OLD | NEW |
---|---|
(Empty) | |
1 // Copyright 2011 the V8 project authors. All rights reserved. | |
2 // Redistribution and use in source and binary forms, with or without | |
3 // modification, are permitted provided that the following conditions are | |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | |
28 #include "v8.h" | |
29 | |
30 #include "mips/lithium-gap-resolver-mips.h" | |
31 #include "mips/lithium-codegen-mips.h" | |
32 | |
33 namespace v8 { | |
34 namespace internal { | |
35 | |
36 static const Register kSavedValueRegister = lithiumScratchReg; | |
37 static const DoubleRegister kSavedDoubleValueRegister = lithiumScratchDouble; | |
38 | |
39 LGapResolver::LGapResolver(LCodeGen* owner) | |
40 : cgen_(owner), moves_(32), root_index_(0), in_cycle_(false), | |
Kevin Millikin (Chromium)
2011/10/19 07:43:21
We normally put one initializer per line if they d
Paul Lind
2011/10/20 04:34:08
Done.
| |
41 saved_destination_(NULL) { } | |
42 | |
43 | |
44 void LGapResolver::Resolve(LParallelMove* parallel_move) { | |
45 ASSERT(moves_.is_empty()); | |
46 // Build up a worklist of moves. | |
47 BuildInitialMoveList(parallel_move); | |
48 | |
49 for (int i = 0; i < moves_.length(); ++i) { | |
50 LMoveOperands move = moves_[i]; | |
51 // Skip constants to perform them last. They don't block other moves | |
52 // and skipping such moves with register destinations keeps those | |
53 // registers free for the whole algorithm. | |
54 if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { | |
55 root_index_ = i; // Any cycle is found when by reaching this move again. | |
56 PerformMove(i); | |
57 if (in_cycle_) { | |
58 RestoreValue(); | |
59 } | |
60 } | |
61 } | |
62 | |
63 // Perform the moves with constant sources. | |
64 for (int i = 0; i < moves_.length(); ++i) { | |
65 if (!moves_[i].IsEliminated()) { | |
66 ASSERT(moves_[i].source()->IsConstantOperand()); | |
67 EmitMove(i); | |
68 } | |
69 } | |
70 | |
71 moves_.Rewind(0); | |
72 } | |
73 | |
74 | |
75 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { | |
76 // Perform a linear sweep of the moves to add them to the initial list of | |
77 // moves to perform, ignoring any move that is redundant (the source is | |
78 // the same as the destination, the destination is ignored and | |
79 // unallocated, or the move was already eliminated). | |
80 const ZoneList<LMoveOperands>* moves = parallel_move->move_operands(); | |
81 for (int i = 0; i < moves->length(); ++i) { | |
82 LMoveOperands move = moves->at(i); | |
83 if (!move.IsRedundant()) moves_.Add(move); | |
84 } | |
85 Verify(); | |
86 } | |
87 | |
88 | |
89 void LGapResolver::PerformMove(int index) { | |
90 // Each call to this function performs a move and deletes it from the move | |
91 // graph. We first recursively perform any move blocking this one. We | |
92 // mark a move as "pending" on entry to PerformMove in order to detect | |
93 // cycles in the move graph. | |
94 | |
95 // We can only find a cycle, when doing a depth-first traversal of moves, | |
96 // be encountering the starting move again. So by spilling the source of | |
97 // the starting move, we break the cycle. All moves are then unblocked, | |
98 // and the starting move is completed by writing the spilled value to | |
99 // its destination. All other moves from the spilled source have been | |
100 // completed prior to breaking the cycle. | |
101 // An additional complication is that moves to MemOperands with large | |
102 // offsets (more than 1K or 4K) require us to spill this spilled value to | |
103 // the stack, to free up the register. | |
104 ASSERT(!moves_[index].IsPending()); | |
105 ASSERT(!moves_[index].IsRedundant()); | |
106 | |
107 // Clear this move's destination to indicate a pending move. The actual | |
108 // destination is saved in a stack allocated local. Multiple moves can | |
109 // be pending because this function is recursive. | |
110 ASSERT(moves_[index].source() != NULL); // Or else it will look eliminated. | |
111 LOperand* destination = moves_[index].destination(); | |
112 moves_[index].set_destination(NULL); | |
113 | |
114 // Perform a depth-first traversal of the move graph to resolve | |
115 // dependencies. Any unperformed, unpending move with a source the same | |
116 // as this one's destination blocks this one so recursively perform all | |
117 // such moves. | |
118 for (int i = 0; i < moves_.length(); ++i) { | |
119 LMoveOperands other_move = moves_[i]; | |
120 if (other_move.Blocks(destination) && !other_move.IsPending()) { | |
121 PerformMove(i); | |
122 // If there is a blocking, pending move it must be moves_[root_index_] | |
123 // and all other moves with the same source as moves_[root_index_] are | |
124 // sucessfully executed (because they are cycle-free) by this loop. | |
125 } | |
126 } | |
127 | |
128 // We are about to resolve this move and don't need it marked as | |
129 // pending, so restore its destination. | |
130 moves_[index].set_destination(destination); | |
131 | |
132 // The move may be blocked on a pending move, which must be the starting move. | |
133 // In this case, we have a cycle, and we save the source of this move to | |
134 // a scratch register to break it. | |
135 LMoveOperands other_move = moves_[root_index_]; | |
136 if (other_move.Blocks(destination)) { | |
137 ASSERT(other_move.IsPending()); | |
138 BreakCycle(index); | |
139 return; | |
140 } | |
141 | |
142 // This move is no longer blocked. | |
143 EmitMove(index); | |
144 } | |
145 | |
146 | |
147 void LGapResolver::Verify() { | |
148 #ifdef ENABLE_SLOW_ASSERTS | |
149 // No operand should be the destination for more than one move. | |
150 for (int i = 0; i < moves_.length(); ++i) { | |
151 LOperand* destination = moves_[i].destination(); | |
152 for (int j = i + 1; j < moves_.length(); ++j) { | |
153 SLOW_ASSERT(!destination->Equals(moves_[j].destination())); | |
154 } | |
155 } | |
156 #endif | |
157 } | |
158 | |
159 #define __ ACCESS_MASM(cgen_->masm()) | |
160 | |
161 void LGapResolver::BreakCycle(int index) { | |
162 // We save in a register the value that should end up in the source of | |
163 // moves_[root_index]. After performing all moves in the tree rooted | |
164 // in that move, we save the value to that source. | |
165 ASSERT(moves_[index].destination()->Equals(moves_[root_index_].source())); | |
166 ASSERT(!in_cycle_); | |
167 in_cycle_ = true; | |
168 LOperand* source = moves_[index].source(); | |
169 saved_destination_ = moves_[index].destination(); | |
170 if (source->IsRegister()) { | |
171 __ mov(kSavedValueRegister, cgen_->ToRegister(source)); | |
172 } else if (source->IsStackSlot()) { | |
173 __ lw(kSavedValueRegister, cgen_->ToMemOperand(source)); | |
174 } else if (source->IsDoubleRegister()) { | |
175 __ mov_d(kSavedDoubleValueRegister, cgen_->ToDoubleRegister(source)); | |
176 } else if (source->IsDoubleStackSlot()) { | |
177 __ ldc1(kSavedDoubleValueRegister, cgen_->ToMemOperand(source)); | |
178 } else { | |
179 UNREACHABLE(); | |
180 } | |
181 // This move will be done by restoring the saved value to the destination. | |
182 moves_[index].Eliminate(); | |
183 } | |
184 | |
185 | |
186 void LGapResolver::RestoreValue() { | |
187 ASSERT(in_cycle_); | |
188 ASSERT(saved_destination_ != NULL); | |
189 | |
190 // Spilled value is in kSavedValueRegister or kSavedDoubleValueRegister. | |
191 if (saved_destination_->IsRegister()) { | |
192 __ mov(cgen_->ToRegister(saved_destination_), kSavedValueRegister); | |
193 } else if (saved_destination_->IsStackSlot()) { | |
194 __ sw(kSavedValueRegister, cgen_->ToMemOperand(saved_destination_)); | |
195 } else if (saved_destination_->IsDoubleRegister()) { | |
196 __ mov_d(cgen_->ToDoubleRegister(saved_destination_), | |
197 kSavedDoubleValueRegister); | |
198 } else if (saved_destination_->IsDoubleStackSlot()) { | |
199 __ sdc1(kSavedDoubleValueRegister, | |
200 cgen_->ToMemOperand(saved_destination_)); | |
201 } else { | |
202 UNREACHABLE(); | |
203 } | |
204 | |
205 in_cycle_ = false; | |
206 saved_destination_ = NULL; | |
207 } | |
208 | |
209 | |
210 void LGapResolver::EmitMove(int index) { | |
211 LOperand* source = moves_[index].source(); | |
212 LOperand* destination = moves_[index].destination(); | |
213 | |
214 // Dispatch on the source and destination operand kinds. Not all | |
215 // combinations are possible. | |
216 | |
217 if (source->IsRegister()) { | |
218 Register source_register = cgen_->ToRegister(source); | |
219 if (destination->IsRegister()) { | |
220 __ mov(cgen_->ToRegister(destination), source_register); | |
221 } else { | |
222 ASSERT(destination->IsStackSlot()); | |
223 __ sw(source_register, cgen_->ToMemOperand(destination)); | |
224 } | |
225 | |
226 } else if (source->IsStackSlot()) { | |
227 MemOperand source_operand = cgen_->ToMemOperand(source); | |
228 if (destination->IsRegister()) { | |
229 __ lw(cgen_->ToRegister(destination), source_operand); | |
230 } else { | |
231 ASSERT(destination->IsStackSlot()); | |
232 MemOperand destination_operand = cgen_->ToMemOperand(destination); | |
233 if (in_cycle_) { | |
234 if (!destination_operand.OffsetIsInt16Encodable()) { | |
235 // 'at' is overwritten while saving the value to the destination. | |
236 // Therefore we can't use 'at'. It is OK if the read from the source | |
237 // destroys 'at', since that happens before the value is read. | |
238 // This uses only a single reg of the double reg-pair. | |
239 __ lwc1(kSavedDoubleValueRegister, source_operand); | |
240 __ swc1(kSavedDoubleValueRegister, destination_operand); | |
241 } else { | |
242 __ lw(at, source_operand); | |
243 __ sw(at, destination_operand); | |
244 } | |
245 } else { | |
246 __ lw(kSavedValueRegister, source_operand); | |
247 __ sw(kSavedValueRegister, destination_operand); | |
248 } | |
249 } | |
250 | |
251 } else if (source->IsConstantOperand()) { | |
252 Operand source_operand = cgen_->ToOperand(source); | |
253 if (destination->IsRegister()) { | |
254 __ li(cgen_->ToRegister(destination), source_operand); | |
255 } else { | |
256 ASSERT(destination->IsStackSlot()); | |
257 ASSERT(!in_cycle_); // Constant moves happen after all cycles are gone. | |
258 MemOperand destination_operand = cgen_->ToMemOperand(destination); | |
259 __ li(kSavedValueRegister, source_operand); | |
260 __ sw(kSavedValueRegister, cgen_->ToMemOperand(destination)); | |
261 } | |
262 | |
263 } else if (source->IsDoubleRegister()) { | |
264 DoubleRegister source_register = cgen_->ToDoubleRegister(source); | |
265 if (destination->IsDoubleRegister()) { | |
266 __ mov_d(cgen_->ToDoubleRegister(destination), source_register); | |
267 } else { | |
268 ASSERT(destination->IsDoubleStackSlot()); | |
269 MemOperand destination_operand = cgen_->ToMemOperand(destination); | |
270 __ sdc1(source_register, destination_operand); | |
271 } | |
272 | |
273 } else if (source->IsDoubleStackSlot()) { | |
274 MemOperand source_operand = cgen_->ToMemOperand(source); | |
275 if (destination->IsDoubleRegister()) { | |
276 __ ldc1(cgen_->ToDoubleRegister(destination), source_operand); | |
277 } else { | |
278 ASSERT(destination->IsDoubleStackSlot()); | |
279 MemOperand destination_operand = cgen_->ToMemOperand(destination); | |
280 if (in_cycle_) { | |
281 // kSavedDoubleValueRegister was used to break the cycle, | |
282 // but kSavedValueRegister is free. | |
283 MemOperand source_high_operand = | |
284 cgen_->ToHighMemOperand(source); | |
285 MemOperand destination_high_operand = | |
286 cgen_->ToHighMemOperand(destination); | |
287 __ lw(kSavedValueRegister, source_operand); | |
288 __ sw(kSavedValueRegister, destination_operand); | |
289 __ lw(kSavedValueRegister, source_high_operand); | |
290 __ sw(kSavedValueRegister, destination_high_operand); | |
291 } else { | |
292 __ ldc1(kSavedDoubleValueRegister, source_operand); | |
293 __ sdc1(kSavedDoubleValueRegister, destination_operand); | |
294 } | |
295 } | |
296 } else { | |
297 UNREACHABLE(); | |
298 } | |
299 | |
300 moves_[index].Eliminate(); | |
301 } | |
302 | |
303 | |
304 #undef __ | |
305 | |
306 } } // namespace v8::internal | |
OLD | NEW |