Index: src/mips/lithium-codegen-mips.cc |
diff --git a/src/mips/lithium-codegen-mips.cc b/src/mips/lithium-codegen-mips.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e640b53e8df0c4e06e351d9b5e132b7ff7a99c1e |
--- /dev/null |
+++ b/src/mips/lithium-codegen-mips.cc |
@@ -0,0 +1,4628 @@ |
+// Copyright 2011 the V8 project authors. All rights reserved. |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following |
+// disclaimer in the documentation and/or other materials provided |
+// with the distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived |
+// from this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+#include "v8.h" |
+ |
+#include "mips/lithium-codegen-mips.h" |
+#include "mips/lithium-gap-resolver-mips.h" |
+#include "code-stubs.h" |
+#include "stub-cache.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+ |
+class SafepointGenerator : public CallWrapper { |
+ public: |
+ SafepointGenerator(LCodeGen* codegen, |
+ LPointerMap* pointers, |
+ int deoptimization_index) |
+ : codegen_(codegen), |
+ pointers_(pointers), |
+ deoptimization_index_(deoptimization_index) { } |
+ virtual ~SafepointGenerator() { } |
+ |
+ virtual void BeforeCall(int call_size) const { |
+ ASSERT(call_size >= 0); |
+ // Ensure that we have enough space after the previous safepoint position |
+ // for the generated code there. |
+ int call_end = codegen_->masm()->pc_offset() + call_size; |
+ int prev_jump_end = |
+ codegen_->LastSafepointEnd() + Deoptimizer::patch_size(); |
+ if (call_end < prev_jump_end) { |
+ int padding_size = prev_jump_end - call_end; |
+ ASSERT_EQ(0, padding_size % Assembler::kInstrSize); |
+ while (padding_size > 0) { |
+ codegen_->masm()->nop(); |
+ padding_size -= Assembler::kInstrSize; |
+ } |
+ } |
+ } |
+ |
+ virtual void AfterCall() const { |
+ codegen_->RecordSafepoint(pointers_, deoptimization_index_); |
+ } |
+ |
+ private: |
+ LCodeGen* codegen_; |
+ LPointerMap* pointers_; |
+ int deoptimization_index_; |
+}; |
+ |
+ |
+#define __ masm()-> |
+ |
+bool LCodeGen::GenerateCode() { |
+ HPhase phase("Code generation", chunk()); |
+ ASSERT(is_unused()); |
+ status_ = GENERATING; |
+ CpuFeatures::Scope scope(FPU); |
+ |
+ CodeStub::GenerateFPStubs(); |
+ |
+ // Open a frame scope to indicate that there is a frame on the stack. The |
+ // NONE indicates that the scope shouldn't actually generate code to set up |
+ // the frame (that is done in GeneratePrologue). |
+ FrameScope frame_scope(masm_, StackFrame::NONE); |
+ |
+ return GeneratePrologue() && |
+ GenerateBody() && |
+ GenerateDeferredCode() && |
+ GenerateSafepointTable(); |
+} |
+ |
+ |
+void LCodeGen::FinishCode(Handle<Code> code) { |
+ ASSERT(is_done()); |
+ code->set_stack_slots(GetStackSlotCount()); |
+ code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); |
+ PopulateDeoptimizationData(code); |
+ Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code); |
+} |
+ |
+ |
+void LCodeGen::Abort(const char* format, ...) { |
+ if (FLAG_trace_bailout) { |
+ SmartArrayPointer<char> name( |
+ info()->shared_info()->DebugName()->ToCString()); |
+ PrintF("Aborting LCodeGen in @\"%s\": ", *name); |
+ va_list arguments; |
+ va_start(arguments, format); |
+ OS::VPrint(format, arguments); |
+ va_end(arguments); |
+ PrintF("\n"); |
+ } |
+ status_ = ABORTED; |
+} |
+ |
+ |
+void LCodeGen::Comment(const char* format, ...) { |
+ if (!FLAG_code_comments) return; |
+ char buffer[4 * KB]; |
+ StringBuilder builder(buffer, ARRAY_SIZE(buffer)); |
+ va_list arguments; |
+ va_start(arguments, format); |
+ builder.AddFormattedList(format, arguments); |
+ va_end(arguments); |
+ |
+ // Copy the string before recording it in the assembler to avoid |
+ // issues when the stack allocated buffer goes out of scope. |
+ size_t length = builder.position(); |
+ Vector<char> copy = Vector<char>::New(length + 1); |
+ memcpy(copy.start(), builder.Finalize(), copy.length()); |
+ masm()->RecordComment(copy.start()); |
+} |
+ |
+ |
+bool LCodeGen::GeneratePrologue() { |
+ ASSERT(is_generating()); |
+ |
+#ifdef DEBUG |
+ if (strlen(FLAG_stop_at) > 0 && |
+ info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { |
+ __ stop("stop_at"); |
+ } |
+#endif |
+ |
+ // a1: Callee's JS function. |
+ // cp: Callee's context. |
+ // fp: Caller's frame pointer. |
+ // lr: Caller's pc. |
+ |
+ // Strict mode functions and builtins need to replace the receiver |
+ // with undefined when called as functions (without an explicit |
+ // receiver object). r5 is zero for method calls and non-zero for |
+ // function calls. |
+ if (info_->is_strict_mode() || info_->is_native()) { |
+ Label ok; |
+ __ Branch(&ok, eq, t1, Operand(zero_reg)); |
+ |
+ int receiver_offset = scope()->num_parameters() * kPointerSize; |
+ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); |
+ __ sw(a2, MemOperand(sp, receiver_offset)); |
+ __ bind(&ok); |
+ } |
+ |
+ __ Push(ra, fp, cp, a1); |
+ __ Addu(fp, sp, Operand(2 * kPointerSize)); // Adj. FP to point to saved FP. |
+ |
+ // Reserve space for the stack slots needed by the code. |
+ int slots = GetStackSlotCount(); |
+ if (slots > 0) { |
+ if (FLAG_debug_code) { |
+ __ li(a0, Operand(slots)); |
+ __ li(a2, Operand(kSlotsZapValue)); |
+ Label loop; |
+ __ bind(&loop); |
+ __ push(a2); |
+ __ Subu(a0, a0, 1); |
+ __ Branch(&loop, ne, a0, Operand(zero_reg)); |
+ } else { |
+ __ Subu(sp, sp, Operand(slots * kPointerSize)); |
+ } |
+ } |
+ |
+ // Possibly allocate a local context. |
+ int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; |
+ if (heap_slots > 0) { |
+ Comment(";;; Allocate local context"); |
+ // Argument to NewContext is the function, which is in a1. |
+ __ push(a1); |
+ if (heap_slots <= FastNewContextStub::kMaximumSlots) { |
+ FastNewContextStub stub(heap_slots); |
+ __ CallStub(&stub); |
+ } else { |
+ __ CallRuntime(Runtime::kNewFunctionContext, 1); |
+ } |
+ RecordSafepoint(Safepoint::kNoDeoptimizationIndex); |
+ // Context is returned in both v0 and cp. It replaces the context |
+ // passed to us. It's saved in the stack and kept live in cp. |
+ __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+ // Copy any necessary parameters into the context. |
+ int num_parameters = scope()->num_parameters(); |
+ for (int i = 0; i < num_parameters; i++) { |
+ Variable* var = scope()->parameter(i); |
+ if (var->IsContextSlot()) { |
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset + |
+ (num_parameters - 1 - i) * kPointerSize; |
+ // Load parameter from stack. |
+ __ lw(a0, MemOperand(fp, parameter_offset)); |
+ // Store it in the context. |
+ MemOperand target = ContextOperand(cp, var->index()); |
+ __ sw(a0, target); |
+ // Update the write barrier. This clobbers a3 and a0. |
+ __ RecordWriteContextSlot( |
+ cp, target.offset(), a0, a3, kRAHasBeenSaved, kSaveFPRegs); |
+ } |
+ } |
+ Comment(";;; End allocate local context"); |
+ } |
+ |
+ // Trace the call. |
+ if (FLAG_trace) { |
+ __ CallRuntime(Runtime::kTraceEnter, 0); |
+ } |
+ return !is_aborted(); |
+} |
+ |
+ |
+bool LCodeGen::GenerateBody() { |
+ ASSERT(is_generating()); |
+ bool emit_instructions = true; |
+ for (current_instruction_ = 0; |
+ !is_aborted() && current_instruction_ < instructions_->length(); |
+ current_instruction_++) { |
+ LInstruction* instr = instructions_->at(current_instruction_); |
+ if (instr->IsLabel()) { |
+ LLabel* label = LLabel::cast(instr); |
+ emit_instructions = !label->HasReplacement(); |
+ } |
+ |
+ if (emit_instructions) { |
+ Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); |
+ instr->CompileToNative(this); |
+ } |
+ } |
+ return !is_aborted(); |
+} |
+ |
+ |
+LInstruction* LCodeGen::GetNextInstruction() { |
+ if (current_instruction_ < instructions_->length() - 1) { |
+ return instructions_->at(current_instruction_ + 1); |
+ } else { |
+ return NULL; |
+ } |
+} |
+ |
+ |
+bool LCodeGen::GenerateDeferredCode() { |
+ ASSERT(is_generating()); |
+ if (deferred_.length() > 0) { |
+ for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { |
+ LDeferredCode* code = deferred_[i]; |
+ __ bind(code->entry()); |
+ Comment(";;; Deferred code @%d: %s.", |
+ code->instruction_index(), |
+ code->instr()->Mnemonic()); |
+ code->Generate(); |
+ __ jmp(code->exit()); |
+ } |
+ |
+ // Pad code to ensure that the last piece of deferred code have |
+ // room for lazy bailout. |
+ while ((masm()->pc_offset() - LastSafepointEnd()) |
+ < Deoptimizer::patch_size()) { |
+ __ nop(); |
+ } |
+ } |
+ // Deferred code is the last part of the instruction sequence. Mark |
+ // the generated code as done unless we bailed out. |
+ if (!is_aborted()) status_ = DONE; |
+ return !is_aborted(); |
+} |
+ |
+ |
+bool LCodeGen::GenerateDeoptJumpTable() { |
+ // TODO(plind): not clear that this will have advantage for MIPS. |
+ // Skipping it for now. Raised issue #100 for this. |
+ Abort("Unimplemented: %s", "GenerateDeoptJumpTable"); |
+ return false; |
+} |
+ |
+ |
+bool LCodeGen::GenerateSafepointTable() { |
+ ASSERT(is_done()); |
+ safepoints_.Emit(masm(), GetStackSlotCount()); |
+ return !is_aborted(); |
+} |
+ |
+ |
+Register LCodeGen::ToRegister(int index) const { |
+ return Register::FromAllocationIndex(index); |
+} |
+ |
+ |
+DoubleRegister LCodeGen::ToDoubleRegister(int index) const { |
+ return DoubleRegister::FromAllocationIndex(index); |
+} |
+ |
+ |
+Register LCodeGen::ToRegister(LOperand* op) const { |
+ ASSERT(op->IsRegister()); |
+ return ToRegister(op->index()); |
+} |
+ |
+ |
+Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { |
+ if (op->IsRegister()) { |
+ return ToRegister(op->index()); |
+ } else if (op->IsConstantOperand()) { |
+ __ li(scratch, ToOperand(op)); |
+ return scratch; |
+ } else if (op->IsStackSlot() || op->IsArgument()) { |
+ __ lw(scratch, ToMemOperand(op)); |
+ return scratch; |
+ } |
+ UNREACHABLE(); |
+ return scratch; |
+} |
+ |
+ |
+DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { |
+ ASSERT(op->IsDoubleRegister()); |
+ return ToDoubleRegister(op->index()); |
+} |
+ |
+ |
+DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, |
+ FloatRegister flt_scratch, |
+ DoubleRegister dbl_scratch) { |
+ if (op->IsDoubleRegister()) { |
+ return ToDoubleRegister(op->index()); |
+ } else if (op->IsConstantOperand()) { |
+ LConstantOperand* const_op = LConstantOperand::cast(op); |
+ Handle<Object> literal = chunk_->LookupLiteral(const_op); |
+ Representation r = chunk_->LookupLiteralRepresentation(const_op); |
+ if (r.IsInteger32()) { |
+ ASSERT(literal->IsNumber()); |
+ __ li(at, Operand(static_cast<int32_t>(literal->Number()))); |
+ __ mtc1(at, flt_scratch); |
+ __ cvt_d_w(dbl_scratch, flt_scratch); |
+ return dbl_scratch; |
+ } else if (r.IsDouble()) { |
+ Abort("unsupported double immediate"); |
+ } else if (r.IsTagged()) { |
+ Abort("unsupported tagged immediate"); |
+ } |
+ } else if (op->IsStackSlot() || op->IsArgument()) { |
+ MemOperand mem_op = ToMemOperand(op); |
+ __ ldc1(dbl_scratch, mem_op); |
+ return dbl_scratch; |
+ } |
+ UNREACHABLE(); |
+ return dbl_scratch; |
+} |
+ |
+ |
+int LCodeGen::ToInteger32(LConstantOperand* op) const { |
+ Handle<Object> value = chunk_->LookupLiteral(op); |
+ ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32()); |
+ ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) == |
+ value->Number()); |
+ return static_cast<int32_t>(value->Number()); |
+} |
+ |
+ |
+double LCodeGen::ToDouble(LConstantOperand* op) const { |
+ Handle<Object> value = chunk_->LookupLiteral(op); |
+ return value->Number(); |
+} |
+ |
+ |
+Operand LCodeGen::ToOperand(LOperand* op) { |
+ if (op->IsConstantOperand()) { |
+ LConstantOperand* const_op = LConstantOperand::cast(op); |
+ Handle<Object> literal = chunk_->LookupLiteral(const_op); |
+ Representation r = chunk_->LookupLiteralRepresentation(const_op); |
+ if (r.IsInteger32()) { |
+ ASSERT(literal->IsNumber()); |
+ return Operand(static_cast<int32_t>(literal->Number())); |
+ } else if (r.IsDouble()) { |
+ Abort("ToOperand Unsupported double immediate."); |
+ } |
+ ASSERT(r.IsTagged()); |
+ return Operand(literal); |
+ } else if (op->IsRegister()) { |
+ return Operand(ToRegister(op)); |
+ } else if (op->IsDoubleRegister()) { |
+ Abort("ToOperand IsDoubleRegister unimplemented"); |
+ return Operand(0); |
+ } |
+ // Stack slots not implemented, use ToMemOperand instead. |
+ UNREACHABLE(); |
+ return Operand(0); |
+} |
+ |
+ |
+MemOperand LCodeGen::ToMemOperand(LOperand* op) const { |
+ ASSERT(!op->IsRegister()); |
+ ASSERT(!op->IsDoubleRegister()); |
+ ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); |
+ int index = op->index(); |
+ if (index >= 0) { |
+ // Local or spill slot. Skip the frame pointer, function, and |
+ // context in the fixed part of the frame. |
+ return MemOperand(fp, -(index + 3) * kPointerSize); |
+ } else { |
+ // Incoming parameter. Skip the return address. |
+ return MemOperand(fp, -(index - 1) * kPointerSize); |
+ } |
+} |
+ |
+ |
+MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { |
+ ASSERT(op->IsDoubleStackSlot()); |
+ int index = op->index(); |
+ if (index >= 0) { |
+ // Local or spill slot. Skip the frame pointer, function, context, |
+ // and the first word of the double in the fixed part of the frame. |
+ return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize); |
+ } else { |
+ // Incoming parameter. Skip the return address and the first word of |
+ // the double. |
+ return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize); |
+ } |
+} |
+ |
+ |
+void LCodeGen::WriteTranslation(LEnvironment* environment, |
+ Translation* translation) { |
+ if (environment == NULL) return; |
+ |
+ // The translation includes one command per value in the environment. |
+ int translation_size = environment->values()->length(); |
+ // The output frame height does not include the parameters. |
+ int height = translation_size - environment->parameter_count(); |
+ |
+ WriteTranslation(environment->outer(), translation); |
+ int closure_id = DefineDeoptimizationLiteral(environment->closure()); |
+ translation->BeginFrame(environment->ast_id(), closure_id, height); |
+ for (int i = 0; i < translation_size; ++i) { |
+ LOperand* value = environment->values()->at(i); |
+ // spilled_registers_ and spilled_double_registers_ are either |
+ // both NULL or both set. |
+ if (environment->spilled_registers() != NULL && value != NULL) { |
+ if (value->IsRegister() && |
+ environment->spilled_registers()[value->index()] != NULL) { |
+ translation->MarkDuplicate(); |
+ AddToTranslation(translation, |
+ environment->spilled_registers()[value->index()], |
+ environment->HasTaggedValueAt(i)); |
+ } else if ( |
+ value->IsDoubleRegister() && |
+ environment->spilled_double_registers()[value->index()] != NULL) { |
+ translation->MarkDuplicate(); |
+ AddToTranslation( |
+ translation, |
+ environment->spilled_double_registers()[value->index()], |
+ false); |
+ } |
+ } |
+ |
+ AddToTranslation(translation, value, environment->HasTaggedValueAt(i)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::AddToTranslation(Translation* translation, |
+ LOperand* op, |
+ bool is_tagged) { |
+ if (op == NULL) { |
+ // TODO(twuerthinger): Introduce marker operands to indicate that this value |
+ // is not present and must be reconstructed from the deoptimizer. Currently |
+ // this is only used for the arguments object. |
+ translation->StoreArgumentsObject(); |
+ } else if (op->IsStackSlot()) { |
+ if (is_tagged) { |
+ translation->StoreStackSlot(op->index()); |
+ } else { |
+ translation->StoreInt32StackSlot(op->index()); |
+ } |
+ } else if (op->IsDoubleStackSlot()) { |
+ translation->StoreDoubleStackSlot(op->index()); |
+ } else if (op->IsArgument()) { |
+ ASSERT(is_tagged); |
+ int src_index = GetStackSlotCount() + op->index(); |
+ translation->StoreStackSlot(src_index); |
+ } else if (op->IsRegister()) { |
+ Register reg = ToRegister(op); |
+ if (is_tagged) { |
+ translation->StoreRegister(reg); |
+ } else { |
+ translation->StoreInt32Register(reg); |
+ } |
+ } else if (op->IsDoubleRegister()) { |
+ DoubleRegister reg = ToDoubleRegister(op); |
+ translation->StoreDoubleRegister(reg); |
+ } else if (op->IsConstantOperand()) { |
+ Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op)); |
+ int src_index = DefineDeoptimizationLiteral(literal); |
+ translation->StoreLiteral(src_index); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void LCodeGen::CallCode(Handle<Code> code, |
+ RelocInfo::Mode mode, |
+ LInstruction* instr) { |
+ CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); |
+} |
+ |
+ |
+void LCodeGen::CallCodeGeneric(Handle<Code> code, |
+ RelocInfo::Mode mode, |
+ LInstruction* instr, |
+ SafepointMode safepoint_mode) { |
+ ASSERT(instr != NULL); |
+ LPointerMap* pointers = instr->pointer_map(); |
+ RecordPosition(pointers->position()); |
+ __ Call(code, mode); |
+ RegisterLazyDeoptimization(instr, safepoint_mode); |
+} |
+ |
+ |
+void LCodeGen::CallRuntime(const Runtime::Function* function, |
+ int num_arguments, |
+ LInstruction* instr) { |
+ ASSERT(instr != NULL); |
+ LPointerMap* pointers = instr->pointer_map(); |
+ ASSERT(pointers != NULL); |
+ RecordPosition(pointers->position()); |
+ |
+ __ CallRuntime(function, num_arguments); |
+ RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT); |
+} |
+ |
+ |
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, |
+ int argc, |
+ LInstruction* instr) { |
+ __ CallRuntimeSaveDoubles(id); |
+ RecordSafepointWithRegisters( |
+ instr->pointer_map(), argc, Safepoint::kNoDeoptimizationIndex); |
+} |
+ |
+ |
+void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr, |
+ SafepointMode safepoint_mode) { |
+ // Create the environment to bailout to. If the call has side effects |
+ // execution has to continue after the call otherwise execution can continue |
+ // from a previous bailout point repeating the call. |
+ LEnvironment* deoptimization_environment; |
+ if (instr->HasDeoptimizationEnvironment()) { |
+ deoptimization_environment = instr->deoptimization_environment(); |
+ } else { |
+ deoptimization_environment = instr->environment(); |
+ } |
+ |
+ RegisterEnvironmentForDeoptimization(deoptimization_environment); |
+ if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { |
+ RecordSafepoint(instr->pointer_map(), |
+ deoptimization_environment->deoptimization_index()); |
+ } else { |
+ ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
+ RecordSafepointWithRegisters( |
+ instr->pointer_map(), |
+ 0, |
+ deoptimization_environment->deoptimization_index()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) { |
+ if (!environment->HasBeenRegistered()) { |
+ // Physical stack frame layout: |
+ // -x ............. -4 0 ..................................... y |
+ // [incoming arguments] [spill slots] [pushed outgoing arguments] |
+ |
+ // Layout of the environment: |
+ // 0 ..................................................... size-1 |
+ // [parameters] [locals] [expression stack including arguments] |
+ |
+ // Layout of the translation: |
+ // 0 ........................................................ size - 1 + 4 |
+ // [expression stack including arguments] [locals] [4 words] [parameters] |
+ // |>------------ translation_size ------------<| |
+ |
+ int frame_count = 0; |
+ for (LEnvironment* e = environment; e != NULL; e = e->outer()) { |
+ ++frame_count; |
+ } |
+ Translation translation(&translations_, frame_count); |
+ WriteTranslation(environment, &translation); |
+ int deoptimization_index = deoptimizations_.length(); |
+ environment->Register(deoptimization_index, translation.index()); |
+ deoptimizations_.Add(environment); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DeoptimizeIf(Condition cc, |
+ LEnvironment* environment, |
+ Register src1, |
+ const Operand& src2) { |
+ RegisterEnvironmentForDeoptimization(environment); |
+ ASSERT(environment->HasBeenRegistered()); |
+ int id = environment->deoptimization_index(); |
+ Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER); |
+ ASSERT(entry != NULL); |
+ if (entry == NULL) { |
+ Abort("bailout was not prepared"); |
+ return; |
+ } |
+ |
+ ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on MIPS. |
+ |
+ if (FLAG_deopt_every_n_times == 1 && |
+ info_->shared_info()->opt_count() == id) { |
+ __ Jump(entry, RelocInfo::RUNTIME_ENTRY); |
+ return; |
+ } |
+ |
+ if (FLAG_trap_on_deopt) { |
+ Label skip; |
+ if (cc != al) { |
+ __ Branch(&skip, NegateCondition(cc), src1, src2); |
+ } |
+ __ stop("trap_on_deopt"); |
+ __ bind(&skip); |
+ } |
+ |
+ if (cc == al) { |
+ __ Jump(entry, RelocInfo::RUNTIME_ENTRY); |
+ } else { |
+ // TODO(plind): The Arm port is a little different here, due to their |
+ // DeOpt jump table, which is not used for Mips yet. |
+ __ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc, src1, src2); |
+ } |
+} |
+ |
+ |
+void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { |
+ int length = deoptimizations_.length(); |
+ if (length == 0) return; |
+ ASSERT(FLAG_deopt); |
+ Handle<DeoptimizationInputData> data = |
+ factory()->NewDeoptimizationInputData(length, TENURED); |
+ |
+ Handle<ByteArray> translations = translations_.CreateByteArray(); |
+ data->SetTranslationByteArray(*translations); |
+ data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); |
+ |
+ Handle<FixedArray> literals = |
+ factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); |
+ for (int i = 0; i < deoptimization_literals_.length(); i++) { |
+ literals->set(i, *deoptimization_literals_[i]); |
+ } |
+ data->SetLiteralArray(*literals); |
+ |
+ data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id())); |
+ data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); |
+ |
+ // Populate the deoptimization entries. |
+ for (int i = 0; i < length; i++) { |
+ LEnvironment* env = deoptimizations_[i]; |
+ data->SetAstId(i, Smi::FromInt(env->ast_id())); |
+ data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); |
+ data->SetArgumentsStackHeight(i, |
+ Smi::FromInt(env->arguments_stack_height())); |
+ } |
+ code->set_deoptimization_data(*data); |
+} |
+ |
+ |
+int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { |
+ int result = deoptimization_literals_.length(); |
+ for (int i = 0; i < deoptimization_literals_.length(); ++i) { |
+ if (deoptimization_literals_[i].is_identical_to(literal)) return i; |
+ } |
+ deoptimization_literals_.Add(literal); |
+ return result; |
+} |
+ |
+ |
+void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { |
+ ASSERT(deoptimization_literals_.length() == 0); |
+ |
+ const ZoneList<Handle<JSFunction> >* inlined_closures = |
+ chunk()->inlined_closures(); |
+ |
+ for (int i = 0, length = inlined_closures->length(); |
+ i < length; |
+ i++) { |
+ DefineDeoptimizationLiteral(inlined_closures->at(i)); |
+ } |
+ |
+ inlined_function_count_ = deoptimization_literals_.length(); |
+} |
+ |
+ |
+void LCodeGen::RecordSafepoint( |
+ LPointerMap* pointers, |
+ Safepoint::Kind kind, |
+ int arguments, |
+ int deoptimization_index) { |
+ ASSERT(expected_safepoint_kind_ == kind); |
+ |
+ const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); |
+ Safepoint safepoint = safepoints_.DefineSafepoint(masm(), |
+ kind, arguments, deoptimization_index); |
+ for (int i = 0; i < operands->length(); i++) { |
+ LOperand* pointer = operands->at(i); |
+ if (pointer->IsStackSlot()) { |
+ safepoint.DefinePointerSlot(pointer->index()); |
+ } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { |
+ safepoint.DefinePointerRegister(ToRegister(pointer)); |
+ } |
+ } |
+ if (kind & Safepoint::kWithRegisters) { |
+ // Register cp always contains a pointer to the context. |
+ safepoint.DefinePointerRegister(cp); |
+ } |
+} |
+ |
+ |
+void LCodeGen::RecordSafepoint(LPointerMap* pointers, |
+ int deoptimization_index) { |
+ RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index); |
+} |
+ |
+ |
+void LCodeGen::RecordSafepoint(int deoptimization_index) { |
+ LPointerMap empty_pointers(RelocInfo::kNoPosition); |
+ RecordSafepoint(&empty_pointers, deoptimization_index); |
+} |
+ |
+ |
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, |
+ int arguments, |
+ int deoptimization_index) { |
+ RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, |
+ deoptimization_index); |
+} |
+ |
+ |
+void LCodeGen::RecordSafepointWithRegistersAndDoubles( |
+ LPointerMap* pointers, |
+ int arguments, |
+ int deoptimization_index) { |
+ RecordSafepoint(pointers, Safepoint::kWithRegistersAndDoubles, arguments, |
+ deoptimization_index); |
+} |
+ |
+ |
+void LCodeGen::RecordPosition(int position) { |
+ if (position == RelocInfo::kNoPosition) return; |
+ masm()->positions_recorder()->RecordPosition(position); |
+} |
+ |
+ |
+void LCodeGen::DoLabel(LLabel* label) { |
+ if (label->is_loop_header()) { |
+ Comment(";;; B%d - LOOP entry", label->block_id()); |
+ } else { |
+ Comment(";;; B%d", label->block_id()); |
+ } |
+ __ bind(label->label()); |
+ current_block_ = label->block_id(); |
+ DoGap(label); |
+} |
+ |
+ |
+void LCodeGen::DoParallelMove(LParallelMove* move) { |
+ resolver_.Resolve(move); |
+} |
+ |
+ |
+void LCodeGen::DoGap(LGap* gap) { |
+ for (int i = LGap::FIRST_INNER_POSITION; |
+ i <= LGap::LAST_INNER_POSITION; |
+ i++) { |
+ LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); |
+ LParallelMove* move = gap->GetParallelMove(inner_pos); |
+ if (move != NULL) DoParallelMove(move); |
+ } |
+ |
+ LInstruction* next = GetNextInstruction(); |
+ if (next != NULL && next->IsLazyBailout()) { |
+ int pc = masm()->pc_offset(); |
+ safepoints_.SetPcAfterGap(pc); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) { |
+ DoGap(instr); |
+} |
+ |
+ |
+void LCodeGen::DoParameter(LParameter* instr) { |
+ // Nothing to do. |
+} |
+ |
+ |
+void LCodeGen::DoCallStub(LCallStub* instr) { |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ switch (instr->hydrogen()->major_key()) { |
+ case CodeStub::RegExpConstructResult: { |
+ RegExpConstructResultStub stub; |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ case CodeStub::RegExpExec: { |
+ RegExpExecStub stub; |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ case CodeStub::SubString: { |
+ SubStringStub stub; |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ case CodeStub::NumberToString: { |
+ NumberToStringStub stub; |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ case CodeStub::StringAdd: { |
+ StringAddStub stub(NO_STRING_ADD_FLAGS); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ case CodeStub::StringCompare: { |
+ StringCompareStub stub; |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ case CodeStub::TranscendentalCache: { |
+ __ lw(a0, MemOperand(sp, 0)); |
+ TranscendentalCacheStub stub(instr->transcendental_type(), |
+ TranscendentalCacheStub::TAGGED); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { |
+ // Nothing to do. |
+} |
+ |
+ |
+void LCodeGen::DoModI(LModI* instr) { |
+ Register scratch = scratch0(); |
+ const Register left = ToRegister(instr->InputAt(0)); |
+ const Register result = ToRegister(instr->result()); |
+ |
+ // p2constant holds the right side value if it's a power of 2 constant. |
+ // In other cases it is 0. |
+ int32_t p2constant = 0; |
+ |
+ if (instr->InputAt(1)->IsConstantOperand()) { |
+ p2constant = ToInteger32(LConstantOperand::cast(instr->InputAt(1))); |
+ if (p2constant % 2 != 0) { |
+ p2constant = 0; |
+ } |
+ // Result always takes the sign of the dividend (left). |
+ p2constant = abs(p2constant); |
+ } |
+ |
+ // div runs in the background while we check for special cases. |
+ Register right = EmitLoadRegister(instr->InputAt(1), scratch); |
+ __ div(left, right); |
+ |
+ // Check for x % 0. |
+ if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { |
+ DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg)); |
+ } |
+ |
+ Label skip_div, do_div; |
+ if (p2constant != 0) { |
+ // Fall back to the result of the div instruction if we could have sign |
+ // problems. |
+ __ Branch(&do_div, lt, left, Operand(zero_reg)); |
+ // Modulo by masking. |
+ __ And(scratch, left, p2constant - 1); |
+ __ Branch(&skip_div); |
+ } |
+ |
+ __ bind(&do_div); |
+ __ mfhi(scratch); |
+ __ bind(&skip_div); |
+ |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ // Result always takes the sign of the dividend (left). |
+ Label done; |
+ __ Branch(USE_DELAY_SLOT, &done, ge, left, Operand(zero_reg)); |
+ __ mov(result, scratch); |
+ DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); |
+ __ bind(&done); |
+ } else { |
+ __ Move(result, scratch); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoDivI(LDivI* instr) { |
+ const Register left = ToRegister(instr->InputAt(0)); |
+ const Register right = ToRegister(instr->InputAt(1)); |
+ const Register result = ToRegister(instr->result()); |
+ |
+ // On MIPS div is asynchronous - it will run in the background while we |
+ // check for special cases. |
+ __ div(left, right); |
+ |
+ // Check for x / 0. |
+ if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { |
+ DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg)); |
+ } |
+ |
+ // Check for (0 / -x) that will produce negative zero. |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ Label left_not_zero; |
+ __ Branch(&left_not_zero, ne, left, Operand(zero_reg)); |
+ DeoptimizeIf(lt, instr->environment(), right, Operand(zero_reg)); |
+ __ bind(&left_not_zero); |
+ } |
+ |
+ // Check for (-kMinInt / -1). |
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { |
+ Label left_not_min_int; |
+ __ Branch(&left_not_min_int, ne, left, Operand(kMinInt)); |
+ DeoptimizeIf(eq, instr->environment(), right, Operand(-1)); |
+ __ bind(&left_not_min_int); |
+ } |
+ |
+ __ mfhi(result); |
+ DeoptimizeIf(ne, instr->environment(), result, Operand(zero_reg)); |
+ __ mflo(result); |
+} |
+ |
+ |
+void LCodeGen::DoMulI(LMulI* instr) { |
+ Register scratch = scratch0(); |
+ Register result = ToRegister(instr->result()); |
+ // Note that result may alias left. |
+ Register left = ToRegister(instr->InputAt(0)); |
+ LOperand* right_op = instr->InputAt(1); |
+ |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ bool bailout_on_minus_zero = |
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); |
+ |
+ if (right_op->IsConstantOperand() && !can_overflow) { |
+ // Use optimized code for specific constants. |
+ int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); |
+ |
+ if (bailout_on_minus_zero && (constant < 0)) { |
+ // The case of a null constant will be handled separately. |
+ // If constant is negative and left is null, the result should be -0. |
+ DeoptimizeIf(eq, instr->environment(), left, Operand(zero_reg)); |
+ } |
+ |
+ switch (constant) { |
+ case -1: |
+ __ Subu(result, zero_reg, left); |
+ break; |
+ case 0: |
+ if (bailout_on_minus_zero) { |
+ // If left is strictly negative and the constant is null, the |
+ // result is -0. Deoptimize if required, otherwise return 0. |
+ DeoptimizeIf(lt, instr->environment(), left, Operand(zero_reg)); |
+ } |
+ __ mov(result, zero_reg); |
+ break; |
+ case 1: |
+ // Nothing to do. |
+ __ Move(result, left); |
+ break; |
+ default: |
+ // Multiplying by powers of two and powers of two plus or minus |
+ // one can be done faster with shifted operands. |
+ // For other constants we emit standard code. |
+ int32_t mask = constant >> 31; |
+ uint32_t constant_abs = (constant + mask) ^ mask; |
+ |
+ if (IsPowerOf2(constant_abs) || |
+ IsPowerOf2(constant_abs - 1) || |
+ IsPowerOf2(constant_abs + 1)) { |
+ if (IsPowerOf2(constant_abs)) { |
+ int32_t shift = WhichPowerOf2(constant_abs); |
+ __ sll(result, left, shift); |
+ } else if (IsPowerOf2(constant_abs - 1)) { |
+ int32_t shift = WhichPowerOf2(constant_abs - 1); |
+ __ sll(result, left, shift); |
+ __ Addu(result, result, left); |
+ } else if (IsPowerOf2(constant_abs + 1)) { |
+ int32_t shift = WhichPowerOf2(constant_abs + 1); |
+ __ sll(result, left, shift); |
+ __ Subu(result, result, left); |
+ } |
+ |
+ // Correct the sign of the result is the constant is negative. |
+ if (constant < 0) { |
+ __ Subu(result, zero_reg, result); |
+ } |
+ |
+ } else { |
+ // Generate standard code. |
+ __ li(at, constant); |
+ __ mul(result, left, at); |
+ } |
+ } |
+ |
+ } else { |
+ Register right = EmitLoadRegister(right_op, scratch); |
+ if (bailout_on_minus_zero) { |
+ __ Or(ToRegister(instr->TempAt(0)), left, right); |
+ } |
+ |
+ if (can_overflow) { |
+ // hi:lo = left * right. |
+ __ mult(left, right); |
+ __ mfhi(scratch); |
+ __ mflo(result); |
+ __ sra(at, result, 31); |
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(at)); |
+ } else { |
+ __ mul(result, left, right); |
+ } |
+ |
+ if (bailout_on_minus_zero) { |
+ // Bail out if the result is supposed to be negative zero. |
+ Label done; |
+ __ Branch(&done, ne, result, Operand(zero_reg)); |
+ DeoptimizeIf(lt, |
+ instr->environment(), |
+ ToRegister(instr->TempAt(0)), |
+ Operand(zero_reg)); |
+ __ bind(&done); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoBitI(LBitI* instr) { |
+ LOperand* left_op = instr->InputAt(0); |
+ LOperand* right_op = instr->InputAt(1); |
+ ASSERT(left_op->IsRegister()); |
+ Register left = ToRegister(left_op); |
+ Register result = ToRegister(instr->result()); |
+ Operand right(no_reg); |
+ |
+ if (right_op->IsStackSlot() || right_op->IsArgument()) { |
+ right = Operand(EmitLoadRegister(right_op, at)); |
+ } else { |
+ ASSERT(right_op->IsRegister() || right_op->IsConstantOperand()); |
+ right = ToOperand(right_op); |
+ } |
+ |
+ switch (instr->op()) { |
+ case Token::BIT_AND: |
+ __ And(result, left, right); |
+ break; |
+ case Token::BIT_OR: |
+ __ Or(result, left, right); |
+ break; |
+ case Token::BIT_XOR: |
+ __ Xor(result, left, right); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoShiftI(LShiftI* instr) { |
+ // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so |
+ // result may alias either of them. |
+ LOperand* right_op = instr->InputAt(1); |
+ Register left = ToRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ |
+ if (right_op->IsRegister()) { |
+ // No need to mask the right operand on MIPS, it is built into the variable |
+ // shift instructions. |
+ switch (instr->op()) { |
+ case Token::SAR: |
+ __ srav(result, left, ToRegister(right_op)); |
+ break; |
+ case Token::SHR: |
+ __ srlv(result, left, ToRegister(right_op)); |
+ if (instr->can_deopt()) { |
+ DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg)); |
+ } |
+ break; |
+ case Token::SHL: |
+ __ sllv(result, left, ToRegister(right_op)); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } else { |
+ // Mask the right_op operand. |
+ int value = ToInteger32(LConstantOperand::cast(right_op)); |
+ uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); |
+ switch (instr->op()) { |
+ case Token::SAR: |
+ if (shift_count != 0) { |
+ __ sra(result, left, shift_count); |
+ } else { |
+ __ Move(result, left); |
+ } |
+ break; |
+ case Token::SHR: |
+ if (shift_count != 0) { |
+ __ srl(result, left, shift_count); |
+ } else { |
+ if (instr->can_deopt()) { |
+ __ And(at, left, Operand(0x80000000)); |
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg)); |
+ } |
+ __ Move(result, left); |
+ } |
+ break; |
+ case Token::SHL: |
+ if (shift_count != 0) { |
+ __ sll(result, left, shift_count); |
+ } else { |
+ __ Move(result, left); |
+ } |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoSubI(LSubI* instr) { |
+ LOperand* left = instr->InputAt(0); |
+ LOperand* right = instr->InputAt(1); |
+ LOperand* result = instr->result(); |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ |
+ if (!can_overflow) { |
+ if (right->IsStackSlot() || right->IsArgument()) { |
+ Register right_reg = EmitLoadRegister(right, at); |
+ __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg)); |
+ } else { |
+ ASSERT(right->IsRegister() || right->IsConstantOperand()); |
+ __ Subu(ToRegister(result), ToRegister(left), ToOperand(right)); |
+ } |
+ } else { // can_overflow. |
+ Register overflow = scratch0(); |
+ Register scratch = scratch1(); |
+ if (right->IsStackSlot() || |
+ right->IsArgument() || |
+ right->IsConstantOperand()) { |
+ Register right_reg = EmitLoadRegister(right, scratch); |
+ __ SubuAndCheckForOverflow(ToRegister(result), |
+ ToRegister(left), |
+ right_reg, |
+ overflow); // Reg at also used as scratch. |
+ } else { |
+ ASSERT(right->IsRegister()); |
+ // Due to overflow check macros not supporting constant operands, |
+ // handling the IsConstantOperand case was moved to prev if clause. |
+ __ SubuAndCheckForOverflow(ToRegister(result), |
+ ToRegister(left), |
+ ToRegister(right), |
+ overflow); // Reg at also used as scratch. |
+ } |
+ DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoConstantI(LConstantI* instr) { |
+ ASSERT(instr->result()->IsRegister()); |
+ __ li(ToRegister(instr->result()), Operand(instr->value())); |
+} |
+ |
+ |
+void LCodeGen::DoConstantD(LConstantD* instr) { |
+ ASSERT(instr->result()->IsDoubleRegister()); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ double v = instr->value(); |
+ __ Move(result, v); |
+} |
+ |
+ |
+void LCodeGen::DoConstantT(LConstantT* instr) { |
+ ASSERT(instr->result()->IsRegister()); |
+ __ li(ToRegister(instr->result()), Operand(instr->value())); |
+} |
+ |
+ |
+void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) { |
+ Register result = ToRegister(instr->result()); |
+ Register array = ToRegister(instr->InputAt(0)); |
+ __ lw(result, FieldMemOperand(array, JSArray::kLengthOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) { |
+ Register result = ToRegister(instr->result()); |
+ Register array = ToRegister(instr->InputAt(0)); |
+ __ lw(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoElementsKind(LElementsKind* instr) { |
+ Register result = ToRegister(instr->result()); |
+ Register input = ToRegister(instr->InputAt(0)); |
+ |
+ // Load map into |result|. |
+ __ lw(result, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ // Load the map's "bit field 2" into |result|. We only need the first byte, |
+ // but the following bit field extraction takes care of that anyway. |
+ __ lbu(result, FieldMemOperand(result, Map::kBitField2Offset)); |
+ // Retrieve elements_kind from bit field 2. |
+ __ Ext(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount); |
+} |
+ |
+ |
+void LCodeGen::DoValueOf(LValueOf* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ Register map = ToRegister(instr->TempAt(0)); |
+ Label done; |
+ |
+ // If the object is a smi return the object. |
+ __ Move(result, input); |
+ __ JumpIfSmi(input, &done); |
+ |
+ // If the object is not a value type, return the object. |
+ __ GetObjectType(input, map, map); |
+ __ Branch(&done, ne, map, Operand(JS_VALUE_TYPE)); |
+ __ lw(result, FieldMemOperand(input, JSValue::kValueOffset)); |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoBitNotI(LBitNotI* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ __ Nor(result, zero_reg, Operand(input)); |
+} |
+ |
+ |
+void LCodeGen::DoThrow(LThrow* instr) { |
+ Register input_reg = EmitLoadRegister(instr->InputAt(0), at); |
+ __ push(input_reg); |
+ CallRuntime(Runtime::kThrow, 1, instr); |
+ |
+ if (FLAG_debug_code) { |
+ __ stop("Unreachable code."); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoAddI(LAddI* instr) { |
+ LOperand* left = instr->InputAt(0); |
+ LOperand* right = instr->InputAt(1); |
+ LOperand* result = instr->result(); |
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); |
+ |
+ if (!can_overflow) { |
+ if (right->IsStackSlot() || right->IsArgument()) { |
+ Register right_reg = EmitLoadRegister(right, at); |
+ __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg)); |
+ } else { |
+ ASSERT(right->IsRegister() || right->IsConstantOperand()); |
+ __ Addu(ToRegister(result), ToRegister(left), ToOperand(right)); |
+ } |
+ } else { // can_overflow. |
+ Register overflow = scratch0(); |
+ Register scratch = scratch1(); |
+ if (right->IsStackSlot() || |
+ right->IsArgument() || |
+ right->IsConstantOperand()) { |
+ Register right_reg = EmitLoadRegister(right, scratch); |
+ __ AdduAndCheckForOverflow(ToRegister(result), |
+ ToRegister(left), |
+ right_reg, |
+ overflow); // Reg at also used as scratch. |
+ } else { |
+ ASSERT(right->IsRegister()); |
+ // Due to overflow check macros not supporting constant operands, |
+ // handling the IsConstantOperand case was moved to prev if clause. |
+ __ AdduAndCheckForOverflow(ToRegister(result), |
+ ToRegister(left), |
+ ToRegister(right), |
+ overflow); // Reg at also used as scratch. |
+ } |
+ DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) { |
+ DoubleRegister left = ToDoubleRegister(instr->InputAt(0)); |
+ DoubleRegister right = ToDoubleRegister(instr->InputAt(1)); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ switch (instr->op()) { |
+ case Token::ADD: |
+ __ add_d(result, left, right); |
+ break; |
+ case Token::SUB: |
+ __ sub_d(result, left, right); |
+ break; |
+ case Token::MUL: |
+ __ mul_d(result, left, right); |
+ break; |
+ case Token::DIV: |
+ __ div_d(result, left, right); |
+ break; |
+ case Token::MOD: { |
+ // Save a0-a3 on the stack. |
+ RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit(); |
+ __ MultiPush(saved_regs); |
+ |
+ __ PrepareCallCFunction(0, 2, scratch0()); |
+ __ SetCallCDoubleArguments(left, right); |
+ __ CallCFunction( |
+ ExternalReference::double_fp_operation(Token::MOD, isolate()), |
+ 0, 2); |
+ // Move the result in the double result register. |
+ __ GetCFunctionDoubleResult(result); |
+ |
+ // Restore saved register. |
+ __ MultiPop(saved_regs); |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) { |
+ ASSERT(ToRegister(instr->InputAt(0)).is(a1)); |
+ ASSERT(ToRegister(instr->InputAt(1)).is(a0)); |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ |
+ BinaryOpStub stub(instr->op(), NO_OVERWRITE); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ // Other arch use a nop here, to signal that there is no inlined |
+ // patchable code. Mips does not need the nop, since our marker |
+ // instruction (andi zero_reg) will never be used in normal code. |
+} |
+ |
+ |
+int LCodeGen::GetNextEmittedBlock(int block) { |
+ for (int i = block + 1; i < graph()->blocks()->length(); ++i) { |
+ LLabel* label = chunk_->GetLabel(i); |
+ if (!label->HasReplacement()) return i; |
+ } |
+ return -1; |
+} |
+ |
+ |
+void LCodeGen::EmitBranch(int left_block, int right_block, |
+ Condition cc, Register src1, const Operand& src2) { |
+ int next_block = GetNextEmittedBlock(current_block_); |
+ right_block = chunk_->LookupDestination(right_block); |
+ left_block = chunk_->LookupDestination(left_block); |
+ if (right_block == left_block) { |
+ EmitGoto(left_block); |
+ } else if (left_block == next_block) { |
+ __ Branch(chunk_->GetAssemblyLabel(right_block), |
+ NegateCondition(cc), src1, src2); |
+ } else if (right_block == next_block) { |
+ __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2); |
+ } else { |
+ __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2); |
+ __ Branch(chunk_->GetAssemblyLabel(right_block)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::EmitBranchF(int left_block, int right_block, |
+ Condition cc, FPURegister src1, FPURegister src2) { |
+ int next_block = GetNextEmittedBlock(current_block_); |
+ right_block = chunk_->LookupDestination(right_block); |
+ left_block = chunk_->LookupDestination(left_block); |
+ if (right_block == left_block) { |
+ EmitGoto(left_block); |
+ } else if (left_block == next_block) { |
+ __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL, |
+ NegateCondition(cc), src1, src2); |
+ } else if (right_block == next_block) { |
+ __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2); |
+ } else { |
+ __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2); |
+ __ Branch(chunk_->GetAssemblyLabel(right_block)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoBranch(LBranch* instr) { |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ |
+ Representation r = instr->hydrogen()->value()->representation(); |
+ if (r.IsInteger32()) { |
+ Register reg = ToRegister(instr->InputAt(0)); |
+ EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg)); |
+ } else if (r.IsDouble()) { |
+ DoubleRegister reg = ToDoubleRegister(instr->InputAt(0)); |
+ // Test the double value. Zero and NaN are false. |
+ EmitBranchF(true_block, false_block, ne, reg, kDoubleRegZero); |
+ } else { |
+ ASSERT(r.IsTagged()); |
+ Register reg = ToRegister(instr->InputAt(0)); |
+ HType type = instr->hydrogen()->value()->type(); |
+ if (type.IsBoolean()) { |
+ __ LoadRoot(at, Heap::kTrueValueRootIndex); |
+ EmitBranch(true_block, false_block, eq, reg, Operand(at)); |
+ } else if (type.IsSmi()) { |
+ EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg)); |
+ } else { |
+ Label* true_label = chunk_->GetAssemblyLabel(true_block); |
+ Label* false_label = chunk_->GetAssemblyLabel(false_block); |
+ |
+ ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); |
+ // Avoid deopts in the case where we've never executed this path before. |
+ if (expected.IsEmpty()) expected = ToBooleanStub::all_types(); |
+ |
+ if (expected.Contains(ToBooleanStub::UNDEFINED)) { |
+ // undefined -> false. |
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
+ __ Branch(false_label, eq, reg, Operand(at)); |
+ } |
+ if (expected.Contains(ToBooleanStub::BOOLEAN)) { |
+ // Boolean -> its value. |
+ __ LoadRoot(at, Heap::kTrueValueRootIndex); |
+ __ Branch(true_label, eq, reg, Operand(at)); |
+ __ LoadRoot(at, Heap::kFalseValueRootIndex); |
+ __ Branch(false_label, eq, reg, Operand(at)); |
+ } |
+ if (expected.Contains(ToBooleanStub::NULL_TYPE)) { |
+ // 'null' -> false. |
+ __ LoadRoot(at, Heap::kNullValueRootIndex); |
+ __ Branch(false_label, eq, reg, Operand(at)); |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::SMI)) { |
+ // Smis: 0 -> false, all other -> true. |
+ __ Branch(false_label, eq, reg, Operand(zero_reg)); |
+ __ JumpIfSmi(reg, true_label); |
+ } else if (expected.NeedsMap()) { |
+ // If we need a map later and have a Smi -> deopt. |
+ __ And(at, reg, Operand(kSmiTagMask)); |
+ DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); |
+ } |
+ |
+ const Register map = scratch0(); |
+ if (expected.NeedsMap()) { |
+ __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset)); |
+ if (expected.CanBeUndetectable()) { |
+ // Undetectable -> false. |
+ __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset)); |
+ __ And(at, at, Operand(1 << Map::kIsUndetectable)); |
+ __ Branch(false_label, ne, at, Operand(zero_reg)); |
+ } |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { |
+ // spec object -> true. |
+ __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
+ __ Branch(true_label, ge, at, Operand(FIRST_SPEC_OBJECT_TYPE)); |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::STRING)) { |
+ // String value -> false iff empty. |
+ Label not_string; |
+ __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
+ __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE)); |
+ __ lw(at, FieldMemOperand(reg, String::kLengthOffset)); |
+ __ Branch(true_label, ne, at, Operand(zero_reg)); |
+ __ Branch(false_label); |
+ __ bind(¬_string); |
+ } |
+ |
+ if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { |
+ // heap number -> false iff +0, -0, or NaN. |
+ DoubleRegister dbl_scratch = double_scratch0(); |
+ Label not_heap_number; |
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
+ __ Branch(¬_heap_number, ne, map, Operand(at)); |
+ __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); |
+ __ BranchF(true_label, false_label, ne, dbl_scratch, kDoubleRegZero); |
+ // Falls through if dbl_scratch == 0. |
+ __ Branch(false_label); |
+ __ bind(¬_heap_number); |
+ } |
+ |
+ // We've seen something for the first time -> deopt. |
+ DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg)); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::EmitGoto(int block) { |
+ block = chunk_->LookupDestination(block); |
+ int next_block = GetNextEmittedBlock(current_block_); |
+ if (block != next_block) { |
+ __ jmp(chunk_->GetAssemblyLabel(block)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoGoto(LGoto* instr) { |
+ EmitGoto(instr->block_id()); |
+} |
+ |
+ |
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { |
+ Condition cond = kNoCondition; |
+ switch (op) { |
+ case Token::EQ: |
+ case Token::EQ_STRICT: |
+ cond = eq; |
+ break; |
+ case Token::LT: |
+ cond = is_unsigned ? lo : lt; |
+ break; |
+ case Token::GT: |
+ cond = is_unsigned ? hi : gt; |
+ break; |
+ case Token::LTE: |
+ cond = is_unsigned ? ls : le; |
+ break; |
+ case Token::GTE: |
+ cond = is_unsigned ? hs : ge; |
+ break; |
+ case Token::IN: |
+ case Token::INSTANCEOF: |
+ default: |
+ UNREACHABLE(); |
+ } |
+ return cond; |
+} |
+ |
+ |
+void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) { |
+ LOperand* left = instr->InputAt(0); |
+ LOperand* right = instr->InputAt(1); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ |
+ Condition cond = TokenToCondition(instr->op(), false); |
+ |
+ if (left->IsConstantOperand() && right->IsConstantOperand()) { |
+ // We can statically evaluate the comparison. |
+ double left_val = ToDouble(LConstantOperand::cast(left)); |
+ double right_val = ToDouble(LConstantOperand::cast(right)); |
+ int next_block = |
+ EvalComparison(instr->op(), left_val, right_val) ? true_block |
+ : false_block; |
+ EmitGoto(next_block); |
+ } else { |
+ if (instr->is_double()) { |
+ // Compare left and right as doubles and load the |
+ // resulting flags into the normal status register. |
+ FPURegister left_reg = ToDoubleRegister(left); |
+ FPURegister right_reg = ToDoubleRegister(right); |
+ |
+ // If a NaN is involved, i.e. the result is unordered, |
+ // jump to false block label. |
+ __ BranchF(NULL, chunk_->GetAssemblyLabel(false_block), eq, |
+ left_reg, right_reg); |
+ |
+ EmitBranchF(true_block, false_block, cond, left_reg, right_reg); |
+ } else { |
+ Register cmp_left; |
+ Operand cmp_right = Operand(0); |
+ |
+ if (right->IsConstantOperand()) { |
+ cmp_left = ToRegister(left); |
+ cmp_right = Operand(ToInteger32(LConstantOperand::cast(right))); |
+ } else if (left->IsConstantOperand()) { |
+ cmp_left = ToRegister(right); |
+ cmp_right = Operand(ToInteger32(LConstantOperand::cast(left))); |
+ // We transposed the operands. Reverse the condition. |
+ cond = ReverseCondition(cond); |
+ } else { |
+ cmp_left = ToRegister(left); |
+ cmp_right = Operand(ToRegister(right)); |
+ } |
+ |
+ EmitBranch(true_block, false_block, cond, cmp_left, cmp_right); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { |
+ Register left = ToRegister(instr->InputAt(0)); |
+ Register right = ToRegister(instr->InputAt(1)); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ |
+ EmitBranch(true_block, false_block, eq, left, Operand(right)); |
+} |
+ |
+ |
+void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) { |
+ Register left = ToRegister(instr->InputAt(0)); |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ |
+ EmitBranch(true_block, false_block, eq, left, |
+ Operand(instr->hydrogen()->right())); |
+} |
+ |
+ |
+ |
+void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) { |
+ Register scratch = scratch0(); |
+ Register reg = ToRegister(instr->InputAt(0)); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ |
+ // If the expression is known to be untagged or a smi, then it's definitely |
+ // not null, and it can't be a an undetectable object. |
+ if (instr->hydrogen()->representation().IsSpecialization() || |
+ instr->hydrogen()->type().IsSmi()) { |
+ EmitGoto(false_block); |
+ return; |
+ } |
+ |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ |
+ Heap::RootListIndex nil_value = instr->nil() == kNullValue ? |
+ Heap::kNullValueRootIndex : |
+ Heap::kUndefinedValueRootIndex; |
+ __ LoadRoot(at, nil_value); |
+ if (instr->kind() == kStrictEquality) { |
+ EmitBranch(true_block, false_block, eq, reg, Operand(at)); |
+ } else { |
+ Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ? |
+ Heap::kUndefinedValueRootIndex : |
+ Heap::kNullValueRootIndex; |
+ Label* true_label = chunk_->GetAssemblyLabel(true_block); |
+ Label* false_label = chunk_->GetAssemblyLabel(false_block); |
+ __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at)); |
+ __ LoadRoot(at, other_nil_value); // In the delay slot. |
+ __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at)); |
+ __ JumpIfSmi(reg, false_label); // In the delay slot. |
+ // Check for undetectable objects by looking in the bit field in |
+ // the map. The object has already been smi checked. |
+ __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); |
+ __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
+ __ And(scratch, scratch, 1 << Map::kIsUndetectable); |
+ EmitBranch(true_block, false_block, ne, scratch, Operand(zero_reg)); |
+ } |
+} |
+ |
+ |
+Condition LCodeGen::EmitIsObject(Register input, |
+ Register temp1, |
+ Label* is_not_object, |
+ Label* is_object) { |
+ Register temp2 = scratch0(); |
+ __ JumpIfSmi(input, is_not_object); |
+ |
+ __ LoadRoot(temp2, Heap::kNullValueRootIndex); |
+ __ Branch(is_object, eq, input, Operand(temp2)); |
+ |
+ // Load map. |
+ __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ // Undetectable objects behave like undefined. |
+ __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset)); |
+ __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable)); |
+ __ Branch(is_not_object, ne, temp2, Operand(zero_reg)); |
+ |
+ // Load instance type and check that it is in object type range. |
+ __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset)); |
+ __ Branch(is_not_object, |
+ lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
+ |
+ return le; |
+} |
+ |
+ |
+void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { |
+ Register reg = ToRegister(instr->InputAt(0)); |
+ Register temp1 = ToRegister(instr->TempAt(0)); |
+ Register temp2 = scratch0(); |
+ |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ Label* true_label = chunk_->GetAssemblyLabel(true_block); |
+ Label* false_label = chunk_->GetAssemblyLabel(false_block); |
+ |
+ Condition true_cond = |
+ EmitIsObject(reg, temp1, false_label, true_label); |
+ |
+ EmitBranch(true_block, false_block, true_cond, temp2, |
+ Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
+} |
+ |
+ |
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ |
+ Register input_reg = EmitLoadRegister(instr->InputAt(0), at); |
+ __ And(at, input_reg, kSmiTagMask); |
+ EmitBranch(true_block, false_block, eq, at, Operand(zero_reg)); |
+} |
+ |
+ |
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register temp = ToRegister(instr->TempAt(0)); |
+ |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ |
+ __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block)); |
+ __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); |
+ __ And(at, temp, Operand(1 << Map::kIsUndetectable)); |
+ EmitBranch(true_block, false_block, ne, at, Operand(zero_reg)); |
+} |
+ |
+ |
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { |
+ InstanceType from = instr->from(); |
+ InstanceType to = instr->to(); |
+ if (from == FIRST_TYPE) return to; |
+ ASSERT(from == to || to == LAST_TYPE); |
+ return from; |
+} |
+ |
+ |
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { |
+ InstanceType from = instr->from(); |
+ InstanceType to = instr->to(); |
+ if (from == to) return eq; |
+ if (to == LAST_TYPE) return hs; |
+ if (from == FIRST_TYPE) return ls; |
+ UNREACHABLE(); |
+ return eq; |
+} |
+ |
+ |
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { |
+ Register scratch = scratch0(); |
+ Register input = ToRegister(instr->InputAt(0)); |
+ |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ |
+ Label* false_label = chunk_->GetAssemblyLabel(false_block); |
+ |
+ __ JumpIfSmi(input, false_label); |
+ |
+ __ GetObjectType(input, scratch, scratch); |
+ EmitBranch(true_block, |
+ false_block, |
+ BranchCondition(instr->hydrogen()), |
+ scratch, |
+ Operand(TestType(instr->hydrogen()))); |
+} |
+ |
+ |
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotString(input); |
+ } |
+ |
+ __ lw(result, FieldMemOperand(input, String::kHashFieldOffset)); |
+ __ IndexFromHash(result, result); |
+} |
+ |
+ |
+void LCodeGen::DoHasCachedArrayIndexAndBranch( |
+ LHasCachedArrayIndexAndBranch* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register scratch = scratch0(); |
+ |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ |
+ __ lw(scratch, |
+ FieldMemOperand(input, String::kHashFieldOffset)); |
+ __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask)); |
+ EmitBranch(true_block, false_block, eq, at, Operand(zero_reg)); |
+} |
+ |
+ |
+// Branches to a label or falls through with this instance class-name adr |
+// returned in temp reg, available for comparison by the caller. Trashes the |
+// temp registers, but not the input. Only input and temp2 may alias. |
+void LCodeGen::EmitClassOfTest(Label* is_true, |
+ Label* is_false, |
+ Handle<String>class_name, |
+ Register input, |
+ Register temp, |
+ Register temp2) { |
+ ASSERT(!input.is(temp)); |
+ ASSERT(!temp.is(temp2)); // But input and temp2 may be the same register. |
+ __ JumpIfSmi(input, is_false); |
+ |
+ if (class_name->IsEqualTo(CStrVector("Function"))) { |
+ // Assuming the following assertions, we can use the same compares to test |
+ // for both being a function type and being in the object type range. |
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); |
+ STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == |
+ FIRST_SPEC_OBJECT_TYPE + 1); |
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == |
+ LAST_SPEC_OBJECT_TYPE - 1); |
+ STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); |
+ |
+ __ GetObjectType(input, temp, temp2); |
+ __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); |
+ __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); |
+ __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE)); |
+ } else { |
+ // Faster code path to avoid two compares: subtract lower bound from the |
+ // actual type and do a signed compare with the width of the type range. |
+ __ GetObjectType(input, temp, temp2); |
+ __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
+ __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - |
+ FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
+ } |
+ |
+ // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. |
+ // Check if the constructor in the map is a function. |
+ __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset)); |
+ |
+ // Objects with a non-function constructor have class 'Object'. |
+ __ GetObjectType(temp, temp2, temp2); |
+ if (class_name->IsEqualTo(CStrVector("Object"))) { |
+ __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE)); |
+ } else { |
+ __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE)); |
+ } |
+ |
+ // temp now contains the constructor function. Grab the |
+ // instance class name from there. |
+ __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); |
+ __ lw(temp, FieldMemOperand(temp, |
+ SharedFunctionInfo::kInstanceClassNameOffset)); |
+ // The class name we are testing against is a symbol because it's a literal. |
+ // The name in the constructor is a symbol because of the way the context is |
+ // booted. This routine isn't expected to work for random API-created |
+ // classes and it doesn't have to because you can't access it with natives |
+ // syntax. Since both sides are symbols it is sufficient to use an identity |
+ // comparison. |
+ |
+ // End with the address of this class_name instance in temp register. |
+ // On MIPS, the caller must do the comparison with Handle<String>class_name. |
+} |
+ |
+ |
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register temp = scratch0(); |
+ Register temp2 = ToRegister(instr->TempAt(0)); |
+ Handle<String> class_name = instr->hydrogen()->class_name(); |
+ |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ |
+ Label* true_label = chunk_->GetAssemblyLabel(true_block); |
+ Label* false_label = chunk_->GetAssemblyLabel(false_block); |
+ |
+ EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2); |
+ |
+ EmitBranch(true_block, false_block, eq, temp, Operand(class_name)); |
+} |
+ |
+ |
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { |
+ Register reg = ToRegister(instr->InputAt(0)); |
+ Register temp = ToRegister(instr->TempAt(0)); |
+ int true_block = instr->true_block_id(); |
+ int false_block = instr->false_block_id(); |
+ |
+ __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); |
+ EmitBranch(true_block, false_block, eq, temp, Operand(instr->map())); |
+} |
+ |
+ |
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) { |
+ Label true_label, done; |
+ ASSERT(ToRegister(instr->InputAt(0)).is(a0)); // Object is in a0. |
+ ASSERT(ToRegister(instr->InputAt(1)).is(a1)); // Function is in a1. |
+ Register result = ToRegister(instr->result()); |
+ ASSERT(result.is(v0)); |
+ |
+ InstanceofStub stub(InstanceofStub::kArgsInRegisters); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ |
+ __ Branch(&true_label, eq, result, Operand(zero_reg)); |
+ __ li(result, Operand(factory()->false_value())); |
+ __ Branch(&done); |
+ __ bind(&true_label); |
+ __ li(result, Operand(factory()->true_value())); |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { |
+ class DeferredInstanceOfKnownGlobal: public LDeferredCode { |
+ public: |
+ DeferredInstanceOfKnownGlobal(LCodeGen* codegen, |
+ LInstanceOfKnownGlobal* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { |
+ codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_); |
+ } |
+ virtual LInstruction* instr() { return instr_; } |
+ Label* map_check() { return &map_check_; } |
+ |
+ private: |
+ LInstanceOfKnownGlobal* instr_; |
+ Label map_check_; |
+ }; |
+ |
+ DeferredInstanceOfKnownGlobal* deferred; |
+ deferred = new DeferredInstanceOfKnownGlobal(this, instr); |
+ |
+ Label done, false_result; |
+ Register object = ToRegister(instr->InputAt(0)); |
+ Register temp = ToRegister(instr->TempAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ |
+ ASSERT(object.is(a0)); |
+ ASSERT(result.is(v0)); |
+ |
+ // A Smi is not instance of anything. |
+ __ JumpIfSmi(object, &false_result); |
+ |
+ // This is the inlined call site instanceof cache. The two occurences of the |
+ // hole value will be patched to the last map/result pair generated by the |
+ // instanceof stub. |
+ Label cache_miss; |
+ Register map = temp; |
+ __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ |
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
+ __ bind(deferred->map_check()); // Label for calculating code patching. |
+ // We use Factory::the_hole_value() on purpose instead of loading from the |
+ // root array to force relocation to be able to later patch with |
+ // the cached map. |
+ __ li(at, Operand(factory()->the_hole_value()), true); |
+ __ Branch(&cache_miss, ne, map, Operand(at)); |
+ // We use Factory::the_hole_value() on purpose instead of loading from the |
+ // root array to force relocation to be able to later patch |
+ // with true or false. |
+ __ li(result, Operand(factory()->the_hole_value()), true); |
+ __ Branch(&done); |
+ |
+ // The inlined call site cache did not match. Check null and string before |
+ // calling the deferred code. |
+ __ bind(&cache_miss); |
+ // Null is not instance of anything. |
+ __ LoadRoot(temp, Heap::kNullValueRootIndex); |
+ __ Branch(&false_result, eq, object, Operand(temp)); |
+ |
+ // String values is not instance of anything. |
+ Condition cc = __ IsObjectStringType(object, temp, temp); |
+ __ Branch(&false_result, cc, temp, Operand(zero_reg)); |
+ |
+ // Go to the deferred code. |
+ __ Branch(deferred->entry()); |
+ |
+ __ bind(&false_result); |
+ __ LoadRoot(result, Heap::kFalseValueRootIndex); |
+ |
+ // Here result has either true or false. Deferred code also produces true or |
+ // false object. |
+ __ bind(deferred->exit()); |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, |
+ Label* map_check) { |
+ Register result = ToRegister(instr->result()); |
+ ASSERT(result.is(v0)); |
+ |
+ InstanceofStub::Flags flags = InstanceofStub::kNoFlags; |
+ flags = static_cast<InstanceofStub::Flags>( |
+ flags | InstanceofStub::kArgsInRegisters); |
+ flags = static_cast<InstanceofStub::Flags>( |
+ flags | InstanceofStub::kCallSiteInlineCheck); |
+ flags = static_cast<InstanceofStub::Flags>( |
+ flags | InstanceofStub::kReturnTrueFalseObject); |
+ InstanceofStub stub(flags); |
+ |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ |
+ // Get the temp register reserved by the instruction. This needs to be t0 as |
+ // its slot of the pushing of safepoint registers is used to communicate the |
+ // offset to the location of the map check. |
+ Register temp = ToRegister(instr->TempAt(0)); |
+ ASSERT(temp.is(t0)); |
+ __ li(InstanceofStub::right(), Operand(instr->function())); |
+ static const int kAdditionalDelta = 7; |
+ int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta; |
+ Label before_push_delta; |
+ __ bind(&before_push_delta); |
+ { |
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
+ __ li(temp, Operand(delta * kPointerSize), true); |
+ __ StoreToSafepointRegisterSlot(temp, temp); |
+ } |
+ CallCodeGeneric(stub.GetCode(), |
+ RelocInfo::CODE_TARGET, |
+ instr, |
+ RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
+ // Put the result value into the result register slot and |
+ // restore all registers. |
+ __ StoreToSafepointRegisterSlot(result, result); |
+} |
+ |
+ |
+static Condition ComputeCompareCondition(Token::Value op) { |
+ switch (op) { |
+ case Token::EQ_STRICT: |
+ case Token::EQ: |
+ return eq; |
+ case Token::LT: |
+ return lt; |
+ case Token::GT: |
+ return gt; |
+ case Token::LTE: |
+ return le; |
+ case Token::GTE: |
+ return ge; |
+ default: |
+ UNREACHABLE(); |
+ return kNoCondition; |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCmpT(LCmpT* instr) { |
+ Token::Value op = instr->op(); |
+ |
+ Handle<Code> ic = CompareIC::GetUninitialized(op); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+ // On MIPS there is no need for a "no inlined smi code" marker (nop). |
+ |
+ Condition condition = ComputeCompareCondition(op); |
+ // A minor optimization that relies on LoadRoot always emitting one |
+ // instruction. |
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); |
+ Label done; |
+ __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg)); |
+ __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); |
+ __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); |
+ ASSERT_EQ(3, masm()->InstructionsGeneratedSince(&done)); |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoReturn(LReturn* instr) { |
+ if (FLAG_trace) { |
+ // Push the return value on the stack as the parameter. |
+ // Runtime::TraceExit returns its parameter in v0. |
+ __ push(v0); |
+ __ CallRuntime(Runtime::kTraceExit, 1); |
+ } |
+ int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize; |
+ __ mov(sp, fp); |
+ __ Pop(ra, fp); |
+ __ Addu(sp, sp, Operand(sp_delta)); |
+ __ Jump(ra); |
+} |
+ |
+ |
+void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { |
+ Register result = ToRegister(instr->result()); |
+ __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell()))); |
+ __ lw(result, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); |
+ if (instr->hydrogen()->RequiresHoleCheck()) { |
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
+ DeoptimizeIf(eq, instr->environment(), result, Operand(at)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { |
+ ASSERT(ToRegister(instr->global_object()).is(a0)); |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ |
+ __ li(a2, Operand(instr->name())); |
+ RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET |
+ : RelocInfo::CODE_TARGET_CONTEXT; |
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
+ CallCode(ic, mode, instr); |
+} |
+ |
+ |
+void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { |
+ Register value = ToRegister(instr->InputAt(0)); |
+ Register scratch = scratch0(); |
+ Register scratch2 = ToRegister(instr->TempAt(0)); |
+ |
+ // Load the cell. |
+ __ li(scratch, Operand(Handle<Object>(instr->hydrogen()->cell()))); |
+ |
+ // If the cell we are storing to contains the hole it could have |
+ // been deleted from the property dictionary. In that case, we need |
+ // to update the property details in the property dictionary to mark |
+ // it as no longer deleted. |
+ if (instr->hydrogen()->RequiresHoleCheck()) { |
+ __ lw(scratch2, |
+ FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); |
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
+ DeoptimizeIf(eq, instr->environment(), scratch2, Operand(at)); |
+ } |
+ |
+ // Store the value. |
+ __ sw(value, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); |
+ |
+ // Cells are always in the remembered set. |
+ if (instr->hydrogen()->NeedsWriteBarrier()) { |
+ HType type = instr->hydrogen()->value()->type(); |
+ SmiCheck check_needed = |
+ type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
+ __ RecordWriteField(scratch, |
+ JSGlobalPropertyCell::kValueOffset, |
+ value, |
+ scratch2, |
+ kRAHasBeenSaved, |
+ kSaveFPRegs, |
+ OMIT_REMEMBERED_SET, |
+ check_needed); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { |
+ ASSERT(ToRegister(instr->global_object()).is(a1)); |
+ ASSERT(ToRegister(instr->value()).is(a0)); |
+ |
+ __ li(a2, Operand(instr->name())); |
+ Handle<Code> ic = instr->strict_mode() |
+ ? isolate()->builtins()->StoreIC_Initialize_Strict() |
+ : isolate()->builtins()->StoreIC_Initialize(); |
+ CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); |
+} |
+ |
+ |
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { |
+ Register context = ToRegister(instr->context()); |
+ Register result = ToRegister(instr->result()); |
+ __ lw(result, ContextOperand(context, instr->slot_index())); |
+} |
+ |
+ |
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { |
+ Register context = ToRegister(instr->context()); |
+ Register value = ToRegister(instr->value()); |
+ MemOperand target = ContextOperand(context, instr->slot_index()); |
+ __ sw(value, target); |
+ if (instr->hydrogen()->NeedsWriteBarrier()) { |
+ HType type = instr->hydrogen()->value()->type(); |
+ SmiCheck check_needed = |
+ type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
+ __ RecordWriteContextSlot(context, |
+ target.offset(), |
+ value, |
+ scratch0(), |
+ kRAHasBeenSaved, |
+ kSaveFPRegs, |
+ EMIT_REMEMBERED_SET, |
+ check_needed); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { |
+ Register object = ToRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ if (instr->hydrogen()->is_in_object()) { |
+ __ lw(result, FieldMemOperand(object, instr->hydrogen()->offset())); |
+ } else { |
+ __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
+ __ lw(result, FieldMemOperand(result, instr->hydrogen()->offset())); |
+ } |
+} |
+ |
+ |
+void LCodeGen::EmitLoadFieldOrConstantFunction(Register result, |
+ Register object, |
+ Handle<Map> type, |
+ Handle<String> name) { |
+ LookupResult lookup(isolate()); |
+ type->LookupInDescriptors(NULL, *name, &lookup); |
+ ASSERT(lookup.IsProperty() && |
+ (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION)); |
+ if (lookup.type() == FIELD) { |
+ int index = lookup.GetLocalFieldIndexFromMap(*type); |
+ int offset = index * kPointerSize; |
+ if (index < 0) { |
+ // Negative property indices are in-object properties, indexed |
+ // from the end of the fixed part of the object. |
+ __ lw(result, FieldMemOperand(object, offset + type->instance_size())); |
+ } else { |
+ // Non-negative property indices are in the properties array. |
+ __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
+ __ lw(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize)); |
+ } |
+ } else { |
+ Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type)); |
+ LoadHeapObject(result, Handle<HeapObject>::cast(function)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { |
+ Register object = ToRegister(instr->object()); |
+ Register result = ToRegister(instr->result()); |
+ Register scratch = scratch0(); |
+ int map_count = instr->hydrogen()->types()->length(); |
+ Handle<String> name = instr->hydrogen()->name(); |
+ if (map_count == 0) { |
+ ASSERT(instr->hydrogen()->need_generic()); |
+ __ li(a2, Operand(name)); |
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+ } else { |
+ Label done; |
+ __ lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ for (int i = 0; i < map_count - 1; ++i) { |
+ Handle<Map> map = instr->hydrogen()->types()->at(i); |
+ Label next; |
+ __ Branch(&next, ne, scratch, Operand(map)); |
+ EmitLoadFieldOrConstantFunction(result, object, map, name); |
+ __ Branch(&done); |
+ __ bind(&next); |
+ } |
+ Handle<Map> map = instr->hydrogen()->types()->last(); |
+ if (instr->hydrogen()->need_generic()) { |
+ Label generic; |
+ __ Branch(&generic, ne, scratch, Operand(map)); |
+ EmitLoadFieldOrConstantFunction(result, object, map, name); |
+ __ Branch(&done); |
+ __ bind(&generic); |
+ __ li(a2, Operand(name)); |
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+ } else { |
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(map)); |
+ EmitLoadFieldOrConstantFunction(result, object, map, name); |
+ } |
+ __ bind(&done); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { |
+ ASSERT(ToRegister(instr->object()).is(a0)); |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ |
+ // Name is always in a2. |
+ __ li(a2, Operand(instr->name())); |
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { |
+ Register scratch = scratch0(); |
+ Register function = ToRegister(instr->function()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ // Check that the function really is a function. Load map into the |
+ // result register. |
+ __ GetObjectType(function, result, scratch); |
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(JS_FUNCTION_TYPE)); |
+ |
+ // Make sure that the function has an instance prototype. |
+ Label non_instance; |
+ __ lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); |
+ __ And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); |
+ __ Branch(&non_instance, ne, scratch, Operand(zero_reg)); |
+ |
+ // Get the prototype or initial map from the function. |
+ __ lw(result, |
+ FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
+ |
+ // Check that the function has a prototype or an initial map. |
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex); |
+ DeoptimizeIf(eq, instr->environment(), result, Operand(at)); |
+ |
+ // If the function does not have an initial map, we're done. |
+ Label done; |
+ __ GetObjectType(result, scratch, scratch); |
+ __ Branch(&done, ne, scratch, Operand(MAP_TYPE)); |
+ |
+ // Get the prototype from the initial map. |
+ __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
+ __ Branch(&done); |
+ |
+ // Non-instance prototype: Fetch prototype from constructor field |
+ // in initial map. |
+ __ bind(&non_instance); |
+ __ lw(result, FieldMemOperand(result, Map::kConstructorOffset)); |
+ |
+ // All done. |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoLoadElements(LLoadElements* instr) { |
+ Register result = ToRegister(instr->result()); |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register scratch = scratch0(); |
+ |
+ __ lw(result, FieldMemOperand(input, JSObject::kElementsOffset)); |
+ if (FLAG_debug_code) { |
+ Label done, fail; |
+ __ lw(scratch, FieldMemOperand(result, HeapObject::kMapOffset)); |
+ __ LoadRoot(at, Heap::kFixedArrayMapRootIndex); |
+ __ Branch(USE_DELAY_SLOT, &done, eq, scratch, Operand(at)); |
+ __ LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); // In the delay slot. |
+ __ Branch(&done, eq, scratch, Operand(at)); |
+ // |scratch| still contains |input|'s map. |
+ __ lbu(scratch, FieldMemOperand(scratch, Map::kBitField2Offset)); |
+ __ Ext(scratch, scratch, Map::kElementsKindShift, |
+ Map::kElementsKindBitCount); |
+ __ Branch(&done, eq, scratch, |
+ Operand(FAST_ELEMENTS)); |
+ __ Branch(&fail, lt, scratch, |
+ Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND)); |
+ __ Branch(&done, le, scratch, |
+ Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND)); |
+ __ bind(&fail); |
+ __ Abort("Check for fast or external elements failed."); |
+ __ bind(&done); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadExternalArrayPointer( |
+ LLoadExternalArrayPointer* instr) { |
+ Register to_reg = ToRegister(instr->result()); |
+ Register from_reg = ToRegister(instr->InputAt(0)); |
+ __ lw(to_reg, FieldMemOperand(from_reg, |
+ ExternalArray::kExternalPointerOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { |
+ Register arguments = ToRegister(instr->arguments()); |
+ Register length = ToRegister(instr->length()); |
+ Register index = ToRegister(instr->index()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ // Bailout index is not a valid argument index. Use unsigned check to get |
+ // negative check for free. |
+ |
+ // TODO(plind): Shoud be optimized to do the sub before the DeoptimizeIf(), |
+ // as they do in Arm. It will save us an instruction. |
+ DeoptimizeIf(ls, instr->environment(), length, Operand(index)); |
+ |
+ // There are two words between the frame pointer and the last argument. |
+ // Subtracting from length accounts for one of them, add one more. |
+ __ subu(length, length, index); |
+ __ Addu(length, length, Operand(1)); |
+ __ sll(length, length, kPointerSizeLog2); |
+ __ Addu(at, arguments, Operand(length)); |
+ __ lw(result, MemOperand(at, 0)); |
+} |
+ |
+ |
+void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) { |
+ Register elements = ToRegister(instr->elements()); |
+ Register key = EmitLoadRegister(instr->key(), scratch0()); |
+ Register result = ToRegister(instr->result()); |
+ Register scratch = scratch0(); |
+ |
+ // Load the result. |
+ __ sll(scratch, key, kPointerSizeLog2); // Key indexes words. |
+ __ addu(scratch, elements, scratch); |
+ __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
+ |
+ // Check for the hole value. |
+ if (instr->hydrogen()->RequiresHoleCheck()) { |
+ __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); |
+ DeoptimizeIf(eq, instr->environment(), result, Operand(scratch)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadKeyedFastDoubleElement( |
+ LLoadKeyedFastDoubleElement* instr) { |
+ Register elements = ToRegister(instr->elements()); |
+ bool key_is_constant = instr->key()->IsConstantOperand(); |
+ Register key = no_reg; |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ Register scratch = scratch0(); |
+ |
+ int shift_size = |
+ ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); |
+ int constant_key = 0; |
+ if (key_is_constant) { |
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
+ if (constant_key & 0xF0000000) { |
+ Abort("array index constant value too big."); |
+ } |
+ } else { |
+ key = ToRegister(instr->key()); |
+ } |
+ |
+ if (key_is_constant) { |
+ __ Addu(elements, elements, Operand(constant_key * (1 << shift_size) + |
+ FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
+ } else { |
+ __ sll(scratch, key, shift_size); |
+ __ Addu(elements, elements, Operand(scratch)); |
+ __ Addu(elements, elements, |
+ Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
+ } |
+ |
+ __ lw(scratch, MemOperand(elements, sizeof(kHoleNanLower32))); |
+ DeoptimizeIf(eq, instr->environment(), scratch, Operand(kHoleNanUpper32)); |
+ |
+ __ ldc1(result, MemOperand(elements)); |
+} |
+ |
+ |
+void LCodeGen::DoLoadKeyedSpecializedArrayElement( |
+ LLoadKeyedSpecializedArrayElement* instr) { |
+ Register external_pointer = ToRegister(instr->external_pointer()); |
+ Register key = no_reg; |
+ ElementsKind elements_kind = instr->elements_kind(); |
+ bool key_is_constant = instr->key()->IsConstantOperand(); |
+ int constant_key = 0; |
+ if (key_is_constant) { |
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
+ if (constant_key & 0xF0000000) { |
+ Abort("array index constant value too big."); |
+ } |
+ } else { |
+ key = ToRegister(instr->key()); |
+ } |
+ int shift_size = ElementsKindToShiftSize(elements_kind); |
+ |
+ if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || |
+ elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
+ FPURegister result = ToDoubleRegister(instr->result()); |
+ if (key_is_constant) { |
+ __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size)); |
+ } else { |
+ __ sll(scratch0(), key, shift_size); |
+ __ Addu(scratch0(), scratch0(), external_pointer); |
+ } |
+ |
+ if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
+ __ lwc1(result, MemOperand(scratch0())); |
+ __ cvt_d_s(result, result); |
+ } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS |
+ __ ldc1(result, MemOperand(scratch0())); |
+ } |
+ } else { |
+ Register result = ToRegister(instr->result()); |
+ Register scratch = scratch0(); |
+ MemOperand mem_operand(zero_reg); |
+ if (key_is_constant) { |
+ mem_operand = MemOperand(external_pointer, |
+ constant_key * (1 << shift_size)); |
+ } else { |
+ __ sll(scratch, key, shift_size); |
+ __ Addu(scratch, scratch, external_pointer); |
+ mem_operand = MemOperand(scratch); |
+ } |
+ switch (elements_kind) { |
+ case EXTERNAL_BYTE_ELEMENTS: |
+ __ lb(result, mem_operand); |
+ break; |
+ case EXTERNAL_PIXEL_ELEMENTS: |
+ case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
+ __ lbu(result, mem_operand); |
+ break; |
+ case EXTERNAL_SHORT_ELEMENTS: |
+ __ lh(result, mem_operand); |
+ break; |
+ case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
+ __ lhu(result, mem_operand); |
+ break; |
+ case EXTERNAL_INT_ELEMENTS: |
+ __ lw(result, mem_operand); |
+ break; |
+ case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
+ __ lw(result, mem_operand); |
+ // TODO(danno): we could be more clever here, perhaps having a special |
+ // version of the stub that detects if the overflow case actually |
+ // happens, and generate code that returns a double rather than int. |
+ DeoptimizeIf(Ugreater_equal, instr->environment(), |
+ result, Operand(0x80000000)); |
+ break; |
+ case EXTERNAL_FLOAT_ELEMENTS: |
+ case EXTERNAL_DOUBLE_ELEMENTS: |
+ case FAST_DOUBLE_ELEMENTS: |
+ case FAST_ELEMENTS: |
+ case FAST_SMI_ONLY_ELEMENTS: |
+ case DICTIONARY_ELEMENTS: |
+ case NON_STRICT_ARGUMENTS_ELEMENTS: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { |
+ ASSERT(ToRegister(instr->object()).is(a1)); |
+ ASSERT(ToRegister(instr->key()).is(a0)); |
+ |
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { |
+ Register scratch = scratch0(); |
+ Register temp = scratch1(); |
+ Register result = ToRegister(instr->result()); |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label done, adapted; |
+ __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); |
+ __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ |
+ // Result is the frame pointer for the frame if not adapted and for the real |
+ // frame below the adaptor frame if adapted. |
+ __ movn(result, fp, temp); // move only if temp is not equal to zero (ne) |
+ __ movz(result, scratch, temp); // move only if temp is equal to zero (eq) |
+} |
+ |
+ |
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { |
+ Register elem = ToRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ |
+ Label done; |
+ |
+ // If no arguments adaptor frame the number of arguments is fixed. |
+ __ Addu(result, zero_reg, Operand(scope()->num_parameters())); |
+ __ Branch(&done, eq, fp, Operand(elem)); |
+ |
+ // Arguments adaptor frame present. Get argument length from there. |
+ __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ lw(result, |
+ MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ SmiUntag(result); |
+ |
+ // Argument length is in result register. |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) { |
+ Register receiver = ToRegister(instr->receiver()); |
+ Register function = ToRegister(instr->function()); |
+ Register length = ToRegister(instr->length()); |
+ Register elements = ToRegister(instr->elements()); |
+ Register scratch = scratch0(); |
+ ASSERT(receiver.is(a0)); // Used for parameter count. |
+ ASSERT(function.is(a1)); // Required by InvokeFunction. |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ |
+ // If the receiver is null or undefined, we have to pass the global |
+ // object as a receiver to normal functions. Values have to be |
+ // passed unchanged to builtins and strict-mode functions. |
+ Label global_object, receiver_ok; |
+ |
+ // Do not transform the receiver to object for strict mode |
+ // functions. |
+ __ lw(scratch, |
+ FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
+ __ lw(scratch, |
+ FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); |
+ |
+ // Do not transform the receiver to object for builtins. |
+ int32_t strict_mode_function_mask = |
+ 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize); |
+ int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize); |
+ __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask)); |
+ __ Branch(&receiver_ok, ne, scratch, Operand(zero_reg)); |
+ |
+ // Normal function. Replace undefined or null with global receiver. |
+ __ LoadRoot(scratch, Heap::kNullValueRootIndex); |
+ __ Branch(&global_object, eq, receiver, Operand(scratch)); |
+ __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
+ __ Branch(&global_object, eq, receiver, Operand(scratch)); |
+ |
+ // Deoptimize if the receiver is not a JS object. |
+ __ And(scratch, receiver, Operand(kSmiTagMask)); |
+ DeoptimizeIf(eq, instr->environment(), scratch, Operand(zero_reg)); |
+ |
+ __ GetObjectType(receiver, scratch, scratch); |
+ DeoptimizeIf(lt, instr->environment(), |
+ scratch, Operand(FIRST_SPEC_OBJECT_TYPE)); |
+ __ Branch(&receiver_ok); |
+ |
+ __ bind(&global_object); |
+ __ lw(receiver, GlobalObjectOperand()); |
+ __ lw(receiver, |
+ FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); |
+ __ bind(&receiver_ok); |
+ |
+ // Copy the arguments to this function possibly from the |
+ // adaptor frame below it. |
+ const uint32_t kArgumentsLimit = 1 * KB; |
+ DeoptimizeIf(hi, instr->environment(), length, Operand(kArgumentsLimit)); |
+ |
+ // Push the receiver and use the register to keep the original |
+ // number of arguments. |
+ __ push(receiver); |
+ __ Move(receiver, length); |
+ // The arguments are at a one pointer size offset from elements. |
+ __ Addu(elements, elements, Operand(1 * kPointerSize)); |
+ |
+ // Loop through the arguments pushing them onto the execution |
+ // stack. |
+ Label invoke, loop; |
+ // length is a small non-negative integer, due to the test above. |
+ __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg)); |
+ __ sll(scratch, length, 2); |
+ __ bind(&loop); |
+ __ Addu(scratch, elements, scratch); |
+ __ lw(scratch, MemOperand(scratch)); |
+ __ push(scratch); |
+ __ Subu(length, length, Operand(1)); |
+ __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg)); |
+ __ sll(scratch, length, 2); |
+ |
+ __ bind(&invoke); |
+ ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); |
+ LPointerMap* pointers = instr->pointer_map(); |
+ LEnvironment* env = instr->deoptimization_environment(); |
+ RecordPosition(pointers->position()); |
+ RegisterEnvironmentForDeoptimization(env); |
+ SafepointGenerator safepoint_generator(this, |
+ pointers, |
+ env->deoptimization_index()); |
+ // The number of arguments is stored in receiver which is a0, as expected |
+ // by InvokeFunction. |
+ v8::internal::ParameterCount actual(receiver); |
+ __ InvokeFunction(function, actual, CALL_FUNCTION, |
+ safepoint_generator, CALL_AS_METHOD); |
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoPushArgument(LPushArgument* instr) { |
+ LOperand* argument = instr->InputAt(0); |
+ if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { |
+ Abort("DoPushArgument not implemented for double type."); |
+ } else { |
+ Register argument_reg = EmitLoadRegister(argument, at); |
+ __ push(argument_reg); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoThisFunction(LThisFunction* instr) { |
+ Register result = ToRegister(instr->result()); |
+ LoadHeapObject(result, instr->hydrogen()->closure()); |
+} |
+ |
+ |
+void LCodeGen::DoContext(LContext* instr) { |
+ Register result = ToRegister(instr->result()); |
+ __ mov(result, cp); |
+} |
+ |
+ |
+void LCodeGen::DoOuterContext(LOuterContext* instr) { |
+ Register context = ToRegister(instr->context()); |
+ Register result = ToRegister(instr->result()); |
+ __ lw(result, |
+ MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
+} |
+ |
+ |
+void LCodeGen::DoGlobalObject(LGlobalObject* instr) { |
+ Register context = ToRegister(instr->context()); |
+ Register result = ToRegister(instr->result()); |
+ __ lw(result, ContextOperand(cp, Context::GLOBAL_INDEX)); |
+} |
+ |
+ |
+void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { |
+ Register global = ToRegister(instr->global()); |
+ Register result = ToRegister(instr->result()); |
+ __ lw(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset)); |
+} |
+ |
+ |
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function, |
+ int arity, |
+ LInstruction* instr, |
+ CallKind call_kind) { |
+ // Change context if needed. |
+ bool change_context = |
+ (info()->closure()->context() != function->context()) || |
+ scope()->contains_with() || |
+ (scope()->num_heap_slots() > 0); |
+ if (change_context) { |
+ __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
+ } |
+ |
+ // Set a0 to arguments count if adaption is not needed. Assumes that a0 |
+ // is available to write to at this point. |
+ if (!function->NeedsArgumentsAdaption()) { |
+ __ li(a0, Operand(arity)); |
+ } |
+ |
+ LPointerMap* pointers = instr->pointer_map(); |
+ RecordPosition(pointers->position()); |
+ |
+ // Invoke function. |
+ __ SetCallKind(t1, call_kind); |
+ __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); |
+ __ Call(at); |
+ |
+ // Setup deoptimization. |
+ RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT); |
+ |
+ // Restore context. |
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ __ mov(a0, v0); |
+ __ li(a1, Operand(instr->function())); |
+ CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ Register scratch = scratch0(); |
+ |
+ // Deoptimize if not a heap number. |
+ __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(at)); |
+ |
+ Label done; |
+ Register exponent = scratch0(); |
+ scratch = no_reg; |
+ __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); |
+ // Check the sign of the argument. If the argument is positive, just |
+ // return it. |
+ __ Move(result, input); |
+ __ And(at, exponent, Operand(HeapNumber::kSignMask)); |
+ __ Branch(&done, eq, at, Operand(zero_reg)); |
+ |
+ // Input is negative. Reverse its sign. |
+ // Preserve the value of all registers. |
+ { |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ |
+ // Registers were saved at the safepoint, so we can use |
+ // many scratch registers. |
+ Register tmp1 = input.is(a1) ? a0 : a1; |
+ Register tmp2 = input.is(a2) ? a0 : a2; |
+ Register tmp3 = input.is(a3) ? a0 : a3; |
+ Register tmp4 = input.is(t0) ? a0 : t0; |
+ |
+ // exponent: floating point exponent value. |
+ |
+ Label allocated, slow; |
+ __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); |
+ __ Branch(&allocated); |
+ |
+ // Slow case: Call the runtime system to do the number allocation. |
+ __ bind(&slow); |
+ |
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); |
+ // Set the pointer to the new heap number in tmp. |
+ if (!tmp1.is(v0)) |
+ __ mov(tmp1, v0); |
+ // Restore input_reg after call to runtime. |
+ __ LoadFromSafepointRegisterSlot(input, input); |
+ __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); |
+ |
+ __ bind(&allocated); |
+ // exponent: floating point exponent value. |
+ // tmp1: allocated heap number. |
+ __ And(exponent, exponent, Operand(~HeapNumber::kSignMask)); |
+ __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); |
+ __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); |
+ __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); |
+ |
+ __ StoreToSafepointRegisterSlot(tmp1, result); |
+ } |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
+ Label done; |
+ __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg)); |
+ __ mov(result, input); |
+ ASSERT_EQ(2, masm()->InstructionsGeneratedSince(&done)); |
+ __ subu(result, zero_reg, input); |
+ // Overflow if result is still negative, ie 0x80000000. |
+ DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg)); |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) { |
+ // Class for deferred case. |
+ class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { |
+ public: |
+ DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, |
+ LUnaryMathOperation* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { |
+ codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); |
+ } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LUnaryMathOperation* instr_; |
+ }; |
+ |
+ Representation r = instr->hydrogen()->value()->representation(); |
+ if (r.IsDouble()) { |
+ FPURegister input = ToDoubleRegister(instr->InputAt(0)); |
+ FPURegister result = ToDoubleRegister(instr->result()); |
+ __ abs_d(result, input); |
+ } else if (r.IsInteger32()) { |
+ EmitIntegerMathAbs(instr); |
+ } else { |
+ // Representation is tagged. |
+ DeferredMathAbsTaggedHeapNumber* deferred = |
+ new DeferredMathAbsTaggedHeapNumber(this, instr); |
+ Register input = ToRegister(instr->InputAt(0)); |
+ // Smi check. |
+ __ JumpIfNotSmi(input, deferred->entry()); |
+ // If smi, handle it directly. |
+ EmitIntegerMathAbs(instr); |
+ __ bind(deferred->exit()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ FPURegister single_scratch = double_scratch0().low(); |
+ Register scratch1 = scratch0(); |
+ Register except_flag = ToRegister(instr->TempAt(0)); |
+ |
+ __ EmitFPUTruncate(kRoundToMinusInf, |
+ single_scratch, |
+ input, |
+ scratch1, |
+ except_flag); |
+ |
+ // Deopt if the operation did not succeed. |
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); |
+ |
+ // Load the result. |
+ __ mfc1(result, single_scratch); |
+ |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ // Test for -0. |
+ Label done; |
+ __ Branch(&done, ne, result, Operand(zero_reg)); |
+ __ mfc1(scratch1, input.high()); |
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); |
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg)); |
+ __ bind(&done); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoMathRound(LUnaryMathOperation* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ Register scratch = scratch0(); |
+ Label done, check_sign_on_zero; |
+ |
+ // Extract exponent bits. |
+ __ mfc1(result, input.high()); |
+ __ Ext(scratch, |
+ result, |
+ HeapNumber::kExponentShift, |
+ HeapNumber::kExponentBits); |
+ |
+ // If the number is in ]-0.5, +0.5[, the result is +/- 0. |
+ Label skip1; |
+ __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2)); |
+ __ mov(result, zero_reg); |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ __ Branch(&check_sign_on_zero); |
+ } else { |
+ __ Branch(&done); |
+ } |
+ __ bind(&skip1); |
+ |
+ // The following conversion will not work with numbers |
+ // outside of ]-2^32, 2^32[. |
+ DeoptimizeIf(ge, instr->environment(), scratch, |
+ Operand(HeapNumber::kExponentBias + 32)); |
+ |
+ // Save the original sign for later comparison. |
+ __ And(scratch, result, Operand(HeapNumber::kSignMask)); |
+ |
+ __ Move(double_scratch0(), 0.5); |
+ __ add_d(input, input, double_scratch0()); |
+ |
+ // Check sign of the result: if the sign changed, the input |
+ // value was in ]0.5, 0[ and the result should be -0. |
+ __ mfc1(result, input.high()); |
+ __ Xor(result, result, Operand(scratch)); |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ // ARM uses 'mi' here, which is 'lt' |
+ DeoptimizeIf(lt, instr->environment(), result, |
+ Operand(zero_reg)); |
+ } else { |
+ Label skip2; |
+ // ARM uses 'mi' here, which is 'lt' |
+ // Negating it results in 'ge' |
+ __ Branch(&skip2, ge, result, Operand(zero_reg)); |
+ __ mov(result, zero_reg); |
+ __ Branch(&done); |
+ __ bind(&skip2); |
+ } |
+ |
+ Register except_flag = scratch; |
+ |
+ __ EmitFPUTruncate(kRoundToMinusInf, |
+ double_scratch0().low(), |
+ input, |
+ result, |
+ except_flag); |
+ |
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); |
+ |
+ __ mfc1(result, double_scratch0().low()); |
+ |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ // Test for -0. |
+ __ Branch(&done, ne, result, Operand(zero_reg)); |
+ __ bind(&check_sign_on_zero); |
+ __ mfc1(scratch, input.high()); |
+ __ And(scratch, scratch, Operand(HeapNumber::kSignMask)); |
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg)); |
+ } |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ __ sqrt_d(result, input); |
+} |
+ |
+ |
+void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) { |
+ DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); |
+ DoubleRegister result = ToDoubleRegister(instr->result()); |
+ DoubleRegister double_scratch = double_scratch0(); |
+ |
+ // Add +0 to convert -0 to +0. |
+ __ mtc1(zero_reg, double_scratch.low()); |
+ __ mtc1(zero_reg, double_scratch.high()); |
+ __ add_d(result, input, double_scratch); |
+ __ sqrt_d(result, result); |
+} |
+ |
+ |
+void LCodeGen::DoPower(LPower* instr) { |
+ LOperand* left = instr->InputAt(0); |
+ LOperand* right = instr->InputAt(1); |
+ Register scratch = scratch0(); |
+ DoubleRegister result_reg = ToDoubleRegister(instr->result()); |
+ Representation exponent_type = instr->hydrogen()->right()->representation(); |
+ if (exponent_type.IsDouble()) { |
+ // Prepare arguments and call C function. |
+ __ PrepareCallCFunction(0, 2, scratch); |
+ __ SetCallCDoubleArguments(ToDoubleRegister(left), |
+ ToDoubleRegister(right)); |
+ __ CallCFunction( |
+ ExternalReference::power_double_double_function(isolate()), 0, 2); |
+ } else if (exponent_type.IsInteger32()) { |
+ ASSERT(ToRegister(right).is(a0)); |
+ // Prepare arguments and call C function. |
+ __ PrepareCallCFunction(1, 1, scratch); |
+ __ SetCallCDoubleArguments(ToDoubleRegister(left), ToRegister(right)); |
+ __ CallCFunction( |
+ ExternalReference::power_double_int_function(isolate()), 1, 1); |
+ } else { |
+ ASSERT(exponent_type.IsTagged()); |
+ ASSERT(instr->hydrogen()->left()->representation().IsDouble()); |
+ |
+ Register right_reg = ToRegister(right); |
+ |
+ // Check for smi on the right hand side. |
+ Label non_smi, call; |
+ __ JumpIfNotSmi(right_reg, &non_smi); |
+ |
+ // Untag smi and convert it to a double. |
+ __ SmiUntag(right_reg); |
+ FPURegister single_scratch = double_scratch0(); |
+ __ mtc1(right_reg, single_scratch); |
+ __ cvt_d_w(result_reg, single_scratch); |
+ __ Branch(&call); |
+ |
+ // Heap number map check. |
+ __ bind(&non_smi); |
+ __ lw(scratch, FieldMemOperand(right_reg, HeapObject::kMapOffset)); |
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(at)); |
+ __ ldc1(result_reg, FieldMemOperand(right_reg, HeapNumber::kValueOffset)); |
+ |
+ // Prepare arguments and call C function. |
+ __ bind(&call); |
+ __ PrepareCallCFunction(0, 2, scratch); |
+ __ SetCallCDoubleArguments(ToDoubleRegister(left), result_reg); |
+ __ CallCFunction( |
+ ExternalReference::power_double_double_function(isolate()), 0, 2); |
+ } |
+ // Store the result in the result register. |
+ __ GetCFunctionDoubleResult(result_reg); |
+} |
+ |
+ |
+void LCodeGen::DoMathLog(LUnaryMathOperation* instr) { |
+ ASSERT(ToDoubleRegister(instr->result()).is(f4)); |
+ TranscendentalCacheStub stub(TranscendentalCache::LOG, |
+ TranscendentalCacheStub::UNTAGGED); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoMathCos(LUnaryMathOperation* instr) { |
+ ASSERT(ToDoubleRegister(instr->result()).is(f4)); |
+ TranscendentalCacheStub stub(TranscendentalCache::COS, |
+ TranscendentalCacheStub::UNTAGGED); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoMathSin(LUnaryMathOperation* instr) { |
+ ASSERT(ToDoubleRegister(instr->result()).is(f4)); |
+ TranscendentalCacheStub stub(TranscendentalCache::SIN, |
+ TranscendentalCacheStub::UNTAGGED); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) { |
+ switch (instr->op()) { |
+ case kMathAbs: |
+ DoMathAbs(instr); |
+ break; |
+ case kMathFloor: |
+ DoMathFloor(instr); |
+ break; |
+ case kMathRound: |
+ DoMathRound(instr); |
+ break; |
+ case kMathSqrt: |
+ DoMathSqrt(instr); |
+ break; |
+ case kMathPowHalf: |
+ DoMathPowHalf(instr); |
+ break; |
+ case kMathCos: |
+ DoMathCos(instr); |
+ break; |
+ case kMathSin: |
+ DoMathSin(instr); |
+ break; |
+ case kMathLog: |
+ DoMathLog(instr); |
+ break; |
+ default: |
+ Abort("Unimplemented type of LUnaryMathOperation."); |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { |
+ ASSERT(ToRegister(instr->function()).is(a1)); |
+ ASSERT(instr->HasPointerMap()); |
+ ASSERT(instr->HasDeoptimizationEnvironment()); |
+ LPointerMap* pointers = instr->pointer_map(); |
+ LEnvironment* env = instr->deoptimization_environment(); |
+ RecordPosition(pointers->position()); |
+ RegisterEnvironmentForDeoptimization(env); |
+ SafepointGenerator generator(this, pointers, env->deoptimization_index()); |
+ ParameterCount count(instr->arity()); |
+ __ InvokeFunction(a1, count, CALL_FUNCTION, generator, CALL_AS_METHOD); |
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoCallKeyed(LCallKeyed* instr) { |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ |
+ int arity = instr->arity(); |
+ Handle<Code> ic = |
+ isolate()->stub_cache()->ComputeKeyedCallInitialize(arity); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoCallNamed(LCallNamed* instr) { |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ |
+ int arity = instr->arity(); |
+ RelocInfo::Mode mode = RelocInfo::CODE_TARGET; |
+ Handle<Code> ic = |
+ isolate()->stub_cache()->ComputeCallInitialize(arity, mode); |
+ __ li(a2, Operand(instr->name())); |
+ CallCode(ic, mode, instr); |
+ // Restore context register. |
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoCallFunction(LCallFunction* instr) { |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ |
+ int arity = instr->arity(); |
+ CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ __ Drop(1); |
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoCallGlobal(LCallGlobal* instr) { |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ |
+ int arity = instr->arity(); |
+ RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; |
+ Handle<Code> ic = |
+ isolate()->stub_cache()->ComputeCallInitialize(arity, mode); |
+ __ li(a2, Operand(instr->name())); |
+ CallCode(ic, mode, instr); |
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ __ li(a1, Operand(instr->target())); |
+ CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION); |
+} |
+ |
+ |
+void LCodeGen::DoCallNew(LCallNew* instr) { |
+ ASSERT(ToRegister(instr->InputAt(0)).is(a1)); |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ |
+ Handle<Code> builtin = isolate()->builtins()->JSConstructCall(); |
+ __ li(a0, Operand(instr->arity())); |
+ CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr); |
+} |
+ |
+ |
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) { |
+ CallRuntime(instr->function(), instr->arity(), instr); |
+} |
+ |
+ |
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { |
+ Register object = ToRegister(instr->object()); |
+ Register value = ToRegister(instr->value()); |
+ Register scratch = scratch0(); |
+ int offset = instr->offset(); |
+ |
+ ASSERT(!object.is(value)); |
+ |
+ if (!instr->transition().is_null()) { |
+ __ li(scratch, Operand(instr->transition())); |
+ __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
+ } |
+ |
+ // Do the store. |
+ HType type = instr->hydrogen()->value()->type(); |
+ SmiCheck check_needed = |
+ type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
+ if (instr->is_in_object()) { |
+ __ sw(value, FieldMemOperand(object, offset)); |
+ if (instr->hydrogen()->NeedsWriteBarrier()) { |
+ // Update the write barrier for the object for in-object properties. |
+ __ RecordWriteField(object, |
+ offset, |
+ value, |
+ scratch, |
+ kRAHasBeenSaved, |
+ kSaveFPRegs, |
+ EMIT_REMEMBERED_SET, |
+ check_needed); |
+ } |
+ } else { |
+ __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); |
+ __ sw(value, FieldMemOperand(scratch, offset)); |
+ if (instr->hydrogen()->NeedsWriteBarrier()) { |
+ // Update the write barrier for the properties array. |
+ // object is used as a scratch register. |
+ __ RecordWriteField(scratch, |
+ offset, |
+ value, |
+ object, |
+ kRAHasBeenSaved, |
+ kSaveFPRegs, |
+ EMIT_REMEMBERED_SET, |
+ check_needed); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { |
+ ASSERT(ToRegister(instr->object()).is(a1)); |
+ ASSERT(ToRegister(instr->value()).is(a0)); |
+ |
+ // Name is always in a2. |
+ __ li(a2, Operand(instr->name())); |
+ Handle<Code> ic = instr->strict_mode() |
+ ? isolate()->builtins()->StoreIC_Initialize_Strict() |
+ : isolate()->builtins()->StoreIC_Initialize(); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { |
+ DeoptimizeIf(hs, |
+ instr->environment(), |
+ ToRegister(instr->index()), |
+ Operand(ToRegister(instr->length()))); |
+} |
+ |
+ |
+void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) { |
+ Register value = ToRegister(instr->value()); |
+ Register elements = ToRegister(instr->object()); |
+ Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; |
+ Register scratch = scratch0(); |
+ |
+ // This instruction cannot handle the FAST_SMI_ONLY_ELEMENTS -> FAST_ELEMENTS |
+ // conversion, so it deopts in that case. |
+ if (instr->hydrogen()->ValueNeedsSmiCheck()) { |
+ __ And(at, value, Operand(kSmiTagMask)); |
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg)); |
+ } |
+ |
+ // Do the store. |
+ if (instr->key()->IsConstantOperand()) { |
+ ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); |
+ LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); |
+ int offset = |
+ ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize; |
+ __ sw(value, FieldMemOperand(elements, offset)); |
+ } else { |
+ __ sll(scratch, key, kPointerSizeLog2); |
+ __ addu(scratch, elements, scratch); |
+ __ sw(value, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
+ } |
+ |
+ if (instr->hydrogen()->NeedsWriteBarrier()) { |
+ HType type = instr->hydrogen()->value()->type(); |
+ SmiCheck check_needed = |
+ type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; |
+ // Compute address of modified element and store it into key register. |
+ __ Addu(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
+ __ RecordWrite(elements, |
+ key, |
+ value, |
+ kRAHasBeenSaved, |
+ kSaveFPRegs, |
+ EMIT_REMEMBERED_SET, |
+ check_needed); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoStoreKeyedFastDoubleElement( |
+ LStoreKeyedFastDoubleElement* instr) { |
+ DoubleRegister value = ToDoubleRegister(instr->value()); |
+ Register elements = ToRegister(instr->elements()); |
+ Register key = no_reg; |
+ Register scratch = scratch0(); |
+ bool key_is_constant = instr->key()->IsConstantOperand(); |
+ int constant_key = 0; |
+ Label not_nan; |
+ |
+ // Calculate the effective address of the slot in the array to store the |
+ // double value. |
+ if (key_is_constant) { |
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
+ if (constant_key & 0xF0000000) { |
+ Abort("array index constant value too big."); |
+ } |
+ } else { |
+ key = ToRegister(instr->key()); |
+ } |
+ int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); |
+ if (key_is_constant) { |
+ __ Addu(scratch, elements, Operand(constant_key * (1 << shift_size) + |
+ FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
+ } else { |
+ __ sll(scratch, key, shift_size); |
+ __ Addu(scratch, elements, Operand(scratch)); |
+ __ Addu(scratch, scratch, |
+ Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
+ } |
+ |
+ Label is_nan; |
+ // Check for NaN. All NaNs must be canonicalized. |
+ __ BranchF(NULL, &is_nan, eq, value, value); |
+ __ Branch(¬_nan); |
+ |
+ // Only load canonical NaN if the comparison above set the overflow. |
+ __ bind(&is_nan); |
+ __ Move(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double()); |
+ |
+ __ bind(¬_nan); |
+ __ sdc1(value, MemOperand(scratch)); |
+} |
+ |
+ |
+void LCodeGen::DoStoreKeyedSpecializedArrayElement( |
+ LStoreKeyedSpecializedArrayElement* instr) { |
+ |
+ Register external_pointer = ToRegister(instr->external_pointer()); |
+ Register key = no_reg; |
+ ElementsKind elements_kind = instr->elements_kind(); |
+ bool key_is_constant = instr->key()->IsConstantOperand(); |
+ int constant_key = 0; |
+ if (key_is_constant) { |
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key())); |
+ if (constant_key & 0xF0000000) { |
+ Abort("array index constant value too big."); |
+ } |
+ } else { |
+ key = ToRegister(instr->key()); |
+ } |
+ int shift_size = ElementsKindToShiftSize(elements_kind); |
+ |
+ if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || |
+ elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { |
+ FPURegister value(ToDoubleRegister(instr->value())); |
+ if (key_is_constant) { |
+ __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size)); |
+ } else { |
+ __ sll(scratch0(), key, shift_size); |
+ __ Addu(scratch0(), scratch0(), external_pointer); |
+ } |
+ |
+ if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { |
+ __ cvt_s_d(double_scratch0(), value); |
+ __ swc1(double_scratch0(), MemOperand(scratch0())); |
+ } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS |
+ __ sdc1(value, MemOperand(scratch0())); |
+ } |
+ } else { |
+ Register value(ToRegister(instr->value())); |
+ MemOperand mem_operand(zero_reg); |
+ Register scratch = scratch0(); |
+ if (key_is_constant) { |
+ mem_operand = MemOperand(external_pointer, |
+ constant_key * (1 << shift_size)); |
+ } else { |
+ __ sll(scratch, key, shift_size); |
+ __ Addu(scratch, scratch, external_pointer); |
+ mem_operand = MemOperand(scratch); |
+ } |
+ switch (elements_kind) { |
+ case EXTERNAL_PIXEL_ELEMENTS: |
+ case EXTERNAL_BYTE_ELEMENTS: |
+ case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
+ __ sb(value, mem_operand); |
+ break; |
+ case EXTERNAL_SHORT_ELEMENTS: |
+ case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
+ __ sh(value, mem_operand); |
+ break; |
+ case EXTERNAL_INT_ELEMENTS: |
+ case EXTERNAL_UNSIGNED_INT_ELEMENTS: |
+ __ sw(value, mem_operand); |
+ break; |
+ case EXTERNAL_FLOAT_ELEMENTS: |
+ case EXTERNAL_DOUBLE_ELEMENTS: |
+ case FAST_DOUBLE_ELEMENTS: |
+ case FAST_ELEMENTS: |
+ case FAST_SMI_ONLY_ELEMENTS: |
+ case DICTIONARY_ELEMENTS: |
+ case NON_STRICT_ARGUMENTS_ELEMENTS: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+} |
+ |
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { |
+ ASSERT(ToRegister(instr->object()).is(a2)); |
+ ASSERT(ToRegister(instr->key()).is(a1)); |
+ ASSERT(ToRegister(instr->value()).is(a0)); |
+ |
+ Handle<Code> ic = instr->strict_mode() |
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() |
+ : isolate()->builtins()->KeyedStoreIC_Initialize(); |
+ CallCode(ic, RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { |
+ Register object_reg = ToRegister(instr->object()); |
+ Register new_map_reg = ToRegister(instr->new_map_reg()); |
+ Register scratch = scratch0(); |
+ |
+ Handle<Map> from_map = instr->original_map(); |
+ Handle<Map> to_map = instr->transitioned_map(); |
+ ElementsKind from_kind = from_map->elements_kind(); |
+ ElementsKind to_kind = to_map->elements_kind(); |
+ |
+ __ mov(ToRegister(instr->result()), object_reg); |
+ |
+ Label not_applicable; |
+ __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); |
+ __ Branch(¬_applicable, ne, scratch, Operand(from_map)); |
+ |
+ __ li(new_map_reg, Operand(to_map)); |
+ if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) { |
+ __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); |
+ // Write barrier. |
+ __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg, |
+ scratch, kRAHasBeenSaved, kDontSaveFPRegs); |
+ } else if (from_kind == FAST_SMI_ONLY_ELEMENTS && |
+ to_kind == FAST_DOUBLE_ELEMENTS) { |
+ Register fixed_object_reg = ToRegister(instr->temp_reg()); |
+ ASSERT(fixed_object_reg.is(a2)); |
+ ASSERT(new_map_reg.is(a3)); |
+ __ mov(fixed_object_reg, object_reg); |
+ CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(), |
+ RelocInfo::CODE_TARGET, instr); |
+ } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) { |
+ Register fixed_object_reg = ToRegister(instr->temp_reg()); |
+ ASSERT(fixed_object_reg.is(a2)); |
+ ASSERT(new_map_reg.is(a3)); |
+ __ mov(fixed_object_reg, object_reg); |
+ CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(), |
+ RelocInfo::CODE_TARGET, instr); |
+ } else { |
+ UNREACHABLE(); |
+ } |
+ __ bind(¬_applicable); |
+} |
+ |
+ |
+void LCodeGen::DoStringAdd(LStringAdd* instr) { |
+ __ push(ToRegister(instr->left())); |
+ __ push(ToRegister(instr->right())); |
+ StringAddStub stub(NO_STRING_CHECK_IN_STUB); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+} |
+ |
+ |
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { |
+ class DeferredStringCharCodeAt: public LDeferredCode { |
+ public: |
+ DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LStringCharCodeAt* instr_; |
+ }; |
+ |
+ Register temp = scratch1(); |
+ Register string = ToRegister(instr->string()); |
+ Register index = ToRegister(instr->index()); |
+ Register result = ToRegister(instr->result()); |
+ DeferredStringCharCodeAt* deferred = |
+ new DeferredStringCharCodeAt(this, instr); |
+ |
+ // Fetch the instance type of the receiver into result register. |
+ __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
+ __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
+ |
+ // We need special handling for indirect strings. |
+ Label check_sequential; |
+ __ And(temp, result, kIsIndirectStringMask); |
+ __ Branch(&check_sequential, eq, temp, Operand(zero_reg)); |
+ |
+ // Dispatch on the indirect string shape: slice or cons. |
+ Label cons_string; |
+ __ And(temp, result, kSlicedNotConsMask); |
+ __ Branch(&cons_string, eq, temp, Operand(zero_reg)); |
+ |
+ // Handle slices. |
+ Label indirect_string_loaded; |
+ __ lw(result, FieldMemOperand(string, SlicedString::kOffsetOffset)); |
+ __ sra(temp, result, kSmiTagSize); |
+ __ addu(index, index, temp); |
+ __ lw(string, FieldMemOperand(string, SlicedString::kParentOffset)); |
+ __ jmp(&indirect_string_loaded); |
+ |
+ // Handle conses. |
+ // Check whether the right hand side is the empty string (i.e. if |
+ // this is really a flat string in a cons string). If that is not |
+ // the case we would rather go to the runtime system now to flatten |
+ // the string. |
+ __ bind(&cons_string); |
+ __ lw(result, FieldMemOperand(string, ConsString::kSecondOffset)); |
+ __ LoadRoot(temp, Heap::kEmptyStringRootIndex); |
+ __ Branch(deferred->entry(), ne, result, Operand(temp)); |
+ // Get the first of the two strings and load its instance type. |
+ __ lw(string, FieldMemOperand(string, ConsString::kFirstOffset)); |
+ |
+ __ bind(&indirect_string_loaded); |
+ __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
+ __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
+ |
+ // Check whether the string is sequential. The only non-sequential |
+ // shapes we support have just been unwrapped above. |
+ __ bind(&check_sequential); |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ __ And(temp, result, Operand(kStringRepresentationMask)); |
+ __ Branch(deferred->entry(), ne, temp, Operand(zero_reg)); |
+ |
+ // Dispatch on the encoding: ASCII or two-byte. |
+ Label ascii_string; |
+ STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); |
+ STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
+ __ And(temp, result, Operand(kStringEncodingMask)); |
+ __ Branch(&ascii_string, ne, temp, Operand(zero_reg)); |
+ |
+ // Two-byte string. |
+ // Load the two-byte character code into the result register. |
+ Label done; |
+ __ Addu(result, |
+ string, |
+ Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ __ sll(temp, index, 1); |
+ __ Addu(result, result, temp); |
+ __ lhu(result, MemOperand(result, 0)); |
+ __ Branch(&done); |
+ |
+ // ASCII string. |
+ // Load the byte into the result register. |
+ __ bind(&ascii_string); |
+ __ Addu(result, |
+ string, |
+ Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ __ Addu(result, result, index); |
+ __ lbu(result, MemOperand(result, 0)); |
+ |
+ __ bind(&done); |
+ __ bind(deferred->exit()); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { |
+ Register string = ToRegister(instr->string()); |
+ Register result = ToRegister(instr->result()); |
+ Register scratch = scratch0(); |
+ |
+ // TODO(3095996): Get rid of this. For now, we need to make the |
+ // result register contain a valid pointer because it is already |
+ // contained in the register pointer map. |
+ __ mov(result, zero_reg); |
+ |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ __ push(string); |
+ // Push the index as a smi. This is safe because of the checks in |
+ // DoStringCharCodeAt above. |
+ if (instr->index()->IsConstantOperand()) { |
+ int const_index = ToInteger32(LConstantOperand::cast(instr->index())); |
+ __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index))); |
+ __ push(scratch); |
+ } else { |
+ Register index = ToRegister(instr->index()); |
+ __ SmiTag(index); |
+ __ push(index); |
+ } |
+ CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr); |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(v0); |
+ } |
+ __ SmiUntag(v0); |
+ __ StoreToSafepointRegisterSlot(v0, result); |
+} |
+ |
+ |
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { |
+ class DeferredStringCharFromCode: public LDeferredCode { |
+ public: |
+ DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LStringCharFromCode* instr_; |
+ }; |
+ |
+ DeferredStringCharFromCode* deferred = |
+ new DeferredStringCharFromCode(this, instr); |
+ |
+ ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); |
+ Register char_code = ToRegister(instr->char_code()); |
+ Register result = ToRegister(instr->result()); |
+ Register scratch = scratch0(); |
+ ASSERT(!char_code.is(result)); |
+ |
+ __ Branch(deferred->entry(), hi, |
+ char_code, Operand(String::kMaxAsciiCharCode)); |
+ __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); |
+ __ sll(scratch, char_code, kPointerSizeLog2); |
+ __ Addu(result, result, scratch); |
+ __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize)); |
+ __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
+ __ Branch(deferred->entry(), eq, result, Operand(scratch)); |
+ __ bind(deferred->exit()); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { |
+ Register char_code = ToRegister(instr->char_code()); |
+ Register result = ToRegister(instr->result()); |
+ |
+ // TODO(3095996): Get rid of this. For now, we need to make the |
+ // result register contain a valid pointer because it is already |
+ // contained in the register pointer map. |
+ __ mov(result, zero_reg); |
+ |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ __ SmiTag(char_code); |
+ __ push(char_code); |
+ CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr); |
+ __ StoreToSafepointRegisterSlot(v0, result); |
+} |
+ |
+ |
+void LCodeGen::DoStringLength(LStringLength* instr) { |
+ Register string = ToRegister(instr->InputAt(0)); |
+ Register result = ToRegister(instr->result()); |
+ __ lw(result, FieldMemOperand(string, String::kLengthOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { |
+ LOperand* input = instr->InputAt(0); |
+ ASSERT(input->IsRegister() || input->IsStackSlot()); |
+ LOperand* output = instr->result(); |
+ ASSERT(output->IsDoubleRegister()); |
+ FPURegister single_scratch = double_scratch0().low(); |
+ if (input->IsStackSlot()) { |
+ Register scratch = scratch0(); |
+ __ lw(scratch, ToMemOperand(input)); |
+ __ mtc1(scratch, single_scratch); |
+ } else { |
+ __ mtc1(ToRegister(input), single_scratch); |
+ } |
+ __ cvt_d_w(ToDoubleRegister(output), single_scratch); |
+} |
+ |
+ |
+void LCodeGen::DoNumberTagI(LNumberTagI* instr) { |
+ class DeferredNumberTagI: public LDeferredCode { |
+ public: |
+ DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LNumberTagI* instr_; |
+ }; |
+ |
+ LOperand* input = instr->InputAt(0); |
+ ASSERT(input->IsRegister() && input->Equals(instr->result())); |
+ Register reg = ToRegister(input); |
+ Register overflow = scratch0(); |
+ |
+ DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr); |
+ __ SmiTagCheckOverflow(reg, overflow); |
+ __ BranchOnOverflow(deferred->entry(), overflow); |
+ __ bind(deferred->exit()); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) { |
+ Label slow; |
+ Register reg = ToRegister(instr->InputAt(0)); |
+ FPURegister dbl_scratch = double_scratch0(); |
+ |
+ // Preserve the value of all registers. |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ |
+ // There was overflow, so bits 30 and 31 of the original integer |
+ // disagree. Try to allocate a heap number in new space and store |
+ // the value in there. If that fails, call the runtime system. |
+ Label done; |
+ __ SmiUntag(reg); |
+ __ Xor(reg, reg, Operand(0x80000000)); |
+ __ mtc1(reg, dbl_scratch); |
+ __ cvt_d_w(dbl_scratch, dbl_scratch); |
+ if (FLAG_inline_new) { |
+ __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(t1, a3, t0, t2, &slow); |
+ if (!reg.is(t1)) __ mov(reg, t1); |
+ __ Branch(&done); |
+ } |
+ |
+ // Slow case: Call the runtime system to do the number allocation. |
+ __ bind(&slow); |
+ |
+ // TODO(3095996): Put a valid pointer value in the stack slot where the result |
+ // register is stored, as this register is in the pointer map, but contains an |
+ // integer value. |
+ __ StoreToSafepointRegisterSlot(zero_reg, reg); |
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); |
+ if (!reg.is(v0)) __ mov(reg, v0); |
+ |
+ // Done. Put the value in dbl_scratch into the value of the allocated heap |
+ // number. |
+ __ bind(&done); |
+ __ sdc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); |
+ __ StoreToSafepointRegisterSlot(reg, reg); |
+} |
+ |
+ |
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) { |
+ class DeferredNumberTagD: public LDeferredCode { |
+ public: |
+ DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LNumberTagD* instr_; |
+ }; |
+ |
+ DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0)); |
+ Register scratch = scratch0(); |
+ Register reg = ToRegister(instr->result()); |
+ Register temp1 = ToRegister(instr->TempAt(0)); |
+ Register temp2 = ToRegister(instr->TempAt(1)); |
+ |
+ DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr); |
+ if (FLAG_inline_new) { |
+ __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry()); |
+ } else { |
+ __ Branch(deferred->entry()); |
+ } |
+ __ bind(deferred->exit()); |
+ __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { |
+ // TODO(3095996): Get rid of this. For now, we need to make the |
+ // result register contain a valid pointer because it is already |
+ // contained in the register pointer map. |
+ Register reg = ToRegister(instr->result()); |
+ __ mov(reg, zero_reg); |
+ |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); |
+ __ StoreToSafepointRegisterSlot(v0, reg); |
+} |
+ |
+ |
+void LCodeGen::DoSmiTag(LSmiTag* instr) { |
+ LOperand* input = instr->InputAt(0); |
+ ASSERT(input->IsRegister() && input->Equals(instr->result())); |
+ ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); |
+ __ SmiTag(ToRegister(input)); |
+} |
+ |
+ |
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) { |
+ Register scratch = scratch0(); |
+ LOperand* input = instr->InputAt(0); |
+ ASSERT(input->IsRegister() && input->Equals(instr->result())); |
+ if (instr->needs_check()) { |
+ STATIC_ASSERT(kHeapObjectTag == 1); |
+ // If the input is a HeapObject, value of scratch won't be zero. |
+ __ And(scratch, ToRegister(input), Operand(kHeapObjectTag)); |
+ __ SmiUntag(ToRegister(input)); |
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg)); |
+ } else { |
+ __ SmiUntag(ToRegister(input)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::EmitNumberUntagD(Register input_reg, |
+ DoubleRegister result_reg, |
+ bool deoptimize_on_undefined, |
+ LEnvironment* env) { |
+ Register scratch = scratch0(); |
+ |
+ Label load_smi, heap_number, done; |
+ |
+ // Smi check. |
+ __ JumpIfSmi(input_reg, &load_smi); |
+ |
+ // Heap number map check. |
+ __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); |
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
+ if (deoptimize_on_undefined) { |
+ DeoptimizeIf(ne, env, scratch, Operand(at)); |
+ } else { |
+ Label heap_number; |
+ __ Branch(&heap_number, eq, scratch, Operand(at)); |
+ |
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
+ DeoptimizeIf(ne, env, input_reg, Operand(at)); |
+ |
+ // Convert undefined to NaN. |
+ __ LoadRoot(at, Heap::kNanValueRootIndex); |
+ __ ldc1(result_reg, FieldMemOperand(at, HeapNumber::kValueOffset)); |
+ __ Branch(&done); |
+ |
+ __ bind(&heap_number); |
+ } |
+ // Heap number to double register conversion. |
+ __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); |
+ __ Branch(&done); |
+ |
+ // Smi to double register conversion |
+ __ bind(&load_smi); |
+ __ SmiUntag(input_reg); // Untag smi before converting to float. |
+ __ mtc1(input_reg, result_reg); |
+ __ cvt_d_w(result_reg, result_reg); |
+ __ SmiTag(input_reg); // Retag smi. |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { |
+ Register input_reg = ToRegister(instr->InputAt(0)); |
+ Register scratch1 = scratch0(); |
+ Register scratch2 = ToRegister(instr->TempAt(0)); |
+ DoubleRegister double_scratch = double_scratch0(); |
+ FPURegister single_scratch = double_scratch.low(); |
+ |
+ ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2)); |
+ ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1)); |
+ |
+ Label done; |
+ |
+ // The input is a tagged HeapObject. |
+ // Heap number map check. |
+ __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset)); |
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
+ // This 'at' value and scratch1 map value are used for tests in both clauses |
+ // of the if. |
+ |
+ if (instr->truncating()) { |
+ Register scratch3 = ToRegister(instr->TempAt(1)); |
+ DoubleRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2)); |
+ ASSERT(!scratch3.is(input_reg) && |
+ !scratch3.is(scratch1) && |
+ !scratch3.is(scratch2)); |
+ // Performs a truncating conversion of a floating point number as used by |
+ // the JS bitwise operations. |
+ Label heap_number; |
+ __ Branch(&heap_number, eq, scratch1, Operand(at)); // HeapNumber map? |
+ // Check for undefined. Undefined is converted to zero for truncating |
+ // conversions. |
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
+ DeoptimizeIf(ne, instr->environment(), input_reg, Operand(at)); |
+ ASSERT(ToRegister(instr->result()).is(input_reg)); |
+ __ mov(input_reg, zero_reg); |
+ __ Branch(&done); |
+ |
+ __ bind(&heap_number); |
+ __ ldc1(double_scratch2, |
+ FieldMemOperand(input_reg, HeapNumber::kValueOffset)); |
+ __ EmitECMATruncate(input_reg, |
+ double_scratch2, |
+ single_scratch, |
+ scratch1, |
+ scratch2, |
+ scratch3); |
+ } else { |
+ // Deoptimize if we don't have a heap number. |
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(at)); |
+ |
+ // Load the double value. |
+ __ ldc1(double_scratch, |
+ FieldMemOperand(input_reg, HeapNumber::kValueOffset)); |
+ |
+ Register except_flag = scratch2; |
+ __ EmitFPUTruncate(kRoundToZero, |
+ single_scratch, |
+ double_scratch, |
+ scratch1, |
+ except_flag, |
+ kCheckForInexactConversion); |
+ |
+ // Deopt if the operation did not succeed. |
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); |
+ |
+ // Load the result. |
+ __ mfc1(input_reg, single_scratch); |
+ |
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { |
+ __ Branch(&done, ne, input_reg, Operand(zero_reg)); |
+ |
+ __ mfc1(scratch1, double_scratch.high()); |
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); |
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg)); |
+ } |
+ } |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) { |
+ class DeferredTaggedToI: public LDeferredCode { |
+ public: |
+ DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LTaggedToI* instr_; |
+ }; |
+ |
+ LOperand* input = instr->InputAt(0); |
+ ASSERT(input->IsRegister()); |
+ ASSERT(input->Equals(instr->result())); |
+ |
+ Register input_reg = ToRegister(input); |
+ |
+ DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr); |
+ |
+ // Let the deferred code handle the HeapObject case. |
+ __ JumpIfNotSmi(input_reg, deferred->entry()); |
+ |
+ // Smi to int32 conversion. |
+ __ SmiUntag(input_reg); |
+ __ bind(deferred->exit()); |
+} |
+ |
+ |
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { |
+ LOperand* input = instr->InputAt(0); |
+ ASSERT(input->IsRegister()); |
+ LOperand* result = instr->result(); |
+ ASSERT(result->IsDoubleRegister()); |
+ |
+ Register input_reg = ToRegister(input); |
+ DoubleRegister result_reg = ToDoubleRegister(result); |
+ |
+ EmitNumberUntagD(input_reg, result_reg, |
+ instr->hydrogen()->deoptimize_on_undefined(), |
+ instr->environment()); |
+} |
+ |
+ |
+void LCodeGen::DoDoubleToI(LDoubleToI* instr) { |
+ Register result_reg = ToRegister(instr->result()); |
+ Register scratch1 = scratch0(); |
+ Register scratch2 = ToRegister(instr->TempAt(0)); |
+ DoubleRegister double_input = ToDoubleRegister(instr->InputAt(0)); |
+ DoubleRegister double_scratch = double_scratch0(); |
+ FPURegister single_scratch = double_scratch0().low(); |
+ |
+ if (instr->truncating()) { |
+ Register scratch3 = ToRegister(instr->TempAt(1)); |
+ __ EmitECMATruncate(result_reg, |
+ double_input, |
+ single_scratch, |
+ scratch1, |
+ scratch2, |
+ scratch3); |
+ } else { |
+ Register except_flag = scratch2; |
+ |
+ __ EmitFPUTruncate(kRoundToMinusInf, |
+ single_scratch, |
+ double_input, |
+ scratch1, |
+ except_flag, |
+ kCheckForInexactConversion); |
+ |
+ // Deopt if the operation did not succeed (except_flag != 0). |
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); |
+ |
+ // Load the result. |
+ __ mfc1(result_reg, single_scratch); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) { |
+ LOperand* input = instr->InputAt(0); |
+ __ And(at, ToRegister(input), Operand(kSmiTagMask)); |
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg)); |
+} |
+ |
+ |
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { |
+ LOperand* input = instr->InputAt(0); |
+ __ And(at, ToRegister(input), Operand(kSmiTagMask)); |
+ DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); |
+} |
+ |
+ |
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ Register scratch = scratch0(); |
+ |
+ __ GetObjectType(input, scratch, scratch); |
+ |
+ if (instr->hydrogen()->is_interval_check()) { |
+ InstanceType first; |
+ InstanceType last; |
+ instr->hydrogen()->GetCheckInterval(&first, &last); |
+ |
+ // If there is only one type in the interval check for equality. |
+ if (first == last) { |
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(first)); |
+ } else { |
+ DeoptimizeIf(lo, instr->environment(), scratch, Operand(first)); |
+ // Omit check for the last type. |
+ if (last != LAST_TYPE) { |
+ DeoptimizeIf(hi, instr->environment(), scratch, Operand(last)); |
+ } |
+ } |
+ } else { |
+ uint8_t mask; |
+ uint8_t tag; |
+ instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); |
+ |
+ if (IsPowerOf2(mask)) { |
+ ASSERT(tag == 0 || IsPowerOf2(tag)); |
+ __ And(at, scratch, mask); |
+ DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(), |
+ at, Operand(zero_reg)); |
+ } else { |
+ __ And(scratch, scratch, Operand(mask)); |
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(tag)); |
+ } |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCheckFunction(LCheckFunction* instr) { |
+ ASSERT(instr->InputAt(0)->IsRegister()); |
+ Register reg = ToRegister(instr->InputAt(0)); |
+ DeoptimizeIf(ne, instr->environment(), reg, |
+ Operand(instr->hydrogen()->target())); |
+} |
+ |
+ |
+void LCodeGen::DoCheckMap(LCheckMap* instr) { |
+ Register scratch = scratch0(); |
+ LOperand* input = instr->InputAt(0); |
+ ASSERT(input->IsRegister()); |
+ Register reg = ToRegister(input); |
+ __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); |
+ DeoptimizeIf(ne, |
+ instr->environment(), |
+ scratch, |
+ Operand(instr->hydrogen()->map())); |
+} |
+ |
+ |
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { |
+ DoubleRegister value_reg = ToDoubleRegister(instr->unclamped()); |
+ Register result_reg = ToRegister(instr->result()); |
+ DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0)); |
+ __ ClampDoubleToUint8(result_reg, value_reg, temp_reg); |
+} |
+ |
+ |
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { |
+ Register unclamped_reg = ToRegister(instr->unclamped()); |
+ Register result_reg = ToRegister(instr->result()); |
+ __ ClampUint8(result_reg, unclamped_reg); |
+} |
+ |
+ |
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { |
+ Register scratch = scratch0(); |
+ Register input_reg = ToRegister(instr->unclamped()); |
+ Register result_reg = ToRegister(instr->result()); |
+ DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0)); |
+ Label is_smi, done, heap_number; |
+ |
+ // Both smi and heap number cases are handled. |
+ __ JumpIfSmi(input_reg, &is_smi); |
+ |
+ // Check for heap number |
+ __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); |
+ __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map())); |
+ |
+ // Check for undefined. Undefined is converted to zero for clamping |
+ // conversions. |
+ DeoptimizeIf(ne, instr->environment(), input_reg, |
+ Operand(factory()->undefined_value())); |
+ __ mov(result_reg, zero_reg); |
+ __ jmp(&done); |
+ |
+ // Heap number |
+ __ bind(&heap_number); |
+ __ ldc1(double_scratch0(), FieldMemOperand(input_reg, |
+ HeapNumber::kValueOffset)); |
+ __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg); |
+ __ jmp(&done); |
+ |
+ // smi |
+ __ bind(&is_smi); |
+ __ SmiUntag(scratch, input_reg); |
+ __ ClampUint8(result_reg, scratch); |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+void LCodeGen::LoadHeapObject(Register result, |
+ Handle<HeapObject> object) { |
+ if (heap()->InNewSpace(*object)) { |
+ Handle<JSGlobalPropertyCell> cell = |
+ factory()->NewJSGlobalPropertyCell(object); |
+ __ li(result, Operand(cell)); |
+ __ lw(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset)); |
+ } else { |
+ __ li(result, Operand(object)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { |
+ Register temp1 = ToRegister(instr->TempAt(0)); |
+ Register temp2 = ToRegister(instr->TempAt(1)); |
+ |
+ Handle<JSObject> holder = instr->holder(); |
+ Handle<JSObject> current_prototype = instr->prototype(); |
+ |
+ // Load prototype object. |
+ LoadHeapObject(temp1, current_prototype); |
+ |
+ // Check prototype maps up to the holder. |
+ while (!current_prototype.is_identical_to(holder)) { |
+ __ lw(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset)); |
+ DeoptimizeIf(ne, |
+ instr->environment(), |
+ temp2, |
+ Operand(Handle<Map>(current_prototype->map()))); |
+ current_prototype = |
+ Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype())); |
+ // Load next prototype object. |
+ LoadHeapObject(temp1, current_prototype); |
+ } |
+ |
+ // Check the holder map. |
+ __ lw(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset)); |
+ DeoptimizeIf(ne, |
+ instr->environment(), |
+ temp2, |
+ Operand(Handle<Map>(current_prototype->map()))); |
+} |
+ |
+ |
+void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) { |
+ Handle<FixedArray> constant_elements = instr->hydrogen()->constant_elements(); |
+ ASSERT_EQ(2, constant_elements->length()); |
+ ElementsKind constant_elements_kind = |
+ static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value()); |
+ |
+ __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
+ __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); |
+ __ li(a2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); |
+ __ li(a1, Operand(constant_elements)); |
+ __ Push(a3, a2, a1); |
+ |
+ // Pick the right runtime function or stub to call. |
+ int length = instr->hydrogen()->length(); |
+ if (instr->hydrogen()->IsCopyOnWrite()) { |
+ ASSERT(instr->hydrogen()->depth() == 1); |
+ FastCloneShallowArrayStub::Mode mode = |
+ FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS; |
+ FastCloneShallowArrayStub stub(mode, length); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ } else if (instr->hydrogen()->depth() > 1) { |
+ CallRuntime(Runtime::kCreateArrayLiteral, 3, instr); |
+ } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { |
+ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr); |
+ } else { |
+ FastCloneShallowArrayStub::Mode mode = |
+ constant_elements_kind == FAST_DOUBLE_ELEMENTS |
+ ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS |
+ : FastCloneShallowArrayStub::CLONE_ELEMENTS; |
+ FastCloneShallowArrayStub stub(mode, length); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) { |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ __ lw(t0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
+ __ lw(t0, FieldMemOperand(t0, JSFunction::kLiteralsOffset)); |
+ __ li(a3, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); |
+ __ li(a2, Operand(instr->hydrogen()->constant_properties())); |
+ __ li(a1, Operand(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0))); |
+ __ Push(t0, a3, a2, a1); |
+ |
+ // Pick the right runtime function to call. |
+ if (instr->hydrogen()->depth() > 1) { |
+ CallRuntime(Runtime::kCreateObjectLiteral, 4, instr); |
+ } else { |
+ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) { |
+ ASSERT(ToRegister(instr->InputAt(0)).is(a0)); |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ __ push(a0); |
+ CallRuntime(Runtime::kToFastProperties, 1, instr); |
+} |
+ |
+ |
+void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { |
+ Label materialized; |
+ // Registers will be used as follows: |
+ // a3 = JS function. |
+ // t3 = literals array. |
+ // a1 = regexp literal. |
+ // a0 = regexp literal clone. |
+ // a2 and t0-t2 are used as temporaries. |
+ __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
+ __ lw(t3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); |
+ int literal_offset = FixedArray::kHeaderSize + |
+ instr->hydrogen()->literal_index() * kPointerSize; |
+ __ lw(a1, FieldMemOperand(t3, literal_offset)); |
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
+ __ Branch(&materialized, ne, a1, Operand(at)); |
+ |
+ // Create regexp literal using runtime function |
+ // Result will be in v0. |
+ __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); |
+ __ li(t1, Operand(instr->hydrogen()->pattern())); |
+ __ li(t0, Operand(instr->hydrogen()->flags())); |
+ __ Push(t3, t2, t1, t0); |
+ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); |
+ __ mov(a1, v0); |
+ |
+ __ bind(&materialized); |
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; |
+ Label allocated, runtime_allocate; |
+ |
+ __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); |
+ __ jmp(&allocated); |
+ |
+ __ bind(&runtime_allocate); |
+ __ li(a0, Operand(Smi::FromInt(size))); |
+ __ Push(a1, a0); |
+ CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); |
+ __ pop(a1); |
+ |
+ __ bind(&allocated); |
+ // Copy the content into the newly allocated memory. |
+ // (Unroll copy loop once for better throughput). |
+ for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { |
+ __ lw(a3, FieldMemOperand(a1, i)); |
+ __ lw(a2, FieldMemOperand(a1, i + kPointerSize)); |
+ __ sw(a3, FieldMemOperand(v0, i)); |
+ __ sw(a2, FieldMemOperand(v0, i + kPointerSize)); |
+ } |
+ if ((size % (2 * kPointerSize)) != 0) { |
+ __ lw(a3, FieldMemOperand(a1, size - kPointerSize)); |
+ __ sw(a3, FieldMemOperand(v0, size - kPointerSize)); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { |
+ // Use the fast case closure allocation code that allocates in new |
+ // space for nested functions that don't need literals cloning. |
+ Handle<SharedFunctionInfo> shared_info = instr->shared_info(); |
+ bool pretenure = instr->hydrogen()->pretenure(); |
+ if (!pretenure && shared_info->num_literals() == 0) { |
+ FastNewClosureStub stub(shared_info->strict_mode_flag()); |
+ __ li(a1, Operand(shared_info)); |
+ __ push(a1); |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ } else { |
+ __ li(a2, Operand(shared_info)); |
+ __ li(a1, Operand(pretenure |
+ ? factory()->true_value() |
+ : factory()->false_value())); |
+ __ Push(cp, a2, a1); |
+ CallRuntime(Runtime::kNewClosure, 3, instr); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoTypeof(LTypeof* instr) { |
+ ASSERT(ToRegister(instr->result()).is(v0)); |
+ Register input = ToRegister(instr->InputAt(0)); |
+ __ push(input); |
+ CallRuntime(Runtime::kTypeof, 1, instr); |
+} |
+ |
+ |
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { |
+ Register input = ToRegister(instr->InputAt(0)); |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ Label* true_label = chunk_->GetAssemblyLabel(true_block); |
+ Label* false_label = chunk_->GetAssemblyLabel(false_block); |
+ |
+ Register cmp1 = no_reg; |
+ Operand cmp2 = Operand(no_reg); |
+ |
+ Condition final_branch_condition = EmitTypeofIs(true_label, |
+ false_label, |
+ input, |
+ instr->type_literal(), |
+ cmp1, |
+ cmp2); |
+ |
+ ASSERT(cmp1.is_valid()); |
+ ASSERT(!cmp2.is_reg() || cmp2.rm().is_valid()); |
+ |
+ if (final_branch_condition != kNoCondition) { |
+ EmitBranch(true_block, false_block, final_branch_condition, cmp1, cmp2); |
+ } |
+} |
+ |
+ |
+Condition LCodeGen::EmitTypeofIs(Label* true_label, |
+ Label* false_label, |
+ Register input, |
+ Handle<String> type_name, |
+ Register& cmp1, |
+ Operand& cmp2) { |
+ // This function utilizes the delay slot heavily. This is used to load |
+ // values that are always usable without depending on the type of the input |
+ // register. |
+ Condition final_branch_condition = kNoCondition; |
+ Register scratch = scratch0(); |
+ if (type_name->Equals(heap()->number_symbol())) { |
+ __ JumpIfSmi(input, true_label); |
+ __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
+ cmp1 = input; |
+ cmp2 = Operand(at); |
+ final_branch_condition = eq; |
+ |
+ } else if (type_name->Equals(heap()->string_symbol())) { |
+ __ JumpIfSmi(input, false_label); |
+ __ GetObjectType(input, input, scratch); |
+ __ Branch(USE_DELAY_SLOT, false_label, |
+ ge, scratch, Operand(FIRST_NONSTRING_TYPE)); |
+ // input is an object so we can load the BitFieldOffset even if we take the |
+ // other branch. |
+ __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); |
+ __ And(at, at, 1 << Map::kIsUndetectable); |
+ cmp1 = at; |
+ cmp2 = Operand(zero_reg); |
+ final_branch_condition = eq; |
+ |
+ } else if (type_name->Equals(heap()->boolean_symbol())) { |
+ __ LoadRoot(at, Heap::kTrueValueRootIndex); |
+ __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); |
+ __ LoadRoot(at, Heap::kFalseValueRootIndex); |
+ cmp1 = at; |
+ cmp2 = Operand(input); |
+ final_branch_condition = eq; |
+ |
+ } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) { |
+ __ LoadRoot(at, Heap::kNullValueRootIndex); |
+ cmp1 = at; |
+ cmp2 = Operand(input); |
+ final_branch_condition = eq; |
+ |
+ } else if (type_name->Equals(heap()->undefined_symbol())) { |
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
+ __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); |
+ // The first instruction of JumpIfSmi is an And - it is safe in the delay |
+ // slot. |
+ __ JumpIfSmi(input, false_label); |
+ // Check for undetectable objects => true. |
+ __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); |
+ __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); |
+ __ And(at, at, 1 << Map::kIsUndetectable); |
+ cmp1 = at; |
+ cmp2 = Operand(zero_reg); |
+ final_branch_condition = ne; |
+ |
+ } else if (type_name->Equals(heap()->function_symbol())) { |
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); |
+ __ JumpIfSmi(input, false_label); |
+ __ GetObjectType(input, scratch, input); |
+ __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE)); |
+ cmp1 = input; |
+ cmp2 = Operand(JS_FUNCTION_PROXY_TYPE); |
+ final_branch_condition = eq; |
+ |
+ } else if (type_name->Equals(heap()->object_symbol())) { |
+ __ JumpIfSmi(input, false_label); |
+ if (!FLAG_harmony_typeof) { |
+ __ LoadRoot(at, Heap::kNullValueRootIndex); |
+ __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); |
+ } |
+ // input is an object, it is safe to use GetObjectType in the delay slot. |
+ __ GetObjectType(input, input, scratch); |
+ __ Branch(USE_DELAY_SLOT, false_label, |
+ lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
+ // Still an object, so the InstanceType can be loaded. |
+ __ lbu(scratch, FieldMemOperand(input, Map::kInstanceTypeOffset)); |
+ __ Branch(USE_DELAY_SLOT, false_label, |
+ gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
+ // Still an object, so the BitField can be loaded. |
+ // Check for undetectable objects => false. |
+ __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); |
+ __ And(at, at, 1 << Map::kIsUndetectable); |
+ cmp1 = at; |
+ cmp2 = Operand(zero_reg); |
+ final_branch_condition = eq; |
+ |
+ } else { |
+ cmp1 = at; |
+ cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion. |
+ __ Branch(false_label); |
+ } |
+ |
+ return final_branch_condition; |
+} |
+ |
+ |
+void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { |
+ Register temp1 = ToRegister(instr->TempAt(0)); |
+ int true_block = chunk_->LookupDestination(instr->true_block_id()); |
+ int false_block = chunk_->LookupDestination(instr->false_block_id()); |
+ |
+ EmitIsConstructCall(temp1, scratch0()); |
+ |
+ EmitBranch(true_block, false_block, eq, temp1, |
+ Operand(Smi::FromInt(StackFrame::CONSTRUCT))); |
+} |
+ |
+ |
+void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { |
+ ASSERT(!temp1.is(temp2)); |
+ // Get the frame pointer for the calling frame. |
+ __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ |
+ // Skip the arguments adaptor frame if it exists. |
+ Label check_frame_marker; |
+ __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); |
+ __ Branch(&check_frame_marker, ne, temp2, |
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); |
+ |
+ // Check the marker in the calling frame. |
+ __ bind(&check_frame_marker); |
+ __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); |
+} |
+ |
+ |
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) { |
+ // No code for lazy bailout instruction. Used to capture environment after a |
+ // call for populating the safepoint data with deoptimization data. |
+} |
+ |
+ |
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) { |
+ DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg)); |
+} |
+ |
+ |
+void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) { |
+ Register object = ToRegister(instr->object()); |
+ Register key = ToRegister(instr->key()); |
+ Register strict = scratch0(); |
+ __ li(strict, Operand(Smi::FromInt(strict_mode_flag()))); |
+ __ Push(object, key, strict); |
+ ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); |
+ LPointerMap* pointers = instr->pointer_map(); |
+ LEnvironment* env = instr->deoptimization_environment(); |
+ RecordPosition(pointers->position()); |
+ RegisterEnvironmentForDeoptimization(env); |
+ SafepointGenerator safepoint_generator(this, |
+ pointers, |
+ env->deoptimization_index()); |
+ __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator); |
+} |
+ |
+ |
+void LCodeGen::DoIn(LIn* instr) { |
+ Register obj = ToRegister(instr->object()); |
+ Register key = ToRegister(instr->key()); |
+ __ Push(key, obj); |
+ ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); |
+ LPointerMap* pointers = instr->pointer_map(); |
+ LEnvironment* env = instr->deoptimization_environment(); |
+ RecordPosition(pointers->position()); |
+ RegisterEnvironmentForDeoptimization(env); |
+ SafepointGenerator safepoint_generator(this, |
+ pointers, |
+ env->deoptimization_index()); |
+ __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator); |
+} |
+ |
+ |
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { |
+ { |
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); |
+ __ CallRuntimeSaveDoubles(Runtime::kStackGuard); |
+ RegisterLazyDeoptimization( |
+ instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); |
+ } |
+ |
+ // The gap code includes the restoring of the safepoint registers. |
+ int pc = masm()->pc_offset(); |
+ safepoints_.SetPcAfterGap(pc); |
+} |
+ |
+ |
+void LCodeGen::DoStackCheck(LStackCheck* instr) { |
+ class DeferredStackCheck: public LDeferredCode { |
+ public: |
+ DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) |
+ : LDeferredCode(codegen), instr_(instr) { } |
+ virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } |
+ virtual LInstruction* instr() { return instr_; } |
+ private: |
+ LStackCheck* instr_; |
+ }; |
+ |
+ if (instr->hydrogen()->is_function_entry()) { |
+ // Perform stack overflow check. |
+ Label done; |
+ __ LoadRoot(at, Heap::kStackLimitRootIndex); |
+ __ Branch(&done, hs, sp, Operand(at)); |
+ StackCheckStub stub; |
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); |
+ __ bind(&done); |
+ } else { |
+ ASSERT(instr->hydrogen()->is_backwards_branch()); |
+ // Perform stack overflow check if this goto needs it before jumping. |
+ DeferredStackCheck* deferred_stack_check = |
+ new DeferredStackCheck(this, instr); |
+ __ LoadRoot(at, Heap::kStackLimitRootIndex); |
+ __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at)); |
+ __ bind(instr->done_label()); |
+ deferred_stack_check->SetExit(instr->done_label()); |
+ } |
+} |
+ |
+ |
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) { |
+ // This is a pseudo-instruction that ensures that the environment here is |
+ // properly registered for deoptimization and records the assembler's PC |
+ // offset. |
+ LEnvironment* environment = instr->environment(); |
+ environment->SetSpilledRegisters(instr->SpilledRegisterArray(), |
+ instr->SpilledDoubleRegisterArray()); |
+ |
+ // If the environment were already registered, we would have no way of |
+ // backpatching it with the spill slot operands. |
+ ASSERT(!environment->HasBeenRegistered()); |
+ RegisterEnvironmentForDeoptimization(environment); |
+ ASSERT(osr_pc_offset_ == -1); |
+ osr_pc_offset_ = masm()->pc_offset(); |
+} |
+ |
+ |
+#undef __ |
+ |
+} } // namespace v8::internal |