERT(cur == index);
|
| - free_[prev].next_size_ = free_[cur].next_size_;
|
| - finger_ = prev;
|
| - }
|
| -
|
| - // Insert a new element into the size list.
|
| - void InsertSize(int index) {
|
| - int prev = kHead;
|
| - int cur = FindSize(index, &prev);
|
| - ASSERT(cur != index);
|
| - free_[prev].next_size_ = index;
|
| - free_[index].next_size_ = cur;
|
| - }
|
| -
|
| - // The size list is not updated during a sequence of calls to Free, but is
|
| - // rebuilt before the next allocation.
|
| - void RebuildSizeList();
|
| - bool needs_rebuild_;
|
| -
|
| -#ifdef DEBUG
|
| - // Does this free list contain a free block located at the address of 'node'?
|
| - bool Contains(FreeListNode* node);
|
| -#endif
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(OldSpaceFreeList);
|
| -};
|
| -
|
| -
|
| -// The free list for the map space.
|
| -class FixedSizeFreeList BASE_EMBEDDED {
|
| - public:
|
| - FixedSizeFreeList(Heap* heap, AllocationSpace owner, int object_size);
|
| -
|
| - // Clear the free list.
|
| - void Reset();
|
| -
|
| - // Return the number of bytes available on the free list.
|
| - intptr_t available() { return available_; }
|
| -
|
| - // Place a node on the free list. The block starting at 'start' (assumed to
|
| - // have size object_size_) is placed on the free list. Bookkeeping
|
| - // information will be written to the block, ie, its contents will be
|
| - // destroyed. The start address should be word aligned.
|
| - void Free(Address start);
|
| -
|
| - // Allocate a fixed sized block from the free list. The block is unitialized.
|
| - // A failure is returned if no block is available.
|
| - MUST_USE_RESULT MaybeObject* Allocate();
|
| -
|
| - void MarkNodes();
|
| -
|
| - private:
|
| - Heap* heap_;
|
| -
|
| - // Available bytes on the free list.
|
| - intptr_t available_;
|
| -
|
| - // The head of the free list.
|
| - Address head_;
|
| -
|
| - // The tail of the free list.
|
| - Address tail_;
|
| -
|
| - // The identity of the owning space, for building allocation Failure
|
| - // objects.
|
| - AllocationSpace owner_;
|
| -
|
| - // The size of the objects in this space.
|
| - int object_size_;
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(FixedSizeFreeList);
|
| -};
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| // Old object space (excluding map objects)
|
|
|
| class OldSpace : public PagedSpace {
|
| @@ -1849,71 +2277,28 @@
|
| intptr_t max_capacity,
|
| AllocationSpace id,
|
| Executability executable)
|
| - : PagedSpace(heap, max_capacity, id, executable),
|
| - free_list_(heap, id) {
|
| + : PagedSpace(heap, max_capacity, id, executable) {
|
| page_extra_ = 0;
|
| }
|
|
|
| - // The bytes available on the free list (ie, not above the linear allocation
|
| - // pointer).
|
| - intptr_t AvailableFree() { return free_list_.available(); }
|
| -
|
| // The limit of allocation for a page in this space.
|
| virtual Address PageAllocationLimit(Page* page) {
|
| return page->ObjectAreaEnd();
|
| }
|
|
|
| - // Give a block of memory to the space's free list. It might be added to
|
| - // the free list or accounted as waste.
|
| - // If add_to_freelist is false then just accounting stats are updated and
|
| - // no attempt to add area to free list is made.
|
| - void Free(Address start, int size_in_bytes, bool add_to_freelist) {
|
| - accounting_stats_.DeallocateBytes(size_in_bytes);
|
| -
|
| - if (add_to_freelist) {
|
| - int wasted_bytes = free_list_.Free(start, size_in_bytes);
|
| - accounting_stats_.WasteBytes(wasted_bytes);
|
| - }
|
| - }
|
| -
|
| - virtual void DeallocateBlock(Address start,
|
| - int size_in_bytes,
|
| - bool add_to_freelist);
|
| -
|
| - // Prepare for full garbage collection. Resets the relocation pointer and
|
| - // clears the free list.
|
| - virtual void PrepareForMarkCompact(bool will_compact);
|
| -
|
| - // Updates the allocation pointer to the relocation top after a mark-compact
|
| - // collection.
|
| - virtual void MCCommitRelocationInfo();
|
| -
|
| - virtual void PutRestOfCurrentPageOnFreeList(Page* current_page);
|
| -
|
| - void MarkFreeListNodes() { free_list_.MarkNodes(); }
|
| -
|
| -#ifdef DEBUG
|
| - // Reports statistics for the space
|
| - void ReportStatistics();
|
| -#endif
|
| -
|
| - protected:
|
| - // Virtual function in the superclass. Slow path of AllocateRaw.
|
| - MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes);
|
| -
|
| - // Virtual function in the superclass. Allocate linearly at the start of
|
| - // the page after current_page (there is assumed to be one).
|
| - HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes);
|
| -
|
| - private:
|
| - // The space's free list.
|
| - OldSpaceFreeList free_list_;
|
| -
|
| public:
|
| TRACK_MEMORY("OldSpace")
|
| };
|
|
|
|
|
| +// For contiguous spaces, top should be in the space (or at the end) and limit
|
| +// should be the end of the space.
|
| +#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
|
| + ASSERT((space).page_low() <= (info).top \
|
| + && (info).top <= (space).page_high() \
|
| + && (info).limit <= (space).page_high())
|
| +
|
| +
|
| // -----------------------------------------------------------------------------
|
| // Old space for objects of a fixed size
|
|
|
| @@ -1926,8 +2311,7 @@
|
| const char* name)
|
| : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE),
|
| object_size_in_bytes_(object_size_in_bytes),
|
| - name_(name),
|
| - free_list_(heap, id, object_size_in_bytes) {
|
| + name_(name) {
|
| page_extra_ = Page::kObjectAreaSize % object_size_in_bytes;
|
| }
|
|
|
| @@ -1938,44 +2322,12 @@
|
|
|
| int object_size_in_bytes() { return object_size_in_bytes_; }
|
|
|
| - // Give a fixed sized block of memory to the space's free list.
|
| - // If add_to_freelist is false then just accounting stats are updated and
|
| - // no attempt to add area to free list is made.
|
| - void Free(Address start, bool add_to_freelist) {
|
| - if (add_to_freelist) {
|
| - free_list_.Free(start);
|
| - }
|
| - accounting_stats_.DeallocateBytes(object_size_in_bytes_);
|
| - }
|
| -
|
| // Prepares for a mark-compact GC.
|
| - virtual void PrepareForMarkCompact(bool will_compact);
|
| + virtual void PrepareForMarkCompact();
|
|
|
| - // Updates the allocation pointer to the relocation top after a mark-compact
|
| - // collection.
|
| - virtual void MCCommitRelocationInfo();
|
| -
|
| - virtual void PutRestOfCurrentPageOnFreeList(Page* current_page);
|
| -
|
| - virtual void DeallocateBlock(Address start,
|
| - int size_in_bytes,
|
| - bool add_to_freelist);
|
| -
|
| void MarkFreeListNodes() { free_list_.MarkNodes(); }
|
|
|
| -#ifdef DEBUG
|
| - // Reports statistic info of the space
|
| - void ReportStatistics();
|
| -#endif
|
| -
|
| protected:
|
| - // Virtual function in the superclass. Slow path of AllocateRaw.
|
| - MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes);
|
| -
|
| - // Virtual function in the superclass. Allocate linearly at the start of
|
| - // the page after current_page (there is assumed to be one).
|
| - HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes);
|
| -
|
| void ResetFreeList() {
|
| free_list_.Reset();
|
| }
|
| @@ -1986,9 +2338,6 @@
|
|
|
| // The name of this space.
|
| const char* name_;
|
| -
|
| - // The space's free list.
|
| - FixedSizeFreeList free_list_;
|
| };
|
|
|
|
|
| @@ -2004,85 +2353,20 @@
|
| AllocationSpace id)
|
| : FixedSpace(heap, max_capacity, id, Map::kSize, "map"),
|
| max_map_space_pages_(max_map_space_pages) {
|
| - ASSERT(max_map_space_pages < kMaxMapPageIndex);
|
| }
|
|
|
| - // Prepares for a mark-compact GC.
|
| - virtual void PrepareForMarkCompact(bool will_compact);
|
| -
|
| // Given an index, returns the page address.
|
| - Address PageAddress(int page_index) { return page_addresses_[page_index]; }
|
| + // TODO(1600): this limit is artifical just to keep code compilable
|
| + static const int kMaxMapPageIndex = 1 << 16;
|
|
|
| - static const int kMaxMapPageIndex = 1 << MapWord::kMapPageIndexBits;
|
| -
|
| - // Are map pointers encodable into map word?
|
| - bool MapPointersEncodable() {
|
| - if (!FLAG_use_big_map_space) {
|
| - ASSERT(CountPagesToTop() <= kMaxMapPageIndex);
|
| - return true;
|
| + virtual int RoundSizeDownToObjectAlignment(int size) {
|
| + if (IsPowerOf2(Map::kSize)) {
|
| + return RoundDown(size, Map::kSize);
|
| + } else {
|
| + return (size / Map::kSize) * Map::kSize;
|
| }
|
| - return CountPagesToTop() <= max_map_space_pages_;
|
| }
|
|
|
| - // Should be called after forced sweep to find out if map space needs
|
| - // compaction.
|
| - bool NeedsCompaction(int live_maps) {
|
| - return !MapPointersEncodable() && live_maps <= CompactionThreshold();
|
| - }
|
| -
|
| - Address TopAfterCompaction(int live_maps) {
|
| - ASSERT(NeedsCompaction(live_maps));
|
| -
|
| - int pages_left = live_maps / kMapsPerPage;
|
| - PageIterator it(this, PageIterator::ALL_PAGES);
|
| - while (pages_left-- > 0) {
|
| - ASSERT(it.has_next());
|
| - it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks);
|
| - }
|
| - ASSERT(it.has_next());
|
| - Page* top_page = it.next();
|
| - top_page->SetRegionMarks(Page::kAllRegionsCleanMarks);
|
| - ASSERT(top_page->is_valid());
|
| -
|
| - int offset = live_maps % kMapsPerPage * Map::kSize;
|
| - Address top = top_page->ObjectAreaStart() + offset;
|
| - ASSERT(top < top_page->ObjectAreaEnd());
|
| - ASSERT(Contains(top));
|
| -
|
| - return top;
|
| - }
|
| -
|
| - void FinishCompaction(Address new_top, int live_maps) {
|
| - Page* top_page = Page::FromAddress(new_top);
|
| - ASSERT(top_page->is_valid());
|
| -
|
| - SetAllocationInfo(&allocation_info_, top_page);
|
| - allocation_info_.top = new_top;
|
| -
|
| - int new_size = live_maps * Map::kSize;
|
| - accounting_stats_.DeallocateBytes(accounting_stats_.Size());
|
| - accounting_stats_.AllocateBytes(new_size);
|
| -
|
| - // Flush allocation watermarks.
|
| - for (Page* p = first_page_; p != top_page; p = p->next_page()) {
|
| - p->SetAllocationWatermark(p->AllocationTop());
|
| - }
|
| - top_page->SetAllocationWatermark(new_top);
|
| -
|
| -#ifdef DEBUG
|
| - if (FLAG_enable_slow_asserts) {
|
| - intptr_t actual_size = 0;
|
| - for (Page* p = first_page_; p != top_page; p = p->next_page())
|
| - actual_size += kMapsPerPage * Map::kSize;
|
| - actual_size += (new_top - top_page->ObjectAreaStart());
|
| - ASSERT(accounting_stats_.Size() == actual_size);
|
| - }
|
| -#endif
|
| -
|
| - Shrink();
|
| - ResetFreeList();
|
| - }
|
| -
|
| protected:
|
| #ifdef DEBUG
|
| virtual void VerifyObject(HeapObject* obj);
|
| @@ -2098,9 +2382,6 @@
|
|
|
| const int max_map_space_pages_;
|
|
|
| - // An array of page start address in a map space.
|
| - Address page_addresses_[kMaxMapPageIndex];
|
| -
|
| public:
|
| TRACK_MEMORY("MapSpace")
|
| };
|
| @@ -2116,6 +2397,14 @@
|
| : FixedSpace(heap, max_capacity, id, JSGlobalPropertyCell::kSize, "cell")
|
| {}
|
|
|
| + virtual int RoundSizeDownToObjectAlignment(int size) {
|
| + if (IsPowerOf2(JSGlobalPropertyCell::kSize)) {
|
| + return RoundDown(size, JSGlobalPropertyCell::kSize);
|
| + } else {
|
| + return (size / JSGlobalPropertyCell::kSize) * JSGlobalPropertyCell::kSize;
|
| + }
|
| + }
|
| +
|
| protected:
|
| #ifdef DEBUG
|
| virtual void VerifyObject(HeapObject* obj);
|
| @@ -2133,64 +2422,6 @@
|
| // A large object always starts at Page::kObjectStartOffset to a page.
|
| // Large objects do not move during garbage collections.
|
|
|
| -// A LargeObjectChunk holds exactly one large object page with exactly one
|
| -// large object.
|
| -class LargeObjectChunk {
|
| - public:
|
| - // Allocates a new LargeObjectChunk that contains a large object page
|
| - // (Page::kPageSize aligned) that has at least size_in_bytes (for a large
|
| - // object) bytes after the object area start of that page.
|
| - static LargeObjectChunk* New(int size_in_bytes, Executability executable);
|
| -
|
| - // Free the memory associated with the chunk.
|
| - void Free(Executability executable);
|
| -
|
| - // Interpret a raw address as a large object chunk.
|
| - static LargeObjectChunk* FromAddress(Address address) {
|
| - return reinterpret_cast<LargeObjectChunk*>(address);
|
| - }
|
| -
|
| - // Returns the address of this chunk.
|
| - Address address() { return reinterpret_cast<Address>(this); }
|
| -
|
| - Page* GetPage() {
|
| - return Page::FromAddress(RoundUp(address(), Page::kPageSize));
|
| - }
|
| -
|
| - // Accessors for the fields of the chunk.
|
| - LargeObjectChunk* next() { return next_; }
|
| - void set_next(LargeObjectChunk* chunk) { next_ = chunk; }
|
| - size_t size() { return size_ & ~Page::kPageFlagMask; }
|
| -
|
| - // Compute the start address in the chunk.
|
| - Address GetStartAddress() { return GetPage()->ObjectAreaStart(); }
|
| -
|
| - // Returns the object in this chunk.
|
| - HeapObject* GetObject() { return HeapObject::FromAddress(GetStartAddress()); }
|
| -
|
| - // Given a requested size returns the physical size of a chunk to be
|
| - // allocated.
|
| - static int ChunkSizeFor(int size_in_bytes);
|
| -
|
| - // Given a chunk size, returns the object size it can accommodate. Used by
|
| - // LargeObjectSpace::Available.
|
| - static intptr_t ObjectSizeFor(intptr_t chunk_size) {
|
| - if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0;
|
| - return chunk_size - Page::kPageSize - Page::kObjectStartOffset;
|
| - }
|
| -
|
| - private:
|
| - // A pointer to the next large object chunk in the space or NULL.
|
| - LargeObjectChunk* next_;
|
| -
|
| - // The total size of this chunk.
|
| - size_t size_;
|
| -
|
| - public:
|
| - TRACK_MEMORY("LargeObjectChunk")
|
| -};
|
| -
|
| -
|
| class LargeObjectSpace : public Space {
|
| public:
|
| LargeObjectSpace(Heap* heap, AllocationSpace id);
|
| @@ -2202,13 +2433,16 @@
|
| // Releases internal resources, frees objects in this space.
|
| void TearDown();
|
|
|
| - // Allocates a (non-FixedArray, non-Code) large object.
|
| - MUST_USE_RESULT MaybeObject* AllocateRaw(int size_in_bytes);
|
| - // Allocates a large Code object.
|
| - MUST_USE_RESULT MaybeObject* AllocateRawCode(int size_in_bytes);
|
| - // Allocates a large FixedArray.
|
| - MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(int size_in_bytes);
|
| + static intptr_t ObjectSizeFor(intptr_t chunk_size) {
|
| + if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0;
|
| + return chunk_size - Page::kPageSize - Page::kObjectStartOffset;
|
| + }
|
|
|
| + // Shared implementation of AllocateRaw, AllocateRawCode and
|
| + // AllocateRawFixedArray.
|
| + MUST_USE_RESULT MaybeObject* AllocateRaw(int object_size,
|
| + Executability executable);
|
| +
|
| // Available bytes for objects in this space.
|
| inline intptr_t Available();
|
|
|
| @@ -2231,11 +2465,8 @@
|
|
|
| // Finds a large object page containing the given pc, returns NULL
|
| // if such a page doesn't exist.
|
| - LargeObjectChunk* FindChunkContainingPc(Address pc);
|
| + LargePage* FindPageContainingPc(Address pc);
|
|
|
| - // Iterates objects covered by dirty regions.
|
| - void IterateDirtyRegions(ObjectSlotCallback func);
|
| -
|
| // Frees unmarked objects.
|
| void FreeUnmarkedObjects();
|
|
|
| @@ -2243,13 +2474,15 @@
|
| bool Contains(HeapObject* obj);
|
|
|
| // Checks whether the space is empty.
|
| - bool IsEmpty() { return first_chunk_ == NULL; }
|
| + bool IsEmpty() { return first_page_ == NULL; }
|
|
|
| // See the comments for ReserveSpace in the Space class. This has to be
|
| // called after ReserveSpace has been called on the paged spaces, since they
|
| // may use some memory, leaving less for large objects.
|
| virtual bool ReserveSpace(int bytes);
|
|
|
| + LargePage* first_page() { return first_page_; }
|
| +
|
| #ifdef DEBUG
|
| virtual void Verify();
|
| virtual void Print();
|
| @@ -2262,17 +2495,11 @@
|
|
|
| private:
|
| // The head of the linked list of large object chunks.
|
| - LargeObjectChunk* first_chunk_;
|
| + LargePage* first_page_;
|
| intptr_t size_; // allocated bytes
|
| int page_count_; // number of chunks
|
| intptr_t objects_size_; // size of objects
|
|
|
| - // Shared implementation of AllocateRaw, AllocateRawCode and
|
| - // AllocateRawFixedArray.
|
| - MUST_USE_RESULT MaybeObject* AllocateRawInternal(int requested_size,
|
| - int object_size,
|
| - Executability executable);
|
| -
|
| friend class LargeObjectIterator;
|
|
|
| public:
|
| @@ -2285,17 +2512,78 @@
|
| explicit LargeObjectIterator(LargeObjectSpace* space);
|
| LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func);
|
|
|
| - HeapObject* next();
|
| + HeapObject* Next();
|
|
|
| // implementation of ObjectIterator.
|
| - virtual HeapObject* next_object() { return next(); }
|
| + virtual HeapObject* next_object() { return Next(); }
|
|
|
| private:
|
| - LargeObjectChunk* current_;
|
| + LargePage* current_;
|
| HeapObjectCallback size_func_;
|
| };
|
|
|
|
|
| +// Iterates over the chunks (pages and large object pages) that can contain
|
| +// pointers to new space.
|
| +class PointerChunkIterator BASE_EMBEDDED {
|
| + public:
|
| + inline explicit PointerChunkIterator(Heap* heap);
|
| +
|
| + // Return NULL when the iterator is done.
|
| + MemoryChunk* next() {
|
| + switch (state_) {
|
| + case kOldPointerState: {
|
| + if (old_pointer_iterator_.has_next()) {
|
| + return old_pointer_iterator_.next();
|
| + }
|
| + state_ = kMapState;
|
| + // Fall through.
|
| + }
|
| + case kMapState: {
|
| + if (map_iterator_.has_next()) {
|
| + return map_iterator_.next();
|
| + }
|
| + state_ = kLargeObjectState;
|
| + // Fall through.
|
| + }
|
| + case kLargeObjectState: {
|
| + HeapObject* heap_object;
|
| + do {
|
| + heap_object = lo_iterator_.Next();
|
| + if (heap_object == NULL) {
|
| + state_ = kFinishedState;
|
| + return NULL;
|
| + }
|
| + // Fixed arrays are the only pointer-containing objects in large
|
| + // object space.
|
| + } while (!heap_object->IsFixedArray());
|
| + MemoryChunk* answer = MemoryChunk::FromAddress(heap_object->address());
|
| + return answer;
|
| + }
|
| + case kFinishedState:
|
| + return NULL;
|
| + default:
|
| + break;
|
| + }
|
| + UNREACHABLE();
|
| + return NULL;
|
| + }
|
| +
|
| +
|
| + private:
|
| + enum State {
|
| + kOldPointerState,
|
| + kMapState,
|
| + kLargeObjectState,
|
| + kFinishedState
|
| + };
|
| + State state_;
|
| + PageIterator old_pointer_iterator_;
|
| + PageIterator map_iterator_;
|
| + LargeObjectIterator lo_iterator_;
|
| +};
|
| +
|
| +
|
| #ifdef DEBUG
|
| struct CommentStatistic {
|
| const char* comment;
|
|
|