| Index: src/mips/lithium-codegen-mips.cc
|
| diff --git a/src/mips/lithium-codegen-mips.cc b/src/mips/lithium-codegen-mips.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..06387144463160cb6659adacec6f59b91bf6dbcf
|
| --- /dev/null
|
| +++ b/src/mips/lithium-codegen-mips.cc
|
| @@ -0,0 +1,4562 @@
|
| +// Copyright 2011 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#include "v8.h"
|
| +
|
| +#include "mips/lithium-codegen-mips.h"
|
| +#include "mips/lithium-gap-resolver-mips.h"
|
| +#include "code-stubs.h"
|
| +#include "stub-cache.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +
|
| +class SafepointGenerator : public CallWrapper {
|
| + public:
|
| + SafepointGenerator(LCodeGen* codegen,
|
| + LPointerMap* pointers,
|
| + int deoptimization_index)
|
| + : codegen_(codegen),
|
| + pointers_(pointers),
|
| + deoptimization_index_(deoptimization_index) { }
|
| + virtual ~SafepointGenerator() { }
|
| +
|
| + virtual void BeforeCall(int call_size) const {
|
| + ASSERT(call_size >= 0);
|
| + // Ensure that we have enough space after the previous safepoint position
|
| + // for the generated code there.
|
| + int call_end = codegen_->masm()->pc_offset() + call_size;
|
| + int prev_jump_end =
|
| + codegen_->LastSafepointEnd() + Deoptimizer::patch_size();
|
| + if (call_end < prev_jump_end) {
|
| + int padding_size = prev_jump_end - call_end;
|
| + ASSERT_EQ(0, padding_size % Assembler::kInstrSize);
|
| + while (padding_size > 0) {
|
| + codegen_->masm()->nop();
|
| + padding_size -= Assembler::kInstrSize;
|
| + }
|
| + }
|
| + }
|
| +
|
| + virtual void AfterCall() const {
|
| + codegen_->RecordSafepoint(pointers_, deoptimization_index_);
|
| + }
|
| +
|
| + private:
|
| + LCodeGen* codegen_;
|
| + LPointerMap* pointers_;
|
| + int deoptimization_index_;
|
| +};
|
| +
|
| +
|
| +#define __ masm()->
|
| +
|
| +bool LCodeGen::GenerateCode() {
|
| + HPhase phase("Code generation", chunk());
|
| + ASSERT(is_unused());
|
| + status_ = GENERATING;
|
| + CpuFeatures::Scope scope(FPU);
|
| +
|
| + CodeStub::GenerateFPStubs();
|
| +
|
| + // Open a frame scope to indicate that there is a frame on the stack. The
|
| + // NONE indicates that the scope shouldn't actually generate code to set up
|
| + // the frame (that is done in GeneratePrologue).
|
| + FrameScope frame_scope(masm_, StackFrame::NONE);
|
| +
|
| + return GeneratePrologue() &&
|
| + GenerateBody() &&
|
| + GenerateDeferredCode() &&
|
| + GenerateSafepointTable();
|
| +}
|
| +
|
| +
|
| +void LCodeGen::FinishCode(Handle<Code> code) {
|
| + ASSERT(is_done());
|
| + code->set_stack_slots(GetStackSlotCount());
|
| + code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
|
| + PopulateDeoptimizationData(code);
|
| + Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::Abort(const char* format, ...) {
|
| + if (FLAG_trace_bailout) {
|
| + SmartArrayPointer<char> name(
|
| + info()->shared_info()->DebugName()->ToCString());
|
| + PrintF("Aborting LCodeGen in @\"%s\": ", *name);
|
| + va_list arguments;
|
| + va_start(arguments, format);
|
| + OS::VPrint(format, arguments);
|
| + va_end(arguments);
|
| + PrintF("\n");
|
| + }
|
| + status_ = ABORTED;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::Comment(const char* format, ...) {
|
| + if (!FLAG_code_comments) return;
|
| + char buffer[4 * KB];
|
| + StringBuilder builder(buffer, ARRAY_SIZE(buffer));
|
| + va_list arguments;
|
| + va_start(arguments, format);
|
| + builder.AddFormattedList(format, arguments);
|
| + va_end(arguments);
|
| +
|
| + // Copy the string before recording it in the assembler to avoid
|
| + // issues when the stack allocated buffer goes out of scope.
|
| + size_t length = builder.position();
|
| + Vector<char> copy = Vector<char>::New(length + 1);
|
| + memcpy(copy.start(), builder.Finalize(), copy.length());
|
| + masm()->RecordComment(copy.start());
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GeneratePrologue() {
|
| + ASSERT(is_generating());
|
| +
|
| +#ifdef DEBUG
|
| + if (strlen(FLAG_stop_at) > 0 &&
|
| + info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
|
| + __ stop("stop_at");
|
| + }
|
| +#endif
|
| +
|
| + // a1: Callee's JS function.
|
| + // cp: Callee's context.
|
| + // fp: Caller's frame pointer.
|
| + // lr: Caller's pc.
|
| +
|
| + // Strict mode functions and builtins need to replace the receiver
|
| + // with undefined when called as functions (without an explicit
|
| + // receiver object). r5 is zero for method calls and non-zero for
|
| + // function calls.
|
| + if (info_->is_strict_mode() || info_->is_native()) {
|
| + Label ok;
|
| + __ Branch(&ok, eq, t1, Operand(zero_reg));
|
| +
|
| + int receiver_offset = scope()->num_parameters() * kPointerSize;
|
| + __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
|
| + __ sw(a2, MemOperand(sp, receiver_offset));
|
| + __ bind(&ok);
|
| + }
|
| +
|
| + __ Push(ra, fp, cp, a1);
|
| + __ Addu(fp, sp, Operand(2 * kPointerSize)); // Adj. FP to point to saved FP.
|
| +
|
| + // Reserve space for the stack slots needed by the code.
|
| + int slots = GetStackSlotCount();
|
| + if (slots > 0) {
|
| + if (FLAG_debug_code) {
|
| + __ li(a0, Operand(slots));
|
| + __ li(a2, Operand(kSlotsZapValue));
|
| + Label loop;
|
| + __ bind(&loop);
|
| + __ push(a2);
|
| + __ Subu(a0, a0, 1);
|
| + __ Branch(&loop, ne, a0, Operand(zero_reg));
|
| + } else {
|
| + __ Subu(sp, sp, Operand(slots * kPointerSize));
|
| + }
|
| + }
|
| +
|
| + // Possibly allocate a local context.
|
| + int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
|
| + if (heap_slots > 0) {
|
| + Comment(";;; Allocate local context");
|
| + // Argument to NewContext is the function, which is in a1.
|
| + __ push(a1);
|
| + if (heap_slots <= FastNewContextStub::kMaximumSlots) {
|
| + FastNewContextStub stub(heap_slots);
|
| + __ CallStub(&stub);
|
| + } else {
|
| + __ CallRuntime(Runtime::kNewFunctionContext, 1);
|
| + }
|
| + RecordSafepoint(Safepoint::kNoDeoptimizationIndex);
|
| + // Context is returned in both v0 and cp. It replaces the context
|
| + // passed to us. It's saved in the stack and kept live in cp.
|
| + __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| + // Copy any necessary parameters into the context.
|
| + int num_parameters = scope()->num_parameters();
|
| + for (int i = 0; i < num_parameters; i++) {
|
| + Variable* var = scope()->parameter(i);
|
| + if (var->IsContextSlot()) {
|
| + int parameter_offset = StandardFrameConstants::kCallerSPOffset +
|
| + (num_parameters - 1 - i) * kPointerSize;
|
| + // Load parameter from stack.
|
| + __ lw(a0, MemOperand(fp, parameter_offset));
|
| + // Store it in the context.
|
| + MemOperand target = ContextOperand(cp, var->index());
|
| + __ sw(a0, target);
|
| + // Update the write barrier. This clobbers a3 and a0.
|
| + __ RecordWriteContextSlot(
|
| + cp, target.offset(), a0, a3, kRAHasBeenSaved, kSaveFPRegs);
|
| + }
|
| + }
|
| + Comment(";;; End allocate local context");
|
| + }
|
| +
|
| + // Trace the call.
|
| + if (FLAG_trace) {
|
| + __ CallRuntime(Runtime::kTraceEnter, 0);
|
| + }
|
| + return !is_aborted();
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GenerateBody() {
|
| + ASSERT(is_generating());
|
| + bool emit_instructions = true;
|
| + for (current_instruction_ = 0;
|
| + !is_aborted() && current_instruction_ < instructions_->length();
|
| + current_instruction_++) {
|
| + LInstruction* instr = instructions_->at(current_instruction_);
|
| + if (instr->IsLabel()) {
|
| + LLabel* label = LLabel::cast(instr);
|
| + emit_instructions = !label->HasReplacement();
|
| + }
|
| +
|
| + if (emit_instructions) {
|
| + Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
|
| + instr->CompileToNative(this);
|
| + }
|
| + }
|
| + return !is_aborted();
|
| +}
|
| +
|
| +
|
| +LInstruction* LCodeGen::GetNextInstruction() {
|
| + if (current_instruction_ < instructions_->length() - 1) {
|
| + return instructions_->at(current_instruction_ + 1);
|
| + } else {
|
| + return NULL;
|
| + }
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GenerateDeferredCode() {
|
| + ASSERT(is_generating());
|
| + if (deferred_.length() > 0) {
|
| + for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
|
| + LDeferredCode* code = deferred_[i];
|
| + __ bind(code->entry());
|
| + Comment(";;; Deferred code @%d: %s.",
|
| + code->instruction_index(),
|
| + code->instr()->Mnemonic());
|
| + code->Generate();
|
| + __ jmp(code->exit());
|
| + }
|
| +
|
| + // Pad code to ensure that the last piece of deferred code have
|
| + // room for lazy bailout.
|
| + while ((masm()->pc_offset() - LastSafepointEnd())
|
| + < Deoptimizer::patch_size()) {
|
| + __ nop();
|
| + }
|
| + }
|
| + // Deferred code is the last part of the instruction sequence. Mark
|
| + // the generated code as done unless we bailed out.
|
| + if (!is_aborted()) status_ = DONE;
|
| + return !is_aborted();
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GenerateDeoptJumpTable() {
|
| + // TODO(plind): not clear that this will have advantage for MIPS.
|
| + // Skipping it for now. Raised issue #100 for this.
|
| + Abort("Unimplemented: %s", "GenerateDeoptJumpTable");
|
| + return false;
|
| +}
|
| +
|
| +
|
| +bool LCodeGen::GenerateSafepointTable() {
|
| + ASSERT(is_done());
|
| + safepoints_.Emit(masm(), GetStackSlotCount());
|
| + return !is_aborted();
|
| +}
|
| +
|
| +
|
| +Register LCodeGen::ToRegister(int index) const {
|
| + return Register::FromAllocationIndex(index);
|
| +}
|
| +
|
| +
|
| +DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
|
| + return DoubleRegister::FromAllocationIndex(index);
|
| +}
|
| +
|
| +
|
| +Register LCodeGen::ToRegister(LOperand* op) const {
|
| + ASSERT(op->IsRegister());
|
| + return ToRegister(op->index());
|
| +}
|
| +
|
| +
|
| +Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
|
| + if (op->IsRegister()) {
|
| + return ToRegister(op->index());
|
| + } else if (op->IsConstantOperand()) {
|
| + __ li(scratch, ToOperand(op));
|
| + return scratch;
|
| + } else if (op->IsStackSlot() || op->IsArgument()) {
|
| + __ lw(scratch, ToMemOperand(op));
|
| + return scratch;
|
| + }
|
| + UNREACHABLE();
|
| + return scratch;
|
| +}
|
| +
|
| +
|
| +DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
|
| + ASSERT(op->IsDoubleRegister());
|
| + return ToDoubleRegister(op->index());
|
| +}
|
| +
|
| +
|
| +DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
|
| + FloatRegister flt_scratch,
|
| + DoubleRegister dbl_scratch) {
|
| + if (op->IsDoubleRegister()) {
|
| + return ToDoubleRegister(op->index());
|
| + } else if (op->IsConstantOperand()) {
|
| + LConstantOperand* const_op = LConstantOperand::cast(op);
|
| + Handle<Object> literal = chunk_->LookupLiteral(const_op);
|
| + Representation r = chunk_->LookupLiteralRepresentation(const_op);
|
| + if (r.IsInteger32()) {
|
| + ASSERT(literal->IsNumber());
|
| + __ li(at, Operand(static_cast<int32_t>(literal->Number())));
|
| + __ mtc1(at, flt_scratch);
|
| + __ cvt_d_w(dbl_scratch, flt_scratch);
|
| + return dbl_scratch;
|
| + } else if (r.IsDouble()) {
|
| + Abort("unsupported double immediate");
|
| + } else if (r.IsTagged()) {
|
| + Abort("unsupported tagged immediate");
|
| + }
|
| + } else if (op->IsStackSlot() || op->IsArgument()) {
|
| + MemOperand mem_op = ToMemOperand(op);
|
| + __ ldc1(dbl_scratch, mem_op);
|
| + return dbl_scratch;
|
| + }
|
| + UNREACHABLE();
|
| + return dbl_scratch;
|
| +}
|
| +
|
| +
|
| +int LCodeGen::ToInteger32(LConstantOperand* op) const {
|
| + Handle<Object> value = chunk_->LookupLiteral(op);
|
| + ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
|
| + ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
|
| + value->Number());
|
| + return static_cast<int32_t>(value->Number());
|
| +}
|
| +
|
| +
|
| +Operand LCodeGen::ToOperand(LOperand* op) {
|
| + if (op->IsConstantOperand()) {
|
| + LConstantOperand* const_op = LConstantOperand::cast(op);
|
| + Handle<Object> literal = chunk_->LookupLiteral(const_op);
|
| + Representation r = chunk_->LookupLiteralRepresentation(const_op);
|
| + if (r.IsInteger32()) {
|
| + ASSERT(literal->IsNumber());
|
| + return Operand(static_cast<int32_t>(literal->Number()));
|
| + } else if (r.IsDouble()) {
|
| + Abort("ToOperand Unsupported double immediate.");
|
| + }
|
| + ASSERT(r.IsTagged());
|
| + return Operand(literal);
|
| + } else if (op->IsRegister()) {
|
| + return Operand(ToRegister(op));
|
| + } else if (op->IsDoubleRegister()) {
|
| + Abort("ToOperand IsDoubleRegister unimplemented");
|
| + return Operand(0);
|
| + }
|
| + // Stack slots not implemented, use ToMemOperand instead.
|
| + UNREACHABLE();
|
| + return Operand(0);
|
| +}
|
| +
|
| +
|
| +MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
|
| + ASSERT(!op->IsRegister());
|
| + ASSERT(!op->IsDoubleRegister());
|
| + ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
|
| + int index = op->index();
|
| + if (index >= 0) {
|
| + // Local or spill slot. Skip the frame pointer, function, and
|
| + // context in the fixed part of the frame.
|
| + return MemOperand(fp, -(index + 3) * kPointerSize);
|
| + } else {
|
| + // Incoming parameter. Skip the return address.
|
| + return MemOperand(fp, -(index - 1) * kPointerSize);
|
| + }
|
| +}
|
| +
|
| +
|
| +MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
|
| + ASSERT(op->IsDoubleStackSlot());
|
| + int index = op->index();
|
| + if (index >= 0) {
|
| + // Local or spill slot. Skip the frame pointer, function, context,
|
| + // and the first word of the double in the fixed part of the frame.
|
| + return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize);
|
| + } else {
|
| + // Incoming parameter. Skip the return address and the first word of
|
| + // the double.
|
| + return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::WriteTranslation(LEnvironment* environment,
|
| + Translation* translation) {
|
| + if (environment == NULL) return;
|
| +
|
| + // The translation includes one command per value in the environment.
|
| + int translation_size = environment->values()->length();
|
| + // The output frame height does not include the parameters.
|
| + int height = translation_size - environment->parameter_count();
|
| +
|
| + WriteTranslation(environment->outer(), translation);
|
| + int closure_id = DefineDeoptimizationLiteral(environment->closure());
|
| + translation->BeginFrame(environment->ast_id(), closure_id, height);
|
| + for (int i = 0; i < translation_size; ++i) {
|
| + LOperand* value = environment->values()->at(i);
|
| + // spilled_registers_ and spilled_double_registers_ are either
|
| + // both NULL or both set.
|
| + if (environment->spilled_registers() != NULL && value != NULL) {
|
| + if (value->IsRegister() &&
|
| + environment->spilled_registers()[value->index()] != NULL) {
|
| + translation->MarkDuplicate();
|
| + AddToTranslation(translation,
|
| + environment->spilled_registers()[value->index()],
|
| + environment->HasTaggedValueAt(i));
|
| + } else if (
|
| + value->IsDoubleRegister() &&
|
| + environment->spilled_double_registers()[value->index()] != NULL) {
|
| + translation->MarkDuplicate();
|
| + AddToTranslation(
|
| + translation,
|
| + environment->spilled_double_registers()[value->index()],
|
| + false);
|
| + }
|
| + }
|
| +
|
| + AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::AddToTranslation(Translation* translation,
|
| + LOperand* op,
|
| + bool is_tagged) {
|
| + if (op == NULL) {
|
| + // TODO(twuerthinger): Introduce marker operands to indicate that this value
|
| + // is not present and must be reconstructed from the deoptimizer. Currently
|
| + // this is only used for the arguments object.
|
| + translation->StoreArgumentsObject();
|
| + } else if (op->IsStackSlot()) {
|
| + if (is_tagged) {
|
| + translation->StoreStackSlot(op->index());
|
| + } else {
|
| + translation->StoreInt32StackSlot(op->index());
|
| + }
|
| + } else if (op->IsDoubleStackSlot()) {
|
| + translation->StoreDoubleStackSlot(op->index());
|
| + } else if (op->IsArgument()) {
|
| + ASSERT(is_tagged);
|
| + int src_index = GetStackSlotCount() + op->index();
|
| + translation->StoreStackSlot(src_index);
|
| + } else if (op->IsRegister()) {
|
| + Register reg = ToRegister(op);
|
| + if (is_tagged) {
|
| + translation->StoreRegister(reg);
|
| + } else {
|
| + translation->StoreInt32Register(reg);
|
| + }
|
| + } else if (op->IsDoubleRegister()) {
|
| + DoubleRegister reg = ToDoubleRegister(op);
|
| + translation->StoreDoubleRegister(reg);
|
| + } else if (op->IsConstantOperand()) {
|
| + Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
|
| + int src_index = DefineDeoptimizationLiteral(literal);
|
| + translation->StoreLiteral(src_index);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallCode(Handle<Code> code,
|
| + RelocInfo::Mode mode,
|
| + LInstruction* instr) {
|
| + CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallCodeGeneric(Handle<Code> code,
|
| + RelocInfo::Mode mode,
|
| + LInstruction* instr,
|
| + SafepointMode safepoint_mode) {
|
| + ASSERT(instr != NULL);
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + RecordPosition(pointers->position());
|
| + __ Call(code, mode);
|
| + RegisterLazyDeoptimization(instr, safepoint_mode);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallRuntime(const Runtime::Function* function,
|
| + int num_arguments,
|
| + LInstruction* instr) {
|
| + ASSERT(instr != NULL);
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + ASSERT(pointers != NULL);
|
| + RecordPosition(pointers->position());
|
| +
|
| + __ CallRuntime(function, num_arguments);
|
| + RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
|
| + int argc,
|
| + LInstruction* instr) {
|
| + __ CallRuntimeSaveDoubles(id);
|
| + RecordSafepointWithRegisters(
|
| + instr->pointer_map(), argc, Safepoint::kNoDeoptimizationIndex);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr,
|
| + SafepointMode safepoint_mode) {
|
| + // Create the environment to bailout to. If the call has side effects
|
| + // execution has to continue after the call otherwise execution can continue
|
| + // from a previous bailout point repeating the call.
|
| + LEnvironment* deoptimization_environment;
|
| + if (instr->HasDeoptimizationEnvironment()) {
|
| + deoptimization_environment = instr->deoptimization_environment();
|
| + } else {
|
| + deoptimization_environment = instr->environment();
|
| + }
|
| +
|
| + RegisterEnvironmentForDeoptimization(deoptimization_environment);
|
| + if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
|
| + RecordSafepoint(instr->pointer_map(),
|
| + deoptimization_environment->deoptimization_index());
|
| + } else {
|
| + ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
|
| + RecordSafepointWithRegisters(
|
| + instr->pointer_map(),
|
| + 0,
|
| + deoptimization_environment->deoptimization_index());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) {
|
| + if (!environment->HasBeenRegistered()) {
|
| + // Physical stack frame layout:
|
| + // -x ............. -4 0 ..................................... y
|
| + // [incoming arguments] [spill slots] [pushed outgoing arguments]
|
| +
|
| + // Layout of the environment:
|
| + // 0 ..................................................... size-1
|
| + // [parameters] [locals] [expression stack including arguments]
|
| +
|
| + // Layout of the translation:
|
| + // 0 ........................................................ size - 1 + 4
|
| + // [expression stack including arguments] [locals] [4 words] [parameters]
|
| + // |>------------ translation_size ------------<|
|
| +
|
| + int frame_count = 0;
|
| + for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
|
| + ++frame_count;
|
| + }
|
| + Translation translation(&translations_, frame_count);
|
| + WriteTranslation(environment, &translation);
|
| + int deoptimization_index = deoptimizations_.length();
|
| + environment->Register(deoptimization_index, translation.index());
|
| + deoptimizations_.Add(environment);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DeoptimizeIf(Condition cc,
|
| + LEnvironment* environment,
|
| + Register src1,
|
| + const Operand& src2) {
|
| + RegisterEnvironmentForDeoptimization(environment);
|
| + ASSERT(environment->HasBeenRegistered());
|
| + int id = environment->deoptimization_index();
|
| + Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
|
| + ASSERT(entry != NULL);
|
| + if (entry == NULL) {
|
| + Abort("bailout was not prepared");
|
| + return;
|
| + }
|
| +
|
| + ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on MIPS.
|
| +
|
| + if (FLAG_deopt_every_n_times == 1 &&
|
| + info_->shared_info()->opt_count() == id) {
|
| + __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
|
| + return;
|
| + }
|
| +
|
| + if (FLAG_trap_on_deopt) {
|
| + Label skip;
|
| + if (cc != al) {
|
| + __ Branch(&skip, NegateCondition(cc), src1, src2);
|
| + }
|
| + __ stop("trap_on_deopt");
|
| + __ bind(&skip);
|
| + }
|
| +
|
| + if (cc == al) {
|
| + __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
|
| + } else {
|
| + // TODO(plind): The Arm port is a little different here, due to their
|
| + // DeOpt jump table, which is not used for Mips yet.
|
| + __ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc, src1, src2);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
|
| + int length = deoptimizations_.length();
|
| + if (length == 0) return;
|
| + ASSERT(FLAG_deopt);
|
| + Handle<DeoptimizationInputData> data =
|
| + factory()->NewDeoptimizationInputData(length, TENURED);
|
| +
|
| + Handle<ByteArray> translations = translations_.CreateByteArray();
|
| + data->SetTranslationByteArray(*translations);
|
| + data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
|
| +
|
| + Handle<FixedArray> literals =
|
| + factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
|
| + for (int i = 0; i < deoptimization_literals_.length(); i++) {
|
| + literals->set(i, *deoptimization_literals_[i]);
|
| + }
|
| + data->SetLiteralArray(*literals);
|
| +
|
| + data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
|
| + data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
|
| +
|
| + // Populate the deoptimization entries.
|
| + for (int i = 0; i < length; i++) {
|
| + LEnvironment* env = deoptimizations_[i];
|
| + data->SetAstId(i, Smi::FromInt(env->ast_id()));
|
| + data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
|
| + data->SetArgumentsStackHeight(i,
|
| + Smi::FromInt(env->arguments_stack_height()));
|
| + }
|
| + code->set_deoptimization_data(*data);
|
| +}
|
| +
|
| +
|
| +int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
|
| + int result = deoptimization_literals_.length();
|
| + for (int i = 0; i < deoptimization_literals_.length(); ++i) {
|
| + if (deoptimization_literals_[i].is_identical_to(literal)) return i;
|
| + }
|
| + deoptimization_literals_.Add(literal);
|
| + return result;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
|
| + ASSERT(deoptimization_literals_.length() == 0);
|
| +
|
| + const ZoneList<Handle<JSFunction> >* inlined_closures =
|
| + chunk()->inlined_closures();
|
| +
|
| + for (int i = 0, length = inlined_closures->length();
|
| + i < length;
|
| + i++) {
|
| + DefineDeoptimizationLiteral(inlined_closures->at(i));
|
| + }
|
| +
|
| + inlined_function_count_ = deoptimization_literals_.length();
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepoint(
|
| + LPointerMap* pointers,
|
| + Safepoint::Kind kind,
|
| + int arguments,
|
| + int deoptimization_index) {
|
| + ASSERT(expected_safepoint_kind_ == kind);
|
| +
|
| + const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
|
| + Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
|
| + kind, arguments, deoptimization_index);
|
| + for (int i = 0; i < operands->length(); i++) {
|
| + LOperand* pointer = operands->at(i);
|
| + if (pointer->IsStackSlot()) {
|
| + safepoint.DefinePointerSlot(pointer->index());
|
| + } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
|
| + safepoint.DefinePointerRegister(ToRegister(pointer));
|
| + }
|
| + }
|
| + if (kind & Safepoint::kWithRegisters) {
|
| + // Register cp always contains a pointer to the context.
|
| + safepoint.DefinePointerRegister(cp);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepoint(LPointerMap* pointers,
|
| + int deoptimization_index) {
|
| + RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepoint(int deoptimization_index) {
|
| + LPointerMap empty_pointers(RelocInfo::kNoPosition);
|
| + RecordSafepoint(&empty_pointers, deoptimization_index);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
|
| + int arguments,
|
| + int deoptimization_index) {
|
| + RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments,
|
| + deoptimization_index);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordSafepointWithRegistersAndDoubles(
|
| + LPointerMap* pointers,
|
| + int arguments,
|
| + int deoptimization_index) {
|
| + RecordSafepoint(pointers, Safepoint::kWithRegistersAndDoubles, arguments,
|
| + deoptimization_index);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::RecordPosition(int position) {
|
| + if (position == RelocInfo::kNoPosition) return;
|
| + masm()->positions_recorder()->RecordPosition(position);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLabel(LLabel* label) {
|
| + if (label->is_loop_header()) {
|
| + Comment(";;; B%d - LOOP entry", label->block_id());
|
| + } else {
|
| + Comment(";;; B%d", label->block_id());
|
| + }
|
| + __ bind(label->label());
|
| + current_block_ = label->block_id();
|
| + DoGap(label);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoParallelMove(LParallelMove* move) {
|
| + resolver_.Resolve(move);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoGap(LGap* gap) {
|
| + for (int i = LGap::FIRST_INNER_POSITION;
|
| + i <= LGap::LAST_INNER_POSITION;
|
| + i++) {
|
| + LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
|
| + LParallelMove* move = gap->GetParallelMove(inner_pos);
|
| + if (move != NULL) DoParallelMove(move);
|
| + }
|
| +
|
| + LInstruction* next = GetNextInstruction();
|
| + if (next != NULL && next->IsLazyBailout()) {
|
| + int pc = masm()->pc_offset();
|
| + safepoints_.SetPcAfterGap(pc);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
|
| + DoGap(instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoParameter(LParameter* instr) {
|
| + // Nothing to do.
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallStub(LCallStub* instr) {
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| + switch (instr->hydrogen()->major_key()) {
|
| + case CodeStub::RegExpConstructResult: {
|
| + RegExpConstructResultStub stub;
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + case CodeStub::RegExpExec: {
|
| + RegExpExecStub stub;
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + case CodeStub::SubString: {
|
| + SubStringStub stub;
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + case CodeStub::NumberToString: {
|
| + NumberToStringStub stub;
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + case CodeStub::StringAdd: {
|
| + StringAddStub stub(NO_STRING_ADD_FLAGS);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + case CodeStub::StringCompare: {
|
| + StringCompareStub stub;
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + case CodeStub::TranscendentalCache: {
|
| + __ lw(a0, MemOperand(sp, 0));
|
| + TranscendentalCacheStub stub(instr->transcendental_type(),
|
| + TranscendentalCacheStub::TAGGED);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
|
| + // Nothing to do.
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoModI(LModI* instr) {
|
| + Register scratch = scratch0();
|
| + const Register left = ToRegister(instr->InputAt(0));
|
| + const Register result = ToRegister(instr->result());
|
| +
|
| + // p2constant holds the right side value if it's a power of 2 constant.
|
| + // In other cases it is 0.
|
| + int32_t p2constant = 0;
|
| +
|
| + if (instr->InputAt(1)->IsConstantOperand()) {
|
| + p2constant = ToInteger32(LConstantOperand::cast(instr->InputAt(1)));
|
| + if (p2constant % 2 != 0) {
|
| + p2constant = 0;
|
| + }
|
| + // Result always takes the sign of the dividend (left).
|
| + p2constant = abs(p2constant);
|
| + }
|
| +
|
| + // div runs in the background while we check for special cases.
|
| + Register right = EmitLoadRegister(instr->InputAt(1), scratch);
|
| + __ div(left, right);
|
| +
|
| + // Check for x % 0.
|
| + if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
|
| + DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg));
|
| + }
|
| +
|
| + Label skip_div, do_div;
|
| + if (p2constant != 0) {
|
| + // Fall back to the result of the div instruction if we could have sign
|
| + // problems.
|
| + __ Branch(&do_div, lt, left, Operand(zero_reg));
|
| + // Modulo by masking.
|
| + __ And(scratch, left, p2constant - 1);
|
| + __ Branch(&skip_div);
|
| + }
|
| +
|
| + __ bind(&do_div);
|
| + __ mfhi(scratch);
|
| + __ bind(&skip_div);
|
| +
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + // Result always takes the sign of the dividend (left).
|
| + Label done;
|
| + __ Branch(USE_DELAY_SLOT, &done, ge, left, Operand(zero_reg));
|
| + __ mov(result, scratch);
|
| + DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg));
|
| + __ bind(&done);
|
| + } else {
|
| + __ Move(result, scratch);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDivI(LDivI* instr) {
|
| + const Register left = ToRegister(instr->InputAt(0));
|
| + const Register right = ToRegister(instr->InputAt(1));
|
| + const Register result = ToRegister(instr->result());
|
| +
|
| + // On MIPS div is asynchronous - it will run in the background while we
|
| + // check for special cases.
|
| + __ div(left, right);
|
| +
|
| + // Check for x / 0.
|
| + if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
|
| + DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg));
|
| + }
|
| +
|
| + // Check for (0 / -x) that will produce negative zero.
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + Label left_not_zero;
|
| + __ Branch(&left_not_zero, ne, left, Operand(zero_reg));
|
| + DeoptimizeIf(lt, instr->environment(), right, Operand(zero_reg));
|
| + __ bind(&left_not_zero);
|
| + }
|
| +
|
| + // Check for (-kMinInt / -1).
|
| + if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
|
| + Label left_not_min_int;
|
| + __ Branch(&left_not_min_int, ne, left, Operand(kMinInt));
|
| + DeoptimizeIf(eq, instr->environment(), right, Operand(-1));
|
| + __ bind(&left_not_min_int);
|
| + }
|
| +
|
| + __ mfhi(result);
|
| + DeoptimizeIf(ne, instr->environment(), result, Operand(zero_reg));
|
| + __ mflo(result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMulI(LMulI* instr) {
|
| + Register scratch = scratch0();
|
| + Register result = ToRegister(instr->result());
|
| + // Note that result may alias left.
|
| + Register left = ToRegister(instr->InputAt(0));
|
| + LOperand* right_op = instr->InputAt(1);
|
| +
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| + bool bailout_on_minus_zero =
|
| + instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
|
| +
|
| + if (right_op->IsConstantOperand() && !can_overflow) {
|
| + // Use optimized code for specific constants.
|
| + int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
|
| +
|
| + if (bailout_on_minus_zero && (constant < 0)) {
|
| + // The case of a null constant will be handled separately.
|
| + // If constant is negative and left is null, the result should be -0.
|
| + DeoptimizeIf(eq, instr->environment(), left, Operand(zero_reg));
|
| + }
|
| +
|
| + switch (constant) {
|
| + case -1:
|
| + __ Subu(result, zero_reg, left);
|
| + break;
|
| + case 0:
|
| + if (bailout_on_minus_zero) {
|
| + // If left is strictly negative and the constant is null, the
|
| + // result is -0. Deoptimize if required, otherwise return 0.
|
| + DeoptimizeIf(lt, instr->environment(), left, Operand(zero_reg));
|
| + }
|
| + __ mov(result, zero_reg);
|
| + break;
|
| + case 1:
|
| + // Nothing to do.
|
| + __ Move(result, left);
|
| + break;
|
| + default:
|
| + // Multiplying by powers of two and powers of two plus or minus
|
| + // one can be done faster with shifted operands.
|
| + // For other constants we emit standard code.
|
| + int32_t mask = constant >> 31;
|
| + uint32_t constant_abs = (constant + mask) ^ mask;
|
| +
|
| + if (IsPowerOf2(constant_abs) ||
|
| + IsPowerOf2(constant_abs - 1) ||
|
| + IsPowerOf2(constant_abs + 1)) {
|
| + if (IsPowerOf2(constant_abs)) {
|
| + int32_t shift = WhichPowerOf2(constant_abs);
|
| + __ sll(result, left, shift);
|
| + } else if (IsPowerOf2(constant_abs - 1)) {
|
| + int32_t shift = WhichPowerOf2(constant_abs - 1);
|
| + __ sll(result, left, shift);
|
| + __ Addu(result, result, left);
|
| + } else if (IsPowerOf2(constant_abs + 1)) {
|
| + int32_t shift = WhichPowerOf2(constant_abs + 1);
|
| + __ sll(result, left, shift);
|
| + __ Subu(result, result, left);
|
| + }
|
| +
|
| + // Correct the sign of the result is the constant is negative.
|
| + if (constant < 0) {
|
| + __ Subu(result, zero_reg, result);
|
| + }
|
| +
|
| + } else {
|
| + // Generate standard code.
|
| + __ li(at, constant);
|
| + __ mul(result, left, at);
|
| + }
|
| + }
|
| +
|
| + } else {
|
| + Register right = EmitLoadRegister(right_op, scratch);
|
| + if (bailout_on_minus_zero) {
|
| + __ Or(ToRegister(instr->TempAt(0)), left, right);
|
| + }
|
| +
|
| + if (can_overflow) {
|
| + // hi:lo = left * right.
|
| + __ mult(left, right);
|
| + __ mfhi(scratch);
|
| + __ mflo(result);
|
| + __ sra(at, result, 31);
|
| + DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
|
| + } else {
|
| + __ mul(result, left, right);
|
| + }
|
| +
|
| + if (bailout_on_minus_zero) {
|
| + // Bail out if the result is supposed to be negative zero.
|
| + Label done;
|
| + __ Branch(&done, ne, result, Operand(zero_reg));
|
| + DeoptimizeIf(lt,
|
| + instr->environment(),
|
| + ToRegister(instr->TempAt(0)),
|
| + Operand(zero_reg));
|
| + __ bind(&done);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoBitI(LBitI* instr) {
|
| + LOperand* left_op = instr->InputAt(0);
|
| + LOperand* right_op = instr->InputAt(1);
|
| + ASSERT(left_op->IsRegister());
|
| + Register left = ToRegister(left_op);
|
| + Register result = ToRegister(instr->result());
|
| + Operand right(no_reg);
|
| +
|
| + if (right_op->IsStackSlot() || right_op->IsArgument()) {
|
| + right = Operand(EmitLoadRegister(right_op, at));
|
| + } else {
|
| + ASSERT(right_op->IsRegister() || right_op->IsConstantOperand());
|
| + right = ToOperand(right_op);
|
| + }
|
| +
|
| + switch (instr->op()) {
|
| + case Token::BIT_AND:
|
| + __ And(result, left, right);
|
| + break;
|
| + case Token::BIT_OR:
|
| + __ Or(result, left, right);
|
| + break;
|
| + case Token::BIT_XOR:
|
| + __ Xor(result, left, right);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoShiftI(LShiftI* instr) {
|
| + // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
|
| + // result may alias either of them.
|
| + LOperand* right_op = instr->InputAt(1);
|
| + Register left = ToRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + if (right_op->IsRegister()) {
|
| + // No need to mask the right operand on MIPS, it is built into the variable
|
| + // shift instructions.
|
| + switch (instr->op()) {
|
| + case Token::SAR:
|
| + __ srav(result, left, ToRegister(right_op));
|
| + break;
|
| + case Token::SHR:
|
| + __ srlv(result, left, ToRegister(right_op));
|
| + if (instr->can_deopt()) {
|
| + DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
|
| + }
|
| + break;
|
| + case Token::SHL:
|
| + __ sllv(result, left, ToRegister(right_op));
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + } else {
|
| + // Mask the right_op operand.
|
| + int value = ToInteger32(LConstantOperand::cast(right_op));
|
| + uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
|
| + switch (instr->op()) {
|
| + case Token::SAR:
|
| + if (shift_count != 0) {
|
| + __ sra(result, left, shift_count);
|
| + } else {
|
| + __ Move(result, left);
|
| + }
|
| + break;
|
| + case Token::SHR:
|
| + if (shift_count != 0) {
|
| + __ srl(result, left, shift_count);
|
| + } else {
|
| + if (instr->can_deopt()) {
|
| + __ And(at, left, Operand(0x80000000));
|
| + DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
|
| + }
|
| + __ Move(result, left);
|
| + }
|
| + break;
|
| + case Token::SHL:
|
| + if (shift_count != 0) {
|
| + __ sll(result, left, shift_count);
|
| + } else {
|
| + __ Move(result, left);
|
| + }
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoSubI(LSubI* instr) {
|
| + LOperand* left = instr->InputAt(0);
|
| + LOperand* right = instr->InputAt(1);
|
| + LOperand* result = instr->result();
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| +
|
| + if (!can_overflow) {
|
| + if (right->IsStackSlot() || right->IsArgument()) {
|
| + Register right_reg = EmitLoadRegister(right, at);
|
| + __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg));
|
| + } else {
|
| + ASSERT(right->IsRegister() || right->IsConstantOperand());
|
| + __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
|
| + }
|
| + } else { // can_overflow.
|
| + Register overflow = scratch0();
|
| + Register scratch = scratch1();
|
| + if (right->IsStackSlot() ||
|
| + right->IsArgument() ||
|
| + right->IsConstantOperand()) {
|
| + Register right_reg = EmitLoadRegister(right, scratch);
|
| + __ SubuAndCheckForOverflow(ToRegister(result),
|
| + ToRegister(left),
|
| + right_reg,
|
| + overflow); // Reg at also used as scratch.
|
| + } else {
|
| + ASSERT(right->IsRegister());
|
| + // Due to overflow check macros not supporting constant operands,
|
| + // handling the IsConstantOperand case was moved to prev if clause.
|
| + __ SubuAndCheckForOverflow(ToRegister(result),
|
| + ToRegister(left),
|
| + ToRegister(right),
|
| + overflow); // Reg at also used as scratch.
|
| + }
|
| + DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoConstantI(LConstantI* instr) {
|
| + ASSERT(instr->result()->IsRegister());
|
| + __ li(ToRegister(instr->result()), Operand(instr->value()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoConstantD(LConstantD* instr) {
|
| + ASSERT(instr->result()->IsDoubleRegister());
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + double v = instr->value();
|
| + __ Move(result, v);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoConstantT(LConstantT* instr) {
|
| + ASSERT(instr->result()->IsRegister());
|
| + __ li(ToRegister(instr->result()), Operand(instr->value()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + Register array = ToRegister(instr->InputAt(0));
|
| + __ lw(result, FieldMemOperand(array, JSArray::kLengthOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + Register array = ToRegister(instr->InputAt(0));
|
| + __ lw(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoElementsKind(LElementsKind* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + Register input = ToRegister(instr->InputAt(0));
|
| +
|
| + // Load map into |result|.
|
| + __ lw(result, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + // Load the map's "bit field 2" into |result|. We only need the first byte,
|
| + // but the following bit field extraction takes care of that anyway.
|
| + __ lbu(result, FieldMemOperand(result, Map::kBitField2Offset));
|
| + // Retrieve elements_kind from bit field 2.
|
| + __ Ext(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoValueOf(LValueOf* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| + Register map = ToRegister(instr->TempAt(0));
|
| + Label done;
|
| +
|
| + // If the object is a smi return the object.
|
| + __ Move(result, input);
|
| + __ JumpIfSmi(input, &done);
|
| +
|
| + // If the object is not a value type, return the object.
|
| + __ GetObjectType(input, map, map);
|
| + __ Branch(&done, ne, map, Operand(JS_VALUE_TYPE));
|
| + __ lw(result, FieldMemOperand(input, JSValue::kValueOffset));
|
| +
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoBitNotI(LBitNotI* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| + __ Nor(result, zero_reg, Operand(input));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoThrow(LThrow* instr) {
|
| + Register input_reg = EmitLoadRegister(instr->InputAt(0), at);
|
| + __ push(input_reg);
|
| + CallRuntime(Runtime::kThrow, 1, instr);
|
| +
|
| + if (FLAG_debug_code) {
|
| + __ stop("Unreachable code.");
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoAddI(LAddI* instr) {
|
| + LOperand* left = instr->InputAt(0);
|
| + LOperand* right = instr->InputAt(1);
|
| + LOperand* result = instr->result();
|
| + bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
|
| +
|
| + if (!can_overflow) {
|
| + if (right->IsStackSlot() || right->IsArgument()) {
|
| + Register right_reg = EmitLoadRegister(right, at);
|
| + __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg));
|
| + } else {
|
| + ASSERT(right->IsRegister() || right->IsConstantOperand());
|
| + __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
|
| + }
|
| + } else { // can_overflow.
|
| + Register overflow = scratch0();
|
| + Register scratch = scratch1();
|
| + if (right->IsStackSlot() ||
|
| + right->IsArgument() ||
|
| + right->IsConstantOperand()) {
|
| + Register right_reg = EmitLoadRegister(right, scratch);
|
| + __ AdduAndCheckForOverflow(ToRegister(result),
|
| + ToRegister(left),
|
| + right_reg,
|
| + overflow); // Reg at also used as scratch.
|
| + } else {
|
| + ASSERT(right->IsRegister());
|
| + // Due to overflow check macros not supporting constant operands,
|
| + // handling the IsConstantOperand case was moved to prev if clause.
|
| + __ AdduAndCheckForOverflow(ToRegister(result),
|
| + ToRegister(left),
|
| + ToRegister(right),
|
| + overflow); // Reg at also used as scratch.
|
| + }
|
| + DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
|
| + DoubleRegister left = ToDoubleRegister(instr->InputAt(0));
|
| + DoubleRegister right = ToDoubleRegister(instr->InputAt(1));
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + switch (instr->op()) {
|
| + case Token::ADD:
|
| + __ add_d(result, left, right);
|
| + break;
|
| + case Token::SUB:
|
| + __ sub_d(result, left, right);
|
| + break;
|
| + case Token::MUL:
|
| + __ mul_d(result, left, right);
|
| + break;
|
| + case Token::DIV:
|
| + __ div_d(result, left, right);
|
| + break;
|
| + case Token::MOD: {
|
| + // Save a0-a3 on the stack.
|
| + RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
|
| + __ MultiPush(saved_regs);
|
| +
|
| + __ PrepareCallCFunction(0, 2, scratch0());
|
| + __ SetCallCDoubleArguments(left, right);
|
| + __ CallCFunction(
|
| + ExternalReference::double_fp_operation(Token::MOD, isolate()),
|
| + 0, 2);
|
| + // Move the result in the double result register.
|
| + __ GetCFunctionDoubleResult(result);
|
| +
|
| + // Restore saved register.
|
| + __ MultiPop(saved_regs);
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
|
| + ASSERT(ToRegister(instr->InputAt(0)).is(a1));
|
| + ASSERT(ToRegister(instr->InputAt(1)).is(a0));
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| +
|
| + BinaryOpStub stub(instr->op(), NO_OVERWRITE);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + // Other arch use a nop here, to signal that there is no inlined
|
| + // patchable code. Mips does not need the nop, since our marker
|
| + // instruction (andi zero_reg) will never be used in normal code.
|
| +}
|
| +
|
| +
|
| +int LCodeGen::GetNextEmittedBlock(int block) {
|
| + for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
|
| + LLabel* label = chunk_->GetLabel(i);
|
| + if (!label->HasReplacement()) return i;
|
| + }
|
| + return -1;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EmitBranch(int left_block, int right_block,
|
| + Condition cc, Register src1, const Operand& src2) {
|
| + int next_block = GetNextEmittedBlock(current_block_);
|
| + right_block = chunk_->LookupDestination(right_block);
|
| + left_block = chunk_->LookupDestination(left_block);
|
| + if (right_block == left_block) {
|
| + EmitGoto(left_block);
|
| + } else if (left_block == next_block) {
|
| + __ Branch(chunk_->GetAssemblyLabel(right_block),
|
| + NegateCondition(cc), src1, src2);
|
| + } else if (right_block == next_block) {
|
| + __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2);
|
| + } else {
|
| + __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2);
|
| + __ Branch(chunk_->GetAssemblyLabel(right_block));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EmitBranchF(int left_block, int right_block,
|
| + Condition cc, FPURegister src1, FPURegister src2) {
|
| + int next_block = GetNextEmittedBlock(current_block_);
|
| + right_block = chunk_->LookupDestination(right_block);
|
| + left_block = chunk_->LookupDestination(left_block);
|
| + if (right_block == left_block) {
|
| + EmitGoto(left_block);
|
| + } else if (left_block == next_block) {
|
| + __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
|
| + NegateCondition(cc), src1, src2);
|
| + } else if (right_block == next_block) {
|
| + __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2);
|
| + } else {
|
| + __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2);
|
| + __ Branch(chunk_->GetAssemblyLabel(right_block));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoBranch(LBranch* instr) {
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| +
|
| + Representation r = instr->hydrogen()->value()->representation();
|
| + if (r.IsInteger32()) {
|
| + Register reg = ToRegister(instr->InputAt(0));
|
| + EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg));
|
| + } else if (r.IsDouble()) {
|
| + DoubleRegister reg = ToDoubleRegister(instr->InputAt(0));
|
| + // Test the double value. Zero and NaN are false.
|
| + EmitBranchF(true_block, false_block, ne, reg, kDoubleRegZero);
|
| + } else {
|
| + ASSERT(r.IsTagged());
|
| + Register reg = ToRegister(instr->InputAt(0));
|
| + HType type = instr->hydrogen()->value()->type();
|
| + if (type.IsBoolean()) {
|
| + __ LoadRoot(at, Heap::kTrueValueRootIndex);
|
| + EmitBranch(true_block, false_block, eq, reg, Operand(at));
|
| + } else if (type.IsSmi()) {
|
| + EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg));
|
| + } else {
|
| + Label* true_label = chunk_->GetAssemblyLabel(true_block);
|
| + Label* false_label = chunk_->GetAssemblyLabel(false_block);
|
| +
|
| + ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
|
| + // Avoid deopts in the case where we've never executed this path before.
|
| + if (expected.IsEmpty()) expected = ToBooleanStub::all_types();
|
| +
|
| + if (expected.Contains(ToBooleanStub::UNDEFINED)) {
|
| + // undefined -> false.
|
| + __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
|
| + __ Branch(false_label, eq, reg, Operand(at));
|
| + }
|
| + if (expected.Contains(ToBooleanStub::BOOLEAN)) {
|
| + // Boolean -> its value.
|
| + __ LoadRoot(at, Heap::kTrueValueRootIndex);
|
| + __ Branch(true_label, eq, reg, Operand(at));
|
| + __ LoadRoot(at, Heap::kFalseValueRootIndex);
|
| + __ Branch(false_label, eq, reg, Operand(at));
|
| + }
|
| + if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
|
| + // 'null' -> false.
|
| + __ LoadRoot(at, Heap::kNullValueRootIndex);
|
| + __ Branch(false_label, eq, reg, Operand(at));
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::SMI)) {
|
| + // Smis: 0 -> false, all other -> true.
|
| + __ Branch(false_label, eq, reg, Operand(zero_reg));
|
| + __ JumpIfSmi(reg, true_label);
|
| + } else if (expected.NeedsMap()) {
|
| + // If we need a map later and have a Smi -> deopt.
|
| + __ And(at, reg, Operand(kSmiTagMask));
|
| + DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
|
| + }
|
| +
|
| + const Register map = scratch0();
|
| + if (expected.NeedsMap()) {
|
| + __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset));
|
| + if (expected.CanBeUndetectable()) {
|
| + // Undetectable -> false.
|
| + __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
|
| + __ And(at, at, Operand(1 << Map::kIsUndetectable));
|
| + __ Branch(false_label, ne, at, Operand(zero_reg));
|
| + }
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
|
| + // spec object -> true.
|
| + __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
|
| + __ Branch(true_label, ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::STRING)) {
|
| + // String value -> false iff empty.
|
| + Label not_string;
|
| + __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
|
| + __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
|
| + __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
|
| + __ Branch(true_label, ne, at, Operand(zero_reg));
|
| + __ Branch(false_label);
|
| + __ bind(¬_string);
|
| + }
|
| +
|
| + if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
|
| + // heap number -> false iff +0, -0, or NaN.
|
| + DoubleRegister dbl_scratch = double_scratch0();
|
| + Label not_heap_number;
|
| + __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
|
| + __ Branch(¬_heap_number, ne, map, Operand(at));
|
| + __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
|
| + __ BranchF(true_label, false_label, ne, dbl_scratch, kDoubleRegZero);
|
| + // Falls through if dbl_scratch == 0.
|
| + __ Branch(false_label);
|
| + __ bind(¬_heap_number);
|
| + }
|
| +
|
| + // We've seen something for the first time -> deopt.
|
| + DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg));
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EmitGoto(int block) {
|
| + block = chunk_->LookupDestination(block);
|
| + int next_block = GetNextEmittedBlock(current_block_);
|
| + if (block != next_block) {
|
| + __ jmp(chunk_->GetAssemblyLabel(block));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoGoto(LGoto* instr) {
|
| + EmitGoto(instr->block_id());
|
| +}
|
| +
|
| +
|
| +Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
|
| + Condition cond = kNoCondition;
|
| + switch (op) {
|
| + case Token::EQ:
|
| + case Token::EQ_STRICT:
|
| + cond = eq;
|
| + break;
|
| + case Token::LT:
|
| + cond = is_unsigned ? lo : lt;
|
| + break;
|
| + case Token::GT:
|
| + cond = is_unsigned ? hi : gt;
|
| + break;
|
| + case Token::LTE:
|
| + cond = is_unsigned ? ls : le;
|
| + break;
|
| + case Token::GTE:
|
| + cond = is_unsigned ? hs : ge;
|
| + break;
|
| + case Token::IN:
|
| + case Token::INSTANCEOF:
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + return cond;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) {
|
| + // This function must never be called for Mips.
|
| + // It is just a compare, it should be generated inline as
|
| + // part of the branch that uses it. It should always remain
|
| + // as un-implemented function.
|
| + // arm: __ cmp(ToRegister(left), ToRegister(right));
|
| + Abort("Unimplemented: %s (line %d)", __func__, __LINE__);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
|
| + LOperand* left = instr->InputAt(0);
|
| + LOperand* right = instr->InputAt(1);
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| +
|
| + Condition cc = TokenToCondition(instr->op(), instr->is_double());
|
| +
|
| + if (instr->is_double()) {
|
| + // Compare left and right as doubles and load the
|
| + // resulting flags into the normal status register.
|
| + FPURegister left_reg = ToDoubleRegister(left);
|
| + FPURegister right_reg = ToDoubleRegister(right);
|
| +
|
| + // If a NaN is involved, i.e. the result is unordered,
|
| + // jump to false block label.
|
| + __ BranchF(NULL, chunk_->GetAssemblyLabel(false_block), eq,
|
| + left_reg, right_reg);
|
| +
|
| + EmitBranchF(true_block, false_block, cc, left_reg, right_reg);
|
| + } else {
|
| + // EmitCmpI cannot be used on MIPS.
|
| + // EmitCmpI(left, right);
|
| + EmitBranch(true_block,
|
| + false_block,
|
| + cc,
|
| + ToRegister(left),
|
| + Operand(ToRegister(right)));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
|
| + Register left = ToRegister(instr->InputAt(0));
|
| + Register right = ToRegister(instr->InputAt(1));
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| +
|
| + EmitBranch(true_block, false_block, eq, left, Operand(right));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) {
|
| + Register left = ToRegister(instr->InputAt(0));
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| +
|
| + EmitBranch(true_block, false_block, eq, left,
|
| + Operand(instr->hydrogen()->right()));
|
| +}
|
| +
|
| +
|
| +
|
| +void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) {
|
| + Register scratch = scratch0();
|
| + Register reg = ToRegister(instr->InputAt(0));
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| +
|
| + // If the expression is known to be untagged or a smi, then it's definitely
|
| + // not null, and it can't be a an undetectable object.
|
| + if (instr->hydrogen()->representation().IsSpecialization() ||
|
| + instr->hydrogen()->type().IsSmi()) {
|
| + EmitGoto(false_block);
|
| + return;
|
| + }
|
| +
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| +
|
| + Heap::RootListIndex nil_value = instr->nil() == kNullValue ?
|
| + Heap::kNullValueRootIndex :
|
| + Heap::kUndefinedValueRootIndex;
|
| + __ LoadRoot(at, nil_value);
|
| + if (instr->kind() == kStrictEquality) {
|
| + EmitBranch(true_block, false_block, eq, reg, Operand(at));
|
| + } else {
|
| + Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ?
|
| + Heap::kUndefinedValueRootIndex :
|
| + Heap::kNullValueRootIndex;
|
| + Label* true_label = chunk_->GetAssemblyLabel(true_block);
|
| + Label* false_label = chunk_->GetAssemblyLabel(false_block);
|
| + __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at));
|
| + __ LoadRoot(at, other_nil_value); // In the delay slot.
|
| + __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at));
|
| + __ JumpIfSmi(reg, false_label); // In the delay slot.
|
| + // Check for undetectable objects by looking in the bit field in
|
| + // the map. The object has already been smi checked.
|
| + __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
|
| + __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
|
| + __ And(scratch, scratch, 1 << Map::kIsUndetectable);
|
| + EmitBranch(true_block, false_block, ne, scratch, Operand(zero_reg));
|
| + }
|
| +}
|
| +
|
| +
|
| +Condition LCodeGen::EmitIsObject(Register input,
|
| + Register temp1,
|
| + Label* is_not_object,
|
| + Label* is_object) {
|
| + Register temp2 = scratch0();
|
| + __ JumpIfSmi(input, is_not_object);
|
| +
|
| + __ LoadRoot(temp2, Heap::kNullValueRootIndex);
|
| + __ Branch(is_object, eq, input, Operand(temp2));
|
| +
|
| + // Load map.
|
| + __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + // Undetectable objects behave like undefined.
|
| + __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
|
| + __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable));
|
| + __ Branch(is_not_object, ne, temp2, Operand(zero_reg));
|
| +
|
| + // Load instance type and check that it is in object type range.
|
| + __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
|
| + __ Branch(is_not_object,
|
| + lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
| +
|
| + return le;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
|
| + Register reg = ToRegister(instr->InputAt(0));
|
| + Register temp1 = ToRegister(instr->TempAt(0));
|
| + Register temp2 = scratch0();
|
| +
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| + Label* true_label = chunk_->GetAssemblyLabel(true_block);
|
| + Label* false_label = chunk_->GetAssemblyLabel(false_block);
|
| +
|
| + Condition true_cond =
|
| + EmitIsObject(reg, temp1, false_label, true_label);
|
| +
|
| + EmitBranch(true_block, false_block, true_cond, temp2,
|
| + Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| +
|
| + Register input_reg = EmitLoadRegister(instr->InputAt(0), at);
|
| + __ And(at, input_reg, kSmiTagMask);
|
| + EmitBranch(true_block, false_block, eq, at, Operand(zero_reg));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register temp = ToRegister(instr->TempAt(0));
|
| +
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| +
|
| + __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block));
|
| + __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
|
| + __ And(at, temp, Operand(1 << Map::kIsUndetectable));
|
| + EmitBranch(true_block, false_block, ne, at, Operand(zero_reg));
|
| +}
|
| +
|
| +
|
| +static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
|
| + InstanceType from = instr->from();
|
| + InstanceType to = instr->to();
|
| + if (from == FIRST_TYPE) return to;
|
| + ASSERT(from == to || to == LAST_TYPE);
|
| + return from;
|
| +}
|
| +
|
| +
|
| +static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
|
| + InstanceType from = instr->from();
|
| + InstanceType to = instr->to();
|
| + if (from == to) return eq;
|
| + if (to == LAST_TYPE) return hs;
|
| + if (from == FIRST_TYPE) return ls;
|
| + UNREACHABLE();
|
| + return eq;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
|
| + Register scratch = scratch0();
|
| + Register input = ToRegister(instr->InputAt(0));
|
| +
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| +
|
| + Label* false_label = chunk_->GetAssemblyLabel(false_block);
|
| +
|
| + __ JumpIfSmi(input, false_label);
|
| +
|
| + __ GetObjectType(input, scratch, scratch);
|
| + EmitBranch(true_block,
|
| + false_block,
|
| + BranchCondition(instr->hydrogen()),
|
| + scratch,
|
| + Operand(TestType(instr->hydrogen())));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + if (FLAG_debug_code) {
|
| + __ AbortIfNotString(input);
|
| + }
|
| +
|
| + __ lw(result, FieldMemOperand(input, String::kHashFieldOffset));
|
| + __ IndexFromHash(result, result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoHasCachedArrayIndexAndBranch(
|
| + LHasCachedArrayIndexAndBranch* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register scratch = scratch0();
|
| +
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| +
|
| + __ lw(scratch,
|
| + FieldMemOperand(input, String::kHashFieldOffset));
|
| + __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
|
| + EmitBranch(true_block, false_block, eq, at, Operand(zero_reg));
|
| +}
|
| +
|
| +
|
| +// Branches to a label or falls through with this instance class-name adr
|
| +// returned in temp reg, available for comparison by the caller. Trashes the
|
| +// temp registers, but not the input. Only input and temp2 may alias.
|
| +void LCodeGen::EmitClassOfTest(Label* is_true,
|
| + Label* is_false,
|
| + Handle<String>class_name,
|
| + Register input,
|
| + Register temp,
|
| + Register temp2) {
|
| + ASSERT(!input.is(temp));
|
| + ASSERT(!temp.is(temp2)); // But input and temp2 may be the same register.
|
| + __ JumpIfSmi(input, is_false);
|
| +
|
| + if (class_name->IsEqualTo(CStrVector("Function"))) {
|
| + // Assuming the following assertions, we can use the same compares to test
|
| + // for both being a function type and being in the object type range.
|
| + STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
|
| + STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
|
| + FIRST_SPEC_OBJECT_TYPE + 1);
|
| + STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
|
| + LAST_SPEC_OBJECT_TYPE - 1);
|
| + STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
|
| +
|
| + __ GetObjectType(input, temp, temp2);
|
| + __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
|
| + __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE));
|
| + __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE));
|
| + } else {
|
| + // Faster code path to avoid two compares: subtract lower bound from the
|
| + // actual type and do a signed compare with the width of the type range.
|
| + __ GetObjectType(input, temp, temp2);
|
| + __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
| + __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
|
| + FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
| + }
|
| +
|
| + // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
|
| + // Check if the constructor in the map is a function.
|
| + __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset));
|
| +
|
| + // Objects with a non-function constructor have class 'Object'.
|
| + __ GetObjectType(temp, temp2, temp2);
|
| + if (class_name->IsEqualTo(CStrVector("Object"))) {
|
| + __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE));
|
| + } else {
|
| + __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE));
|
| + }
|
| +
|
| + // temp now contains the constructor function. Grab the
|
| + // instance class name from there.
|
| + __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
|
| + __ lw(temp, FieldMemOperand(temp,
|
| + SharedFunctionInfo::kInstanceClassNameOffset));
|
| + // The class name we are testing against is a symbol because it's a literal.
|
| + // The name in the constructor is a symbol because of the way the context is
|
| + // booted. This routine isn't expected to work for random API-created
|
| + // classes and it doesn't have to because you can't access it with natives
|
| + // syntax. Since both sides are symbols it is sufficient to use an identity
|
| + // comparison.
|
| +
|
| + // End with the address of this class_name instance in temp register.
|
| + // On MIPS, the caller must do the comparison with Handle<String>class_name.
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register temp = scratch0();
|
| + Register temp2 = ToRegister(instr->TempAt(0));
|
| + Handle<String> class_name = instr->hydrogen()->class_name();
|
| +
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| +
|
| + Label* true_label = chunk_->GetAssemblyLabel(true_block);
|
| + Label* false_label = chunk_->GetAssemblyLabel(false_block);
|
| +
|
| + EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
|
| +
|
| + EmitBranch(true_block, false_block, eq, temp, Operand(class_name));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
|
| + Register reg = ToRegister(instr->InputAt(0));
|
| + Register temp = ToRegister(instr->TempAt(0));
|
| + int true_block = instr->true_block_id();
|
| + int false_block = instr->false_block_id();
|
| +
|
| + __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
|
| + EmitBranch(true_block, false_block, eq, temp, Operand(instr->map()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
|
| + Label true_label, done;
|
| + ASSERT(ToRegister(instr->InputAt(0)).is(a0)); // Object is in a0.
|
| + ASSERT(ToRegister(instr->InputAt(1)).is(a1)); // Function is in a1.
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(result.is(v0));
|
| +
|
| + InstanceofStub stub(InstanceofStub::kArgsInRegisters);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| +
|
| + __ Branch(&true_label, eq, result, Operand(zero_reg));
|
| + __ li(result, Operand(factory()->false_value()));
|
| + __ Branch(&done);
|
| + __ bind(&true_label);
|
| + __ li(result, Operand(factory()->true_value()));
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
|
| + class DeferredInstanceOfKnownGlobal: public LDeferredCode {
|
| + public:
|
| + DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
|
| + LInstanceOfKnownGlobal* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() {
|
| + codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_);
|
| + }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + Label* map_check() { return &map_check_; }
|
| +
|
| + private:
|
| + LInstanceOfKnownGlobal* instr_;
|
| + Label map_check_;
|
| + };
|
| +
|
| + DeferredInstanceOfKnownGlobal* deferred;
|
| + deferred = new DeferredInstanceOfKnownGlobal(this, instr);
|
| +
|
| + Label done, false_result;
|
| + Register object = ToRegister(instr->InputAt(0));
|
| + Register temp = ToRegister(instr->TempAt(0));
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + ASSERT(object.is(a0));
|
| + ASSERT(result.is(v0));
|
| +
|
| + // A Smi is not instance of anything.
|
| + __ JumpIfSmi(object, &false_result);
|
| +
|
| + // This is the inlined call site instanceof cache. The two occurences of the
|
| + // hole value will be patched to the last map/result pair generated by the
|
| + // instanceof stub.
|
| + Label cache_miss;
|
| + Register map = temp;
|
| + __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset));
|
| +
|
| + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
|
| + __ bind(deferred->map_check()); // Label for calculating code patching.
|
| + // We use Factory::the_hole_value() on purpose instead of loading from the
|
| + // root array to force relocation to be able to later patch with
|
| + // the cached map.
|
| + __ li(at, Operand(factory()->the_hole_value()), true);
|
| + __ Branch(&cache_miss, ne, map, Operand(at));
|
| + // We use Factory::the_hole_value() on purpose instead of loading from the
|
| + // root array to force relocation to be able to later patch
|
| + // with true or false.
|
| + __ li(result, Operand(factory()->the_hole_value()), true);
|
| + __ Branch(&done);
|
| +
|
| + // The inlined call site cache did not match. Check null and string before
|
| + // calling the deferred code.
|
| + __ bind(&cache_miss);
|
| + // Null is not instance of anything.
|
| + __ LoadRoot(temp, Heap::kNullValueRootIndex);
|
| + __ Branch(&false_result, eq, object, Operand(temp));
|
| +
|
| + // String values is not instance of anything.
|
| + Condition cc = __ IsObjectStringType(object, temp, temp);
|
| + __ Branch(&false_result, cc, temp, Operand(zero_reg));
|
| +
|
| + // Go to the deferred code.
|
| + __ Branch(deferred->entry());
|
| +
|
| + __ bind(&false_result);
|
| + __ LoadRoot(result, Heap::kFalseValueRootIndex);
|
| +
|
| + // Here result has either true or false. Deferred code also produces true or
|
| + // false object.
|
| + __ bind(deferred->exit());
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
|
| + Label* map_check) {
|
| + Register result = ToRegister(instr->result());
|
| + ASSERT(result.is(v0));
|
| +
|
| + InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
|
| + flags = static_cast<InstanceofStub::Flags>(
|
| + flags | InstanceofStub::kArgsInRegisters);
|
| + flags = static_cast<InstanceofStub::Flags>(
|
| + flags | InstanceofStub::kCallSiteInlineCheck);
|
| + flags = static_cast<InstanceofStub::Flags>(
|
| + flags | InstanceofStub::kReturnTrueFalseObject);
|
| + InstanceofStub stub(flags);
|
| +
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| +
|
| + // Get the temp register reserved by the instruction. This needs to be t0 as
|
| + // its slot of the pushing of safepoint registers is used to communicate the
|
| + // offset to the location of the map check.
|
| + Register temp = ToRegister(instr->TempAt(0));
|
| + ASSERT(temp.is(t0));
|
| + __ li(InstanceofStub::right(), Operand(instr->function()));
|
| + static const int kAdditionalDelta = 7;
|
| + int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
|
| + Label before_push_delta;
|
| + __ bind(&before_push_delta);
|
| + {
|
| + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
|
| + __ li(temp, Operand(delta * kPointerSize), true);
|
| + __ StoreToSafepointRegisterSlot(temp, temp);
|
| + }
|
| + CallCodeGeneric(stub.GetCode(),
|
| + RelocInfo::CODE_TARGET,
|
| + instr,
|
| + RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
|
| + // Put the result value into the result register slot and
|
| + // restore all registers.
|
| + __ StoreToSafepointRegisterSlot(result, result);
|
| +}
|
| +
|
| +
|
| +static Condition ComputeCompareCondition(Token::Value op) {
|
| + switch (op) {
|
| + case Token::EQ_STRICT:
|
| + case Token::EQ:
|
| + return eq;
|
| + case Token::LT:
|
| + return lt;
|
| + case Token::GT:
|
| + return gt;
|
| + case Token::LTE:
|
| + return le;
|
| + case Token::GTE:
|
| + return ge;
|
| + default:
|
| + UNREACHABLE();
|
| + return kNoCondition;
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCmpT(LCmpT* instr) {
|
| + Token::Value op = instr->op();
|
| +
|
| + Handle<Code> ic = CompareIC::GetUninitialized(op);
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| + // On MIPS there is no need for a "no inlined smi code" marker (nop).
|
| +
|
| + Condition condition = ComputeCompareCondition(op);
|
| + // A minor optimization that relies on LoadRoot always emitting one
|
| + // instruction.
|
| + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
|
| + Label done;
|
| + __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
|
| + __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
|
| + __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
|
| + ASSERT_EQ(3, masm()->InstructionsGeneratedSince(&done));
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoReturn(LReturn* instr) {
|
| + if (FLAG_trace) {
|
| + // Push the return value on the stack as the parameter.
|
| + // Runtime::TraceExit returns its parameter in v0.
|
| + __ push(v0);
|
| + __ CallRuntime(Runtime::kTraceExit, 1);
|
| + }
|
| + int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize;
|
| + __ mov(sp, fp);
|
| + __ Pop(ra, fp);
|
| + __ Addu(sp, sp, Operand(sp_delta));
|
| + __ Jump(ra);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell())));
|
| + __ lw(result, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset));
|
| + if (instr->hydrogen()->RequiresHoleCheck()) {
|
| + __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
|
| + DeoptimizeIf(eq, instr->environment(), result, Operand(at));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
|
| + ASSERT(ToRegister(instr->global_object()).is(a0));
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| +
|
| + __ li(a2, Operand(instr->name()));
|
| + RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET
|
| + : RelocInfo::CODE_TARGET_CONTEXT;
|
| + Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
|
| + CallCode(ic, mode, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
|
| + Register value = ToRegister(instr->InputAt(0));
|
| + Register scratch = scratch0();
|
| + Register scratch2 = ToRegister(instr->TempAt(0));
|
| +
|
| + // Load the cell.
|
| + __ li(scratch, Operand(Handle<Object>(instr->hydrogen()->cell())));
|
| +
|
| + // If the cell we are storing to contains the hole it could have
|
| + // been deleted from the property dictionary. In that case, we need
|
| + // to update the property details in the property dictionary to mark
|
| + // it as no longer deleted.
|
| + if (instr->hydrogen()->RequiresHoleCheck()) {
|
| + __ lw(scratch2,
|
| + FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
|
| + __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
|
| + DeoptimizeIf(eq, instr->environment(), scratch2, Operand(at));
|
| + }
|
| +
|
| + // Store the value.
|
| + __ sw(value, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
|
| +
|
| + // Cells are always in the remembered set.
|
| + if (instr->hydrogen()->NeedsWriteBarrier()) {
|
| + HType type = instr->hydrogen()->value()->type();
|
| + SmiCheck check_needed =
|
| + type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
| + __ RecordWriteField(scratch,
|
| + JSGlobalPropertyCell::kValueOffset,
|
| + value,
|
| + scratch2,
|
| + kRAHasBeenSaved,
|
| + kSaveFPRegs,
|
| + OMIT_REMEMBERED_SET,
|
| + check_needed);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
|
| + ASSERT(ToRegister(instr->global_object()).is(a1));
|
| + ASSERT(ToRegister(instr->value()).is(a0));
|
| +
|
| + __ li(a2, Operand(instr->name()));
|
| + Handle<Code> ic = instr->strict_mode()
|
| + ? isolate()->builtins()->StoreIC_Initialize_Strict()
|
| + : isolate()->builtins()->StoreIC_Initialize();
|
| + CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
|
| + Register context = ToRegister(instr->context());
|
| + Register result = ToRegister(instr->result());
|
| + __ lw(result, ContextOperand(context, instr->slot_index()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
|
| + Register context = ToRegister(instr->context());
|
| + Register value = ToRegister(instr->value());
|
| + MemOperand target = ContextOperand(context, instr->slot_index());
|
| + __ sw(value, target);
|
| + if (instr->hydrogen()->NeedsWriteBarrier()) {
|
| + HType type = instr->hydrogen()->value()->type();
|
| + SmiCheck check_needed =
|
| + type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
| + __ RecordWriteContextSlot(context,
|
| + target.offset(),
|
| + value,
|
| + scratch0(),
|
| + kRAHasBeenSaved,
|
| + kSaveFPRegs,
|
| + EMIT_REMEMBERED_SET,
|
| + check_needed);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
|
| + Register object = ToRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| + if (instr->hydrogen()->is_in_object()) {
|
| + __ lw(result, FieldMemOperand(object, instr->hydrogen()->offset()));
|
| + } else {
|
| + __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
|
| + __ lw(result, FieldMemOperand(result, instr->hydrogen()->offset()));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EmitLoadFieldOrConstantFunction(Register result,
|
| + Register object,
|
| + Handle<Map> type,
|
| + Handle<String> name) {
|
| + LookupResult lookup(isolate());
|
| + type->LookupInDescriptors(NULL, *name, &lookup);
|
| + ASSERT(lookup.IsProperty() &&
|
| + (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION));
|
| + if (lookup.type() == FIELD) {
|
| + int index = lookup.GetLocalFieldIndexFromMap(*type);
|
| + int offset = index * kPointerSize;
|
| + if (index < 0) {
|
| + // Negative property indices are in-object properties, indexed
|
| + // from the end of the fixed part of the object.
|
| + __ lw(result, FieldMemOperand(object, offset + type->instance_size()));
|
| + } else {
|
| + // Non-negative property indices are in the properties array.
|
| + __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
|
| + __ lw(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize));
|
| + }
|
| + } else {
|
| + Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type));
|
| + LoadHeapObject(result, Handle<HeapObject>::cast(function));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
|
| + Register object = ToRegister(instr->object());
|
| + Register result = ToRegister(instr->result());
|
| + Register scratch = scratch0();
|
| + int map_count = instr->hydrogen()->types()->length();
|
| + Handle<String> name = instr->hydrogen()->name();
|
| + if (map_count == 0) {
|
| + ASSERT(instr->hydrogen()->need_generic());
|
| + __ li(a2, Operand(name));
|
| + Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| + } else {
|
| + Label done;
|
| + __ lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + for (int i = 0; i < map_count - 1; ++i) {
|
| + Handle<Map> map = instr->hydrogen()->types()->at(i);
|
| + Label next;
|
| + __ Branch(&next, ne, scratch, Operand(map));
|
| + EmitLoadFieldOrConstantFunction(result, object, map, name);
|
| + __ Branch(&done);
|
| + __ bind(&next);
|
| + }
|
| + Handle<Map> map = instr->hydrogen()->types()->last();
|
| + if (instr->hydrogen()->need_generic()) {
|
| + Label generic;
|
| + __ Branch(&generic, ne, scratch, Operand(map));
|
| + EmitLoadFieldOrConstantFunction(result, object, map, name);
|
| + __ Branch(&done);
|
| + __ bind(&generic);
|
| + __ li(a2, Operand(name));
|
| + Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| + } else {
|
| + DeoptimizeIf(ne, instr->environment(), scratch, Operand(map));
|
| + EmitLoadFieldOrConstantFunction(result, object, map, name);
|
| + }
|
| + __ bind(&done);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
|
| + ASSERT(ToRegister(instr->object()).is(a0));
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| +
|
| + // Name is always in a2.
|
| + __ li(a2, Operand(instr->name()));
|
| + Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
|
| + Register scratch = scratch0();
|
| + Register function = ToRegister(instr->function());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + // Check that the function really is a function. Load map into the
|
| + // result register.
|
| + __ GetObjectType(function, result, scratch);
|
| + DeoptimizeIf(ne, instr->environment(), scratch, Operand(JS_FUNCTION_TYPE));
|
| +
|
| + // Make sure that the function has an instance prototype.
|
| + Label non_instance;
|
| + __ lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
|
| + __ And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
|
| + __ Branch(&non_instance, ne, scratch, Operand(zero_reg));
|
| +
|
| + // Get the prototype or initial map from the function.
|
| + __ lw(result,
|
| + FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
| +
|
| + // Check that the function has a prototype or an initial map.
|
| + __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
|
| + DeoptimizeIf(eq, instr->environment(), result, Operand(at));
|
| +
|
| + // If the function does not have an initial map, we're done.
|
| + Label done;
|
| + __ GetObjectType(result, scratch, scratch);
|
| + __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
|
| +
|
| + // Get the prototype from the initial map.
|
| + __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
|
| + __ Branch(&done);
|
| +
|
| + // Non-instance prototype: Fetch prototype from constructor field
|
| + // in initial map.
|
| + __ bind(&non_instance);
|
| + __ lw(result, FieldMemOperand(result, Map::kConstructorOffset));
|
| +
|
| + // All done.
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadElements(LLoadElements* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register scratch = scratch0();
|
| +
|
| + __ lw(result, FieldMemOperand(input, JSObject::kElementsOffset));
|
| + if (FLAG_debug_code) {
|
| + Label done, fail;
|
| + __ lw(scratch, FieldMemOperand(result, HeapObject::kMapOffset));
|
| + __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
|
| + __ Branch(USE_DELAY_SLOT, &done, eq, scratch, Operand(at));
|
| + __ LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); // In the delay slot.
|
| + __ Branch(&done, eq, scratch, Operand(at));
|
| + // |scratch| still contains |input|'s map.
|
| + __ lbu(scratch, FieldMemOperand(scratch, Map::kBitField2Offset));
|
| + __ Ext(scratch, scratch, Map::kElementsKindShift,
|
| + Map::kElementsKindBitCount);
|
| + __ Branch(&done, eq, scratch,
|
| + Operand(FAST_ELEMENTS));
|
| + __ Branch(&fail, lt, scratch,
|
| + Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND));
|
| + __ Branch(&done, le, scratch,
|
| + Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND));
|
| + __ bind(&fail);
|
| + __ Abort("Check for fast or external elements failed.");
|
| + __ bind(&done);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadExternalArrayPointer(
|
| + LLoadExternalArrayPointer* instr) {
|
| + Register to_reg = ToRegister(instr->result());
|
| + Register from_reg = ToRegister(instr->InputAt(0));
|
| + __ lw(to_reg, FieldMemOperand(from_reg,
|
| + ExternalArray::kExternalPointerOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
|
| + Register arguments = ToRegister(instr->arguments());
|
| + Register length = ToRegister(instr->length());
|
| + Register index = ToRegister(instr->index());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + // Bailout index is not a valid argument index. Use unsigned check to get
|
| + // negative check for free.
|
| +
|
| + // TODO(plind): Shoud be optimized to do the sub before the DeoptimizeIf(),
|
| + // as they do in Arm. It will save us an instruction.
|
| + DeoptimizeIf(ls, instr->environment(), length, Operand(index));
|
| +
|
| + // There are two words between the frame pointer and the last argument.
|
| + // Subtracting from length accounts for one of them, add one more.
|
| + __ subu(length, length, index);
|
| + __ Addu(length, length, Operand(1));
|
| + __ sll(length, length, kPointerSizeLog2);
|
| + __ Addu(at, arguments, Operand(length));
|
| + __ lw(result, MemOperand(at, 0));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
|
| + Register elements = ToRegister(instr->elements());
|
| + Register key = EmitLoadRegister(instr->key(), scratch0());
|
| + Register result = ToRegister(instr->result());
|
| + Register scratch = scratch0();
|
| +
|
| + // Load the result.
|
| + __ sll(scratch, key, kPointerSizeLog2); // Key indexes words.
|
| + __ addu(scratch, elements, scratch);
|
| + __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize));
|
| +
|
| + // Check for the hole value.
|
| + if (instr->hydrogen()->RequiresHoleCheck()) {
|
| + __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
|
| + DeoptimizeIf(eq, instr->environment(), result, Operand(scratch));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadKeyedFastDoubleElement(
|
| + LLoadKeyedFastDoubleElement* instr) {
|
| + Register elements = ToRegister(instr->elements());
|
| + bool key_is_constant = instr->key()->IsConstantOperand();
|
| + Register key = no_reg;
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + Register scratch = scratch0();
|
| +
|
| + int shift_size =
|
| + ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
|
| + int constant_key = 0;
|
| + if (key_is_constant) {
|
| + constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
| + if (constant_key & 0xF0000000) {
|
| + Abort("array index constant value too big.");
|
| + }
|
| + } else {
|
| + key = ToRegister(instr->key());
|
| + }
|
| +
|
| + if (key_is_constant) {
|
| + __ Addu(elements, elements, Operand(constant_key * (1 << shift_size) +
|
| + FixedDoubleArray::kHeaderSize - kHeapObjectTag));
|
| + } else {
|
| + __ sll(scratch, key, shift_size);
|
| + __ Addu(elements, elements, Operand(scratch));
|
| + __ Addu(elements, elements,
|
| + Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
|
| + }
|
| +
|
| + __ lw(scratch, MemOperand(elements, sizeof(kHoleNanLower32)));
|
| + DeoptimizeIf(eq, instr->environment(), scratch, Operand(kHoleNanUpper32));
|
| +
|
| + __ ldc1(result, MemOperand(elements));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadKeyedSpecializedArrayElement(
|
| + LLoadKeyedSpecializedArrayElement* instr) {
|
| + Register external_pointer = ToRegister(instr->external_pointer());
|
| + Register key = no_reg;
|
| + ElementsKind elements_kind = instr->elements_kind();
|
| + bool key_is_constant = instr->key()->IsConstantOperand();
|
| + int constant_key = 0;
|
| + if (key_is_constant) {
|
| + constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
| + if (constant_key & 0xF0000000) {
|
| + Abort("array index constant value too big.");
|
| + }
|
| + } else {
|
| + key = ToRegister(instr->key());
|
| + }
|
| + int shift_size = ElementsKindToShiftSize(elements_kind);
|
| +
|
| + if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
|
| + elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
|
| + FPURegister result = ToDoubleRegister(instr->result());
|
| + if (key_is_constant) {
|
| + __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size));
|
| + } else {
|
| + __ sll(scratch0(), key, shift_size);
|
| + __ Addu(scratch0(), scratch0(), external_pointer);
|
| + }
|
| +
|
| + if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
|
| + __ lwc1(result, MemOperand(scratch0()));
|
| + __ cvt_d_s(result, result);
|
| + } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
|
| + __ ldc1(result, MemOperand(scratch0()));
|
| + }
|
| + } else {
|
| + Register result = ToRegister(instr->result());
|
| + Register scratch = scratch0();
|
| + MemOperand mem_operand(zero_reg);
|
| + if (key_is_constant) {
|
| + mem_operand = MemOperand(external_pointer,
|
| + constant_key * (1 << shift_size));
|
| + } else {
|
| + __ sll(scratch, key, shift_size);
|
| + __ Addu(scratch, scratch, external_pointer);
|
| + mem_operand = MemOperand(scratch);
|
| + }
|
| + switch (elements_kind) {
|
| + case EXTERNAL_BYTE_ELEMENTS:
|
| + __ lb(result, mem_operand);
|
| + break;
|
| + case EXTERNAL_PIXEL_ELEMENTS:
|
| + case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
| + __ lbu(result, mem_operand);
|
| + break;
|
| + case EXTERNAL_SHORT_ELEMENTS:
|
| + __ lh(result, mem_operand);
|
| + break;
|
| + case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
| + __ lhu(result, mem_operand);
|
| + break;
|
| + case EXTERNAL_INT_ELEMENTS:
|
| + __ lw(result, mem_operand);
|
| + break;
|
| + case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
| + __ lw(result, mem_operand);
|
| + // TODO(danno): we could be more clever here, perhaps having a special
|
| + // version of the stub that detects if the overflow case actually
|
| + // happens, and generate code that returns a double rather than int.
|
| + DeoptimizeIf(Ugreater_equal, instr->environment(),
|
| + result, Operand(0x80000000));
|
| + break;
|
| + case EXTERNAL_FLOAT_ELEMENTS:
|
| + case EXTERNAL_DOUBLE_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_SMI_ONLY_ELEMENTS:
|
| + case DICTIONARY_ELEMENTS:
|
| + case NON_STRICT_ARGUMENTS_ELEMENTS:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
|
| + ASSERT(ToRegister(instr->object()).is(a1));
|
| + ASSERT(ToRegister(instr->key()).is(a0));
|
| +
|
| + Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
|
| + Register scratch = scratch0();
|
| + Register temp = scratch1();
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + // Check if the calling frame is an arguments adaptor frame.
|
| + Label done, adapted;
|
| + __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| + __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
|
| + __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| +
|
| + // Result is the frame pointer for the frame if not adapted and for the real
|
| + // frame below the adaptor frame if adapted.
|
| + __ movn(result, fp, temp); // move only if temp is not equal to zero (ne)
|
| + __ movz(result, scratch, temp); // move only if temp is equal to zero (eq)
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
|
| + Register elem = ToRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + Label done;
|
| +
|
| + // If no arguments adaptor frame the number of arguments is fixed.
|
| + __ Addu(result, zero_reg, Operand(scope()->num_parameters()));
|
| + __ Branch(&done, eq, fp, Operand(elem));
|
| +
|
| + // Arguments adaptor frame present. Get argument length from there.
|
| + __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| + __ lw(result,
|
| + MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
| + __ SmiUntag(result);
|
| +
|
| + // Argument length is in result register.
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
|
| + Register receiver = ToRegister(instr->receiver());
|
| + Register function = ToRegister(instr->function());
|
| + Register length = ToRegister(instr->length());
|
| + Register elements = ToRegister(instr->elements());
|
| + Register scratch = scratch0();
|
| + ASSERT(receiver.is(a0)); // Used for parameter count.
|
| + ASSERT(function.is(a1)); // Required by InvokeFunction.
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| +
|
| + // If the receiver is null or undefined, we have to pass the global
|
| + // object as a receiver to normal functions. Values have to be
|
| + // passed unchanged to builtins and strict-mode functions.
|
| + Label global_object, receiver_ok;
|
| +
|
| + // Do not transform the receiver to object for strict mode
|
| + // functions.
|
| + __ lw(scratch,
|
| + FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
|
| + __ lw(scratch,
|
| + FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
|
| +
|
| + // Do not transform the receiver to object for builtins.
|
| + int32_t strict_mode_function_mask =
|
| + 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
|
| + int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize);
|
| + __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask));
|
| + __ Branch(&receiver_ok, ne, scratch, Operand(zero_reg));
|
| +
|
| + // Normal function. Replace undefined or null with global receiver.
|
| + __ LoadRoot(scratch, Heap::kNullValueRootIndex);
|
| + __ Branch(&global_object, eq, receiver, Operand(scratch));
|
| + __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
|
| + __ Branch(&global_object, eq, receiver, Operand(scratch));
|
| +
|
| + // Deoptimize if the receiver is not a JS object.
|
| + __ And(scratch, receiver, Operand(kSmiTagMask));
|
| + DeoptimizeIf(eq, instr->environment(), scratch, Operand(zero_reg));
|
| +
|
| + __ GetObjectType(receiver, scratch, scratch);
|
| + DeoptimizeIf(lt, instr->environment(),
|
| + scratch, Operand(FIRST_SPEC_OBJECT_TYPE));
|
| + __ Branch(&receiver_ok);
|
| +
|
| + __ bind(&global_object);
|
| + __ lw(receiver, GlobalObjectOperand());
|
| + __ lw(receiver,
|
| + FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
|
| + __ bind(&receiver_ok);
|
| +
|
| + // Copy the arguments to this function possibly from the
|
| + // adaptor frame below it.
|
| + const uint32_t kArgumentsLimit = 1 * KB;
|
| + DeoptimizeIf(hi, instr->environment(), length, Operand(kArgumentsLimit));
|
| +
|
| + // Push the receiver and use the register to keep the original
|
| + // number of arguments.
|
| + __ push(receiver);
|
| + __ Move(receiver, length);
|
| + // The arguments are at a one pointer size offset from elements.
|
| + __ Addu(elements, elements, Operand(1 * kPointerSize));
|
| +
|
| + // Loop through the arguments pushing them onto the execution
|
| + // stack.
|
| + Label invoke, loop;
|
| + // length is a small non-negative integer, due to the test above.
|
| + __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
|
| + __ sll(scratch, length, 2);
|
| + __ bind(&loop);
|
| + __ Addu(scratch, elements, scratch);
|
| + __ lw(scratch, MemOperand(scratch));
|
| + __ push(scratch);
|
| + __ Subu(length, length, Operand(1));
|
| + __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
|
| + __ sll(scratch, length, 2);
|
| +
|
| + __ bind(&invoke);
|
| + ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + LEnvironment* env = instr->deoptimization_environment();
|
| + RecordPosition(pointers->position());
|
| + RegisterEnvironmentForDeoptimization(env);
|
| + SafepointGenerator safepoint_generator(this,
|
| + pointers,
|
| + env->deoptimization_index());
|
| + // The number of arguments is stored in receiver which is a0, as expected
|
| + // by InvokeFunction.
|
| + v8::internal::ParameterCount actual(receiver);
|
| + __ InvokeFunction(function, actual, CALL_FUNCTION,
|
| + safepoint_generator, CALL_AS_METHOD);
|
| + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoPushArgument(LPushArgument* instr) {
|
| + LOperand* argument = instr->InputAt(0);
|
| + if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
|
| + Abort("DoPushArgument not implemented for double type.");
|
| + } else {
|
| + Register argument_reg = EmitLoadRegister(argument, at);
|
| + __ push(argument_reg);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoThisFunction(LThisFunction* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + __ lw(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoContext(LContext* instr) {
|
| + Register result = ToRegister(instr->result());
|
| + __ mov(result, cp);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoOuterContext(LOuterContext* instr) {
|
| + Register context = ToRegister(instr->context());
|
| + Register result = ToRegister(instr->result());
|
| + __ lw(result,
|
| + MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
|
| + Register context = ToRegister(instr->context());
|
| + Register result = ToRegister(instr->result());
|
| + __ lw(result, ContextOperand(cp, Context::GLOBAL_INDEX));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
|
| + Register global = ToRegister(instr->global());
|
| + Register result = ToRegister(instr->result());
|
| + __ lw(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
|
| + int arity,
|
| + LInstruction* instr,
|
| + CallKind call_kind) {
|
| + // Change context if needed.
|
| + bool change_context =
|
| + (info()->closure()->context() != function->context()) ||
|
| + scope()->contains_with() ||
|
| + (scope()->num_heap_slots() > 0);
|
| + if (change_context) {
|
| + __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
|
| + }
|
| +
|
| + // Set a0 to arguments count if adaption is not needed. Assumes that a0
|
| + // is available to write to at this point.
|
| + if (!function->NeedsArgumentsAdaption()) {
|
| + __ li(a0, Operand(arity));
|
| + }
|
| +
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + RecordPosition(pointers->position());
|
| +
|
| + // Invoke function.
|
| + __ SetCallKind(t1, call_kind);
|
| + __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
|
| + __ Call(at);
|
| +
|
| + // Setup deoptimization.
|
| + RegisterLazyDeoptimization(instr, RECORD_SIMPLE_SAFEPOINT);
|
| +
|
| + // Restore context.
|
| + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| + __ mov(a0, v0);
|
| + __ li(a1, Operand(instr->function()));
|
| + CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| + Register scratch = scratch0();
|
| +
|
| + // Deoptimize if not a heap number.
|
| + __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
|
| + DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
|
| +
|
| + Label done;
|
| + Register exponent = scratch0();
|
| + scratch = no_reg;
|
| + __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
|
| + // Check the sign of the argument. If the argument is positive, just
|
| + // return it.
|
| + __ Move(result, input);
|
| + __ And(at, exponent, Operand(HeapNumber::kSignMask));
|
| + __ Branch(&done, eq, at, Operand(zero_reg));
|
| +
|
| + // Input is negative. Reverse its sign.
|
| + // Preserve the value of all registers.
|
| + {
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| +
|
| + // Registers were saved at the safepoint, so we can use
|
| + // many scratch registers.
|
| + Register tmp1 = input.is(a1) ? a0 : a1;
|
| + Register tmp2 = input.is(a2) ? a0 : a2;
|
| + Register tmp3 = input.is(a3) ? a0 : a3;
|
| + Register tmp4 = input.is(t0) ? a0 : t0;
|
| +
|
| + // exponent: floating point exponent value.
|
| +
|
| + Label allocated, slow;
|
| + __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
|
| + __ Branch(&allocated);
|
| +
|
| + // Slow case: Call the runtime system to do the number allocation.
|
| + __ bind(&slow);
|
| +
|
| + CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
|
| + // Set the pointer to the new heap number in tmp.
|
| + if (!tmp1.is(v0))
|
| + __ mov(tmp1, v0);
|
| + // Restore input_reg after call to runtime.
|
| + __ LoadFromSafepointRegisterSlot(input, input);
|
| + __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
|
| +
|
| + __ bind(&allocated);
|
| + // exponent: floating point exponent value.
|
| + // tmp1: allocated heap number.
|
| + __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
|
| + __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
|
| + __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
|
| + __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
|
| +
|
| + __ StoreToSafepointRegisterSlot(tmp1, result);
|
| + }
|
| +
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
|
| + Label done;
|
| + __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
|
| + __ mov(result, input);
|
| + ASSERT_EQ(2, masm()->InstructionsGeneratedSince(&done));
|
| + __ subu(result, zero_reg, input);
|
| + // Overflow if result is still negative, ie 0x80000000.
|
| + DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg));
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
|
| + // Class for deferred case.
|
| + class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
|
| + public:
|
| + DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
|
| + LUnaryMathOperation* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() {
|
| + codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
|
| + }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LUnaryMathOperation* instr_;
|
| + };
|
| +
|
| + Representation r = instr->hydrogen()->value()->representation();
|
| + if (r.IsDouble()) {
|
| + FPURegister input = ToDoubleRegister(instr->InputAt(0));
|
| + FPURegister result = ToDoubleRegister(instr->result());
|
| + __ abs_d(result, input);
|
| + } else if (r.IsInteger32()) {
|
| + EmitIntegerMathAbs(instr);
|
| + } else {
|
| + // Representation is tagged.
|
| + DeferredMathAbsTaggedHeapNumber* deferred =
|
| + new DeferredMathAbsTaggedHeapNumber(this, instr);
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + // Smi check.
|
| + __ JumpIfNotSmi(input, deferred->entry());
|
| + // If smi, handle it directly.
|
| + EmitIntegerMathAbs(instr);
|
| + __ bind(deferred->exit());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| + FPURegister single_scratch = double_scratch0().low();
|
| + Register scratch1 = scratch0();
|
| + Register except_flag = ToRegister(instr->TempAt(0));
|
| +
|
| + __ EmitFPUTruncate(kRoundToMinusInf,
|
| + single_scratch,
|
| + input,
|
| + scratch1,
|
| + except_flag);
|
| +
|
| + // Deopt if the operation did not succeed.
|
| + DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
|
| +
|
| + // Load the result.
|
| + __ mfc1(result, single_scratch);
|
| +
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + // Test for -0.
|
| + Label done;
|
| + __ Branch(&done, ne, result, Operand(zero_reg));
|
| + __ mfc1(scratch1, input.high());
|
| + __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
|
| + DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
|
| + __ bind(&done);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| + Register scratch = scratch0();
|
| + Label done, check_sign_on_zero;
|
| +
|
| + // Extract exponent bits.
|
| + __ mfc1(result, input.high());
|
| + __ Ext(scratch,
|
| + result,
|
| + HeapNumber::kExponentShift,
|
| + HeapNumber::kExponentBits);
|
| +
|
| + // If the number is in ]-0.5, +0.5[, the result is +/- 0.
|
| + Label skip1;
|
| + __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
|
| + __ mov(result, zero_reg);
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + __ Branch(&check_sign_on_zero);
|
| + } else {
|
| + __ Branch(&done);
|
| + }
|
| + __ bind(&skip1);
|
| +
|
| + // The following conversion will not work with numbers
|
| + // outside of ]-2^32, 2^32[.
|
| + DeoptimizeIf(ge, instr->environment(), scratch,
|
| + Operand(HeapNumber::kExponentBias + 32));
|
| +
|
| + // Save the original sign for later comparison.
|
| + __ And(scratch, result, Operand(HeapNumber::kSignMask));
|
| +
|
| + __ Move(double_scratch0(), 0.5);
|
| + __ add_d(input, input, double_scratch0());
|
| +
|
| + // Check sign of the result: if the sign changed, the input
|
| + // value was in ]0.5, 0[ and the result should be -0.
|
| + __ mfc1(result, input.high());
|
| + __ Xor(result, result, Operand(scratch));
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + // ARM uses 'mi' here, which is 'lt'
|
| + DeoptimizeIf(lt, instr->environment(), result,
|
| + Operand(zero_reg));
|
| + } else {
|
| + Label skip2;
|
| + // ARM uses 'mi' here, which is 'lt'
|
| + // Negating it results in 'ge'
|
| + __ Branch(&skip2, ge, result, Operand(zero_reg));
|
| + __ mov(result, zero_reg);
|
| + __ Branch(&done);
|
| + __ bind(&skip2);
|
| + }
|
| +
|
| + Register except_flag = scratch;
|
| +
|
| + __ EmitFPUTruncate(kRoundToMinusInf,
|
| + double_scratch0().low(),
|
| + input,
|
| + result,
|
| + except_flag);
|
| +
|
| + DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
|
| +
|
| + __ mfc1(result, double_scratch0().low());
|
| +
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + // Test for -0.
|
| + __ Branch(&done, ne, result, Operand(zero_reg));
|
| + __ bind(&check_sign_on_zero);
|
| + __ mfc1(scratch, input.high());
|
| + __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
|
| + DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
|
| + }
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + __ sqrt_d(result, input);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
|
| + DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
|
| + DoubleRegister result = ToDoubleRegister(instr->result());
|
| + DoubleRegister double_scratch = double_scratch0();
|
| +
|
| + // Add +0 to convert -0 to +0.
|
| + __ mtc1(zero_reg, double_scratch.low());
|
| + __ mtc1(zero_reg, double_scratch.high());
|
| + __ add_d(result, input, double_scratch);
|
| + __ sqrt_d(result, result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoPower(LPower* instr) {
|
| + LOperand* left = instr->InputAt(0);
|
| + LOperand* right = instr->InputAt(1);
|
| + Register scratch = scratch0();
|
| + DoubleRegister result_reg = ToDoubleRegister(instr->result());
|
| + Representation exponent_type = instr->hydrogen()->right()->representation();
|
| + if (exponent_type.IsDouble()) {
|
| + // Prepare arguments and call C function.
|
| + __ PrepareCallCFunction(0, 2, scratch);
|
| + __ SetCallCDoubleArguments(ToDoubleRegister(left),
|
| + ToDoubleRegister(right));
|
| + __ CallCFunction(
|
| + ExternalReference::power_double_double_function(isolate()), 0, 2);
|
| + } else if (exponent_type.IsInteger32()) {
|
| + ASSERT(ToRegister(right).is(a0));
|
| + // Prepare arguments and call C function.
|
| + __ PrepareCallCFunction(1, 1, scratch);
|
| + __ SetCallCDoubleArguments(ToDoubleRegister(left), ToRegister(right));
|
| + __ CallCFunction(
|
| + ExternalReference::power_double_int_function(isolate()), 1, 1);
|
| + } else {
|
| + ASSERT(exponent_type.IsTagged());
|
| + ASSERT(instr->hydrogen()->left()->representation().IsDouble());
|
| +
|
| + Register right_reg = ToRegister(right);
|
| +
|
| + // Check for smi on the right hand side.
|
| + Label non_smi, call;
|
| + __ JumpIfNotSmi(right_reg, &non_smi);
|
| +
|
| + // Untag smi and convert it to a double.
|
| + __ SmiUntag(right_reg);
|
| + FPURegister single_scratch = double_scratch0();
|
| + __ mtc1(right_reg, single_scratch);
|
| + __ cvt_d_w(result_reg, single_scratch);
|
| + __ Branch(&call);
|
| +
|
| + // Heap number map check.
|
| + __ bind(&non_smi);
|
| + __ lw(scratch, FieldMemOperand(right_reg, HeapObject::kMapOffset));
|
| + __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
|
| + DeoptimizeIf(ne, instr->environment(), scratch, Operand(at));
|
| + __ ldc1(result_reg, FieldMemOperand(right_reg, HeapNumber::kValueOffset));
|
| +
|
| + // Prepare arguments and call C function.
|
| + __ bind(&call);
|
| + __ PrepareCallCFunction(0, 2, scratch);
|
| + __ SetCallCDoubleArguments(ToDoubleRegister(left), result_reg);
|
| + __ CallCFunction(
|
| + ExternalReference::power_double_double_function(isolate()), 0, 2);
|
| + }
|
| + // Store the result in the result register.
|
| + __ GetCFunctionDoubleResult(result_reg);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
|
| + ASSERT(ToDoubleRegister(instr->result()).is(f4));
|
| + TranscendentalCacheStub stub(TranscendentalCache::LOG,
|
| + TranscendentalCacheStub::UNTAGGED);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
|
| + ASSERT(ToDoubleRegister(instr->result()).is(f4));
|
| + TranscendentalCacheStub stub(TranscendentalCache::COS,
|
| + TranscendentalCacheStub::UNTAGGED);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
|
| + ASSERT(ToDoubleRegister(instr->result()).is(f4));
|
| + TranscendentalCacheStub stub(TranscendentalCache::SIN,
|
| + TranscendentalCacheStub::UNTAGGED);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
|
| + switch (instr->op()) {
|
| + case kMathAbs:
|
| + DoMathAbs(instr);
|
| + break;
|
| + case kMathFloor:
|
| + DoMathFloor(instr);
|
| + break;
|
| + case kMathRound:
|
| + DoMathRound(instr);
|
| + break;
|
| + case kMathSqrt:
|
| + DoMathSqrt(instr);
|
| + break;
|
| + case kMathPowHalf:
|
| + DoMathPowHalf(instr);
|
| + break;
|
| + case kMathCos:
|
| + DoMathCos(instr);
|
| + break;
|
| + case kMathSin:
|
| + DoMathSin(instr);
|
| + break;
|
| + case kMathLog:
|
| + DoMathLog(instr);
|
| + break;
|
| + default:
|
| + Abort("Unimplemented type of LUnaryMathOperation.");
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
|
| + ASSERT(ToRegister(instr->function()).is(a1));
|
| + ASSERT(instr->HasPointerMap());
|
| + ASSERT(instr->HasDeoptimizationEnvironment());
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + LEnvironment* env = instr->deoptimization_environment();
|
| + RecordPosition(pointers->position());
|
| + RegisterEnvironmentForDeoptimization(env);
|
| + SafepointGenerator generator(this, pointers, env->deoptimization_index());
|
| + ParameterCount count(instr->arity());
|
| + __ InvokeFunction(a1, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
|
| + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| +
|
| + int arity = instr->arity();
|
| + Handle<Code> ic =
|
| + isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallNamed(LCallNamed* instr) {
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| +
|
| + int arity = instr->arity();
|
| + RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
|
| + Handle<Code> ic =
|
| + isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
|
| + __ li(a2, Operand(instr->name()));
|
| + CallCode(ic, mode, instr);
|
| + // Restore context register.
|
| + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallFunction(LCallFunction* instr) {
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| +
|
| + int arity = instr->arity();
|
| + CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + __ Drop(1);
|
| + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| +
|
| + int arity = instr->arity();
|
| + RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
|
| + Handle<Code> ic =
|
| + isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
|
| + __ li(a2, Operand(instr->name()));
|
| + CallCode(ic, mode, instr);
|
| + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| + __ li(a1, Operand(instr->target()));
|
| + CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallNew(LCallNew* instr) {
|
| + ASSERT(ToRegister(instr->InputAt(0)).is(a1));
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| +
|
| + Handle<Code> builtin = isolate()->builtins()->JSConstructCall();
|
| + __ li(a0, Operand(instr->arity()));
|
| + CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
|
| + CallRuntime(instr->function(), instr->arity(), instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
|
| + Register object = ToRegister(instr->object());
|
| + Register value = ToRegister(instr->value());
|
| + Register scratch = scratch0();
|
| + int offset = instr->offset();
|
| +
|
| + ASSERT(!object.is(value));
|
| +
|
| + if (!instr->transition().is_null()) {
|
| + __ li(scratch, Operand(instr->transition()));
|
| + __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
|
| + }
|
| +
|
| + // Do the store.
|
| + HType type = instr->hydrogen()->value()->type();
|
| + SmiCheck check_needed =
|
| + type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
| + if (instr->is_in_object()) {
|
| + __ sw(value, FieldMemOperand(object, offset));
|
| + if (instr->hydrogen()->NeedsWriteBarrier()) {
|
| + // Update the write barrier for the object for in-object properties.
|
| + __ RecordWriteField(object,
|
| + offset,
|
| + value,
|
| + scratch,
|
| + kRAHasBeenSaved,
|
| + kSaveFPRegs,
|
| + EMIT_REMEMBERED_SET,
|
| + check_needed);
|
| + }
|
| + } else {
|
| + __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
|
| + __ sw(value, FieldMemOperand(scratch, offset));
|
| + if (instr->hydrogen()->NeedsWriteBarrier()) {
|
| + // Update the write barrier for the properties array.
|
| + // object is used as a scratch register.
|
| + __ RecordWriteField(scratch,
|
| + offset,
|
| + value,
|
| + object,
|
| + kRAHasBeenSaved,
|
| + kSaveFPRegs,
|
| + EMIT_REMEMBERED_SET,
|
| + check_needed);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
|
| + ASSERT(ToRegister(instr->object()).is(a1));
|
| + ASSERT(ToRegister(instr->value()).is(a0));
|
| +
|
| + // Name is always in a2.
|
| + __ li(a2, Operand(instr->name()));
|
| + Handle<Code> ic = instr->strict_mode()
|
| + ? isolate()->builtins()->StoreIC_Initialize_Strict()
|
| + : isolate()->builtins()->StoreIC_Initialize();
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
|
| + DeoptimizeIf(hs,
|
| + instr->environment(),
|
| + ToRegister(instr->index()),
|
| + Operand(ToRegister(instr->length())));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
|
| + Register value = ToRegister(instr->value());
|
| + Register elements = ToRegister(instr->object());
|
| + Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
|
| + Register scratch = scratch0();
|
| +
|
| + // This instruction cannot handle the FAST_SMI_ONLY_ELEMENTS -> FAST_ELEMENTS
|
| + // conversion, so it deopts in that case.
|
| + if (instr->hydrogen()->ValueNeedsSmiCheck()) {
|
| + __ And(at, value, Operand(kSmiTagMask));
|
| + DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
|
| + }
|
| +
|
| + // Do the store.
|
| + if (instr->key()->IsConstantOperand()) {
|
| + ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
|
| + LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
|
| + int offset =
|
| + ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
|
| + __ sw(value, FieldMemOperand(elements, offset));
|
| + } else {
|
| + __ sll(scratch, key, kPointerSizeLog2);
|
| + __ addu(scratch, elements, scratch);
|
| + __ sw(value, FieldMemOperand(scratch, FixedArray::kHeaderSize));
|
| + }
|
| +
|
| + if (instr->hydrogen()->NeedsWriteBarrier()) {
|
| + HType type = instr->hydrogen()->value()->type();
|
| + SmiCheck check_needed =
|
| + type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
|
| + // Compute address of modified element and store it into key register.
|
| + __ Addu(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
| + __ RecordWrite(elements,
|
| + key,
|
| + value,
|
| + kRAHasBeenSaved,
|
| + kSaveFPRegs,
|
| + EMIT_REMEMBERED_SET,
|
| + check_needed);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreKeyedFastDoubleElement(
|
| + LStoreKeyedFastDoubleElement* instr) {
|
| + DoubleRegister value = ToDoubleRegister(instr->value());
|
| + Register elements = ToRegister(instr->elements());
|
| + Register key = no_reg;
|
| + Register scratch = scratch0();
|
| + bool key_is_constant = instr->key()->IsConstantOperand();
|
| + int constant_key = 0;
|
| + Label not_nan;
|
| +
|
| + // Calculate the effective address of the slot in the array to store the
|
| + // double value.
|
| + if (key_is_constant) {
|
| + constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
| + if (constant_key & 0xF0000000) {
|
| + Abort("array index constant value too big.");
|
| + }
|
| + } else {
|
| + key = ToRegister(instr->key());
|
| + }
|
| + int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
|
| + if (key_is_constant) {
|
| + __ Addu(scratch, elements, Operand(constant_key * (1 << shift_size) +
|
| + FixedDoubleArray::kHeaderSize - kHeapObjectTag));
|
| + } else {
|
| + __ sll(scratch, key, shift_size);
|
| + __ Addu(scratch, elements, Operand(scratch));
|
| + __ Addu(scratch, scratch,
|
| + Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
|
| + }
|
| +
|
| + Label is_nan;
|
| + // Check for NaN. All NaNs must be canonicalized.
|
| + __ BranchF(NULL, &is_nan, eq, value, value);
|
| + __ Branch(¬_nan);
|
| +
|
| + // Only load canonical NaN if the comparison above set the overflow.
|
| + __ bind(&is_nan);
|
| + __ Move(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double());
|
| +
|
| + __ bind(¬_nan);
|
| + __ sdc1(value, MemOperand(scratch));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStoreKeyedSpecializedArrayElement(
|
| + LStoreKeyedSpecializedArrayElement* instr) {
|
| +
|
| + Register external_pointer = ToRegister(instr->external_pointer());
|
| + Register key = no_reg;
|
| + ElementsKind elements_kind = instr->elements_kind();
|
| + bool key_is_constant = instr->key()->IsConstantOperand();
|
| + int constant_key = 0;
|
| + if (key_is_constant) {
|
| + constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
|
| + if (constant_key & 0xF0000000) {
|
| + Abort("array index constant value too big.");
|
| + }
|
| + } else {
|
| + key = ToRegister(instr->key());
|
| + }
|
| + int shift_size = ElementsKindToShiftSize(elements_kind);
|
| +
|
| + if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
|
| + elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
|
| + FPURegister value(ToDoubleRegister(instr->value()));
|
| + if (key_is_constant) {
|
| + __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size));
|
| + } else {
|
| + __ sll(scratch0(), key, shift_size);
|
| + __ Addu(scratch0(), scratch0(), external_pointer);
|
| + }
|
| +
|
| + if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
|
| + __ cvt_s_d(double_scratch0(), value);
|
| + __ swc1(double_scratch0(), MemOperand(scratch0()));
|
| + } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
|
| + __ sdc1(value, MemOperand(scratch0()));
|
| + }
|
| + } else {
|
| + Register value(ToRegister(instr->value()));
|
| + MemOperand mem_operand(zero_reg);
|
| + Register scratch = scratch0();
|
| + if (key_is_constant) {
|
| + mem_operand = MemOperand(external_pointer,
|
| + constant_key * (1 << shift_size));
|
| + } else {
|
| + __ sll(scratch, key, shift_size);
|
| + __ Addu(scratch, scratch, external_pointer);
|
| + mem_operand = MemOperand(scratch);
|
| + }
|
| + switch (elements_kind) {
|
| + case EXTERNAL_PIXEL_ELEMENTS:
|
| + case EXTERNAL_BYTE_ELEMENTS:
|
| + case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
|
| + __ sb(value, mem_operand);
|
| + break;
|
| + case EXTERNAL_SHORT_ELEMENTS:
|
| + case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
|
| + __ sh(value, mem_operand);
|
| + break;
|
| + case EXTERNAL_INT_ELEMENTS:
|
| + case EXTERNAL_UNSIGNED_INT_ELEMENTS:
|
| + __ sw(value, mem_operand);
|
| + break;
|
| + case EXTERNAL_FLOAT_ELEMENTS:
|
| + case EXTERNAL_DOUBLE_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_SMI_ONLY_ELEMENTS:
|
| + case DICTIONARY_ELEMENTS:
|
| + case NON_STRICT_ARGUMENTS_ELEMENTS:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
|
| + ASSERT(ToRegister(instr->object()).is(a2));
|
| + ASSERT(ToRegister(instr->key()).is(a1));
|
| + ASSERT(ToRegister(instr->value()).is(a0));
|
| +
|
| + Handle<Code> ic = instr->strict_mode()
|
| + ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
|
| + : isolate()->builtins()->KeyedStoreIC_Initialize();
|
| + CallCode(ic, RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStringAdd(LStringAdd* instr) {
|
| + __ push(ToRegister(instr->left()));
|
| + __ push(ToRegister(instr->right()));
|
| + StringAddStub stub(NO_STRING_CHECK_IN_STUB);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
|
| + class DeferredStringCharCodeAt: public LDeferredCode {
|
| + public:
|
| + DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LStringCharCodeAt* instr_;
|
| + };
|
| +
|
| + Register temp = scratch1();
|
| + Register string = ToRegister(instr->string());
|
| + Register index = ToRegister(instr->index());
|
| + Register result = ToRegister(instr->result());
|
| + DeferredStringCharCodeAt* deferred =
|
| + new DeferredStringCharCodeAt(this, instr);
|
| +
|
| + // Fetch the instance type of the receiver into result register.
|
| + __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
|
| + __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
|
| +
|
| + // We need special handling for indirect strings.
|
| + Label check_sequential;
|
| + __ And(temp, result, kIsIndirectStringMask);
|
| + __ Branch(&check_sequential, eq, temp, Operand(zero_reg));
|
| +
|
| + // Dispatch on the indirect string shape: slice or cons.
|
| + Label cons_string;
|
| + __ And(temp, result, kSlicedNotConsMask);
|
| + __ Branch(&cons_string, eq, temp, Operand(zero_reg));
|
| +
|
| + // Handle slices.
|
| + Label indirect_string_loaded;
|
| + __ lw(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
|
| + __ sra(temp, result, kSmiTagSize);
|
| + __ addu(index, index, temp);
|
| + __ lw(string, FieldMemOperand(string, SlicedString::kParentOffset));
|
| + __ jmp(&indirect_string_loaded);
|
| +
|
| + // Handle conses.
|
| + // Check whether the right hand side is the empty string (i.e. if
|
| + // this is really a flat string in a cons string). If that is not
|
| + // the case we would rather go to the runtime system now to flatten
|
| + // the string.
|
| + __ bind(&cons_string);
|
| + __ lw(result, FieldMemOperand(string, ConsString::kSecondOffset));
|
| + __ LoadRoot(temp, Heap::kEmptyStringRootIndex);
|
| + __ Branch(deferred->entry(), ne, result, Operand(temp));
|
| + // Get the first of the two strings and load its instance type.
|
| + __ lw(string, FieldMemOperand(string, ConsString::kFirstOffset));
|
| +
|
| + __ bind(&indirect_string_loaded);
|
| + __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
|
| + __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
|
| +
|
| + // Check whether the string is sequential. The only non-sequential
|
| + // shapes we support have just been unwrapped above.
|
| + __ bind(&check_sequential);
|
| + STATIC_ASSERT(kSeqStringTag == 0);
|
| + __ And(temp, result, Operand(kStringRepresentationMask));
|
| + __ Branch(deferred->entry(), ne, temp, Operand(zero_reg));
|
| +
|
| + // Dispatch on the encoding: ASCII or two-byte.
|
| + Label ascii_string;
|
| + STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
|
| + STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
|
| + __ And(temp, result, Operand(kStringEncodingMask));
|
| + __ Branch(&ascii_string, ne, temp, Operand(zero_reg));
|
| +
|
| + // Two-byte string.
|
| + // Load the two-byte character code into the result register.
|
| + Label done;
|
| + __ Addu(result,
|
| + string,
|
| + Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
| + __ sll(temp, index, 1);
|
| + __ Addu(result, result, temp);
|
| + __ lhu(result, MemOperand(result, 0));
|
| + __ Branch(&done);
|
| +
|
| + // ASCII string.
|
| + // Load the byte into the result register.
|
| + __ bind(&ascii_string);
|
| + __ Addu(result,
|
| + string,
|
| + Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
| + __ Addu(result, result, index);
|
| + __ lbu(result, MemOperand(result, 0));
|
| +
|
| + __ bind(&done);
|
| + __ bind(deferred->exit());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
|
| + Register string = ToRegister(instr->string());
|
| + Register result = ToRegister(instr->result());
|
| + Register scratch = scratch0();
|
| +
|
| + // TODO(3095996): Get rid of this. For now, we need to make the
|
| + // result register contain a valid pointer because it is already
|
| + // contained in the register pointer map.
|
| + __ mov(result, zero_reg);
|
| +
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + __ push(string);
|
| + // Push the index as a smi. This is safe because of the checks in
|
| + // DoStringCharCodeAt above.
|
| + if (instr->index()->IsConstantOperand()) {
|
| + int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
|
| + __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
|
| + __ push(scratch);
|
| + } else {
|
| + Register index = ToRegister(instr->index());
|
| + __ SmiTag(index);
|
| + __ push(index);
|
| + }
|
| + CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
|
| + if (FLAG_debug_code) {
|
| + __ AbortIfNotSmi(v0);
|
| + }
|
| + __ SmiUntag(v0);
|
| + __ StoreToSafepointRegisterSlot(v0, result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
|
| + class DeferredStringCharFromCode: public LDeferredCode {
|
| + public:
|
| + DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LStringCharFromCode* instr_;
|
| + };
|
| +
|
| + DeferredStringCharFromCode* deferred =
|
| + new DeferredStringCharFromCode(this, instr);
|
| +
|
| + ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
|
| + Register char_code = ToRegister(instr->char_code());
|
| + Register result = ToRegister(instr->result());
|
| + Register scratch = scratch0();
|
| + ASSERT(!char_code.is(result));
|
| +
|
| + __ Branch(deferred->entry(), hi,
|
| + char_code, Operand(String::kMaxAsciiCharCode));
|
| + __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
|
| + __ sll(scratch, char_code, kPointerSizeLog2);
|
| + __ Addu(result, result, scratch);
|
| + __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize));
|
| + __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
|
| + __ Branch(deferred->entry(), eq, result, Operand(scratch));
|
| + __ bind(deferred->exit());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
|
| + Register char_code = ToRegister(instr->char_code());
|
| + Register result = ToRegister(instr->result());
|
| +
|
| + // TODO(3095996): Get rid of this. For now, we need to make the
|
| + // result register contain a valid pointer because it is already
|
| + // contained in the register pointer map.
|
| + __ mov(result, zero_reg);
|
| +
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + __ SmiTag(char_code);
|
| + __ push(char_code);
|
| + CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
|
| + __ StoreToSafepointRegisterSlot(v0, result);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStringLength(LStringLength* instr) {
|
| + Register string = ToRegister(instr->InputAt(0));
|
| + Register result = ToRegister(instr->result());
|
| + __ lw(result, FieldMemOperand(string, String::kLengthOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
|
| + LOperand* input = instr->InputAt(0);
|
| + ASSERT(input->IsRegister() || input->IsStackSlot());
|
| + LOperand* output = instr->result();
|
| + ASSERT(output->IsDoubleRegister());
|
| + FPURegister single_scratch = double_scratch0().low();
|
| + if (input->IsStackSlot()) {
|
| + Register scratch = scratch0();
|
| + __ lw(scratch, ToMemOperand(input));
|
| + __ mtc1(scratch, single_scratch);
|
| + } else {
|
| + __ mtc1(ToRegister(input), single_scratch);
|
| + }
|
| + __ cvt_d_w(ToDoubleRegister(output), single_scratch);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
|
| + class DeferredNumberTagI: public LDeferredCode {
|
| + public:
|
| + DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LNumberTagI* instr_;
|
| + };
|
| +
|
| + LOperand* input = instr->InputAt(0);
|
| + ASSERT(input->IsRegister() && input->Equals(instr->result()));
|
| + Register reg = ToRegister(input);
|
| + Register overflow = scratch0();
|
| +
|
| + DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
|
| + __ SmiTagCheckOverflow(reg, overflow);
|
| + __ BranchOnOverflow(deferred->entry(), overflow);
|
| + __ bind(deferred->exit());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
|
| + Label slow;
|
| + Register reg = ToRegister(instr->InputAt(0));
|
| + FPURegister dbl_scratch = double_scratch0();
|
| +
|
| + // Preserve the value of all registers.
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| +
|
| + // There was overflow, so bits 30 and 31 of the original integer
|
| + // disagree. Try to allocate a heap number in new space and store
|
| + // the value in there. If that fails, call the runtime system.
|
| + Label done;
|
| + __ SmiUntag(reg);
|
| + __ Xor(reg, reg, Operand(0x80000000));
|
| + __ mtc1(reg, dbl_scratch);
|
| + __ cvt_d_w(dbl_scratch, dbl_scratch);
|
| + if (FLAG_inline_new) {
|
| + __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(t1, a3, t0, t2, &slow);
|
| + if (!reg.is(t1)) __ mov(reg, t1);
|
| + __ Branch(&done);
|
| + }
|
| +
|
| + // Slow case: Call the runtime system to do the number allocation.
|
| + __ bind(&slow);
|
| +
|
| + // TODO(3095996): Put a valid pointer value in the stack slot where the result
|
| + // register is stored, as this register is in the pointer map, but contains an
|
| + // integer value.
|
| + __ StoreToSafepointRegisterSlot(zero_reg, reg);
|
| + CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
|
| + if (!reg.is(v0)) __ mov(reg, v0);
|
| +
|
| + // Done. Put the value in dbl_scratch into the value of the allocated heap
|
| + // number.
|
| + __ bind(&done);
|
| + __ sdc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
|
| + __ StoreToSafepointRegisterSlot(reg, reg);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
|
| + class DeferredNumberTagD: public LDeferredCode {
|
| + public:
|
| + DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LNumberTagD* instr_;
|
| + };
|
| +
|
| + DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0));
|
| + Register scratch = scratch0();
|
| + Register reg = ToRegister(instr->result());
|
| + Register temp1 = ToRegister(instr->TempAt(0));
|
| + Register temp2 = ToRegister(instr->TempAt(1));
|
| +
|
| + DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
|
| + if (FLAG_inline_new) {
|
| + __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
|
| + __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
|
| + } else {
|
| + __ Branch(deferred->entry());
|
| + }
|
| + __ bind(deferred->exit());
|
| + __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
|
| + // TODO(3095996): Get rid of this. For now, we need to make the
|
| + // result register contain a valid pointer because it is already
|
| + // contained in the register pointer map.
|
| + Register reg = ToRegister(instr->result());
|
| + __ mov(reg, zero_reg);
|
| +
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
|
| + __ StoreToSafepointRegisterSlot(v0, reg);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoSmiTag(LSmiTag* instr) {
|
| + LOperand* input = instr->InputAt(0);
|
| + ASSERT(input->IsRegister() && input->Equals(instr->result()));
|
| + ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
|
| + __ SmiTag(ToRegister(input));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
|
| + Register scratch = scratch0();
|
| + LOperand* input = instr->InputAt(0);
|
| + ASSERT(input->IsRegister() && input->Equals(instr->result()));
|
| + if (instr->needs_check()) {
|
| + STATIC_ASSERT(kHeapObjectTag == 1);
|
| + // If the input is a HeapObject, value of scratch won't be zero.
|
| + __ And(scratch, ToRegister(input), Operand(kHeapObjectTag));
|
| + __ SmiUntag(ToRegister(input));
|
| + DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg));
|
| + } else {
|
| + __ SmiUntag(ToRegister(input));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EmitNumberUntagD(Register input_reg,
|
| + DoubleRegister result_reg,
|
| + bool deoptimize_on_undefined,
|
| + LEnvironment* env) {
|
| + Register scratch = scratch0();
|
| +
|
| + Label load_smi, heap_number, done;
|
| +
|
| + // Smi check.
|
| + __ JumpIfSmi(input_reg, &load_smi);
|
| +
|
| + // Heap number map check.
|
| + __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
|
| + __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
|
| + if (deoptimize_on_undefined) {
|
| + DeoptimizeIf(ne, env, scratch, Operand(at));
|
| + } else {
|
| + Label heap_number;
|
| + __ Branch(&heap_number, eq, scratch, Operand(at));
|
| +
|
| + __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
|
| + DeoptimizeIf(ne, env, input_reg, Operand(at));
|
| +
|
| + // Convert undefined to NaN.
|
| + __ LoadRoot(at, Heap::kNanValueRootIndex);
|
| + __ ldc1(result_reg, FieldMemOperand(at, HeapNumber::kValueOffset));
|
| + __ Branch(&done);
|
| +
|
| + __ bind(&heap_number);
|
| + }
|
| + // Heap number to double register conversion.
|
| + __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
|
| + __ Branch(&done);
|
| +
|
| + // Smi to double register conversion
|
| + __ bind(&load_smi);
|
| + __ SmiUntag(input_reg); // Untag smi before converting to float.
|
| + __ mtc1(input_reg, result_reg);
|
| + __ cvt_d_w(result_reg, result_reg);
|
| + __ SmiTag(input_reg); // Retag smi.
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
|
| + Register input_reg = ToRegister(instr->InputAt(0));
|
| + Register scratch1 = scratch0();
|
| + Register scratch2 = ToRegister(instr->TempAt(0));
|
| + DoubleRegister double_scratch = double_scratch0();
|
| + FPURegister single_scratch = double_scratch.low();
|
| +
|
| + ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2));
|
| + ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1));
|
| +
|
| + Label done;
|
| +
|
| + // The input is a tagged HeapObject.
|
| + // Heap number map check.
|
| + __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
|
| + __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
|
| + // This 'at' value and scratch1 map value are used for tests in both clauses
|
| + // of the if.
|
| +
|
| + if (instr->truncating()) {
|
| + Register scratch3 = ToRegister(instr->TempAt(1));
|
| + DoubleRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2));
|
| + ASSERT(!scratch3.is(input_reg) &&
|
| + !scratch3.is(scratch1) &&
|
| + !scratch3.is(scratch2));
|
| + // Performs a truncating conversion of a floating point number as used by
|
| + // the JS bitwise operations.
|
| + Label heap_number;
|
| + __ Branch(&heap_number, eq, scratch1, Operand(at)); // HeapNumber map?
|
| + // Check for undefined. Undefined is converted to zero for truncating
|
| + // conversions.
|
| + __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
|
| + DeoptimizeIf(ne, instr->environment(), input_reg, Operand(at));
|
| + ASSERT(ToRegister(instr->result()).is(input_reg));
|
| + __ mov(input_reg, zero_reg);
|
| + __ Branch(&done);
|
| +
|
| + __ bind(&heap_number);
|
| + __ ldc1(double_scratch2,
|
| + FieldMemOperand(input_reg, HeapNumber::kValueOffset));
|
| + __ EmitECMATruncate(input_reg,
|
| + double_scratch2,
|
| + single_scratch,
|
| + scratch1,
|
| + scratch2,
|
| + scratch3);
|
| + } else {
|
| + // Deoptimize if we don't have a heap number.
|
| + DeoptimizeIf(ne, instr->environment(), scratch1, Operand(at));
|
| +
|
| + // Load the double value.
|
| + __ ldc1(double_scratch,
|
| + FieldMemOperand(input_reg, HeapNumber::kValueOffset));
|
| +
|
| + Register except_flag = scratch2;
|
| + __ EmitFPUTruncate(kRoundToZero,
|
| + single_scratch,
|
| + double_scratch,
|
| + scratch1,
|
| + except_flag,
|
| + kCheckForInexactConversion);
|
| +
|
| + // Deopt if the operation did not succeed.
|
| + DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
|
| +
|
| + // Load the result.
|
| + __ mfc1(input_reg, single_scratch);
|
| +
|
| + if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
|
| + __ Branch(&done, ne, input_reg, Operand(zero_reg));
|
| +
|
| + __ mfc1(scratch1, double_scratch.high());
|
| + __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
|
| + DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg));
|
| + }
|
| + }
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
|
| + class DeferredTaggedToI: public LDeferredCode {
|
| + public:
|
| + DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LTaggedToI* instr_;
|
| + };
|
| +
|
| + LOperand* input = instr->InputAt(0);
|
| + ASSERT(input->IsRegister());
|
| + ASSERT(input->Equals(instr->result()));
|
| +
|
| + Register input_reg = ToRegister(input);
|
| +
|
| + DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
|
| +
|
| + // Let the deferred code handle the HeapObject case.
|
| + __ JumpIfNotSmi(input_reg, deferred->entry());
|
| +
|
| + // Smi to int32 conversion.
|
| + __ SmiUntag(input_reg);
|
| + __ bind(deferred->exit());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
|
| + LOperand* input = instr->InputAt(0);
|
| + ASSERT(input->IsRegister());
|
| + LOperand* result = instr->result();
|
| + ASSERT(result->IsDoubleRegister());
|
| +
|
| + Register input_reg = ToRegister(input);
|
| + DoubleRegister result_reg = ToDoubleRegister(result);
|
| +
|
| + EmitNumberUntagD(input_reg, result_reg,
|
| + instr->hydrogen()->deoptimize_on_undefined(),
|
| + instr->environment());
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
|
| + Register result_reg = ToRegister(instr->result());
|
| + Register scratch1 = scratch0();
|
| + Register scratch2 = ToRegister(instr->TempAt(0));
|
| + DoubleRegister double_input = ToDoubleRegister(instr->InputAt(0));
|
| + DoubleRegister double_scratch = double_scratch0();
|
| + FPURegister single_scratch = double_scratch0().low();
|
| +
|
| + if (instr->truncating()) {
|
| + Register scratch3 = ToRegister(instr->TempAt(1));
|
| + __ EmitECMATruncate(result_reg,
|
| + double_input,
|
| + single_scratch,
|
| + scratch1,
|
| + scratch2,
|
| + scratch3);
|
| + } else {
|
| + Register except_flag = scratch2;
|
| +
|
| + __ EmitFPUTruncate(kRoundToMinusInf,
|
| + single_scratch,
|
| + double_input,
|
| + scratch1,
|
| + except_flag,
|
| + kCheckForInexactConversion);
|
| +
|
| + // Deopt if the operation did not succeed (except_flag != 0).
|
| + DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg));
|
| +
|
| + // Load the result.
|
| + __ mfc1(result_reg, single_scratch);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
|
| + LOperand* input = instr->InputAt(0);
|
| + __ And(at, ToRegister(input), Operand(kSmiTagMask));
|
| + DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
|
| + LOperand* input = instr->InputAt(0);
|
| + __ And(at, ToRegister(input), Operand(kSmiTagMask));
|
| + DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + Register scratch = scratch0();
|
| +
|
| + __ GetObjectType(input, scratch, scratch);
|
| +
|
| + if (instr->hydrogen()->is_interval_check()) {
|
| + InstanceType first;
|
| + InstanceType last;
|
| + instr->hydrogen()->GetCheckInterval(&first, &last);
|
| +
|
| + // If there is only one type in the interval check for equality.
|
| + if (first == last) {
|
| + DeoptimizeIf(ne, instr->environment(), scratch, Operand(first));
|
| + } else {
|
| + DeoptimizeIf(lo, instr->environment(), scratch, Operand(first));
|
| + // Omit check for the last type.
|
| + if (last != LAST_TYPE) {
|
| + DeoptimizeIf(hi, instr->environment(), scratch, Operand(last));
|
| + }
|
| + }
|
| + } else {
|
| + uint8_t mask;
|
| + uint8_t tag;
|
| + instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
|
| +
|
| + if (IsPowerOf2(mask)) {
|
| + ASSERT(tag == 0 || IsPowerOf2(tag));
|
| + __ And(at, scratch, mask);
|
| + DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(),
|
| + at, Operand(zero_reg));
|
| + } else {
|
| + __ And(scratch, scratch, Operand(mask));
|
| + DeoptimizeIf(ne, instr->environment(), scratch, Operand(tag));
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
|
| + ASSERT(instr->InputAt(0)->IsRegister());
|
| + Register reg = ToRegister(instr->InputAt(0));
|
| + DeoptimizeIf(ne, instr->environment(), reg,
|
| + Operand(instr->hydrogen()->target()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckMap(LCheckMap* instr) {
|
| + Register scratch = scratch0();
|
| + LOperand* input = instr->InputAt(0);
|
| + ASSERT(input->IsRegister());
|
| + Register reg = ToRegister(input);
|
| + __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
|
| + DeoptimizeIf(ne,
|
| + instr->environment(),
|
| + scratch,
|
| + Operand(instr->hydrogen()->map()));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
|
| + DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
|
| + Register result_reg = ToRegister(instr->result());
|
| + DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
|
| + __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
|
| + Register unclamped_reg = ToRegister(instr->unclamped());
|
| + Register result_reg = ToRegister(instr->result());
|
| + __ ClampUint8(result_reg, unclamped_reg);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
|
| + Register scratch = scratch0();
|
| + Register input_reg = ToRegister(instr->unclamped());
|
| + Register result_reg = ToRegister(instr->result());
|
| + DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
|
| + Label is_smi, done, heap_number;
|
| +
|
| + // Both smi and heap number cases are handled.
|
| + __ JumpIfSmi(input_reg, &is_smi);
|
| +
|
| + // Check for heap number
|
| + __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
|
| + __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
|
| +
|
| + // Check for undefined. Undefined is converted to zero for clamping
|
| + // conversions.
|
| + DeoptimizeIf(ne, instr->environment(), input_reg,
|
| + Operand(factory()->undefined_value()));
|
| + __ mov(result_reg, zero_reg);
|
| + __ jmp(&done);
|
| +
|
| + // Heap number
|
| + __ bind(&heap_number);
|
| + __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
|
| + HeapNumber::kValueOffset));
|
| + __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
|
| + __ jmp(&done);
|
| +
|
| + // smi
|
| + __ bind(&is_smi);
|
| + __ SmiUntag(scratch, input_reg);
|
| + __ ClampUint8(result_reg, scratch);
|
| +
|
| + __ bind(&done);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::LoadHeapObject(Register result,
|
| + Handle<HeapObject> object) {
|
| + if (heap()->InNewSpace(*object)) {
|
| + Handle<JSGlobalPropertyCell> cell =
|
| + factory()->NewJSGlobalPropertyCell(object);
|
| + __ li(result, Operand(cell));
|
| + __ lw(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset));
|
| + } else {
|
| + __ li(result, Operand(object));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
|
| + Register temp1 = ToRegister(instr->TempAt(0));
|
| + Register temp2 = ToRegister(instr->TempAt(1));
|
| +
|
| + Handle<JSObject> holder = instr->holder();
|
| + Handle<JSObject> current_prototype = instr->prototype();
|
| +
|
| + // Load prototype object.
|
| + LoadHeapObject(temp1, current_prototype);
|
| +
|
| + // Check prototype maps up to the holder.
|
| + while (!current_prototype.is_identical_to(holder)) {
|
| + __ lw(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset));
|
| + DeoptimizeIf(ne,
|
| + instr->environment(),
|
| + temp2,
|
| + Operand(Handle<Map>(current_prototype->map())));
|
| + current_prototype =
|
| + Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
|
| + // Load next prototype object.
|
| + LoadHeapObject(temp1, current_prototype);
|
| + }
|
| +
|
| + // Check the holder map.
|
| + __ lw(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset));
|
| + DeoptimizeIf(ne,
|
| + instr->environment(),
|
| + temp2,
|
| + Operand(Handle<Map>(current_prototype->map())));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
|
| + __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
| + __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
|
| + __ li(a2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
|
| + __ li(a1, Operand(instr->hydrogen()->constant_elements()));
|
| + __ Push(a3, a2, a1);
|
| +
|
| + // Pick the right runtime function or stub to call.
|
| + int length = instr->hydrogen()->length();
|
| + if (instr->hydrogen()->IsCopyOnWrite()) {
|
| + ASSERT(instr->hydrogen()->depth() == 1);
|
| + FastCloneShallowArrayStub::Mode mode =
|
| + FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
|
| + FastCloneShallowArrayStub stub(mode, length);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + } else if (instr->hydrogen()->depth() > 1) {
|
| + CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
|
| + } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
|
| + CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
|
| + } else {
|
| + FastCloneShallowArrayStub::Mode mode =
|
| + FastCloneShallowArrayStub::CLONE_ELEMENTS;
|
| + FastCloneShallowArrayStub stub(mode, length);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| + __ lw(t0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
| + __ lw(t0, FieldMemOperand(t0, JSFunction::kLiteralsOffset));
|
| + __ li(a3, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
|
| + __ li(a2, Operand(instr->hydrogen()->constant_properties()));
|
| + __ li(a1, Operand(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0)));
|
| + __ Push(t0, a3, a2, a1);
|
| +
|
| + // Pick the right runtime function to call.
|
| + if (instr->hydrogen()->depth() > 1) {
|
| + CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
|
| + } else {
|
| + CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
|
| + ASSERT(ToRegister(instr->InputAt(0)).is(a0));
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| + __ push(a0);
|
| + CallRuntime(Runtime::kToFastProperties, 1, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
|
| + Label materialized;
|
| + // Registers will be used as follows:
|
| + // a3 = JS function.
|
| + // t3 = literals array.
|
| + // a1 = regexp literal.
|
| + // a0 = regexp literal clone.
|
| + // a2 and t0-t2 are used as temporaries.
|
| + __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
| + __ lw(t3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
|
| + int literal_offset = FixedArray::kHeaderSize +
|
| + instr->hydrogen()->literal_index() * kPointerSize;
|
| + __ lw(a1, FieldMemOperand(t3, literal_offset));
|
| + __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
|
| + __ Branch(&materialized, ne, a1, Operand(at));
|
| +
|
| + // Create regexp literal using runtime function
|
| + // Result will be in v0.
|
| + __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
|
| + __ li(t1, Operand(instr->hydrogen()->pattern()));
|
| + __ li(t0, Operand(instr->hydrogen()->flags()));
|
| + __ Push(t3, t2, t1, t0);
|
| + CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
|
| + __ mov(a1, v0);
|
| +
|
| + __ bind(&materialized);
|
| + int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
|
| + Label allocated, runtime_allocate;
|
| +
|
| + __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
|
| + __ jmp(&allocated);
|
| +
|
| + __ bind(&runtime_allocate);
|
| + __ li(a0, Operand(Smi::FromInt(size)));
|
| + __ Push(a1, a0);
|
| + CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
|
| + __ pop(a1);
|
| +
|
| + __ bind(&allocated);
|
| + // Copy the content into the newly allocated memory.
|
| + // (Unroll copy loop once for better throughput).
|
| + for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
|
| + __ lw(a3, FieldMemOperand(a1, i));
|
| + __ lw(a2, FieldMemOperand(a1, i + kPointerSize));
|
| + __ sw(a3, FieldMemOperand(v0, i));
|
| + __ sw(a2, FieldMemOperand(v0, i + kPointerSize));
|
| + }
|
| + if ((size % (2 * kPointerSize)) != 0) {
|
| + __ lw(a3, FieldMemOperand(a1, size - kPointerSize));
|
| + __ sw(a3, FieldMemOperand(v0, size - kPointerSize));
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
|
| + // Use the fast case closure allocation code that allocates in new
|
| + // space for nested functions that don't need literals cloning.
|
| + Handle<SharedFunctionInfo> shared_info = instr->shared_info();
|
| + bool pretenure = instr->hydrogen()->pretenure();
|
| + if (!pretenure && shared_info->num_literals() == 0) {
|
| + FastNewClosureStub stub(
|
| + shared_info->strict_mode() ? kStrictMode : kNonStrictMode);
|
| + __ li(a1, Operand(shared_info));
|
| + __ push(a1);
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + } else {
|
| + __ li(a2, Operand(shared_info));
|
| + __ li(a1, Operand(pretenure
|
| + ? factory()->true_value()
|
| + : factory()->false_value()));
|
| + __ Push(cp, a2, a1);
|
| + CallRuntime(Runtime::kNewClosure, 3, instr);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoTypeof(LTypeof* instr) {
|
| + ASSERT(ToRegister(instr->result()).is(v0));
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + __ push(input);
|
| + CallRuntime(Runtime::kTypeof, 1, instr);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
|
| + Register input = ToRegister(instr->InputAt(0));
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| + Label* true_label = chunk_->GetAssemblyLabel(true_block);
|
| + Label* false_label = chunk_->GetAssemblyLabel(false_block);
|
| +
|
| + Register cmp1 = no_reg;
|
| + Operand cmp2 = Operand(no_reg);
|
| +
|
| + Condition final_branch_condition = EmitTypeofIs(true_label,
|
| + false_label,
|
| + input,
|
| + instr->type_literal(),
|
| + cmp1,
|
| + cmp2);
|
| +
|
| + ASSERT(cmp1.is_valid());
|
| + ASSERT(!cmp2.is_reg() || cmp2.rm().is_valid());
|
| +
|
| + if (final_branch_condition != kNoCondition) {
|
| + EmitBranch(true_block, false_block, final_branch_condition, cmp1, cmp2);
|
| + }
|
| +}
|
| +
|
| +
|
| +Condition LCodeGen::EmitTypeofIs(Label* true_label,
|
| + Label* false_label,
|
| + Register input,
|
| + Handle<String> type_name,
|
| + Register& cmp1,
|
| + Operand& cmp2) {
|
| + // This function utilizes the delay slot heavily. This is used to load
|
| + // values that are always usable without depending on the type of the input
|
| + // register.
|
| + Condition final_branch_condition = kNoCondition;
|
| + Register scratch = scratch0();
|
| + if (type_name->Equals(heap()->number_symbol())) {
|
| + __ JumpIfSmi(input, true_label);
|
| + __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
|
| + cmp1 = input;
|
| + cmp2 = Operand(at);
|
| + final_branch_condition = eq;
|
| +
|
| + } else if (type_name->Equals(heap()->string_symbol())) {
|
| + __ JumpIfSmi(input, false_label);
|
| + __ GetObjectType(input, input, scratch);
|
| + __ Branch(USE_DELAY_SLOT, false_label,
|
| + ge, scratch, Operand(FIRST_NONSTRING_TYPE));
|
| + // input is an object so we can load the BitFieldOffset even if we take the
|
| + // other branch.
|
| + __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
|
| + __ And(at, at, 1 << Map::kIsUndetectable);
|
| + cmp1 = at;
|
| + cmp2 = Operand(zero_reg);
|
| + final_branch_condition = eq;
|
| +
|
| + } else if (type_name->Equals(heap()->boolean_symbol())) {
|
| + __ LoadRoot(at, Heap::kTrueValueRootIndex);
|
| + __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
|
| + __ LoadRoot(at, Heap::kFalseValueRootIndex);
|
| + cmp1 = at;
|
| + cmp2 = Operand(input);
|
| + final_branch_condition = eq;
|
| +
|
| + } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) {
|
| + __ LoadRoot(at, Heap::kNullValueRootIndex);
|
| + cmp1 = at;
|
| + cmp2 = Operand(input);
|
| + final_branch_condition = eq;
|
| +
|
| + } else if (type_name->Equals(heap()->undefined_symbol())) {
|
| + __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
|
| + __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
|
| + // The first instruction of JumpIfSmi is an And - it is safe in the delay
|
| + // slot.
|
| + __ JumpIfSmi(input, false_label);
|
| + // Check for undetectable objects => true.
|
| + __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
|
| + __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
|
| + __ And(at, at, 1 << Map::kIsUndetectable);
|
| + cmp1 = at;
|
| + cmp2 = Operand(zero_reg);
|
| + final_branch_condition = ne;
|
| +
|
| + } else if (type_name->Equals(heap()->function_symbol())) {
|
| + STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
|
| + __ JumpIfSmi(input, false_label);
|
| + __ GetObjectType(input, scratch, input);
|
| + __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE));
|
| + cmp1 = input;
|
| + cmp2 = Operand(JS_FUNCTION_PROXY_TYPE);
|
| + final_branch_condition = eq;
|
| +
|
| + } else if (type_name->Equals(heap()->object_symbol())) {
|
| + __ JumpIfSmi(input, false_label);
|
| + if (!FLAG_harmony_typeof) {
|
| + __ LoadRoot(at, Heap::kNullValueRootIndex);
|
| + __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
|
| + }
|
| + // input is an object, it is safe to use GetObjectType in the delay slot.
|
| + __ GetObjectType(input, input, scratch);
|
| + __ Branch(USE_DELAY_SLOT, false_label,
|
| + lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
| + // Still an object, so the InstanceType can be loaded.
|
| + __ lbu(scratch, FieldMemOperand(input, Map::kInstanceTypeOffset));
|
| + __ Branch(USE_DELAY_SLOT, false_label,
|
| + gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
| + // Still an object, so the BitField can be loaded.
|
| + // Check for undetectable objects => false.
|
| + __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
|
| + __ And(at, at, 1 << Map::kIsUndetectable);
|
| + cmp1 = at;
|
| + cmp2 = Operand(zero_reg);
|
| + final_branch_condition = eq;
|
| +
|
| + } else {
|
| + cmp1 = at;
|
| + cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion.
|
| + __ Branch(false_label);
|
| + }
|
| +
|
| + return final_branch_condition;
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
|
| + Register temp1 = ToRegister(instr->TempAt(0));
|
| + int true_block = chunk_->LookupDestination(instr->true_block_id());
|
| + int false_block = chunk_->LookupDestination(instr->false_block_id());
|
| +
|
| + EmitIsConstructCall(temp1, scratch0());
|
| +
|
| + EmitBranch(true_block, false_block, eq, temp1,
|
| + Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
|
| + ASSERT(!temp1.is(temp2));
|
| + // Get the frame pointer for the calling frame.
|
| + __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
| +
|
| + // Skip the arguments adaptor frame if it exists.
|
| + Label check_frame_marker;
|
| + __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
|
| + __ Branch(&check_frame_marker, ne, temp2,
|
| + Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
| + __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
|
| +
|
| + // Check the marker in the calling frame.
|
| + __ bind(&check_frame_marker);
|
| + __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
|
| + // No code for lazy bailout instruction. Used to capture environment after a
|
| + // call for populating the safepoint data with deoptimization data.
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
|
| + DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg));
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
|
| + Register object = ToRegister(instr->object());
|
| + Register key = ToRegister(instr->key());
|
| + Register strict = scratch0();
|
| + __ li(strict, Operand(Smi::FromInt(strict_mode_flag())));
|
| + __ Push(object, key, strict);
|
| + ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + LEnvironment* env = instr->deoptimization_environment();
|
| + RecordPosition(pointers->position());
|
| + RegisterEnvironmentForDeoptimization(env);
|
| + SafepointGenerator safepoint_generator(this,
|
| + pointers,
|
| + env->deoptimization_index());
|
| + __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoIn(LIn* instr) {
|
| + Register obj = ToRegister(instr->object());
|
| + Register key = ToRegister(instr->key());
|
| + __ Push(key, obj);
|
| + ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
|
| + LPointerMap* pointers = instr->pointer_map();
|
| + LEnvironment* env = instr->deoptimization_environment();
|
| + RecordPosition(pointers->position());
|
| + RegisterEnvironmentForDeoptimization(env);
|
| + SafepointGenerator safepoint_generator(this,
|
| + pointers,
|
| + env->deoptimization_index());
|
| + __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
|
| + {
|
| + PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
|
| + __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
|
| + RegisterLazyDeoptimization(
|
| + instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
|
| + }
|
| +
|
| + // The gap code includes the restoring of the safepoint registers.
|
| + int pc = masm()->pc_offset();
|
| + safepoints_.SetPcAfterGap(pc);
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoStackCheck(LStackCheck* instr) {
|
| + class DeferredStackCheck: public LDeferredCode {
|
| + public:
|
| + DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
|
| + : LDeferredCode(codegen), instr_(instr) { }
|
| + virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
|
| + virtual LInstruction* instr() { return instr_; }
|
| + private:
|
| + LStackCheck* instr_;
|
| + };
|
| +
|
| + if (instr->hydrogen()->is_function_entry()) {
|
| + // Perform stack overflow check.
|
| + Label done;
|
| + __ LoadRoot(at, Heap::kStackLimitRootIndex);
|
| + __ Branch(&done, hs, sp, Operand(at));
|
| + StackCheckStub stub;
|
| + CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
|
| + __ bind(&done);
|
| + } else {
|
| + ASSERT(instr->hydrogen()->is_backwards_branch());
|
| + // Perform stack overflow check if this goto needs it before jumping.
|
| + DeferredStackCheck* deferred_stack_check =
|
| + new DeferredStackCheck(this, instr);
|
| + __ LoadRoot(at, Heap::kStackLimitRootIndex);
|
| + __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
|
| + __ bind(instr->done_label());
|
| + deferred_stack_check->SetExit(instr->done_label());
|
| + }
|
| +}
|
| +
|
| +
|
| +void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
|
| + // This is a pseudo-instruction that ensures that the environment here is
|
| + // properly registered for deoptimization and records the assembler's PC
|
| + // offset.
|
| + LEnvironment* environment = instr->environment();
|
| + environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
|
| + instr->SpilledDoubleRegisterArray());
|
| +
|
| + // If the environment were already registered, we would have no way of
|
| + // backpatching it with the spill slot operands.
|
| + ASSERT(!environment->HasBeenRegistered());
|
| + RegisterEnvironmentForDeoptimization(environment);
|
| + ASSERT(osr_pc_offset_ == -1);
|
| + osr_pc_offset_ = masm()->pc_offset();
|
| +}
|
| +
|
| +
|
| +#undef __
|
| +
|
| +} } // namespace v8::internal
|
|
|