Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(581)

Unified Diff: src/mips/lithium-codegen-mips.cc

Issue 7934002: MIPS: crankshaft implementation (Closed)
Patch Set: rebased on r9823. Created 9 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/mips/lithium-codegen-mips.h ('k') | src/mips/lithium-gap-resolver-mips.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/mips/lithium-codegen-mips.cc
diff --git a/src/mips/lithium-codegen-mips.cc b/src/mips/lithium-codegen-mips.cc
new file mode 100644
index 0000000000000000000000000000000000000000..e640b53e8df0c4e06e351d9b5e132b7ff7a99c1e
--- /dev/null
+++ b/src/mips/lithium-codegen-mips.cc
@@ -0,0 +1,4628 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "mips/lithium-codegen-mips.h"
+#include "mips/lithium-gap-resolver-mips.h"
+#include "code-stubs.h"
+#include "stub-cache.h"
+
+namespace v8 {
+namespace internal {
+
+
+class SafepointGenerator : public CallWrapper {
+ public:
+ SafepointGenerator(LCodeGen* codegen,
+ LPointerMap* pointers,
+ int deoptimization_index)
+ : codegen_(codegen),
+ pointers_(pointers),
+ deoptimization_index_(deoptimization_index) { }
+ virtual ~SafepointGenerator() { }
+
+ virtual void BeforeCall(int call_size) const {
+ ASSERT(call_size >= 0);
+ // Ensure that we have enough space after the previous safepoint position
+ // for the generated code there.
+ int call_end = codegen_->masm()->pc_offset() + call_size;
+ int prev_jump_end =
+ codegen_->LastSafepointEnd() + Deoptimizer::patch_size();
+ if (call_end < prev_jump_end) {
+ int padding_size = prev_jump_end - call_end;
+ ASSERT_EQ(0, padding_size % Assembler::kInstrSize);
+ while (padding_size > 0) {
+ codegen_->masm()->nop();
+ padding_size -= Assembler::kInstrSize;
+ }
+ }
+ }
+
+ virtual void AfterCall() const {
+ codegen_->RecordSafepoint(pointers_, deoptimization_index_);
+ }
+
+ private:
+ LCodeGen* codegen_;
+ LPointerMap* pointers_;
+ int deoptimization_index_;
+};
+
+
+#define __ masm()->
+
+bool LCodeGen::GenerateCode() {
+ HPhase phase("Code generation", chunk());
+ ASSERT(is_unused());
+ status_ = GENERATING;
+ CpuFeatures::Scope scope(FPU);
+
+ CodeStub::GenerateFPStubs();
+
+ // Open a frame scope to indicate that there is a frame on the stack. The
+ // NONE indicates that the scope shouldn't actually generate code to set up
+ // the frame (that is done in GeneratePrologue).
+ FrameScope frame_scope(masm_, StackFrame::NONE);
+
+ return GeneratePrologue() &&
+ GenerateBody() &&
+ GenerateDeferredCode() &&
+ GenerateSafepointTable();
+}
+
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+ ASSERT(is_done());
+ code->set_stack_slots(GetStackSlotCount());
+ code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+ PopulateDeoptimizationData(code);
+ Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
+}
+
+
+void LCodeGen::Abort(const char* format, ...) {
+ if (FLAG_trace_bailout) {
+ SmartArrayPointer<char> name(
+ info()->shared_info()->DebugName()->ToCString());
+ PrintF("Aborting LCodeGen in @\"%s\": ", *name);
+ va_list arguments;
+ va_start(arguments, format);
+ OS::VPrint(format, arguments);
+ va_end(arguments);
+ PrintF("\n");
+ }
+ status_ = ABORTED;
+}
+
+
+void LCodeGen::Comment(const char* format, ...) {
+ if (!FLAG_code_comments) return;
+ char buffer[4 * KB];
+ StringBuilder builder(buffer, ARRAY_SIZE(buffer));
+ va_list arguments;
+ va_start(arguments, format);
+ builder.AddFormattedList(format, arguments);
+ va_end(arguments);
+
+ // Copy the string before recording it in the assembler to avoid
+ // issues when the stack allocated buffer goes out of scope.
+ size_t length = builder.position();
+ Vector<char> copy = Vector<char>::New(length + 1);
+ memcpy(copy.start(), builder.Finalize(), copy.length());
+ masm()->RecordComment(copy.start());
+}
+
+
+bool LCodeGen::GeneratePrologue() {
+ ASSERT(is_generating());
+
+#ifdef DEBUG
+ if (strlen(FLAG_stop_at) > 0 &&
+ info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
+ __ stop("stop_at");
+ }
+#endif
+
+ // a1: Callee's JS function.
+ // cp: Callee's context.
+ // fp: Caller's frame pointer.
+ // lr: Caller's pc.
+
+ // Strict mode functions and builtins need to replace the receiver
+ // with undefined when called as functions (without an explicit
+ // receiver object). r5 is zero for method calls and non-zero for
+ // function calls.
+ if (info_->is_strict_mode() || info_->is_native()) {
+ Label ok;
+ __ Branch(&ok, eq, t1, Operand(zero_reg));
+
+ int receiver_offset = scope()->num_parameters() * kPointerSize;
+ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+ __ sw(a2, MemOperand(sp, receiver_offset));
+ __ bind(&ok);
+ }
+
+ __ Push(ra, fp, cp, a1);
+ __ Addu(fp, sp, Operand(2 * kPointerSize)); // Adj. FP to point to saved FP.
+
+ // Reserve space for the stack slots needed by the code.
+ int slots = GetStackSlotCount();
+ if (slots > 0) {
+ if (FLAG_debug_code) {
+ __ li(a0, Operand(slots));
+ __ li(a2, Operand(kSlotsZapValue));
+ Label loop;
+ __ bind(&loop);
+ __ push(a2);
+ __ Subu(a0, a0, 1);
+ __ Branch(&loop, ne, a0, Operand(zero_reg));
+ } else {
+ __ Subu(sp, sp, Operand(slots * kPointerSize));
+ }
+ }
+
+ // Possibly allocate a local context.
+ int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+ if (heap_slots > 0) {
+ Comment(";;; Allocate local context");
+ // Argument to NewContext is the function, which is in a1.
+ __ push(a1);
+ if (heap_slots <= FastNewContextStub::kMaximumSlots) {
+ FastNewContextStub stub(heap_slots);
+ __ CallStub(&stub);
+ } else {
+ __ CallRuntime(Runtime::kNewFunctionContext, 1);
+ }
+ RecordSafepoint(Safepoint::kNoDeoptimizationIndex);
+ // Context is returned in both v0 and cp. It replaces the context
+ // passed to us. It's saved in the stack and kept live in cp.
+ __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ // Copy any necessary parameters into the context.
+ int num_parameters = scope()->num_parameters();
+ for (int i = 0; i < num_parameters; i++) {
+ Variable* var = scope()->parameter(i);
+ if (var->IsContextSlot()) {
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+ (num_parameters - 1 - i) * kPointerSize;
+ // Load parameter from stack.
+ __ lw(a0, MemOperand(fp, parameter_offset));
+ // Store it in the context.
+ MemOperand target = ContextOperand(cp, var->index());
+ __ sw(a0, target);
+ // Update the write barrier. This clobbers a3 and a0.
+ __ RecordWriteContextSlot(
+ cp, target.offset(), a0, a3, kRAHasBeenSaved, kSaveFPRegs);
+ }
+ }
+ Comment(";;; End allocate local context");
+ }
+
+ // Trace the call.
+ if (FLAG_trace) {
+ __ CallRuntime(Runtime::kTraceEnter, 0);
+ }
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateBody() {
+ ASSERT(is_generating());
+ bool emit_instructions = true;
+ for (current_instruction_ = 0;
+ !is_aborted() && current_instruction_ < instructions_->length();
+ current_instruction_++) {
+ LInstruction* instr = instructions_->at(current_instruction_);
+ if (instr->IsLabel()) {
+ LLabel* label = LLabel::cast(instr);
+ emit_instructions = !label->HasReplacement();
+ }
+
+ if (emit_instructions) {
+ Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
+ instr->CompileToNative(this);
+ }
+ }
+ return !is_aborted();
+}
+
+
+LInstruction* LCodeGen::GetNextInstruction() {
+ if (current_instruction_ < instructions_->length() - 1) {
+ return instructions_->at(current_instruction_ + 1);
+ } else {
+ return NULL;
+ }
+}
+
+
+bool LCodeGen::GenerateDeferredCode() {
+ ASSERT(is_generating());
+ if (deferred_.length() > 0) {
+ for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
+ LDeferredCode* code = deferred_[i];
+ __ bind(code->entry());
+ Comment(";;; Deferred code @%d: %s.",
+ code->instruction_index(),
+ code->instr()->Mnemonic());
+ code->Generate();
+ __ jmp(code->exit());
+ }
+
+ // Pad code to ensure that the last piece of deferred code have
+ // room for lazy bailout.
+ while ((masm()->pc_offset() - LastSafepointEnd())
+ < Deoptimizer::patch_size()) {
+ __ nop();
+ }
+ }
+ // Deferred code is the last part of the instruction sequence. Mark
+ // the generated code as done unless we bailed out.
+ if (!is_aborted()) status_ = DONE;
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateDeoptJumpTable() {
+ // TODO(plind): not clear that this will have advantage for MIPS.
+ // Skipping it for now. Raised issue #100 for this.
+ Abort("Unimplemented: %s", "GenerateDeoptJumpTable");
+ return false;
+}
+
+
+bool LCodeGen::GenerateSafepointTable() {
+ ASSERT(is_done());
+ safepoints_.Emit(masm(), GetStackSlotCount());
+ return !is_aborted();
+}
+
+
+Register LCodeGen::ToRegister(int index) const {
+ return Register::FromAllocationIndex(index);
+}
+
+
+DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
+ return DoubleRegister::FromAllocationIndex(index);
+}
+
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+ ASSERT(op->IsRegister());
+ return ToRegister(op->index());
+}
+
+
+Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
+ if (op->IsRegister()) {
+ return ToRegister(op->index());
+ } else if (op->IsConstantOperand()) {
+ __ li(scratch, ToOperand(op));
+ return scratch;
+ } else if (op->IsStackSlot() || op->IsArgument()) {
+ __ lw(scratch, ToMemOperand(op));
+ return scratch;
+ }
+ UNREACHABLE();
+ return scratch;
+}
+
+
+DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
+ ASSERT(op->IsDoubleRegister());
+ return ToDoubleRegister(op->index());
+}
+
+
+DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
+ FloatRegister flt_scratch,
+ DoubleRegister dbl_scratch) {
+ if (op->IsDoubleRegister()) {
+ return ToDoubleRegister(op->index());
+ } else if (op->IsConstantOperand()) {
+ LConstantOperand* const_op = LConstantOperand::cast(op);
+ Handle<Object> literal = chunk_->LookupLiteral(const_op);
+ Representation r = chunk_->LookupLiteralRepresentation(const_op);
+ if (r.IsInteger32()) {
+ ASSERT(literal->IsNumber());
+ __ li(at, Operand(static_cast<int32_t>(literal->Number())));
+ __ mtc1(at, flt_scratch);
+ __ cvt_d_w(dbl_scratch, flt_scratch);
+ return dbl_scratch;
+ } else if (r.IsDouble()) {
+ Abort("unsupported double immediate");
+ } else if (r.IsTagged()) {
+ Abort("unsupported tagged immediate");
+ }
+ } else if (op->IsStackSlot() || op->IsArgument()) {
+ MemOperand mem_op = ToMemOperand(op);
+ __ ldc1(dbl_scratch, mem_op);
+ return dbl_scratch;
+ }
+ UNREACHABLE();
+ return dbl_scratch;
+}
+
+
+int LCodeGen::ToInteger32(LConstantOperand* op) const {
+ Handle<Object> value = chunk_->LookupLiteral(op);
+ ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
+ ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
+ value->Number());
+ return static_cast<int32_t>(value->Number());
+}
+
+
+double LCodeGen::ToDouble(LConstantOperand* op) const {
+ Handle<Object> value = chunk_->LookupLiteral(op);
+ return value->Number();
+}
+
+
+Operand LCodeGen::ToOperand(LOperand* op) {
+ if (op->IsConstantOperand()) {
+ LConstantOperand* const_op = LConstantOperand::cast(op);
+ Handle<Object> literal = chunk_->LookupLiteral(const_op);
+ Representation r = chunk_->LookupLiteralRepresentation(const_op);
+ if (r.IsInteger32()) {
+ ASSERT(literal->IsNumber());
+ return Operand(static_cast<int32_t>(literal->Number()));
+ } else if (r.IsDouble()) {
+ Abort("ToOperand Unsupported double immediate.");
+ }
+ ASSERT(r.IsTagged());
+ return Operand(literal);
+ } else if (op->IsRegister()) {
+ return Operand(ToRegister(op));
+ } else if (op->IsDoubleRegister()) {
+ Abort("ToOperand IsDoubleRegister unimplemented");
+ return Operand(0);
+ }
+ // Stack slots not implemented, use ToMemOperand instead.
+ UNREACHABLE();
+ return Operand(0);
+}
+
+
+MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
+ ASSERT(!op->IsRegister());
+ ASSERT(!op->IsDoubleRegister());
+ ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
+ int index = op->index();
+ if (index >= 0) {
+ // Local or spill slot. Skip the frame pointer, function, and
+ // context in the fixed part of the frame.
+ return MemOperand(fp, -(index + 3) * kPointerSize);
+ } else {
+ // Incoming parameter. Skip the return address.
+ return MemOperand(fp, -(index - 1) * kPointerSize);
+ }
+}
+
+
+MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
+ ASSERT(op->IsDoubleStackSlot());
+ int index = op->index();
+ if (index >= 0) {
+ // Local or spill slot. Skip the frame pointer, function, context,
+ // and the first word of the double in the fixed part of the frame.
+ return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize);
+ } else {
+ // Incoming parameter. Skip the return address and the first word of
+ // the double.
+ return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize);
+ }
+}
+
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+ Translation* translation) {
+ if (environment == NULL) return;
+
+ // The translation includes one command per value in the environment.
+ int translation_size = environment->values()->length();
+ // The output frame height does not include the parameters.
+ int height = translation_size - environment->parameter_count();
+
+ WriteTranslation(environment->outer(), translation);
+ int closure_id = DefineDeoptimizationLiteral(environment->closure());
+ translation->BeginFrame(environment->ast_id(), closure_id, height);
+ for (int i = 0; i < translation_size; ++i) {
+ LOperand* value = environment->values()->at(i);
+ // spilled_registers_ and spilled_double_registers_ are either
+ // both NULL or both set.
+ if (environment->spilled_registers() != NULL && value != NULL) {
+ if (value->IsRegister() &&
+ environment->spilled_registers()[value->index()] != NULL) {
+ translation->MarkDuplicate();
+ AddToTranslation(translation,
+ environment->spilled_registers()[value->index()],
+ environment->HasTaggedValueAt(i));
+ } else if (
+ value->IsDoubleRegister() &&
+ environment->spilled_double_registers()[value->index()] != NULL) {
+ translation->MarkDuplicate();
+ AddToTranslation(
+ translation,
+ environment->spilled_double_registers()[value->index()],
+ false);
+ }
+ }
+
+ AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
+ }
+}
+
+
+void LCodeGen::AddToTranslation(Translation* translation,
+ LOperand* op,
+ bool is_tagged) {
+ if (op == NULL) {
+ // TODO(twuerthinger): Introduce marker operands to indicate that this value
+ // is not present and must be reconstructed from the deoptimizer. Currently
+ // this is only used for the arguments object.
+ translation->StoreArgumentsObject();
+ } else if (op->IsStackSlot()) {
+ if (is_tagged) {
+ translation->StoreStackSlot(op->index());
+ } else {
+ translation->StoreInt32StackSlot(op->index());
+ }
+ } else if (op->IsDoubleStackSlot()) {
+ translation->StoreDoubleStackSlot(op->index());
+ } else if (op->IsArgument()) {
+ ASSERT(is_tagged);
+ int src_index = GetStackSlotCount() + op->index();
+ translation->StoreStackSlot(src_index);
+ } else if (op->IsRegister()) {
+ Register reg = ToRegister(op);
+ if (is_tagged) {
+ translation->StoreRegister(reg);
+ } else {
+ translation->StoreInt32Register(reg);
+ }
+ } else if (op->IsDoubleRegister()) {
+ DoubleRegister reg = ToDoubleRegister(op);
+ translation->StoreDoubleRegister(reg);
+ } else if (op->IsConstantOperand()) {
+ Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
+ int src_index = DefineDeoptimizationLiteral(literal);
+ translation->StoreLiteral(src_index);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::CallCode(Handle<Code> code,
+ RelocInfo::Mode mode,
+ LInstruction* instr) {
+ CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::CallCodeGeneric(Handle<Code> code,
+ RelocInfo::Mode mode,
+ LInstruction* instr,
+ SafepointMode safepoint_mode) {
+ ASSERT(instr != NULL);
+ LPointerMap* pointers = instr->pointer_map();
+ RecordPosition(pointers->position());
+ __ Call(code, mode);
+ RegisterLazyDeoptimization(instr, safepoint_mode);
+}
+
+
+void LCodeGen::CallRuntime(const Runtime::Function* function,
+ int num_arguments,
+ LInstruction* instr) {
+ ASSERT(instr != NULL);
+ LPointerMap* pointers = instr->pointer_map();
+ ASSERT(pointers != NULL);
+ RecordPosition(pointers->position());
+
+ __ CallRuntime(function, num_arguments);
+ RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
+ int argc,
+ LInstruction* instr) {
+ __ CallRuntimeSaveDoubles(id);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), argc, Safepoint::kNoDeoptimizationIndex);
+}
+
+
+void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr,
+ SafepointMode safepoint_mode) {
+ // Create the environment to bailout to. If the call has side effects
+ // execution has to continue after the call otherwise execution can continue
+ // from a previous bailout point repeating the call.
+ LEnvironment* deoptimization_environment;
+ if (instr->HasDeoptimizationEnvironment()) {
+ deoptimization_environment = instr->deoptimization_environment();
+ } else {
+ deoptimization_environment = instr->environment();
+ }
+
+ RegisterEnvironmentForDeoptimization(deoptimization_environment);
+ if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
+ RecordSafepoint(instr->pointer_map(),
+ deoptimization_environment->deoptimization_index());
+ } else {
+ ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(),
+ 0,
+ deoptimization_environment->deoptimization_index());
+ }
+}
+
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) {
+ if (!environment->HasBeenRegistered()) {
+ // Physical stack frame layout:
+ // -x ............. -4 0 ..................................... y
+ // [incoming arguments] [spill slots] [pushed outgoing arguments]
+
+ // Layout of the environment:
+ // 0 ..................................................... size-1
+ // [parameters] [locals] [expression stack including arguments]
+
+ // Layout of the translation:
+ // 0 ........................................................ size - 1 + 4
+ // [expression stack including arguments] [locals] [4 words] [parameters]
+ // |>------------ translation_size ------------<|
+
+ int frame_count = 0;
+ for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+ ++frame_count;
+ }
+ Translation translation(&translations_, frame_count);
+ WriteTranslation(environment, &translation);
+ int deoptimization_index = deoptimizations_.length();
+ environment->Register(deoptimization_index, translation.index());
+ deoptimizations_.Add(environment);
+ }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition cc,
+ LEnvironment* environment,
+ Register src1,
+ const Operand& src2) {
+ RegisterEnvironmentForDeoptimization(environment);
+ ASSERT(environment->HasBeenRegistered());
+ int id = environment->deoptimization_index();
+ Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
+ ASSERT(entry != NULL);
+ if (entry == NULL) {
+ Abort("bailout was not prepared");
+ return;
+ }
+
+ ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on MIPS.
+
+ if (FLAG_deopt_every_n_times == 1 &&
+ info_->shared_info()->opt_count() == id) {
+ __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
+ return;
+ }
+
+ if (FLAG_trap_on_deopt) {
+ Label skip;
+ if (cc != al) {
+ __ Branch(&skip, NegateCondition(cc), src1, src2);
+ }
+ __ stop("trap_on_deopt");
+ __ bind(&skip);
+ }
+
+ if (cc == al) {
+ __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
+ } else {
+ // TODO(plind): The Arm port is a little different here, due to their
+ // DeOpt jump table, which is not used for Mips yet.
+ __ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc, src1, src2);
+ }
+}
+
+
+void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
+ int length = deoptimizations_.length();
+ if (length == 0) return;
+ ASSERT(FLAG_deopt);
+ Handle<DeoptimizationInputData> data =
+ factory()->NewDeoptimizationInputData(length, TENURED);
+
+ Handle<ByteArray> translations = translations_.CreateByteArray();
+ data->SetTranslationByteArray(*translations);
+ data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
+
+ Handle<FixedArray> literals =
+ factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
+ for (int i = 0; i < deoptimization_literals_.length(); i++) {
+ literals->set(i, *deoptimization_literals_[i]);
+ }
+ data->SetLiteralArray(*literals);
+
+ data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
+ data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
+
+ // Populate the deoptimization entries.
+ for (int i = 0; i < length; i++) {
+ LEnvironment* env = deoptimizations_[i];
+ data->SetAstId(i, Smi::FromInt(env->ast_id()));
+ data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
+ data->SetArgumentsStackHeight(i,
+ Smi::FromInt(env->arguments_stack_height()));
+ }
+ code->set_deoptimization_data(*data);
+}
+
+
+int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
+ int result = deoptimization_literals_.length();
+ for (int i = 0; i < deoptimization_literals_.length(); ++i) {
+ if (deoptimization_literals_[i].is_identical_to(literal)) return i;
+ }
+ deoptimization_literals_.Add(literal);
+ return result;
+}
+
+
+void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
+ ASSERT(deoptimization_literals_.length() == 0);
+
+ const ZoneList<Handle<JSFunction> >* inlined_closures =
+ chunk()->inlined_closures();
+
+ for (int i = 0, length = inlined_closures->length();
+ i < length;
+ i++) {
+ DefineDeoptimizationLiteral(inlined_closures->at(i));
+ }
+
+ inlined_function_count_ = deoptimization_literals_.length();
+}
+
+
+void LCodeGen::RecordSafepoint(
+ LPointerMap* pointers,
+ Safepoint::Kind kind,
+ int arguments,
+ int deoptimization_index) {
+ ASSERT(expected_safepoint_kind_ == kind);
+
+ const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
+ Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
+ kind, arguments, deoptimization_index);
+ for (int i = 0; i < operands->length(); i++) {
+ LOperand* pointer = operands->at(i);
+ if (pointer->IsStackSlot()) {
+ safepoint.DefinePointerSlot(pointer->index());
+ } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+ safepoint.DefinePointerRegister(ToRegister(pointer));
+ }
+ }
+ if (kind & Safepoint::kWithRegisters) {
+ // Register cp always contains a pointer to the context.
+ safepoint.DefinePointerRegister(cp);
+ }
+}
+
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+ int deoptimization_index) {
+ RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index);
+}
+
+
+void LCodeGen::RecordSafepoint(int deoptimization_index) {
+ LPointerMap empty_pointers(RelocInfo::kNoPosition);
+ RecordSafepoint(&empty_pointers, deoptimization_index);
+}
+
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+ int arguments,
+ int deoptimization_index) {
+ RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments,
+ deoptimization_index);
+}
+
+
+void LCodeGen::RecordSafepointWithRegistersAndDoubles(
+ LPointerMap* pointers,
+ int arguments,
+ int deoptimization_index) {
+ RecordSafepoint(pointers, Safepoint::kWithRegistersAndDoubles, arguments,
+ deoptimization_index);
+}
+
+
+void LCodeGen::RecordPosition(int position) {
+ if (position == RelocInfo::kNoPosition) return;
+ masm()->positions_recorder()->RecordPosition(position);
+}
+
+
+void LCodeGen::DoLabel(LLabel* label) {
+ if (label->is_loop_header()) {
+ Comment(";;; B%d - LOOP entry", label->block_id());
+ } else {
+ Comment(";;; B%d", label->block_id());
+ }
+ __ bind(label->label());
+ current_block_ = label->block_id();
+ DoGap(label);
+}
+
+
+void LCodeGen::DoParallelMove(LParallelMove* move) {
+ resolver_.Resolve(move);
+}
+
+
+void LCodeGen::DoGap(LGap* gap) {
+ for (int i = LGap::FIRST_INNER_POSITION;
+ i <= LGap::LAST_INNER_POSITION;
+ i++) {
+ LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+ LParallelMove* move = gap->GetParallelMove(inner_pos);
+ if (move != NULL) DoParallelMove(move);
+ }
+
+ LInstruction* next = GetNextInstruction();
+ if (next != NULL && next->IsLazyBailout()) {
+ int pc = masm()->pc_offset();
+ safepoints_.SetPcAfterGap(pc);
+ }
+}
+
+
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
+ DoGap(instr);
+}
+
+
+void LCodeGen::DoParameter(LParameter* instr) {
+ // Nothing to do.
+}
+
+
+void LCodeGen::DoCallStub(LCallStub* instr) {
+ ASSERT(ToRegister(instr->result()).is(v0));
+ switch (instr->hydrogen()->major_key()) {
+ case CodeStub::RegExpConstructResult: {
+ RegExpConstructResultStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::RegExpExec: {
+ RegExpExecStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::SubString: {
+ SubStringStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::NumberToString: {
+ NumberToStringStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::StringAdd: {
+ StringAddStub stub(NO_STRING_ADD_FLAGS);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::StringCompare: {
+ StringCompareStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::TranscendentalCache: {
+ __ lw(a0, MemOperand(sp, 0));
+ TranscendentalCacheStub stub(instr->transcendental_type(),
+ TranscendentalCacheStub::TAGGED);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+ // Nothing to do.
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+ Register scratch = scratch0();
+ const Register left = ToRegister(instr->InputAt(0));
+ const Register result = ToRegister(instr->result());
+
+ // p2constant holds the right side value if it's a power of 2 constant.
+ // In other cases it is 0.
+ int32_t p2constant = 0;
+
+ if (instr->InputAt(1)->IsConstantOperand()) {
+ p2constant = ToInteger32(LConstantOperand::cast(instr->InputAt(1)));
+ if (p2constant % 2 != 0) {
+ p2constant = 0;
+ }
+ // Result always takes the sign of the dividend (left).
+ p2constant = abs(p2constant);
+ }
+
+ // div runs in the background while we check for special cases.
+ Register right = EmitLoadRegister(instr->InputAt(1), scratch);
+ __ div(left, right);
+
+ // Check for x % 0.
+ if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
+ DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg));
+ }
+
+ Label skip_div, do_div;
+ if (p2constant != 0) {
+ // Fall back to the result of the div instruction if we could have sign
+ // problems.
+ __ Branch(&do_div, lt, left, Operand(zero_reg));
+ // Modulo by masking.
+ __ And(scratch, left, p2constant - 1);
+ __ Branch(&skip_div);
+ }
+
+ __ bind(&do_div);
+ __ mfhi(scratch);
+ __ bind(&skip_div);
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // Result always takes the sign of the dividend (left).
+ Label done;
+ __ Branch(USE_DELAY_SLOT, &done, ge, left, Operand(zero_reg));
+ __ mov(result, scratch);
+ DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
+ __ bind(&done);
+ } else {
+ __ Move(result, scratch);
+ }
+}
+
+
+void LCodeGen::DoDivI(LDivI* instr) {
+ const Register left = ToRegister(instr->InputAt(0));
+ const Register right = ToRegister(instr->InputAt(1));
+ const Register result = ToRegister(instr->result());
+
+ // On MIPS div is asynchronous - it will run in the background while we
+ // check for special cases.
+ __ div(left, right);
+
+ // Check for x / 0.
+ if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
+ DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg));
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label left_not_zero;
+ __ Branch(&left_not_zero, ne, left, Operand(zero_reg));
+ DeoptimizeIf(lt, instr->environment(), right, Operand(zero_reg));
+ __ bind(&left_not_zero);
+ }
+
+ // Check for (-kMinInt / -1).
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ Label left_not_min_int;
+ __ Branch(&left_not_min_int, ne, left, Operand(kMinInt));
+ DeoptimizeIf(eq, instr->environment(), right, Operand(-1));
+ __ bind(&left_not_min_int);
+ }
+
+ __ mfhi(result);
+ DeoptimizeIf(ne, instr->environment(), result, Operand(zero_reg));
+ __ mflo(result);
+}
+
+
+void LCodeGen::DoMulI(LMulI* instr) {
+ Register scratch = scratch0();
+ Register result = ToRegister(instr->result());
+ // Note that result may alias left.
+ Register left = ToRegister(instr->InputAt(0));
+ LOperand* right_op = instr->InputAt(1);
+
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+ bool bailout_on_minus_zero =
+ instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
+
+ if (right_op->IsConstantOperand() && !can_overflow) {
+ // Use optimized code for specific constants.
+ int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
+
+ if (bailout_on_minus_zero && (constant < 0)) {
+ // The case of a null constant will be handled separately.
+ // If constant is negative and left is null, the result should be -0.
+ DeoptimizeIf(eq, instr->environment(), left, Operand(zero_reg));
+ }
+
+ switch (constant) {
+ case -1:
+ __ Subu(result, zero_reg, left);
+ break;
+ case 0:
+ if (bailout_on_minus_zero) {
+ // If left is strictly negative and the constant is null, the
+ // result is -0. Deoptimize if required, otherwise return 0.
+ DeoptimizeIf(lt, instr->environment(), left, Operand(zero_reg));
+ }
+ __ mov(result, zero_reg);
+ break;
+ case 1:
+ // Nothing to do.
+ __ Move(result, left);
+ break;
+ default:
+ // Multiplying by powers of two and powers of two plus or minus
+ // one can be done faster with shifted operands.
+ // For other constants we emit standard code.
+ int32_t mask = constant >> 31;
+ uint32_t constant_abs = (constant + mask) ^ mask;
+
+ if (IsPowerOf2(constant_abs) ||
+ IsPowerOf2(constant_abs - 1) ||
+ IsPowerOf2(constant_abs + 1)) {
+ if (IsPowerOf2(constant_abs)) {
+ int32_t shift = WhichPowerOf2(constant_abs);
+ __ sll(result, left, shift);
+ } else if (IsPowerOf2(constant_abs - 1)) {
+ int32_t shift = WhichPowerOf2(constant_abs - 1);
+ __ sll(result, left, shift);
+ __ Addu(result, result, left);
+ } else if (IsPowerOf2(constant_abs + 1)) {
+ int32_t shift = WhichPowerOf2(constant_abs + 1);
+ __ sll(result, left, shift);
+ __ Subu(result, result, left);
+ }
+
+ // Correct the sign of the result is the constant is negative.
+ if (constant < 0) {
+ __ Subu(result, zero_reg, result);
+ }
+
+ } else {
+ // Generate standard code.
+ __ li(at, constant);
+ __ mul(result, left, at);
+ }
+ }
+
+ } else {
+ Register right = EmitLoadRegister(right_op, scratch);
+ if (bailout_on_minus_zero) {
+ __ Or(ToRegister(instr->TempAt(0)), left, right);
+ }
+
+ if (can_overflow) {
+ // hi:lo = left * right.
+ __ mult(left, right);
+ __ mfhi(scratch);
+ __ mflo(result);
+ __ sra(at, result, 31);
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
+ } else {
+ __ mul(result, left, right);
+ }
+
+ if (bailout_on_minus_zero) {
+ // Bail out if the result is supposed to be negative zero.
+ Label done;
+ __ Branch(&done, ne, result, Operand(zero_reg));
+ DeoptimizeIf(lt,
+ instr->environment(),
+ ToRegister(instr->TempAt(0)),
+ Operand(zero_reg));
+ __ bind(&done);
+ }
+ }
+}
+
+
+void LCodeGen::DoBitI(LBitI* instr) {
+ LOperand* left_op = instr->InputAt(0);
+ LOperand* right_op = instr->InputAt(1);
+ ASSERT(left_op->IsRegister());
+ Register left = ToRegister(left_op);
+ Register result = ToRegister(instr->result());
+ Operand right(no_reg);
+
+ if (right_op->IsStackSlot() || right_op->IsArgument()) {
+ right = Operand(EmitLoadRegister(right_op, at));
+ } else {
+ ASSERT(right_op->IsRegister() || right_op->IsConstantOperand());
+ right = ToOperand(right_op);
+ }
+
+ switch (instr->op()) {
+ case Token::BIT_AND:
+ __ And(result, left, right);
+ break;
+ case Token::BIT_OR:
+ __ Or(result, left, right);
+ break;
+ case Token::BIT_XOR:
+ __ Xor(result, left, right);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+ // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
+ // result may alias either of them.
+ LOperand* right_op = instr->InputAt(1);
+ Register left = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+
+ if (right_op->IsRegister()) {
+ // No need to mask the right operand on MIPS, it is built into the variable
+ // shift instructions.
+ switch (instr->op()) {
+ case Token::SAR:
+ __ srav(result, left, ToRegister(right_op));
+ break;
+ case Token::SHR:
+ __ srlv(result, left, ToRegister(right_op));
+ if (instr->can_deopt()) {
+ DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
+ }
+ break;
+ case Token::SHL:
+ __ sllv(result, left, ToRegister(right_op));
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ // Mask the right_op operand.
+ int value = ToInteger32(LConstantOperand::cast(right_op));
+ uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
+ switch (instr->op()) {
+ case Token::SAR:
+ if (shift_count != 0) {
+ __ sra(result, left, shift_count);
+ } else {
+ __ Move(result, left);
+ }
+ break;
+ case Token::SHR:
+ if (shift_count != 0) {
+ __ srl(result, left, shift_count);
+ } else {
+ if (instr->can_deopt()) {
+ __ And(at, left, Operand(0x80000000));
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
+ }
+ __ Move(result, left);
+ }
+ break;
+ case Token::SHL:
+ if (shift_count != 0) {
+ __ sll(result, left, shift_count);
+ } else {
+ __ Move(result, left);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoSubI(LSubI* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ LOperand* result = instr->result();
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+ if (!can_overflow) {
+ if (right->IsStackSlot() || right->IsArgument()) {
+ Register right_reg = EmitLoadRegister(right, at);
+ __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg));
+ } else {
+ ASSERT(right->IsRegister() || right->IsConstantOperand());
+ __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
+ }
+ } else { // can_overflow.
+ Register overflow = scratch0();
+ Register scratch = scratch1();
+ if (right->IsStackSlot() ||
+ right->IsArgument() ||
+ right->IsConstantOperand()) {
+ Register right_reg = EmitLoadRegister(right, scratch);
+ __ SubuAndCheckForOverflow(ToRegister(result),
+ ToRegister(left),
+ right_reg,
+ overflow); // Reg at also used as scratch.
+ } else {
+ ASSERT(right->IsRegister());
+ // Due to overflow check macros not supporting constant operands,
+ // handling the IsConstantOperand case was moved to prev if clause.
+ __ SubuAndCheckForOverflow(ToRegister(result),
+ ToRegister(left),
+ ToRegister(right),
+ overflow); // Reg at also used as scratch.
+ }
+ DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
+ }
+}
+
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+ ASSERT(instr->result()->IsRegister());
+ __ li(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+ ASSERT(instr->result()->IsDoubleRegister());
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ double v = instr->value();
+ __ Move(result, v);
+}
+
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+ ASSERT(instr->result()->IsRegister());
+ __ li(ToRegister(instr->result()), Operand(instr->value()));
+}
+
+
+void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
+ Register result = ToRegister(instr->result());
+ Register array = ToRegister(instr->InputAt(0));
+ __ lw(result, FieldMemOperand(array, JSArray::kLengthOffset));
+}
+
+
+void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) {
+ Register result = ToRegister(instr->result());
+ Register array = ToRegister(instr->InputAt(0));
+ __ lw(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset));
+}
+
+
+void LCodeGen::DoElementsKind(LElementsKind* instr) {
+ Register result = ToRegister(instr->result());
+ Register input = ToRegister(instr->InputAt(0));
+
+ // Load map into |result|.
+ __ lw(result, FieldMemOperand(input, HeapObject::kMapOffset));
+ // Load the map's "bit field 2" into |result|. We only need the first byte,
+ // but the following bit field extraction takes care of that anyway.
+ __ lbu(result, FieldMemOperand(result, Map::kBitField2Offset));
+ // Retrieve elements_kind from bit field 2.
+ __ Ext(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
+}
+
+
+void LCodeGen::DoValueOf(LValueOf* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ Register map = ToRegister(instr->TempAt(0));
+ Label done;
+
+ // If the object is a smi return the object.
+ __ Move(result, input);
+ __ JumpIfSmi(input, &done);
+
+ // If the object is not a value type, return the object.
+ __ GetObjectType(input, map, map);
+ __ Branch(&done, ne, map, Operand(JS_VALUE_TYPE));
+ __ lw(result, FieldMemOperand(input, JSValue::kValueOffset));
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoBitNotI(LBitNotI* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ __ Nor(result, zero_reg, Operand(input));
+}
+
+
+void LCodeGen::DoThrow(LThrow* instr) {
+ Register input_reg = EmitLoadRegister(instr->InputAt(0), at);
+ __ push(input_reg);
+ CallRuntime(Runtime::kThrow, 1, instr);
+
+ if (FLAG_debug_code) {
+ __ stop("Unreachable code.");
+ }
+}
+
+
+void LCodeGen::DoAddI(LAddI* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ LOperand* result = instr->result();
+ bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
+
+ if (!can_overflow) {
+ if (right->IsStackSlot() || right->IsArgument()) {
+ Register right_reg = EmitLoadRegister(right, at);
+ __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg));
+ } else {
+ ASSERT(right->IsRegister() || right->IsConstantOperand());
+ __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
+ }
+ } else { // can_overflow.
+ Register overflow = scratch0();
+ Register scratch = scratch1();
+ if (right->IsStackSlot() ||
+ right->IsArgument() ||
+ right->IsConstantOperand()) {
+ Register right_reg = EmitLoadRegister(right, scratch);
+ __ AdduAndCheckForOverflow(ToRegister(result),
+ ToRegister(left),
+ right_reg,
+ overflow); // Reg at also used as scratch.
+ } else {
+ ASSERT(right->IsRegister());
+ // Due to overflow check macros not supporting constant operands,
+ // handling the IsConstantOperand case was moved to prev if clause.
+ __ AdduAndCheckForOverflow(ToRegister(result),
+ ToRegister(left),
+ ToRegister(right),
+ overflow); // Reg at also used as scratch.
+ }
+ DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
+ }
+}
+
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+ DoubleRegister left = ToDoubleRegister(instr->InputAt(0));
+ DoubleRegister right = ToDoubleRegister(instr->InputAt(1));
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ switch (instr->op()) {
+ case Token::ADD:
+ __ add_d(result, left, right);
+ break;
+ case Token::SUB:
+ __ sub_d(result, left, right);
+ break;
+ case Token::MUL:
+ __ mul_d(result, left, right);
+ break;
+ case Token::DIV:
+ __ div_d(result, left, right);
+ break;
+ case Token::MOD: {
+ // Save a0-a3 on the stack.
+ RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
+ __ MultiPush(saved_regs);
+
+ __ PrepareCallCFunction(0, 2, scratch0());
+ __ SetCallCDoubleArguments(left, right);
+ __ CallCFunction(
+ ExternalReference::double_fp_operation(Token::MOD, isolate()),
+ 0, 2);
+ // Move the result in the double result register.
+ __ GetCFunctionDoubleResult(result);
+
+ // Restore saved register.
+ __ MultiPop(saved_regs);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+ ASSERT(ToRegister(instr->InputAt(0)).is(a1));
+ ASSERT(ToRegister(instr->InputAt(1)).is(a0));
+ ASSERT(ToRegister(instr->result()).is(v0));
+
+ BinaryOpStub stub(instr->op(), NO_OVERWRITE);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ // Other arch use a nop here, to signal that there is no inlined
+ // patchable code. Mips does not need the nop, since our marker
+ // instruction (andi zero_reg) will never be used in normal code.
+}
+
+
+int LCodeGen::GetNextEmittedBlock(int block) {
+ for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
+ LLabel* label = chunk_->GetLabel(i);
+ if (!label->HasReplacement()) return i;
+ }
+ return -1;
+}
+
+
+void LCodeGen::EmitBranch(int left_block, int right_block,
+ Condition cc, Register src1, const Operand& src2) {
+ int next_block = GetNextEmittedBlock(current_block_);
+ right_block = chunk_->LookupDestination(right_block);
+ left_block = chunk_->LookupDestination(left_block);
+ if (right_block == left_block) {
+ EmitGoto(left_block);
+ } else if (left_block == next_block) {
+ __ Branch(chunk_->GetAssemblyLabel(right_block),
+ NegateCondition(cc), src1, src2);
+ } else if (right_block == next_block) {
+ __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2);
+ } else {
+ __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2);
+ __ Branch(chunk_->GetAssemblyLabel(right_block));
+ }
+}
+
+
+void LCodeGen::EmitBranchF(int left_block, int right_block,
+ Condition cc, FPURegister src1, FPURegister src2) {
+ int next_block = GetNextEmittedBlock(current_block_);
+ right_block = chunk_->LookupDestination(right_block);
+ left_block = chunk_->LookupDestination(left_block);
+ if (right_block == left_block) {
+ EmitGoto(left_block);
+ } else if (left_block == next_block) {
+ __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
+ NegateCondition(cc), src1, src2);
+ } else if (right_block == next_block) {
+ __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2);
+ } else {
+ __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2);
+ __ Branch(chunk_->GetAssemblyLabel(right_block));
+ }
+}
+
+
+void LCodeGen::DoBranch(LBranch* instr) {
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ Representation r = instr->hydrogen()->value()->representation();
+ if (r.IsInteger32()) {
+ Register reg = ToRegister(instr->InputAt(0));
+ EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg));
+ } else if (r.IsDouble()) {
+ DoubleRegister reg = ToDoubleRegister(instr->InputAt(0));
+ // Test the double value. Zero and NaN are false.
+ EmitBranchF(true_block, false_block, ne, reg, kDoubleRegZero);
+ } else {
+ ASSERT(r.IsTagged());
+ Register reg = ToRegister(instr->InputAt(0));
+ HType type = instr->hydrogen()->value()->type();
+ if (type.IsBoolean()) {
+ __ LoadRoot(at, Heap::kTrueValueRootIndex);
+ EmitBranch(true_block, false_block, eq, reg, Operand(at));
+ } else if (type.IsSmi()) {
+ EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg));
+ } else {
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
+ // Avoid deopts in the case where we've never executed this path before.
+ if (expected.IsEmpty()) expected = ToBooleanStub::all_types();
+
+ if (expected.Contains(ToBooleanStub::UNDEFINED)) {
+ // undefined -> false.
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(false_label, eq, reg, Operand(at));
+ }
+ if (expected.Contains(ToBooleanStub::BOOLEAN)) {
+ // Boolean -> its value.
+ __ LoadRoot(at, Heap::kTrueValueRootIndex);
+ __ Branch(true_label, eq, reg, Operand(at));
+ __ LoadRoot(at, Heap::kFalseValueRootIndex);
+ __ Branch(false_label, eq, reg, Operand(at));
+ }
+ if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
+ // 'null' -> false.
+ __ LoadRoot(at, Heap::kNullValueRootIndex);
+ __ Branch(false_label, eq, reg, Operand(at));
+ }
+
+ if (expected.Contains(ToBooleanStub::SMI)) {
+ // Smis: 0 -> false, all other -> true.
+ __ Branch(false_label, eq, reg, Operand(zero_reg));
+ __ JumpIfSmi(reg, true_label);
+ } else if (expected.NeedsMap()) {
+ // If we need a map later and have a Smi -> deopt.
+ __ And(at, reg, Operand(kSmiTagMask));
+ DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
+ }
+
+ const Register map = scratch0();
+ if (expected.NeedsMap()) {
+ __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset));
+ if (expected.CanBeUndetectable()) {
+ // Undetectable -> false.
+ __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
+ __ And(at, at, Operand(1 << Map::kIsUndetectable));
+ __ Branch(false_label, ne, at, Operand(zero_reg));
+ }
+ }
+
+ if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
+ // spec object -> true.
+ __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ __ Branch(true_label, ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
+ }
+
+ if (expected.Contains(ToBooleanStub::STRING)) {
+ // String value -> false iff empty.
+ Label not_string;
+ __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ __ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
+ __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
+ __ Branch(true_label, ne, at, Operand(zero_reg));
+ __ Branch(false_label);
+ __ bind(&not_string);
+ }
+
+ if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
+ // heap number -> false iff +0, -0, or NaN.
+ DoubleRegister dbl_scratch = double_scratch0();
+ Label not_heap_number;
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ __ Branch(&not_heap_number, ne, map, Operand(at));
+ __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
+ __ BranchF(true_label, false_label, ne, dbl_scratch, kDoubleRegZero);
+ // Falls through if dbl_scratch == 0.
+ __ Branch(false_label);
+ __ bind(&not_heap_number);
+ }
+
+ // We've seen something for the first time -> deopt.
+ DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg));
+ }
+ }
+}
+
+
+void LCodeGen::EmitGoto(int block) {
+ block = chunk_->LookupDestination(block);
+ int next_block = GetNextEmittedBlock(current_block_);
+ if (block != next_block) {
+ __ jmp(chunk_->GetAssemblyLabel(block));
+ }
+}
+
+
+void LCodeGen::DoGoto(LGoto* instr) {
+ EmitGoto(instr->block_id());
+}
+
+
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
+ Condition cond = kNoCondition;
+ switch (op) {
+ case Token::EQ:
+ case Token::EQ_STRICT:
+ cond = eq;
+ break;
+ case Token::LT:
+ cond = is_unsigned ? lo : lt;
+ break;
+ case Token::GT:
+ cond = is_unsigned ? hi : gt;
+ break;
+ case Token::LTE:
+ cond = is_unsigned ? ls : le;
+ break;
+ case Token::GTE:
+ cond = is_unsigned ? hs : ge;
+ break;
+ case Token::IN:
+ case Token::INSTANCEOF:
+ default:
+ UNREACHABLE();
+ }
+ return cond;
+}
+
+
+void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+
+ Condition cond = TokenToCondition(instr->op(), false);
+
+ if (left->IsConstantOperand() && right->IsConstantOperand()) {
+ // We can statically evaluate the comparison.
+ double left_val = ToDouble(LConstantOperand::cast(left));
+ double right_val = ToDouble(LConstantOperand::cast(right));
+ int next_block =
+ EvalComparison(instr->op(), left_val, right_val) ? true_block
+ : false_block;
+ EmitGoto(next_block);
+ } else {
+ if (instr->is_double()) {
+ // Compare left and right as doubles and load the
+ // resulting flags into the normal status register.
+ FPURegister left_reg = ToDoubleRegister(left);
+ FPURegister right_reg = ToDoubleRegister(right);
+
+ // If a NaN is involved, i.e. the result is unordered,
+ // jump to false block label.
+ __ BranchF(NULL, chunk_->GetAssemblyLabel(false_block), eq,
+ left_reg, right_reg);
+
+ EmitBranchF(true_block, false_block, cond, left_reg, right_reg);
+ } else {
+ Register cmp_left;
+ Operand cmp_right = Operand(0);
+
+ if (right->IsConstantOperand()) {
+ cmp_left = ToRegister(left);
+ cmp_right = Operand(ToInteger32(LConstantOperand::cast(right)));
+ } else if (left->IsConstantOperand()) {
+ cmp_left = ToRegister(right);
+ cmp_right = Operand(ToInteger32(LConstantOperand::cast(left)));
+ // We transposed the operands. Reverse the condition.
+ cond = ReverseCondition(cond);
+ } else {
+ cmp_left = ToRegister(left);
+ cmp_right = Operand(ToRegister(right));
+ }
+
+ EmitBranch(true_block, false_block, cond, cmp_left, cmp_right);
+ }
+ }
+}
+
+
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
+ Register left = ToRegister(instr->InputAt(0));
+ Register right = ToRegister(instr->InputAt(1));
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+
+ EmitBranch(true_block, false_block, eq, left, Operand(right));
+}
+
+
+void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) {
+ Register left = ToRegister(instr->InputAt(0));
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ EmitBranch(true_block, false_block, eq, left,
+ Operand(instr->hydrogen()->right()));
+}
+
+
+
+void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) {
+ Register scratch = scratch0();
+ Register reg = ToRegister(instr->InputAt(0));
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ // If the expression is known to be untagged or a smi, then it's definitely
+ // not null, and it can't be a an undetectable object.
+ if (instr->hydrogen()->representation().IsSpecialization() ||
+ instr->hydrogen()->type().IsSmi()) {
+ EmitGoto(false_block);
+ return;
+ }
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+
+ Heap::RootListIndex nil_value = instr->nil() == kNullValue ?
+ Heap::kNullValueRootIndex :
+ Heap::kUndefinedValueRootIndex;
+ __ LoadRoot(at, nil_value);
+ if (instr->kind() == kStrictEquality) {
+ EmitBranch(true_block, false_block, eq, reg, Operand(at));
+ } else {
+ Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ?
+ Heap::kUndefinedValueRootIndex :
+ Heap::kNullValueRootIndex;
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+ __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at));
+ __ LoadRoot(at, other_nil_value); // In the delay slot.
+ __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at));
+ __ JumpIfSmi(reg, false_label); // In the delay slot.
+ // Check for undetectable objects by looking in the bit field in
+ // the map. The object has already been smi checked.
+ __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
+ __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
+ __ And(scratch, scratch, 1 << Map::kIsUndetectable);
+ EmitBranch(true_block, false_block, ne, scratch, Operand(zero_reg));
+ }
+}
+
+
+Condition LCodeGen::EmitIsObject(Register input,
+ Register temp1,
+ Label* is_not_object,
+ Label* is_object) {
+ Register temp2 = scratch0();
+ __ JumpIfSmi(input, is_not_object);
+
+ __ LoadRoot(temp2, Heap::kNullValueRootIndex);
+ __ Branch(is_object, eq, input, Operand(temp2));
+
+ // Load map.
+ __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
+ // Undetectable objects behave like undefined.
+ __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
+ __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable));
+ __ Branch(is_not_object, ne, temp2, Operand(zero_reg));
+
+ // Load instance type and check that it is in object type range.
+ __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
+ __ Branch(is_not_object,
+ lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+
+ return le;
+}
+
+
+void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
+ Register reg = ToRegister(instr->InputAt(0));
+ Register temp1 = ToRegister(instr->TempAt(0));
+ Register temp2 = scratch0();
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ Condition true_cond =
+ EmitIsObject(reg, temp1, false_label, true_label);
+
+ EmitBranch(true_block, false_block, true_cond, temp2,
+ Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
+}
+
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ Register input_reg = EmitLoadRegister(instr->InputAt(0), at);
+ __ And(at, input_reg, kSmiTagMask);
+ EmitBranch(true_block, false_block, eq, at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register temp = ToRegister(instr->TempAt(0));
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block));
+ __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
+ __ And(at, temp, Operand(1 << Map::kIsUndetectable));
+ EmitBranch(true_block, false_block, ne, at, Operand(zero_reg));
+}
+
+
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == FIRST_TYPE) return to;
+ ASSERT(from == to || to == LAST_TYPE);
+ return from;
+}
+
+
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == to) return eq;
+ if (to == LAST_TYPE) return hs;
+ if (from == FIRST_TYPE) return ls;
+ UNREACHABLE();
+ return eq;
+}
+
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+ Register scratch = scratch0();
+ Register input = ToRegister(instr->InputAt(0));
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ __ JumpIfSmi(input, false_label);
+
+ __ GetObjectType(input, scratch, scratch);
+ EmitBranch(true_block,
+ false_block,
+ BranchCondition(instr->hydrogen()),
+ scratch,
+ Operand(TestType(instr->hydrogen())));
+}
+
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+
+ if (FLAG_debug_code) {
+ __ AbortIfNotString(input);
+ }
+
+ __ lw(result, FieldMemOperand(input, String::kHashFieldOffset));
+ __ IndexFromHash(result, result);
+}
+
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+ LHasCachedArrayIndexAndBranch* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register scratch = scratch0();
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ __ lw(scratch,
+ FieldMemOperand(input, String::kHashFieldOffset));
+ __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
+ EmitBranch(true_block, false_block, eq, at, Operand(zero_reg));
+}
+
+
+// Branches to a label or falls through with this instance class-name adr
+// returned in temp reg, available for comparison by the caller. Trashes the
+// temp registers, but not the input. Only input and temp2 may alias.
+void LCodeGen::EmitClassOfTest(Label* is_true,
+ Label* is_false,
+ Handle<String>class_name,
+ Register input,
+ Register temp,
+ Register temp2) {
+ ASSERT(!input.is(temp));
+ ASSERT(!temp.is(temp2)); // But input and temp2 may be the same register.
+ __ JumpIfSmi(input, is_false);
+
+ if (class_name->IsEqualTo(CStrVector("Function"))) {
+ // Assuming the following assertions, we can use the same compares to test
+ // for both being a function type and being in the object type range.
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ FIRST_SPEC_OBJECT_TYPE + 1);
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ LAST_SPEC_OBJECT_TYPE - 1);
+ STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
+
+ __ GetObjectType(input, temp, temp2);
+ __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE));
+ } else {
+ // Faster code path to avoid two compares: subtract lower bound from the
+ // actual type and do a signed compare with the width of the type range.
+ __ GetObjectType(input, temp, temp2);
+ __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
+ FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ }
+
+ // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
+ // Check if the constructor in the map is a function.
+ __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset));
+
+ // Objects with a non-function constructor have class 'Object'.
+ __ GetObjectType(temp, temp2, temp2);
+ if (class_name->IsEqualTo(CStrVector("Object"))) {
+ __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE));
+ } else {
+ __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE));
+ }
+
+ // temp now contains the constructor function. Grab the
+ // instance class name from there.
+ __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
+ __ lw(temp, FieldMemOperand(temp,
+ SharedFunctionInfo::kInstanceClassNameOffset));
+ // The class name we are testing against is a symbol because it's a literal.
+ // The name in the constructor is a symbol because of the way the context is
+ // booted. This routine isn't expected to work for random API-created
+ // classes and it doesn't have to because you can't access it with natives
+ // syntax. Since both sides are symbols it is sufficient to use an identity
+ // comparison.
+
+ // End with the address of this class_name instance in temp register.
+ // On MIPS, the caller must do the comparison with Handle<String>class_name.
+}
+
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register temp = scratch0();
+ Register temp2 = ToRegister(instr->TempAt(0));
+ Handle<String> class_name = instr->hydrogen()->class_name();
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
+
+ EmitBranch(true_block, false_block, eq, temp, Operand(class_name));
+}
+
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+ Register reg = ToRegister(instr->InputAt(0));
+ Register temp = ToRegister(instr->TempAt(0));
+ int true_block = instr->true_block_id();
+ int false_block = instr->false_block_id();
+
+ __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
+ EmitBranch(true_block, false_block, eq, temp, Operand(instr->map()));
+}
+
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+ Label true_label, done;
+ ASSERT(ToRegister(instr->InputAt(0)).is(a0)); // Object is in a0.
+ ASSERT(ToRegister(instr->InputAt(1)).is(a1)); // Function is in a1.
+ Register result = ToRegister(instr->result());
+ ASSERT(result.is(v0));
+
+ InstanceofStub stub(InstanceofStub::kArgsInRegisters);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+
+ __ Branch(&true_label, eq, result, Operand(zero_reg));
+ __ li(result, Operand(factory()->false_value()));
+ __ Branch(&done);
+ __ bind(&true_label);
+ __ li(result, Operand(factory()->true_value()));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
+ class DeferredInstanceOfKnownGlobal: public LDeferredCode {
+ public:
+ DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
+ LInstanceOfKnownGlobal* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() {
+ codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_);
+ }
+ virtual LInstruction* instr() { return instr_; }
+ Label* map_check() { return &map_check_; }
+
+ private:
+ LInstanceOfKnownGlobal* instr_;
+ Label map_check_;
+ };
+
+ DeferredInstanceOfKnownGlobal* deferred;
+ deferred = new DeferredInstanceOfKnownGlobal(this, instr);
+
+ Label done, false_result;
+ Register object = ToRegister(instr->InputAt(0));
+ Register temp = ToRegister(instr->TempAt(0));
+ Register result = ToRegister(instr->result());
+
+ ASSERT(object.is(a0));
+ ASSERT(result.is(v0));
+
+ // A Smi is not instance of anything.
+ __ JumpIfSmi(object, &false_result);
+
+ // This is the inlined call site instanceof cache. The two occurences of the
+ // hole value will be patched to the last map/result pair generated by the
+ // instanceof stub.
+ Label cache_miss;
+ Register map = temp;
+ __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset));
+
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ __ bind(deferred->map_check()); // Label for calculating code patching.
+ // We use Factory::the_hole_value() on purpose instead of loading from the
+ // root array to force relocation to be able to later patch with
+ // the cached map.
+ __ li(at, Operand(factory()->the_hole_value()), true);
+ __ Branch(&cache_miss, ne, map, Operand(at));
+ // We use Factory::the_hole_value() on purpose instead of loading from the
+ // root array to force relocation to be able to later patch
+ // with true or false.
+ __ li(result, Operand(factory()->the_hole_value()), true);
+ __ Branch(&done);
+
+ // The inlined call site cache did not match. Check null and string before
+ // calling the deferred code.
+ __ bind(&cache_miss);
+ // Null is not instance of anything.
+ __ LoadRoot(temp, Heap::kNullValueRootIndex);
+ __ Branch(&false_result, eq, object, Operand(temp));
+
+ // String values is not instance of anything.
+ Condition cc = __ IsObjectStringType(object, temp, temp);
+ __ Branch(&false_result, cc, temp, Operand(zero_reg));
+
+ // Go to the deferred code.
+ __ Branch(deferred->entry());
+
+ __ bind(&false_result);
+ __ LoadRoot(result, Heap::kFalseValueRootIndex);
+
+ // Here result has either true or false. Deferred code also produces true or
+ // false object.
+ __ bind(deferred->exit());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
+ Label* map_check) {
+ Register result = ToRegister(instr->result());
+ ASSERT(result.is(v0));
+
+ InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kArgsInRegisters);
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kCallSiteInlineCheck);
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kReturnTrueFalseObject);
+ InstanceofStub stub(flags);
+
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+
+ // Get the temp register reserved by the instruction. This needs to be t0 as
+ // its slot of the pushing of safepoint registers is used to communicate the
+ // offset to the location of the map check.
+ Register temp = ToRegister(instr->TempAt(0));
+ ASSERT(temp.is(t0));
+ __ li(InstanceofStub::right(), Operand(instr->function()));
+ static const int kAdditionalDelta = 7;
+ int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
+ Label before_push_delta;
+ __ bind(&before_push_delta);
+ {
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ __ li(temp, Operand(delta * kPointerSize), true);
+ __ StoreToSafepointRegisterSlot(temp, temp);
+ }
+ CallCodeGeneric(stub.GetCode(),
+ RelocInfo::CODE_TARGET,
+ instr,
+ RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ // Put the result value into the result register slot and
+ // restore all registers.
+ __ StoreToSafepointRegisterSlot(result, result);
+}
+
+
+static Condition ComputeCompareCondition(Token::Value op) {
+ switch (op) {
+ case Token::EQ_STRICT:
+ case Token::EQ:
+ return eq;
+ case Token::LT:
+ return lt;
+ case Token::GT:
+ return gt;
+ case Token::LTE:
+ return le;
+ case Token::GTE:
+ return ge;
+ default:
+ UNREACHABLE();
+ return kNoCondition;
+ }
+}
+
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+ Token::Value op = instr->op();
+
+ Handle<Code> ic = CompareIC::GetUninitialized(op);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+ // On MIPS there is no need for a "no inlined smi code" marker (nop).
+
+ Condition condition = ComputeCompareCondition(op);
+ // A minor optimization that relies on LoadRoot always emitting one
+ // instruction.
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
+ Label done;
+ __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
+ __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
+ __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
+ ASSERT_EQ(3, masm()->InstructionsGeneratedSince(&done));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoReturn(LReturn* instr) {
+ if (FLAG_trace) {
+ // Push the return value on the stack as the parameter.
+ // Runtime::TraceExit returns its parameter in v0.
+ __ push(v0);
+ __ CallRuntime(Runtime::kTraceExit, 1);
+ }
+ int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize;
+ __ mov(sp, fp);
+ __ Pop(ra, fp);
+ __ Addu(sp, sp, Operand(sp_delta));
+ __ Jump(ra);
+}
+
+
+void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
+ Register result = ToRegister(instr->result());
+ __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell())));
+ __ lw(result, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset));
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), result, Operand(at));
+ }
+}
+
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+ ASSERT(ToRegister(instr->global_object()).is(a0));
+ ASSERT(ToRegister(instr->result()).is(v0));
+
+ __ li(a2, Operand(instr->name()));
+ RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET
+ : RelocInfo::CODE_TARGET_CONTEXT;
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ CallCode(ic, mode, instr);
+}
+
+
+void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
+ Register value = ToRegister(instr->InputAt(0));
+ Register scratch = scratch0();
+ Register scratch2 = ToRegister(instr->TempAt(0));
+
+ // Load the cell.
+ __ li(scratch, Operand(Handle<Object>(instr->hydrogen()->cell())));
+
+ // If the cell we are storing to contains the hole it could have
+ // been deleted from the property dictionary. In that case, we need
+ // to update the property details in the property dictionary to mark
+ // it as no longer deleted.
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ lw(scratch2,
+ FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), scratch2, Operand(at));
+ }
+
+ // Store the value.
+ __ sw(value, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
+
+ // Cells are always in the remembered set.
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ HType type = instr->hydrogen()->value()->type();
+ SmiCheck check_needed =
+ type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ __ RecordWriteField(scratch,
+ JSGlobalPropertyCell::kValueOffset,
+ value,
+ scratch2,
+ kRAHasBeenSaved,
+ kSaveFPRegs,
+ OMIT_REMEMBERED_SET,
+ check_needed);
+ }
+}
+
+
+void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
+ ASSERT(ToRegister(instr->global_object()).is(a1));
+ ASSERT(ToRegister(instr->value()).is(a0));
+
+ __ li(a2, Operand(instr->name()));
+ Handle<Code> ic = instr->strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
+}
+
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register result = ToRegister(instr->result());
+ __ lw(result, ContextOperand(context, instr->slot_index()));
+}
+
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register value = ToRegister(instr->value());
+ MemOperand target = ContextOperand(context, instr->slot_index());
+ __ sw(value, target);
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ HType type = instr->hydrogen()->value()->type();
+ SmiCheck check_needed =
+ type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ __ RecordWriteContextSlot(context,
+ target.offset(),
+ value,
+ scratch0(),
+ kRAHasBeenSaved,
+ kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ check_needed);
+ }
+}
+
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+ Register object = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ if (instr->hydrogen()->is_in_object()) {
+ __ lw(result, FieldMemOperand(object, instr->hydrogen()->offset()));
+ } else {
+ __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+ __ lw(result, FieldMemOperand(result, instr->hydrogen()->offset()));
+ }
+}
+
+
+void LCodeGen::EmitLoadFieldOrConstantFunction(Register result,
+ Register object,
+ Handle<Map> type,
+ Handle<String> name) {
+ LookupResult lookup(isolate());
+ type->LookupInDescriptors(NULL, *name, &lookup);
+ ASSERT(lookup.IsProperty() &&
+ (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION));
+ if (lookup.type() == FIELD) {
+ int index = lookup.GetLocalFieldIndexFromMap(*type);
+ int offset = index * kPointerSize;
+ if (index < 0) {
+ // Negative property indices are in-object properties, indexed
+ // from the end of the fixed part of the object.
+ __ lw(result, FieldMemOperand(object, offset + type->instance_size()));
+ } else {
+ // Non-negative property indices are in the properties array.
+ __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
+ __ lw(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize));
+ }
+ } else {
+ Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type));
+ LoadHeapObject(result, Handle<HeapObject>::cast(function));
+ }
+}
+
+
+void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
+ Register object = ToRegister(instr->object());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+ int map_count = instr->hydrogen()->types()->length();
+ Handle<String> name = instr->hydrogen()->name();
+ if (map_count == 0) {
+ ASSERT(instr->hydrogen()->need_generic());
+ __ li(a2, Operand(name));
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+ } else {
+ Label done;
+ __ lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ for (int i = 0; i < map_count - 1; ++i) {
+ Handle<Map> map = instr->hydrogen()->types()->at(i);
+ Label next;
+ __ Branch(&next, ne, scratch, Operand(map));
+ EmitLoadFieldOrConstantFunction(result, object, map, name);
+ __ Branch(&done);
+ __ bind(&next);
+ }
+ Handle<Map> map = instr->hydrogen()->types()->last();
+ if (instr->hydrogen()->need_generic()) {
+ Label generic;
+ __ Branch(&generic, ne, scratch, Operand(map));
+ EmitLoadFieldOrConstantFunction(result, object, map, name);
+ __ Branch(&done);
+ __ bind(&generic);
+ __ li(a2, Operand(name));
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+ } else {
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(map));
+ EmitLoadFieldOrConstantFunction(result, object, map, name);
+ }
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+ ASSERT(ToRegister(instr->object()).is(a0));
+ ASSERT(ToRegister(instr->result()).is(v0));
+
+ // Name is always in a2.
+ __ li(a2, Operand(instr->name()));
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+ Register scratch = scratch0();
+ Register function = ToRegister(instr->function());
+ Register result = ToRegister(instr->result());
+
+ // Check that the function really is a function. Load map into the
+ // result register.
+ __ GetObjectType(function, result, scratch);
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(JS_FUNCTION_TYPE));
+
+ // Make sure that the function has an instance prototype.
+ Label non_instance;
+ __ lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
+ __ And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
+ __ Branch(&non_instance, ne, scratch, Operand(zero_reg));
+
+ // Get the prototype or initial map from the function.
+ __ lw(result,
+ FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // Check that the function has a prototype or an initial map.
+ __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), result, Operand(at));
+
+ // If the function does not have an initial map, we're done.
+ Label done;
+ __ GetObjectType(result, scratch, scratch);
+ __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
+
+ // Get the prototype from the initial map.
+ __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
+ __ Branch(&done);
+
+ // Non-instance prototype: Fetch prototype from constructor field
+ // in initial map.
+ __ bind(&non_instance);
+ __ lw(result, FieldMemOperand(result, Map::kConstructorOffset));
+
+ // All done.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoLoadElements(LLoadElements* instr) {
+ Register result = ToRegister(instr->result());
+ Register input = ToRegister(instr->InputAt(0));
+ Register scratch = scratch0();
+
+ __ lw(result, FieldMemOperand(input, JSObject::kElementsOffset));
+ if (FLAG_debug_code) {
+ Label done, fail;
+ __ lw(scratch, FieldMemOperand(result, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
+ __ Branch(USE_DELAY_SLOT, &done, eq, scratch, Operand(at));
+ __ LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); // In the delay slot.
+ __ Branch(&done, eq, scratch, Operand(at));
+ // |scratch| still contains |input|'s map.
+ __ lbu(scratch, FieldMemOperand(scratch, Map::kBitField2Offset));
+ __ Ext(scratch, scratch, Map::kElementsKindShift,
+ Map::kElementsKindBitCount);
+ __ Branch(&done, eq, scratch,
+ Operand(FAST_ELEMENTS));
+ __ Branch(&fail, lt, scratch,
+ Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND));
+ __ Branch(&done, le, scratch,
+ Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND));
+ __ bind(&fail);
+ __ Abort("Check for fast or external elements failed.");
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoLoadExternalArrayPointer(
+ LLoadExternalArrayPointer* instr) {
+ Register to_reg = ToRegister(instr->result());
+ Register from_reg = ToRegister(instr->InputAt(0));
+ __ lw(to_reg, FieldMemOperand(from_reg,
+ ExternalArray::kExternalPointerOffset));
+}
+
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+ Register arguments = ToRegister(instr->arguments());
+ Register length = ToRegister(instr->length());
+ Register index = ToRegister(instr->index());
+ Register result = ToRegister(instr->result());
+
+ // Bailout index is not a valid argument index. Use unsigned check to get
+ // negative check for free.
+
+ // TODO(plind): Shoud be optimized to do the sub before the DeoptimizeIf(),
+ // as they do in Arm. It will save us an instruction.
+ DeoptimizeIf(ls, instr->environment(), length, Operand(index));
+
+ // There are two words between the frame pointer and the last argument.
+ // Subtracting from length accounts for one of them, add one more.
+ __ subu(length, length, index);
+ __ Addu(length, length, Operand(1));
+ __ sll(length, length, kPointerSizeLog2);
+ __ Addu(at, arguments, Operand(length));
+ __ lw(result, MemOperand(at, 0));
+}
+
+
+void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
+ Register elements = ToRegister(instr->elements());
+ Register key = EmitLoadRegister(instr->key(), scratch0());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+
+ // Load the result.
+ __ sll(scratch, key, kPointerSizeLog2); // Key indexes words.
+ __ addu(scratch, elements, scratch);
+ __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize));
+
+ // Check for the hole value.
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
+ DeoptimizeIf(eq, instr->environment(), result, Operand(scratch));
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedFastDoubleElement(
+ LLoadKeyedFastDoubleElement* instr) {
+ Register elements = ToRegister(instr->elements());
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ Register key = no_reg;
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ Register scratch = scratch0();
+
+ int shift_size =
+ ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+ int constant_key = 0;
+ if (key_is_constant) {
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xF0000000) {
+ Abort("array index constant value too big.");
+ }
+ } else {
+ key = ToRegister(instr->key());
+ }
+
+ if (key_is_constant) {
+ __ Addu(elements, elements, Operand(constant_key * (1 << shift_size) +
+ FixedDoubleArray::kHeaderSize - kHeapObjectTag));
+ } else {
+ __ sll(scratch, key, shift_size);
+ __ Addu(elements, elements, Operand(scratch));
+ __ Addu(elements, elements,
+ Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
+ }
+
+ __ lw(scratch, MemOperand(elements, sizeof(kHoleNanLower32)));
+ DeoptimizeIf(eq, instr->environment(), scratch, Operand(kHoleNanUpper32));
+
+ __ ldc1(result, MemOperand(elements));
+}
+
+
+void LCodeGen::DoLoadKeyedSpecializedArrayElement(
+ LLoadKeyedSpecializedArrayElement* instr) {
+ Register external_pointer = ToRegister(instr->external_pointer());
+ Register key = no_reg;
+ ElementsKind elements_kind = instr->elements_kind();
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ int constant_key = 0;
+ if (key_is_constant) {
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xF0000000) {
+ Abort("array index constant value too big.");
+ }
+ } else {
+ key = ToRegister(instr->key());
+ }
+ int shift_size = ElementsKindToShiftSize(elements_kind);
+
+ if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
+ elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
+ FPURegister result = ToDoubleRegister(instr->result());
+ if (key_is_constant) {
+ __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size));
+ } else {
+ __ sll(scratch0(), key, shift_size);
+ __ Addu(scratch0(), scratch0(), external_pointer);
+ }
+
+ if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
+ __ lwc1(result, MemOperand(scratch0()));
+ __ cvt_d_s(result, result);
+ } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
+ __ ldc1(result, MemOperand(scratch0()));
+ }
+ } else {
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+ MemOperand mem_operand(zero_reg);
+ if (key_is_constant) {
+ mem_operand = MemOperand(external_pointer,
+ constant_key * (1 << shift_size));
+ } else {
+ __ sll(scratch, key, shift_size);
+ __ Addu(scratch, scratch, external_pointer);
+ mem_operand = MemOperand(scratch);
+ }
+ switch (elements_kind) {
+ case EXTERNAL_BYTE_ELEMENTS:
+ __ lb(result, mem_operand);
+ break;
+ case EXTERNAL_PIXEL_ELEMENTS:
+ case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
+ __ lbu(result, mem_operand);
+ break;
+ case EXTERNAL_SHORT_ELEMENTS:
+ __ lh(result, mem_operand);
+ break;
+ case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
+ __ lhu(result, mem_operand);
+ break;
+ case EXTERNAL_INT_ELEMENTS:
+ __ lw(result, mem_operand);
+ break;
+ case EXTERNAL_UNSIGNED_INT_ELEMENTS:
+ __ lw(result, mem_operand);
+ // TODO(danno): we could be more clever here, perhaps having a special
+ // version of the stub that detects if the overflow case actually
+ // happens, and generate code that returns a double rather than int.
+ DeoptimizeIf(Ugreater_equal, instr->environment(),
+ result, Operand(0x80000000));
+ break;
+ case EXTERNAL_FLOAT_ELEMENTS:
+ case EXTERNAL_DOUBLE_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_SMI_ONLY_ELEMENTS:
+ case DICTIONARY_ELEMENTS:
+ case NON_STRICT_ARGUMENTS_ELEMENTS:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+ ASSERT(ToRegister(instr->object()).is(a1));
+ ASSERT(ToRegister(instr->key()).is(a0));
+
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+ Register scratch = scratch0();
+ Register temp = scratch1();
+ Register result = ToRegister(instr->result());
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label done, adapted;
+ __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
+ __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // Result is the frame pointer for the frame if not adapted and for the real
+ // frame below the adaptor frame if adapted.
+ __ movn(result, fp, temp); // move only if temp is not equal to zero (ne)
+ __ movz(result, scratch, temp); // move only if temp is equal to zero (eq)
+}
+
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+ Register elem = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+
+ Label done;
+
+ // If no arguments adaptor frame the number of arguments is fixed.
+ __ Addu(result, zero_reg, Operand(scope()->num_parameters()));
+ __ Branch(&done, eq, fp, Operand(elem));
+
+ // Arguments adaptor frame present. Get argument length from there.
+ __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ lw(result,
+ MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ SmiUntag(result);
+
+ // Argument length is in result register.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+ Register receiver = ToRegister(instr->receiver());
+ Register function = ToRegister(instr->function());
+ Register length = ToRegister(instr->length());
+ Register elements = ToRegister(instr->elements());
+ Register scratch = scratch0();
+ ASSERT(receiver.is(a0)); // Used for parameter count.
+ ASSERT(function.is(a1)); // Required by InvokeFunction.
+ ASSERT(ToRegister(instr->result()).is(v0));
+
+ // If the receiver is null or undefined, we have to pass the global
+ // object as a receiver to normal functions. Values have to be
+ // passed unchanged to builtins and strict-mode functions.
+ Label global_object, receiver_ok;
+
+ // Do not transform the receiver to object for strict mode
+ // functions.
+ __ lw(scratch,
+ FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
+ __ lw(scratch,
+ FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
+
+ // Do not transform the receiver to object for builtins.
+ int32_t strict_mode_function_mask =
+ 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
+ int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize);
+ __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask));
+ __ Branch(&receiver_ok, ne, scratch, Operand(zero_reg));
+
+ // Normal function. Replace undefined or null with global receiver.
+ __ LoadRoot(scratch, Heap::kNullValueRootIndex);
+ __ Branch(&global_object, eq, receiver, Operand(scratch));
+ __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+ __ Branch(&global_object, eq, receiver, Operand(scratch));
+
+ // Deoptimize if the receiver is not a JS object.
+ __ And(scratch, receiver, Operand(kSmiTagMask));
+ DeoptimizeIf(eq, instr->environment(), scratch, Operand(zero_reg));
+
+ __ GetObjectType(receiver, scratch, scratch);
+ DeoptimizeIf(lt, instr->environment(),
+ scratch, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ Branch(&receiver_ok);
+
+ __ bind(&global_object);
+ __ lw(receiver, GlobalObjectOperand());
+ __ lw(receiver,
+ FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
+ __ bind(&receiver_ok);
+
+ // Copy the arguments to this function possibly from the
+ // adaptor frame below it.
+ const uint32_t kArgumentsLimit = 1 * KB;
+ DeoptimizeIf(hi, instr->environment(), length, Operand(kArgumentsLimit));
+
+ // Push the receiver and use the register to keep the original
+ // number of arguments.
+ __ push(receiver);
+ __ Move(receiver, length);
+ // The arguments are at a one pointer size offset from elements.
+ __ Addu(elements, elements, Operand(1 * kPointerSize));
+
+ // Loop through the arguments pushing them onto the execution
+ // stack.
+ Label invoke, loop;
+ // length is a small non-negative integer, due to the test above.
+ __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
+ __ sll(scratch, length, 2);
+ __ bind(&loop);
+ __ Addu(scratch, elements, scratch);
+ __ lw(scratch, MemOperand(scratch));
+ __ push(scratch);
+ __ Subu(length, length, Operand(1));
+ __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
+ __ sll(scratch, length, 2);
+
+ __ bind(&invoke);
+ ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
+ LPointerMap* pointers = instr->pointer_map();
+ LEnvironment* env = instr->deoptimization_environment();
+ RecordPosition(pointers->position());
+ RegisterEnvironmentForDeoptimization(env);
+ SafepointGenerator safepoint_generator(this,
+ pointers,
+ env->deoptimization_index());
+ // The number of arguments is stored in receiver which is a0, as expected
+ // by InvokeFunction.
+ v8::internal::ParameterCount actual(receiver);
+ __ InvokeFunction(function, actual, CALL_FUNCTION,
+ safepoint_generator, CALL_AS_METHOD);
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoPushArgument(LPushArgument* instr) {
+ LOperand* argument = instr->InputAt(0);
+ if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
+ Abort("DoPushArgument not implemented for double type.");
+ } else {
+ Register argument_reg = EmitLoadRegister(argument, at);
+ __ push(argument_reg);
+ }
+}
+
+
+void LCodeGen::DoThisFunction(LThisFunction* instr) {
+ Register result = ToRegister(instr->result());
+ LoadHeapObject(result, instr->hydrogen()->closure());
+}
+
+
+void LCodeGen::DoContext(LContext* instr) {
+ Register result = ToRegister(instr->result());
+ __ mov(result, cp);
+}
+
+
+void LCodeGen::DoOuterContext(LOuterContext* instr) {
+ Register context = ToRegister(instr->context());
+ Register result = ToRegister(instr->result());
+ __ lw(result,
+ MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+}
+
+
+void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
+ Register context = ToRegister(instr->context());
+ Register result = ToRegister(instr->result());
+ __ lw(result, ContextOperand(cp, Context::GLOBAL_INDEX));
+}
+
+
+void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
+ Register global = ToRegister(instr->global());
+ Register result = ToRegister(instr->result());
+ __ lw(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset));
+}
+
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+ int arity,
+ LInstruction* instr,
+ CallKind call_kind) {
+ // Change context if needed.
+ bool change_context =
+ (info()->closure()->context() != function->context()) ||
+ scope()->contains_with() ||
+ (scope()->num_heap_slots() > 0);
+ if (change_context) {
+ __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+ }
+
+ // Set a0 to arguments count if adaption is not needed. Assumes that a0
+ // is available to write to at this point.
+ if (!function->NeedsArgumentsAdaption()) {
+ __ li(a0, Operand(arity));
+ }
+
+ LPointerMap* pointers = instr->pointer_map();
+ RecordPosition(pointers->position());
+
+ // Invoke function.
+ __ SetCallKind(t1, call_kind);
+ __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+ __ Call(at);
+
+ // Setup deoptimization.
+ RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT);
+
+ // Restore context.
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
+ ASSERT(ToRegister(instr->result()).is(v0));
+ __ mov(a0, v0);
+ __ li(a1, Operand(instr->function()));
+ CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD);
+}
+
+
+void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+
+ // Deoptimize if not a heap number.
+ __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
+
+ Label done;
+ Register exponent = scratch0();
+ scratch = no_reg;
+ __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+ // Check the sign of the argument. If the argument is positive, just
+ // return it.
+ __ Move(result, input);
+ __ And(at, exponent, Operand(HeapNumber::kSignMask));
+ __ Branch(&done, eq, at, Operand(zero_reg));
+
+ // Input is negative. Reverse its sign.
+ // Preserve the value of all registers.
+ {
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+
+ // Registers were saved at the safepoint, so we can use
+ // many scratch registers.
+ Register tmp1 = input.is(a1) ? a0 : a1;
+ Register tmp2 = input.is(a2) ? a0 : a2;
+ Register tmp3 = input.is(a3) ? a0 : a3;
+ Register tmp4 = input.is(t0) ? a0 : t0;
+
+ // exponent: floating point exponent value.
+
+ Label allocated, slow;
+ __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
+ __ Branch(&allocated);
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
+ // Set the pointer to the new heap number in tmp.
+ if (!tmp1.is(v0))
+ __ mov(tmp1, v0);
+ // Restore input_reg after call to runtime.
+ __ LoadFromSafepointRegisterSlot(input, input);
+ __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
+
+ __ bind(&allocated);
+ // exponent: floating point exponent value.
+ // tmp1: allocated heap number.
+ __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
+ __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
+ __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
+ __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
+
+ __ StoreToSafepointRegisterSlot(tmp1, result);
+ }
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
+ Label done;
+ __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
+ __ mov(result, input);
+ ASSERT_EQ(2, masm()->InstructionsGeneratedSince(&done));
+ __ subu(result, zero_reg, input);
+ // Overflow if result is still negative, ie 0x80000000.
+ DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
+ // Class for deferred case.
+ class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
+ public:
+ DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
+ LUnaryMathOperation* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() {
+ codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
+ }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LUnaryMathOperation* instr_;
+ };
+
+ Representation r = instr->hydrogen()->value()->representation();
+ if (r.IsDouble()) {
+ FPURegister input = ToDoubleRegister(instr->InputAt(0));
+ FPURegister result = ToDoubleRegister(instr->result());
+ __ abs_d(result, input);
+ } else if (r.IsInteger32()) {
+ EmitIntegerMathAbs(instr);
+ } else {
+ // Representation is tagged.
+ DeferredMathAbsTaggedHeapNumber* deferred =
+ new DeferredMathAbsTaggedHeapNumber(this, instr);
+ Register input = ToRegister(instr->InputAt(0));
+ // Smi check.
+ __ JumpIfNotSmi(input, deferred->entry());
+ // If smi, handle it directly.
+ EmitIntegerMathAbs(instr);
+ __ bind(deferred->exit());
+ }
+}
+
+
+void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ FPURegister single_scratch = double_scratch0().low();
+ Register scratch1 = scratch0();
+ Register except_flag = ToRegister(instr->TempAt(0));
+
+ __ EmitFPUTruncate(kRoundToMinusInf,
+ single_scratch,
+ input,
+ scratch1,
+ except_flag);
+
+ // Deopt if the operation did not succeed.
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
+
+ // Load the result.
+ __ mfc1(result, single_scratch);
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // Test for -0.
+ Label done;
+ __ Branch(&done, ne, result, Operand(zero_reg));
+ __ mfc1(scratch1, input.high());
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+ Label done, check_sign_on_zero;
+
+ // Extract exponent bits.
+ __ mfc1(result, input.high());
+ __ Ext(scratch,
+ result,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+
+ // If the number is in ]-0.5, +0.5[, the result is +/- 0.
+ Label skip1;
+ __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
+ __ mov(result, zero_reg);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ Branch(&check_sign_on_zero);
+ } else {
+ __ Branch(&done);
+ }
+ __ bind(&skip1);
+
+ // The following conversion will not work with numbers
+ // outside of ]-2^32, 2^32[.
+ DeoptimizeIf(ge, instr->environment(), scratch,
+ Operand(HeapNumber::kExponentBias + 32));
+
+ // Save the original sign for later comparison.
+ __ And(scratch, result, Operand(HeapNumber::kSignMask));
+
+ __ Move(double_scratch0(), 0.5);
+ __ add_d(input, input, double_scratch0());
+
+ // Check sign of the result: if the sign changed, the input
+ // value was in ]0.5, 0[ and the result should be -0.
+ __ mfc1(result, input.high());
+ __ Xor(result, result, Operand(scratch));
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // ARM uses 'mi' here, which is 'lt'
+ DeoptimizeIf(lt, instr->environment(), result,
+ Operand(zero_reg));
+ } else {
+ Label skip2;
+ // ARM uses 'mi' here, which is 'lt'
+ // Negating it results in 'ge'
+ __ Branch(&skip2, ge, result, Operand(zero_reg));
+ __ mov(result, zero_reg);
+ __ Branch(&done);
+ __ bind(&skip2);
+ }
+
+ Register except_flag = scratch;
+
+ __ EmitFPUTruncate(kRoundToMinusInf,
+ double_scratch0().low(),
+ input,
+ result,
+ except_flag);
+
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
+
+ __ mfc1(result, double_scratch0().low());
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // Test for -0.
+ __ Branch(&done, ne, result, Operand(zero_reg));
+ __ bind(&check_sign_on_zero);
+ __ mfc1(scratch, input.high());
+ __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
+ }
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ __ sqrt_d(result, input);
+}
+
+
+void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
+ DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
+ DoubleRegister result = ToDoubleRegister(instr->result());
+ DoubleRegister double_scratch = double_scratch0();
+
+ // Add +0 to convert -0 to +0.
+ __ mtc1(zero_reg, double_scratch.low());
+ __ mtc1(zero_reg, double_scratch.high());
+ __ add_d(result, input, double_scratch);
+ __ sqrt_d(result, result);
+}
+
+
+void LCodeGen::DoPower(LPower* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ Register scratch = scratch0();
+ DoubleRegister result_reg = ToDoubleRegister(instr->result());
+ Representation exponent_type = instr->hydrogen()->right()->representation();
+ if (exponent_type.IsDouble()) {
+ // Prepare arguments and call C function.
+ __ PrepareCallCFunction(0, 2, scratch);
+ __ SetCallCDoubleArguments(ToDoubleRegister(left),
+ ToDoubleRegister(right));
+ __ CallCFunction(
+ ExternalReference::power_double_double_function(isolate()), 0, 2);
+ } else if (exponent_type.IsInteger32()) {
+ ASSERT(ToRegister(right).is(a0));
+ // Prepare arguments and call C function.
+ __ PrepareCallCFunction(1, 1, scratch);
+ __ SetCallCDoubleArguments(ToDoubleRegister(left), ToRegister(right));
+ __ CallCFunction(
+ ExternalReference::power_double_int_function(isolate()), 1, 1);
+ } else {
+ ASSERT(exponent_type.IsTagged());
+ ASSERT(instr->hydrogen()->left()->representation().IsDouble());
+
+ Register right_reg = ToRegister(right);
+
+ // Check for smi on the right hand side.
+ Label non_smi, call;
+ __ JumpIfNotSmi(right_reg, &non_smi);
+
+ // Untag smi and convert it to a double.
+ __ SmiUntag(right_reg);
+ FPURegister single_scratch = double_scratch0();
+ __ mtc1(right_reg, single_scratch);
+ __ cvt_d_w(result_reg, single_scratch);
+ __ Branch(&call);
+
+ // Heap number map check.
+ __ bind(&non_smi);
+ __ lw(scratch, FieldMemOperand(right_reg, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
+ __ ldc1(result_reg, FieldMemOperand(right_reg, HeapNumber::kValueOffset));
+
+ // Prepare arguments and call C function.
+ __ bind(&call);
+ __ PrepareCallCFunction(0, 2, scratch);
+ __ SetCallCDoubleArguments(ToDoubleRegister(left), result_reg);
+ __ CallCFunction(
+ ExternalReference::power_double_double_function(isolate()), 0, 2);
+ }
+ // Store the result in the result register.
+ __ GetCFunctionDoubleResult(result_reg);
+}
+
+
+void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
+ ASSERT(ToDoubleRegister(instr->result()).is(f4));
+ TranscendentalCacheStub stub(TranscendentalCache::LOG,
+ TranscendentalCacheStub::UNTAGGED);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
+ ASSERT(ToDoubleRegister(instr->result()).is(f4));
+ TranscendentalCacheStub stub(TranscendentalCache::COS,
+ TranscendentalCacheStub::UNTAGGED);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
+ ASSERT(ToDoubleRegister(instr->result()).is(f4));
+ TranscendentalCacheStub stub(TranscendentalCache::SIN,
+ TranscendentalCacheStub::UNTAGGED);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
+ switch (instr->op()) {
+ case kMathAbs:
+ DoMathAbs(instr);
+ break;
+ case kMathFloor:
+ DoMathFloor(instr);
+ break;
+ case kMathRound:
+ DoMathRound(instr);
+ break;
+ case kMathSqrt:
+ DoMathSqrt(instr);
+ break;
+ case kMathPowHalf:
+ DoMathPowHalf(instr);
+ break;
+ case kMathCos:
+ DoMathCos(instr);
+ break;
+ case kMathSin:
+ DoMathSin(instr);
+ break;
+ case kMathLog:
+ DoMathLog(instr);
+ break;
+ default:
+ Abort("Unimplemented type of LUnaryMathOperation.");
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
+ ASSERT(ToRegister(instr->function()).is(a1));
+ ASSERT(instr->HasPointerMap());
+ ASSERT(instr->HasDeoptimizationEnvironment());
+ LPointerMap* pointers = instr->pointer_map();
+ LEnvironment* env = instr->deoptimization_environment();
+ RecordPosition(pointers->position());
+ RegisterEnvironmentForDeoptimization(env);
+ SafepointGenerator generator(this, pointers, env->deoptimization_index());
+ ParameterCount count(instr->arity());
+ __ InvokeFunction(a1, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
+ ASSERT(ToRegister(instr->result()).is(v0));
+
+ int arity = instr->arity();
+ Handle<Code> ic =
+ isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoCallNamed(LCallNamed* instr) {
+ ASSERT(ToRegister(instr->result()).is(v0));
+
+ int arity = instr->arity();
+ RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
+ Handle<Code> ic =
+ isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
+ __ li(a2, Operand(instr->name()));
+ CallCode(ic, mode, instr);
+ // Restore context register.
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoCallFunction(LCallFunction* instr) {
+ ASSERT(ToRegister(instr->result()).is(v0));
+
+ int arity = instr->arity();
+ CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ __ Drop(1);
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
+ ASSERT(ToRegister(instr->result()).is(v0));
+
+ int arity = instr->arity();
+ RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
+ Handle<Code> ic =
+ isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
+ __ li(a2, Operand(instr->name()));
+ CallCode(ic, mode, instr);
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
+ ASSERT(ToRegister(instr->result()).is(v0));
+ __ li(a1, Operand(instr->target()));
+ CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION);
+}
+
+
+void LCodeGen::DoCallNew(LCallNew* instr) {
+ ASSERT(ToRegister(instr->InputAt(0)).is(a1));
+ ASSERT(ToRegister(instr->result()).is(v0));
+
+ Handle<Code> builtin = isolate()->builtins()->JSConstructCall();
+ __ li(a0, Operand(instr->arity()));
+ CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
+}
+
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+ CallRuntime(instr->function(), instr->arity(), instr);
+}
+
+
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+ Register object = ToRegister(instr->object());
+ Register value = ToRegister(instr->value());
+ Register scratch = scratch0();
+ int offset = instr->offset();
+
+ ASSERT(!object.is(value));
+
+ if (!instr->transition().is_null()) {
+ __ li(scratch, Operand(instr->transition()));
+ __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ }
+
+ // Do the store.
+ HType type = instr->hydrogen()->value()->type();
+ SmiCheck check_needed =
+ type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ if (instr->is_in_object()) {
+ __ sw(value, FieldMemOperand(object, offset));
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ // Update the write barrier for the object for in-object properties.
+ __ RecordWriteField(object,
+ offset,
+ value,
+ scratch,
+ kRAHasBeenSaved,
+ kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ check_needed);
+ }
+ } else {
+ __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
+ __ sw(value, FieldMemOperand(scratch, offset));
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ // Update the write barrier for the properties array.
+ // object is used as a scratch register.
+ __ RecordWriteField(scratch,
+ offset,
+ value,
+ object,
+ kRAHasBeenSaved,
+ kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ check_needed);
+ }
+ }
+}
+
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+ ASSERT(ToRegister(instr->object()).is(a1));
+ ASSERT(ToRegister(instr->value()).is(a0));
+
+ // Name is always in a2.
+ __ li(a2, Operand(instr->name()));
+ Handle<Code> ic = instr->strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
+ DeoptimizeIf(hs,
+ instr->environment(),
+ ToRegister(instr->index()),
+ Operand(ToRegister(instr->length())));
+}
+
+
+void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
+ Register value = ToRegister(instr->value());
+ Register elements = ToRegister(instr->object());
+ Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
+ Register scratch = scratch0();
+
+ // This instruction cannot handle the FAST_SMI_ONLY_ELEMENTS -> FAST_ELEMENTS
+ // conversion, so it deopts in that case.
+ if (instr->hydrogen()->ValueNeedsSmiCheck()) {
+ __ And(at, value, Operand(kSmiTagMask));
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
+ }
+
+ // Do the store.
+ if (instr->key()->IsConstantOperand()) {
+ ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
+ LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+ int offset =
+ ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
+ __ sw(value, FieldMemOperand(elements, offset));
+ } else {
+ __ sll(scratch, key, kPointerSizeLog2);
+ __ addu(scratch, elements, scratch);
+ __ sw(value, FieldMemOperand(scratch, FixedArray::kHeaderSize));
+ }
+
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ HType type = instr->hydrogen()->value()->type();
+ SmiCheck check_needed =
+ type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ // Compute address of modified element and store it into key register.
+ __ Addu(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ RecordWrite(elements,
+ key,
+ value,
+ kRAHasBeenSaved,
+ kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ check_needed);
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedFastDoubleElement(
+ LStoreKeyedFastDoubleElement* instr) {
+ DoubleRegister value = ToDoubleRegister(instr->value());
+ Register elements = ToRegister(instr->elements());
+ Register key = no_reg;
+ Register scratch = scratch0();
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ int constant_key = 0;
+ Label not_nan;
+
+ // Calculate the effective address of the slot in the array to store the
+ // double value.
+ if (key_is_constant) {
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xF0000000) {
+ Abort("array index constant value too big.");
+ }
+ } else {
+ key = ToRegister(instr->key());
+ }
+ int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
+ if (key_is_constant) {
+ __ Addu(scratch, elements, Operand(constant_key * (1 << shift_size) +
+ FixedDoubleArray::kHeaderSize - kHeapObjectTag));
+ } else {
+ __ sll(scratch, key, shift_size);
+ __ Addu(scratch, elements, Operand(scratch));
+ __ Addu(scratch, scratch,
+ Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
+ }
+
+ Label is_nan;
+ // Check for NaN. All NaNs must be canonicalized.
+ __ BranchF(NULL, &is_nan, eq, value, value);
+ __ Branch(&not_nan);
+
+ // Only load canonical NaN if the comparison above set the overflow.
+ __ bind(&is_nan);
+ __ Move(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double());
+
+ __ bind(&not_nan);
+ __ sdc1(value, MemOperand(scratch));
+}
+
+
+void LCodeGen::DoStoreKeyedSpecializedArrayElement(
+ LStoreKeyedSpecializedArrayElement* instr) {
+
+ Register external_pointer = ToRegister(instr->external_pointer());
+ Register key = no_reg;
+ ElementsKind elements_kind = instr->elements_kind();
+ bool key_is_constant = instr->key()->IsConstantOperand();
+ int constant_key = 0;
+ if (key_is_constant) {
+ constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
+ if (constant_key & 0xF0000000) {
+ Abort("array index constant value too big.");
+ }
+ } else {
+ key = ToRegister(instr->key());
+ }
+ int shift_size = ElementsKindToShiftSize(elements_kind);
+
+ if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
+ elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
+ FPURegister value(ToDoubleRegister(instr->value()));
+ if (key_is_constant) {
+ __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size));
+ } else {
+ __ sll(scratch0(), key, shift_size);
+ __ Addu(scratch0(), scratch0(), external_pointer);
+ }
+
+ if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
+ __ cvt_s_d(double_scratch0(), value);
+ __ swc1(double_scratch0(), MemOperand(scratch0()));
+ } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
+ __ sdc1(value, MemOperand(scratch0()));
+ }
+ } else {
+ Register value(ToRegister(instr->value()));
+ MemOperand mem_operand(zero_reg);
+ Register scratch = scratch0();
+ if (key_is_constant) {
+ mem_operand = MemOperand(external_pointer,
+ constant_key * (1 << shift_size));
+ } else {
+ __ sll(scratch, key, shift_size);
+ __ Addu(scratch, scratch, external_pointer);
+ mem_operand = MemOperand(scratch);
+ }
+ switch (elements_kind) {
+ case EXTERNAL_PIXEL_ELEMENTS:
+ case EXTERNAL_BYTE_ELEMENTS:
+ case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
+ __ sb(value, mem_operand);
+ break;
+ case EXTERNAL_SHORT_ELEMENTS:
+ case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
+ __ sh(value, mem_operand);
+ break;
+ case EXTERNAL_INT_ELEMENTS:
+ case EXTERNAL_UNSIGNED_INT_ELEMENTS:
+ __ sw(value, mem_operand);
+ break;
+ case EXTERNAL_FLOAT_ELEMENTS:
+ case EXTERNAL_DOUBLE_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_SMI_ONLY_ELEMENTS:
+ case DICTIONARY_ELEMENTS:
+ case NON_STRICT_ARGUMENTS_ELEMENTS:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+ ASSERT(ToRegister(instr->object()).is(a2));
+ ASSERT(ToRegister(instr->key()).is(a1));
+ ASSERT(ToRegister(instr->value()).is(a0));
+
+ Handle<Code> ic = instr->strict_mode()
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
+ Register object_reg = ToRegister(instr->object());
+ Register new_map_reg = ToRegister(instr->new_map_reg());
+ Register scratch = scratch0();
+
+ Handle<Map> from_map = instr->original_map();
+ Handle<Map> to_map = instr->transitioned_map();
+ ElementsKind from_kind = from_map->elements_kind();
+ ElementsKind to_kind = to_map->elements_kind();
+
+ __ mov(ToRegister(instr->result()), object_reg);
+
+ Label not_applicable;
+ __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+ __ Branch(&not_applicable, ne, scratch, Operand(from_map));
+
+ __ li(new_map_reg, Operand(to_map));
+ if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) {
+ __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
+ // Write barrier.
+ __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg,
+ scratch, kRAHasBeenSaved, kDontSaveFPRegs);
+ } else if (from_kind == FAST_SMI_ONLY_ELEMENTS &&
+ to_kind == FAST_DOUBLE_ELEMENTS) {
+ Register fixed_object_reg = ToRegister(instr->temp_reg());
+ ASSERT(fixed_object_reg.is(a2));
+ ASSERT(new_map_reg.is(a3));
+ __ mov(fixed_object_reg, object_reg);
+ CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(),
+ RelocInfo::CODE_TARGET, instr);
+ } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) {
+ Register fixed_object_reg = ToRegister(instr->temp_reg());
+ ASSERT(fixed_object_reg.is(a2));
+ ASSERT(new_map_reg.is(a3));
+ __ mov(fixed_object_reg, object_reg);
+ CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(),
+ RelocInfo::CODE_TARGET, instr);
+ } else {
+ UNREACHABLE();
+ }
+ __ bind(&not_applicable);
+}
+
+
+void LCodeGen::DoStringAdd(LStringAdd* instr) {
+ __ push(ToRegister(instr->left()));
+ __ push(ToRegister(instr->right()));
+ StringAddStub stub(NO_STRING_CHECK_IN_STUB);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+ class DeferredStringCharCodeAt: public LDeferredCode {
+ public:
+ DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LStringCharCodeAt* instr_;
+ };
+
+ Register temp = scratch1();
+ Register string = ToRegister(instr->string());
+ Register index = ToRegister(instr->index());
+ Register result = ToRegister(instr->result());
+ DeferredStringCharCodeAt* deferred =
+ new DeferredStringCharCodeAt(this, instr);
+
+ // Fetch the instance type of the receiver into result register.
+ __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
+ __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
+
+ // We need special handling for indirect strings.
+ Label check_sequential;
+ __ And(temp, result, kIsIndirectStringMask);
+ __ Branch(&check_sequential, eq, temp, Operand(zero_reg));
+
+ // Dispatch on the indirect string shape: slice or cons.
+ Label cons_string;
+ __ And(temp, result, kSlicedNotConsMask);
+ __ Branch(&cons_string, eq, temp, Operand(zero_reg));
+
+ // Handle slices.
+ Label indirect_string_loaded;
+ __ lw(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
+ __ sra(temp, result, kSmiTagSize);
+ __ addu(index, index, temp);
+ __ lw(string, FieldMemOperand(string, SlicedString::kParentOffset));
+ __ jmp(&indirect_string_loaded);
+
+ // Handle conses.
+ // Check whether the right hand side is the empty string (i.e. if
+ // this is really a flat string in a cons string). If that is not
+ // the case we would rather go to the runtime system now to flatten
+ // the string.
+ __ bind(&cons_string);
+ __ lw(result, FieldMemOperand(string, ConsString::kSecondOffset));
+ __ LoadRoot(temp, Heap::kEmptyStringRootIndex);
+ __ Branch(deferred->entry(), ne, result, Operand(temp));
+ // Get the first of the two strings and load its instance type.
+ __ lw(string, FieldMemOperand(string, ConsString::kFirstOffset));
+
+ __ bind(&indirect_string_loaded);
+ __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
+ __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
+
+ // Check whether the string is sequential. The only non-sequential
+ // shapes we support have just been unwrapped above.
+ __ bind(&check_sequential);
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ And(temp, result, Operand(kStringRepresentationMask));
+ __ Branch(deferred->entry(), ne, temp, Operand(zero_reg));
+
+ // Dispatch on the encoding: ASCII or two-byte.
+ Label ascii_string;
+ STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
+ STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
+ __ And(temp, result, Operand(kStringEncodingMask));
+ __ Branch(&ascii_string, ne, temp, Operand(zero_reg));
+
+ // Two-byte string.
+ // Load the two-byte character code into the result register.
+ Label done;
+ __ Addu(result,
+ string,
+ Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ __ sll(temp, index, 1);
+ __ Addu(result, result, temp);
+ __ lhu(result, MemOperand(result, 0));
+ __ Branch(&done);
+
+ // ASCII string.
+ // Load the byte into the result register.
+ __ bind(&ascii_string);
+ __ Addu(result,
+ string,
+ Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ Addu(result, result, index);
+ __ lbu(result, MemOperand(result, 0));
+
+ __ bind(&done);
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+ Register string = ToRegister(instr->string());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ mov(result, zero_reg);
+
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ __ push(string);
+ // Push the index as a smi. This is safe because of the checks in
+ // DoStringCharCodeAt above.
+ if (instr->index()->IsConstantOperand()) {
+ int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+ __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
+ __ push(scratch);
+ } else {
+ Register index = ToRegister(instr->index());
+ __ SmiTag(index);
+ __ push(index);
+ }
+ CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(v0);
+ }
+ __ SmiUntag(v0);
+ __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+ class DeferredStringCharFromCode: public LDeferredCode {
+ public:
+ DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LStringCharFromCode* instr_;
+ };
+
+ DeferredStringCharFromCode* deferred =
+ new DeferredStringCharFromCode(this, instr);
+
+ ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+ Register scratch = scratch0();
+ ASSERT(!char_code.is(result));
+
+ __ Branch(deferred->entry(), hi,
+ char_code, Operand(String::kMaxAsciiCharCode));
+ __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
+ __ sll(scratch, char_code, kPointerSizeLog2);
+ __ Addu(result, result, scratch);
+ __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize));
+ __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
+ __ Branch(deferred->entry(), eq, result, Operand(scratch));
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ mov(result, zero_reg);
+
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ __ SmiTag(char_code);
+ __ push(char_code);
+ CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
+ __ StoreToSafepointRegisterSlot(v0, result);
+}
+
+
+void LCodeGen::DoStringLength(LStringLength* instr) {
+ Register string = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ __ lw(result, FieldMemOperand(string, String::kLengthOffset));
+}
+
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister() || input->IsStackSlot());
+ LOperand* output = instr->result();
+ ASSERT(output->IsDoubleRegister());
+ FPURegister single_scratch = double_scratch0().low();
+ if (input->IsStackSlot()) {
+ Register scratch = scratch0();
+ __ lw(scratch, ToMemOperand(input));
+ __ mtc1(scratch, single_scratch);
+ } else {
+ __ mtc1(ToRegister(input), single_scratch);
+ }
+ __ cvt_d_w(ToDoubleRegister(output), single_scratch);
+}
+
+
+void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
+ class DeferredNumberTagI: public LDeferredCode {
+ public:
+ DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LNumberTagI* instr_;
+ };
+
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister() && input->Equals(instr->result()));
+ Register reg = ToRegister(input);
+ Register overflow = scratch0();
+
+ DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
+ __ SmiTagCheckOverflow(reg, overflow);
+ __ BranchOnOverflow(deferred->entry(), overflow);
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
+ Label slow;
+ Register reg = ToRegister(instr->InputAt(0));
+ FPURegister dbl_scratch = double_scratch0();
+
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+
+ // There was overflow, so bits 30 and 31 of the original integer
+ // disagree. Try to allocate a heap number in new space and store
+ // the value in there. If that fails, call the runtime system.
+ Label done;
+ __ SmiUntag(reg);
+ __ Xor(reg, reg, Operand(0x80000000));
+ __ mtc1(reg, dbl_scratch);
+ __ cvt_d_w(dbl_scratch, dbl_scratch);
+ if (FLAG_inline_new) {
+ __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(t1, a3, t0, t2, &slow);
+ if (!reg.is(t1)) __ mov(reg, t1);
+ __ Branch(&done);
+ }
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+
+ // TODO(3095996): Put a valid pointer value in the stack slot where the result
+ // register is stored, as this register is in the pointer map, but contains an
+ // integer value.
+ __ StoreToSafepointRegisterSlot(zero_reg, reg);
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
+ if (!reg.is(v0)) __ mov(reg, v0);
+
+ // Done. Put the value in dbl_scratch into the value of the allocated heap
+ // number.
+ __ bind(&done);
+ __ sdc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
+ __ StoreToSafepointRegisterSlot(reg, reg);
+}
+
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+ class DeferredNumberTagD: public LDeferredCode {
+ public:
+ DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LNumberTagD* instr_;
+ };
+
+ DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0));
+ Register scratch = scratch0();
+ Register reg = ToRegister(instr->result());
+ Register temp1 = ToRegister(instr->TempAt(0));
+ Register temp2 = ToRegister(instr->TempAt(1));
+
+ DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
+ if (FLAG_inline_new) {
+ __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
+ } else {
+ __ Branch(deferred->entry());
+ }
+ __ bind(deferred->exit());
+ __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
+}
+
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ Register reg = ToRegister(instr->result());
+ __ mov(reg, zero_reg);
+
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
+ __ StoreToSafepointRegisterSlot(v0, reg);
+}
+
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister() && input->Equals(instr->result()));
+ ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
+ __ SmiTag(ToRegister(input));
+}
+
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+ Register scratch = scratch0();
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister() && input->Equals(instr->result()));
+ if (instr->needs_check()) {
+ STATIC_ASSERT(kHeapObjectTag == 1);
+ // If the input is a HeapObject, value of scratch won't be zero.
+ __ And(scratch, ToRegister(input), Operand(kHeapObjectTag));
+ __ SmiUntag(ToRegister(input));
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
+ } else {
+ __ SmiUntag(ToRegister(input));
+ }
+}
+
+
+void LCodeGen::EmitNumberUntagD(Register input_reg,
+ DoubleRegister result_reg,
+ bool deoptimize_on_undefined,
+ LEnvironment* env) {
+ Register scratch = scratch0();
+
+ Label load_smi, heap_number, done;
+
+ // Smi check.
+ __ JumpIfSmi(input_reg, &load_smi);
+
+ // Heap number map check.
+ __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ if (deoptimize_on_undefined) {
+ DeoptimizeIf(ne, env, scratch, Operand(at));
+ } else {
+ Label heap_number;
+ __ Branch(&heap_number, eq, scratch, Operand(at));
+
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ DeoptimizeIf(ne, env, input_reg, Operand(at));
+
+ // Convert undefined to NaN.
+ __ LoadRoot(at, Heap::kNanValueRootIndex);
+ __ ldc1(result_reg, FieldMemOperand(at, HeapNumber::kValueOffset));
+ __ Branch(&done);
+
+ __ bind(&heap_number);
+ }
+ // Heap number to double register conversion.
+ __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+ __ Branch(&done);
+
+ // Smi to double register conversion
+ __ bind(&load_smi);
+ __ SmiUntag(input_reg); // Untag smi before converting to float.
+ __ mtc1(input_reg, result_reg);
+ __ cvt_d_w(result_reg, result_reg);
+ __ SmiTag(input_reg); // Retag smi.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
+ Register input_reg = ToRegister(instr->InputAt(0));
+ Register scratch1 = scratch0();
+ Register scratch2 = ToRegister(instr->TempAt(0));
+ DoubleRegister double_scratch = double_scratch0();
+ FPURegister single_scratch = double_scratch.low();
+
+ ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2));
+ ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1));
+
+ Label done;
+
+ // The input is a tagged HeapObject.
+ // Heap number map check.
+ __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ // This 'at' value and scratch1 map value are used for tests in both clauses
+ // of the if.
+
+ if (instr->truncating()) {
+ Register scratch3 = ToRegister(instr->TempAt(1));
+ DoubleRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2));
+ ASSERT(!scratch3.is(input_reg) &&
+ !scratch3.is(scratch1) &&
+ !scratch3.is(scratch2));
+ // Performs a truncating conversion of a floating point number as used by
+ // the JS bitwise operations.
+ Label heap_number;
+ __ Branch(&heap_number, eq, scratch1, Operand(at)); // HeapNumber map?
+ // Check for undefined. Undefined is converted to zero for truncating
+ // conversions.
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ DeoptimizeIf(ne, instr->environment(), input_reg, Operand(at));
+ ASSERT(ToRegister(instr->result()).is(input_reg));
+ __ mov(input_reg, zero_reg);
+ __ Branch(&done);
+
+ __ bind(&heap_number);
+ __ ldc1(double_scratch2,
+ FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+ __ EmitECMATruncate(input_reg,
+ double_scratch2,
+ single_scratch,
+ scratch1,
+ scratch2,
+ scratch3);
+ } else {
+ // Deoptimize if we don't have a heap number.
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(at));
+
+ // Load the double value.
+ __ ldc1(double_scratch,
+ FieldMemOperand(input_reg, HeapNumber::kValueOffset));
+
+ Register except_flag = scratch2;
+ __ EmitFPUTruncate(kRoundToZero,
+ single_scratch,
+ double_scratch,
+ scratch1,
+ except_flag,
+ kCheckForInexactConversion);
+
+ // Deopt if the operation did not succeed.
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
+
+ // Load the result.
+ __ mfc1(input_reg, single_scratch);
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ Branch(&done, ne, input_reg, Operand(zero_reg));
+
+ __ mfc1(scratch1, double_scratch.high());
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+ DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
+ }
+ }
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+ class DeferredTaggedToI: public LDeferredCode {
+ public:
+ DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LTaggedToI* instr_;
+ };
+
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister());
+ ASSERT(input->Equals(instr->result()));
+
+ Register input_reg = ToRegister(input);
+
+ DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
+
+ // Let the deferred code handle the HeapObject case.
+ __ JumpIfNotSmi(input_reg, deferred->entry());
+
+ // Smi to int32 conversion.
+ __ SmiUntag(input_reg);
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister());
+ LOperand* result = instr->result();
+ ASSERT(result->IsDoubleRegister());
+
+ Register input_reg = ToRegister(input);
+ DoubleRegister result_reg = ToDoubleRegister(result);
+
+ EmitNumberUntagD(input_reg, result_reg,
+ instr->hydrogen()->deoptimize_on_undefined(),
+ instr->environment());
+}
+
+
+void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
+ Register result_reg = ToRegister(instr->result());
+ Register scratch1 = scratch0();
+ Register scratch2 = ToRegister(instr->TempAt(0));
+ DoubleRegister double_input = ToDoubleRegister(instr->InputAt(0));
+ DoubleRegister double_scratch = double_scratch0();
+ FPURegister single_scratch = double_scratch0().low();
+
+ if (instr->truncating()) {
+ Register scratch3 = ToRegister(instr->TempAt(1));
+ __ EmitECMATruncate(result_reg,
+ double_input,
+ single_scratch,
+ scratch1,
+ scratch2,
+ scratch3);
+ } else {
+ Register except_flag = scratch2;
+
+ __ EmitFPUTruncate(kRoundToMinusInf,
+ single_scratch,
+ double_input,
+ scratch1,
+ except_flag,
+ kCheckForInexactConversion);
+
+ // Deopt if the operation did not succeed (except_flag != 0).
+ DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
+
+ // Load the result.
+ __ mfc1(result_reg, single_scratch);
+ }
+}
+
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+ LOperand* input = instr->InputAt(0);
+ __ And(at, ToRegister(input), Operand(kSmiTagMask));
+ DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+ LOperand* input = instr->InputAt(0);
+ __ And(at, ToRegister(input), Operand(kSmiTagMask));
+ DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register scratch = scratch0();
+
+ __ GetObjectType(input, scratch, scratch);
+
+ if (instr->hydrogen()->is_interval_check()) {
+ InstanceType first;
+ InstanceType last;
+ instr->hydrogen()->GetCheckInterval(&first, &last);
+
+ // If there is only one type in the interval check for equality.
+ if (first == last) {
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(first));
+ } else {
+ DeoptimizeIf(lo, instr->environment(), scratch, Operand(first));
+ // Omit check for the last type.
+ if (last != LAST_TYPE) {
+ DeoptimizeIf(hi, instr->environment(), scratch, Operand(last));
+ }
+ }
+ } else {
+ uint8_t mask;
+ uint8_t tag;
+ instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
+
+ if (IsPowerOf2(mask)) {
+ ASSERT(tag == 0 || IsPowerOf2(tag));
+ __ And(at, scratch, mask);
+ DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(),
+ at, Operand(zero_reg));
+ } else {
+ __ And(scratch, scratch, Operand(mask));
+ DeoptimizeIf(ne, instr->environment(), scratch, Operand(tag));
+ }
+ }
+}
+
+
+void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
+ ASSERT(instr->InputAt(0)->IsRegister());
+ Register reg = ToRegister(instr->InputAt(0));
+ DeoptimizeIf(ne, instr->environment(), reg,
+ Operand(instr->hydrogen()->target()));
+}
+
+
+void LCodeGen::DoCheckMap(LCheckMap* instr) {
+ Register scratch = scratch0();
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister());
+ Register reg = ToRegister(input);
+ __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
+ DeoptimizeIf(ne,
+ instr->environment(),
+ scratch,
+ Operand(instr->hydrogen()->map()));
+}
+
+
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
+ DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
+ Register result_reg = ToRegister(instr->result());
+ DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
+ __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
+}
+
+
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
+ Register unclamped_reg = ToRegister(instr->unclamped());
+ Register result_reg = ToRegister(instr->result());
+ __ ClampUint8(result_reg, unclamped_reg);
+}
+
+
+void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
+ Register scratch = scratch0();
+ Register input_reg = ToRegister(instr->unclamped());
+ Register result_reg = ToRegister(instr->result());
+ DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
+ Label is_smi, done, heap_number;
+
+ // Both smi and heap number cases are handled.
+ __ JumpIfSmi(input_reg, &is_smi);
+
+ // Check for heap number
+ __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
+ __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
+
+ // Check for undefined. Undefined is converted to zero for clamping
+ // conversions.
+ DeoptimizeIf(ne, instr->environment(), input_reg,
+ Operand(factory()->undefined_value()));
+ __ mov(result_reg, zero_reg);
+ __ jmp(&done);
+
+ // Heap number
+ __ bind(&heap_number);
+ __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
+ HeapNumber::kValueOffset));
+ __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
+ __ jmp(&done);
+
+ // smi
+ __ bind(&is_smi);
+ __ SmiUntag(scratch, input_reg);
+ __ ClampUint8(result_reg, scratch);
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::LoadHeapObject(Register result,
+ Handle<HeapObject> object) {
+ if (heap()->InNewSpace(*object)) {
+ Handle<JSGlobalPropertyCell> cell =
+ factory()->NewJSGlobalPropertyCell(object);
+ __ li(result, Operand(cell));
+ __ lw(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset));
+ } else {
+ __ li(result, Operand(object));
+ }
+}
+
+
+void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
+ Register temp1 = ToRegister(instr->TempAt(0));
+ Register temp2 = ToRegister(instr->TempAt(1));
+
+ Handle<JSObject> holder = instr->holder();
+ Handle<JSObject> current_prototype = instr->prototype();
+
+ // Load prototype object.
+ LoadHeapObject(temp1, current_prototype);
+
+ // Check prototype maps up to the holder.
+ while (!current_prototype.is_identical_to(holder)) {
+ __ lw(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset));
+ DeoptimizeIf(ne,
+ instr->environment(),
+ temp2,
+ Operand(Handle<Map>(current_prototype->map())));
+ current_prototype =
+ Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
+ // Load next prototype object.
+ LoadHeapObject(temp1, current_prototype);
+ }
+
+ // Check the holder map.
+ __ lw(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset));
+ DeoptimizeIf(ne,
+ instr->environment(),
+ temp2,
+ Operand(Handle<Map>(current_prototype->map())));
+}
+
+
+void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
+ Handle<FixedArray> constant_elements = instr->hydrogen()->constant_elements();
+ ASSERT_EQ(2, constant_elements->length());
+ ElementsKind constant_elements_kind =
+ static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
+
+ __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
+ __ li(a2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
+ __ li(a1, Operand(constant_elements));
+ __ Push(a3, a2, a1);
+
+ // Pick the right runtime function or stub to call.
+ int length = instr->hydrogen()->length();
+ if (instr->hydrogen()->IsCopyOnWrite()) {
+ ASSERT(instr->hydrogen()->depth() == 1);
+ FastCloneShallowArrayStub::Mode mode =
+ FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
+ FastCloneShallowArrayStub stub(mode, length);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ } else if (instr->hydrogen()->depth() > 1) {
+ CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
+ } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
+ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
+ } else {
+ FastCloneShallowArrayStub::Mode mode =
+ constant_elements_kind == FAST_DOUBLE_ELEMENTS
+ ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
+ : FastCloneShallowArrayStub::CLONE_ELEMENTS;
+ FastCloneShallowArrayStub stub(mode, length);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ }
+}
+
+
+void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
+ ASSERT(ToRegister(instr->result()).is(v0));
+ __ lw(t0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ lw(t0, FieldMemOperand(t0, JSFunction::kLiteralsOffset));
+ __ li(a3, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
+ __ li(a2, Operand(instr->hydrogen()->constant_properties()));
+ __ li(a1, Operand(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0)));
+ __ Push(t0, a3, a2, a1);
+
+ // Pick the right runtime function to call.
+ if (instr->hydrogen()->depth() > 1) {
+ CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
+ } else {
+ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
+ }
+}
+
+
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
+ ASSERT(ToRegister(instr->InputAt(0)).is(a0));
+ ASSERT(ToRegister(instr->result()).is(v0));
+ __ push(a0);
+ CallRuntime(Runtime::kToFastProperties, 1, instr);
+}
+
+
+void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
+ Label materialized;
+ // Registers will be used as follows:
+ // a3 = JS function.
+ // t3 = literals array.
+ // a1 = regexp literal.
+ // a0 = regexp literal clone.
+ // a2 and t0-t2 are used as temporaries.
+ __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ lw(t3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
+ int literal_offset = FixedArray::kHeaderSize +
+ instr->hydrogen()->literal_index() * kPointerSize;
+ __ lw(a1, FieldMemOperand(t3, literal_offset));
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(&materialized, ne, a1, Operand(at));
+
+ // Create regexp literal using runtime function
+ // Result will be in v0.
+ __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
+ __ li(t1, Operand(instr->hydrogen()->pattern()));
+ __ li(t0, Operand(instr->hydrogen()->flags()));
+ __ Push(t3, t2, t1, t0);
+ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
+ __ mov(a1, v0);
+
+ __ bind(&materialized);
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
+ Label allocated, runtime_allocate;
+
+ __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
+ __ jmp(&allocated);
+
+ __ bind(&runtime_allocate);
+ __ li(a0, Operand(Smi::FromInt(size)));
+ __ Push(a1, a0);
+ CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
+ __ pop(a1);
+
+ __ bind(&allocated);
+ // Copy the content into the newly allocated memory.
+ // (Unroll copy loop once for better throughput).
+ for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
+ __ lw(a3, FieldMemOperand(a1, i));
+ __ lw(a2, FieldMemOperand(a1, i + kPointerSize));
+ __ sw(a3, FieldMemOperand(v0, i));
+ __ sw(a2, FieldMemOperand(v0, i + kPointerSize));
+ }
+ if ((size % (2 * kPointerSize)) != 0) {
+ __ lw(a3, FieldMemOperand(a1, size - kPointerSize));
+ __ sw(a3, FieldMemOperand(v0, size - kPointerSize));
+ }
+}
+
+
+void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
+ // Use the fast case closure allocation code that allocates in new
+ // space for nested functions that don't need literals cloning.
+ Handle<SharedFunctionInfo> shared_info = instr->shared_info();
+ bool pretenure = instr->hydrogen()->pretenure();
+ if (!pretenure && shared_info->num_literals() == 0) {
+ FastNewClosureStub stub(shared_info->strict_mode_flag());
+ __ li(a1, Operand(shared_info));
+ __ push(a1);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ } else {
+ __ li(a2, Operand(shared_info));
+ __ li(a1, Operand(pretenure
+ ? factory()->true_value()
+ : factory()->false_value()));
+ __ Push(cp, a2, a1);
+ CallRuntime(Runtime::kNewClosure, 3, instr);
+ }
+}
+
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+ ASSERT(ToRegister(instr->result()).is(v0));
+ Register input = ToRegister(instr->InputAt(0));
+ __ push(input);
+ CallRuntime(Runtime::kTypeof, 1, instr);
+}
+
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ Register cmp1 = no_reg;
+ Operand cmp2 = Operand(no_reg);
+
+ Condition final_branch_condition = EmitTypeofIs(true_label,
+ false_label,
+ input,
+ instr->type_literal(),
+ cmp1,
+ cmp2);
+
+ ASSERT(cmp1.is_valid());
+ ASSERT(!cmp2.is_reg() || cmp2.rm().is_valid());
+
+ if (final_branch_condition != kNoCondition) {
+ EmitBranch(true_block, false_block, final_branch_condition, cmp1, cmp2);
+ }
+}
+
+
+Condition LCodeGen::EmitTypeofIs(Label* true_label,
+ Label* false_label,
+ Register input,
+ Handle<String> type_name,
+ Register& cmp1,
+ Operand& cmp2) {
+ // This function utilizes the delay slot heavily. This is used to load
+ // values that are always usable without depending on the type of the input
+ // register.
+ Condition final_branch_condition = kNoCondition;
+ Register scratch = scratch0();
+ if (type_name->Equals(heap()->number_symbol())) {
+ __ JumpIfSmi(input, true_label);
+ __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ cmp1 = input;
+ cmp2 = Operand(at);
+ final_branch_condition = eq;
+
+ } else if (type_name->Equals(heap()->string_symbol())) {
+ __ JumpIfSmi(input, false_label);
+ __ GetObjectType(input, input, scratch);
+ __ Branch(USE_DELAY_SLOT, false_label,
+ ge, scratch, Operand(FIRST_NONSTRING_TYPE));
+ // input is an object so we can load the BitFieldOffset even if we take the
+ // other branch.
+ __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
+ __ And(at, at, 1 << Map::kIsUndetectable);
+ cmp1 = at;
+ cmp2 = Operand(zero_reg);
+ final_branch_condition = eq;
+
+ } else if (type_name->Equals(heap()->boolean_symbol())) {
+ __ LoadRoot(at, Heap::kTrueValueRootIndex);
+ __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
+ __ LoadRoot(at, Heap::kFalseValueRootIndex);
+ cmp1 = at;
+ cmp2 = Operand(input);
+ final_branch_condition = eq;
+
+ } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) {
+ __ LoadRoot(at, Heap::kNullValueRootIndex);
+ cmp1 = at;
+ cmp2 = Operand(input);
+ final_branch_condition = eq;
+
+ } else if (type_name->Equals(heap()->undefined_symbol())) {
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
+ __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
+ // The first instruction of JumpIfSmi is an And - it is safe in the delay
+ // slot.
+ __ JumpIfSmi(input, false_label);
+ // Check for undetectable objects => true.
+ __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
+ __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
+ __ And(at, at, 1 << Map::kIsUndetectable);
+ cmp1 = at;
+ cmp2 = Operand(zero_reg);
+ final_branch_condition = ne;
+
+ } else if (type_name->Equals(heap()->function_symbol())) {
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ __ JumpIfSmi(input, false_label);
+ __ GetObjectType(input, scratch, input);
+ __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE));
+ cmp1 = input;
+ cmp2 = Operand(JS_FUNCTION_PROXY_TYPE);
+ final_branch_condition = eq;
+
+ } else if (type_name->Equals(heap()->object_symbol())) {
+ __ JumpIfSmi(input, false_label);
+ if (!FLAG_harmony_typeof) {
+ __ LoadRoot(at, Heap::kNullValueRootIndex);
+ __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
+ }
+ // input is an object, it is safe to use GetObjectType in the delay slot.
+ __ GetObjectType(input, input, scratch);
+ __ Branch(USE_DELAY_SLOT, false_label,
+ lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ // Still an object, so the InstanceType can be loaded.
+ __ lbu(scratch, FieldMemOperand(input, Map::kInstanceTypeOffset));
+ __ Branch(USE_DELAY_SLOT, false_label,
+ gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ // Still an object, so the BitField can be loaded.
+ // Check for undetectable objects => false.
+ __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
+ __ And(at, at, 1 << Map::kIsUndetectable);
+ cmp1 = at;
+ cmp2 = Operand(zero_reg);
+ final_branch_condition = eq;
+
+ } else {
+ cmp1 = at;
+ cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion.
+ __ Branch(false_label);
+ }
+
+ return final_branch_condition;
+}
+
+
+void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
+ Register temp1 = ToRegister(instr->TempAt(0));
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ EmitIsConstructCall(temp1, scratch0());
+
+ EmitBranch(true_block, false_block, eq, temp1,
+ Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
+}
+
+
+void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
+ ASSERT(!temp1.is(temp2));
+ // Get the frame pointer for the calling frame.
+ __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+
+ // Skip the arguments adaptor frame if it exists.
+ Label check_frame_marker;
+ __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
+ __ Branch(&check_frame_marker, ne, temp2,
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
+
+ // Check the marker in the calling frame.
+ __ bind(&check_frame_marker);
+ __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
+}
+
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+ // No code for lazy bailout instruction. Used to capture environment after a
+ // call for populating the safepoint data with deoptimization data.
+}
+
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+ DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg));
+}
+
+
+void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
+ Register object = ToRegister(instr->object());
+ Register key = ToRegister(instr->key());
+ Register strict = scratch0();
+ __ li(strict, Operand(Smi::FromInt(strict_mode_flag())));
+ __ Push(object, key, strict);
+ ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
+ LPointerMap* pointers = instr->pointer_map();
+ LEnvironment* env = instr->deoptimization_environment();
+ RecordPosition(pointers->position());
+ RegisterEnvironmentForDeoptimization(env);
+ SafepointGenerator safepoint_generator(this,
+ pointers,
+ env->deoptimization_index());
+ __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator);
+}
+
+
+void LCodeGen::DoIn(LIn* instr) {
+ Register obj = ToRegister(instr->object());
+ Register key = ToRegister(instr->key());
+ __ Push(key, obj);
+ ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
+ LPointerMap* pointers = instr->pointer_map();
+ LEnvironment* env = instr->deoptimization_environment();
+ RecordPosition(pointers->position());
+ RegisterEnvironmentForDeoptimization(env);
+ SafepointGenerator safepoint_generator(this,
+ pointers,
+ env->deoptimization_index());
+ __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator);
+}
+
+
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
+ {
+ PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
+ __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+ RegisterLazyDeoptimization(
+ instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ }
+
+ // The gap code includes the restoring of the safepoint registers.
+ int pc = masm()->pc_offset();
+ safepoints_.SetPcAfterGap(pc);
+}
+
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+ class DeferredStackCheck: public LDeferredCode {
+ public:
+ DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
+ virtual LInstruction* instr() { return instr_; }
+ private:
+ LStackCheck* instr_;
+ };
+
+ if (instr->hydrogen()->is_function_entry()) {
+ // Perform stack overflow check.
+ Label done;
+ __ LoadRoot(at, Heap::kStackLimitRootIndex);
+ __ Branch(&done, hs, sp, Operand(at));
+ StackCheckStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ __ bind(&done);
+ } else {
+ ASSERT(instr->hydrogen()->is_backwards_branch());
+ // Perform stack overflow check if this goto needs it before jumping.
+ DeferredStackCheck* deferred_stack_check =
+ new DeferredStackCheck(this, instr);
+ __ LoadRoot(at, Heap::kStackLimitRootIndex);
+ __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
+ __ bind(instr->done_label());
+ deferred_stack_check->SetExit(instr->done_label());
+ }
+}
+
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+ // This is a pseudo-instruction that ensures that the environment here is
+ // properly registered for deoptimization and records the assembler's PC
+ // offset.
+ LEnvironment* environment = instr->environment();
+ environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
+ instr->SpilledDoubleRegisterArray());
+
+ // If the environment were already registered, we would have no way of
+ // backpatching it with the spill slot operands.
+ ASSERT(!environment->HasBeenRegistered());
+ RegisterEnvironmentForDeoptimization(environment);
+ ASSERT(osr_pc_offset_ == -1);
+ osr_pc_offset_ = masm()->pc_offset();
+}
+
+
+#undef __
+
+} } // namespace v8::internal
« no previous file with comments | « src/mips/lithium-codegen-mips.h ('k') | src/mips/lithium-gap-resolver-mips.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698