Index: chrome/test/data/v8_benchmark_v6/deltablue.js |
diff --git a/chrome/test/data/v8_benchmark_v6/deltablue.js b/chrome/test/data/v8_benchmark_v6/deltablue.js |
new file mode 100644 |
index 0000000000000000000000000000000000000000..548fd96ffbdab33d8553cbbc1465b0cd2d40a174 |
--- /dev/null |
+++ b/chrome/test/data/v8_benchmark_v6/deltablue.js |
@@ -0,0 +1,880 @@ |
+// Copyright 2008 the V8 project authors. All rights reserved. |
+// Copyright 1996 John Maloney and Mario Wolczko. |
+ |
+// This program is free software; you can redistribute it and/or modify |
+// it under the terms of the GNU General Public License as published by |
+// the Free Software Foundation; either version 2 of the License, or |
+// (at your option) any later version. |
+// |
+// This program is distributed in the hope that it will be useful, |
+// but WITHOUT ANY WARRANTY; without even the implied warranty of |
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
+// GNU General Public License for more details. |
+// |
+// You should have received a copy of the GNU General Public License |
+// along with this program; if not, write to the Free Software |
+// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
+ |
+ |
+// This implementation of the DeltaBlue benchmark is derived |
+// from the Smalltalk implementation by John Maloney and Mario |
+// Wolczko. Some parts have been translated directly, whereas |
+// others have been modified more aggresively to make it feel |
+// more like a JavaScript program. |
+ |
+ |
+var DeltaBlue = new BenchmarkSuite('DeltaBlue', 66118, [ |
+ new Benchmark('DeltaBlue', deltaBlue) |
+]); |
+ |
+ |
+/** |
+ * A JavaScript implementation of the DeltaBlue constraint-solving |
+ * algorithm, as described in: |
+ * |
+ * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver" |
+ * Bjorn N. Freeman-Benson and John Maloney |
+ * January 1990 Communications of the ACM, |
+ * also available as University of Washington TR 89-08-06. |
+ * |
+ * Beware: this benchmark is written in a grotesque style where |
+ * the constraint model is built by side-effects from constructors. |
+ * I've kept it this way to avoid deviating too much from the original |
+ * implementation. |
+ */ |
+ |
+ |
+/* --- O b j e c t M o d e l --- */ |
+ |
+Object.prototype.inheritsFrom = function (shuper) { |
+ function Inheriter() { } |
+ Inheriter.prototype = shuper.prototype; |
+ this.prototype = new Inheriter(); |
+ this.superConstructor = shuper; |
+} |
+ |
+function OrderedCollection() { |
+ this.elms = new Array(); |
+} |
+ |
+OrderedCollection.prototype.add = function (elm) { |
+ this.elms.push(elm); |
+} |
+ |
+OrderedCollection.prototype.at = function (index) { |
+ return this.elms[index]; |
+} |
+ |
+OrderedCollection.prototype.size = function () { |
+ return this.elms.length; |
+} |
+ |
+OrderedCollection.prototype.removeFirst = function () { |
+ return this.elms.pop(); |
+} |
+ |
+OrderedCollection.prototype.remove = function (elm) { |
+ var index = 0, skipped = 0; |
+ for (var i = 0; i < this.elms.length; i++) { |
+ var value = this.elms[i]; |
+ if (value != elm) { |
+ this.elms[index] = value; |
+ index++; |
+ } else { |
+ skipped++; |
+ } |
+ } |
+ for (var i = 0; i < skipped; i++) |
+ this.elms.pop(); |
+} |
+ |
+/* --- * |
+ * S t r e n g t h |
+ * --- */ |
+ |
+/** |
+ * Strengths are used to measure the relative importance of constraints. |
+ * New strengths may be inserted in the strength hierarchy without |
+ * disrupting current constraints. Strengths cannot be created outside |
+ * this class, so pointer comparison can be used for value comparison. |
+ */ |
+function Strength(strengthValue, name) { |
+ this.strengthValue = strengthValue; |
+ this.name = name; |
+} |
+ |
+Strength.stronger = function (s1, s2) { |
+ return s1.strengthValue < s2.strengthValue; |
+} |
+ |
+Strength.weaker = function (s1, s2) { |
+ return s1.strengthValue > s2.strengthValue; |
+} |
+ |
+Strength.weakestOf = function (s1, s2) { |
+ return this.weaker(s1, s2) ? s1 : s2; |
+} |
+ |
+Strength.strongest = function (s1, s2) { |
+ return this.stronger(s1, s2) ? s1 : s2; |
+} |
+ |
+Strength.prototype.nextWeaker = function () { |
+ switch (this.strengthValue) { |
+ case 0: return Strength.WEAKEST; |
+ case 1: return Strength.WEAK_DEFAULT; |
+ case 2: return Strength.NORMAL; |
+ case 3: return Strength.STRONG_DEFAULT; |
+ case 4: return Strength.PREFERRED; |
+ case 5: return Strength.REQUIRED; |
+ } |
+} |
+ |
+// Strength constants. |
+Strength.REQUIRED = new Strength(0, "required"); |
+Strength.STONG_PREFERRED = new Strength(1, "strongPreferred"); |
+Strength.PREFERRED = new Strength(2, "preferred"); |
+Strength.STRONG_DEFAULT = new Strength(3, "strongDefault"); |
+Strength.NORMAL = new Strength(4, "normal"); |
+Strength.WEAK_DEFAULT = new Strength(5, "weakDefault"); |
+Strength.WEAKEST = new Strength(6, "weakest"); |
+ |
+/* --- * |
+ * C o n s t r a i n t |
+ * --- */ |
+ |
+/** |
+ * An abstract class representing a system-maintainable relationship |
+ * (or "constraint") between a set of variables. A constraint supplies |
+ * a strength instance variable; concrete subclasses provide a means |
+ * of storing the constrained variables and other information required |
+ * to represent a constraint. |
+ */ |
+function Constraint(strength) { |
+ this.strength = strength; |
+} |
+ |
+/** |
+ * Activate this constraint and attempt to satisfy it. |
+ */ |
+Constraint.prototype.addConstraint = function () { |
+ this.addToGraph(); |
+ planner.incrementalAdd(this); |
+} |
+ |
+/** |
+ * Attempt to find a way to enforce this constraint. If successful, |
+ * record the solution, perhaps modifying the current dataflow |
+ * graph. Answer the constraint that this constraint overrides, if |
+ * there is one, or nil, if there isn't. |
+ * Assume: I am not already satisfied. |
+ */ |
+Constraint.prototype.satisfy = function (mark) { |
+ this.chooseMethod(mark); |
+ if (!this.isSatisfied()) { |
+ if (this.strength == Strength.REQUIRED) |
+ alert("Could not satisfy a required constraint!"); |
+ return null; |
+ } |
+ this.markInputs(mark); |
+ var out = this.output(); |
+ var overridden = out.determinedBy; |
+ if (overridden != null) overridden.markUnsatisfied(); |
+ out.determinedBy = this; |
+ if (!planner.addPropagate(this, mark)) |
+ alert("Cycle encountered"); |
+ out.mark = mark; |
+ return overridden; |
+} |
+ |
+Constraint.prototype.destroyConstraint = function () { |
+ if (this.isSatisfied()) planner.incrementalRemove(this); |
+ else this.removeFromGraph(); |
+} |
+ |
+/** |
+ * Normal constraints are not input constraints. An input constraint |
+ * is one that depends on external state, such as the mouse, the |
+ * keybord, a clock, or some arbitraty piece of imperative code. |
+ */ |
+Constraint.prototype.isInput = function () { |
+ return false; |
+} |
+ |
+/* --- * |
+ * U n a r y C o n s t r a i n t |
+ * --- */ |
+ |
+/** |
+ * Abstract superclass for constraints having a single possible output |
+ * variable. |
+ */ |
+function UnaryConstraint(v, strength) { |
+ UnaryConstraint.superConstructor.call(this, strength); |
+ this.myOutput = v; |
+ this.satisfied = false; |
+ this.addConstraint(); |
+} |
+ |
+UnaryConstraint.inheritsFrom(Constraint); |
+ |
+/** |
+ * Adds this constraint to the constraint graph |
+ */ |
+UnaryConstraint.prototype.addToGraph = function () { |
+ this.myOutput.addConstraint(this); |
+ this.satisfied = false; |
+} |
+ |
+/** |
+ * Decides if this constraint can be satisfied and records that |
+ * decision. |
+ */ |
+UnaryConstraint.prototype.chooseMethod = function (mark) { |
+ this.satisfied = (this.myOutput.mark != mark) |
+ && Strength.stronger(this.strength, this.myOutput.walkStrength); |
+} |
+ |
+/** |
+ * Returns true if this constraint is satisfied in the current solution. |
+ */ |
+UnaryConstraint.prototype.isSatisfied = function () { |
+ return this.satisfied; |
+} |
+ |
+UnaryConstraint.prototype.markInputs = function (mark) { |
+ // has no inputs |
+} |
+ |
+/** |
+ * Returns the current output variable. |
+ */ |
+UnaryConstraint.prototype.output = function () { |
+ return this.myOutput; |
+} |
+ |
+/** |
+ * Calculate the walkabout strength, the stay flag, and, if it is |
+ * 'stay', the value for the current output of this constraint. Assume |
+ * this constraint is satisfied. |
+ */ |
+UnaryConstraint.prototype.recalculate = function () { |
+ this.myOutput.walkStrength = this.strength; |
+ this.myOutput.stay = !this.isInput(); |
+ if (this.myOutput.stay) this.execute(); // Stay optimization |
+} |
+ |
+/** |
+ * Records that this constraint is unsatisfied |
+ */ |
+UnaryConstraint.prototype.markUnsatisfied = function () { |
+ this.satisfied = false; |
+} |
+ |
+UnaryConstraint.prototype.inputsKnown = function () { |
+ return true; |
+} |
+ |
+UnaryConstraint.prototype.removeFromGraph = function () { |
+ if (this.myOutput != null) this.myOutput.removeConstraint(this); |
+ this.satisfied = false; |
+} |
+ |
+/* --- * |
+ * S t a y C o n s t r a i n t |
+ * --- */ |
+ |
+/** |
+ * Variables that should, with some level of preference, stay the same. |
+ * Planners may exploit the fact that instances, if satisfied, will not |
+ * change their output during plan execution. This is called "stay |
+ * optimization". |
+ */ |
+function StayConstraint(v, str) { |
+ StayConstraint.superConstructor.call(this, v, str); |
+} |
+ |
+StayConstraint.inheritsFrom(UnaryConstraint); |
+ |
+StayConstraint.prototype.execute = function () { |
+ // Stay constraints do nothing |
+} |
+ |
+/* --- * |
+ * E d i t C o n s t r a i n t |
+ * --- */ |
+ |
+/** |
+ * A unary input constraint used to mark a variable that the client |
+ * wishes to change. |
+ */ |
+function EditConstraint(v, str) { |
+ EditConstraint.superConstructor.call(this, v, str); |
+} |
+ |
+EditConstraint.inheritsFrom(UnaryConstraint); |
+ |
+/** |
+ * Edits indicate that a variable is to be changed by imperative code. |
+ */ |
+EditConstraint.prototype.isInput = function () { |
+ return true; |
+} |
+ |
+EditConstraint.prototype.execute = function () { |
+ // Edit constraints do nothing |
+} |
+ |
+/* --- * |
+ * B i n a r y C o n s t r a i n t |
+ * --- */ |
+ |
+var Direction = new Object(); |
+Direction.NONE = 0; |
+Direction.FORWARD = 1; |
+Direction.BACKWARD = -1; |
+ |
+/** |
+ * Abstract superclass for constraints having two possible output |
+ * variables. |
+ */ |
+function BinaryConstraint(var1, var2, strength) { |
+ BinaryConstraint.superConstructor.call(this, strength); |
+ this.v1 = var1; |
+ this.v2 = var2; |
+ this.direction = Direction.NONE; |
+ this.addConstraint(); |
+} |
+ |
+BinaryConstraint.inheritsFrom(Constraint); |
+ |
+/** |
+ * Decides if this constraint can be satisfied and which way it |
+ * should flow based on the relative strength of the variables related, |
+ * and record that decision. |
+ */ |
+BinaryConstraint.prototype.chooseMethod = function (mark) { |
+ if (this.v1.mark == mark) { |
+ this.direction = (this.v2.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength)) |
+ ? Direction.FORWARD |
+ : Direction.NONE; |
+ } |
+ if (this.v2.mark == mark) { |
+ this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength)) |
+ ? Direction.BACKWARD |
+ : Direction.NONE; |
+ } |
+ if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) { |
+ this.direction = Strength.stronger(this.strength, this.v1.walkStrength) |
+ ? Direction.BACKWARD |
+ : Direction.NONE; |
+ } else { |
+ this.direction = Strength.stronger(this.strength, this.v2.walkStrength) |
+ ? Direction.FORWARD |
+ : Direction.BACKWARD |
+ } |
+} |
+ |
+/** |
+ * Add this constraint to the constraint graph |
+ */ |
+BinaryConstraint.prototype.addToGraph = function () { |
+ this.v1.addConstraint(this); |
+ this.v2.addConstraint(this); |
+ this.direction = Direction.NONE; |
+} |
+ |
+/** |
+ * Answer true if this constraint is satisfied in the current solution. |
+ */ |
+BinaryConstraint.prototype.isSatisfied = function () { |
+ return this.direction != Direction.NONE; |
+} |
+ |
+/** |
+ * Mark the input variable with the given mark. |
+ */ |
+BinaryConstraint.prototype.markInputs = function (mark) { |
+ this.input().mark = mark; |
+} |
+ |
+/** |
+ * Returns the current input variable |
+ */ |
+BinaryConstraint.prototype.input = function () { |
+ return (this.direction == Direction.FORWARD) ? this.v1 : this.v2; |
+} |
+ |
+/** |
+ * Returns the current output variable |
+ */ |
+BinaryConstraint.prototype.output = function () { |
+ return (this.direction == Direction.FORWARD) ? this.v2 : this.v1; |
+} |
+ |
+/** |
+ * Calculate the walkabout strength, the stay flag, and, if it is |
+ * 'stay', the value for the current output of this |
+ * constraint. Assume this constraint is satisfied. |
+ */ |
+BinaryConstraint.prototype.recalculate = function () { |
+ var ihn = this.input(), out = this.output(); |
+ out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); |
+ out.stay = ihn.stay; |
+ if (out.stay) this.execute(); |
+} |
+ |
+/** |
+ * Record the fact that this constraint is unsatisfied. |
+ */ |
+BinaryConstraint.prototype.markUnsatisfied = function () { |
+ this.direction = Direction.NONE; |
+} |
+ |
+BinaryConstraint.prototype.inputsKnown = function (mark) { |
+ var i = this.input(); |
+ return i.mark == mark || i.stay || i.determinedBy == null; |
+} |
+ |
+BinaryConstraint.prototype.removeFromGraph = function () { |
+ if (this.v1 != null) this.v1.removeConstraint(this); |
+ if (this.v2 != null) this.v2.removeConstraint(this); |
+ this.direction = Direction.NONE; |
+} |
+ |
+/* --- * |
+ * S c a l e C o n s t r a i n t |
+ * --- */ |
+ |
+/** |
+ * Relates two variables by the linear scaling relationship: "v2 = |
+ * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain |
+ * this relationship but the scale factor and offset are considered |
+ * read-only. |
+ */ |
+function ScaleConstraint(src, scale, offset, dest, strength) { |
+ this.direction = Direction.NONE; |
+ this.scale = scale; |
+ this.offset = offset; |
+ ScaleConstraint.superConstructor.call(this, src, dest, strength); |
+} |
+ |
+ScaleConstraint.inheritsFrom(BinaryConstraint); |
+ |
+/** |
+ * Adds this constraint to the constraint graph. |
+ */ |
+ScaleConstraint.prototype.addToGraph = function () { |
+ ScaleConstraint.superConstructor.prototype.addToGraph.call(this); |
+ this.scale.addConstraint(this); |
+ this.offset.addConstraint(this); |
+} |
+ |
+ScaleConstraint.prototype.removeFromGraph = function () { |
+ ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this); |
+ if (this.scale != null) this.scale.removeConstraint(this); |
+ if (this.offset != null) this.offset.removeConstraint(this); |
+} |
+ |
+ScaleConstraint.prototype.markInputs = function (mark) { |
+ ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark); |
+ this.scale.mark = this.offset.mark = mark; |
+} |
+ |
+/** |
+ * Enforce this constraint. Assume that it is satisfied. |
+ */ |
+ScaleConstraint.prototype.execute = function () { |
+ if (this.direction == Direction.FORWARD) { |
+ this.v2.value = this.v1.value * this.scale.value + this.offset.value; |
+ } else { |
+ this.v1.value = (this.v2.value - this.offset.value) / this.scale.value; |
+ } |
+} |
+ |
+/** |
+ * Calculate the walkabout strength, the stay flag, and, if it is |
+ * 'stay', the value for the current output of this constraint. Assume |
+ * this constraint is satisfied. |
+ */ |
+ScaleConstraint.prototype.recalculate = function () { |
+ var ihn = this.input(), out = this.output(); |
+ out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength); |
+ out.stay = ihn.stay && this.scale.stay && this.offset.stay; |
+ if (out.stay) this.execute(); |
+} |
+ |
+/* --- * |
+ * E q u a l i t y C o n s t r a i n t |
+ * --- */ |
+ |
+/** |
+ * Constrains two variables to have the same value. |
+ */ |
+function EqualityConstraint(var1, var2, strength) { |
+ EqualityConstraint.superConstructor.call(this, var1, var2, strength); |
+} |
+ |
+EqualityConstraint.inheritsFrom(BinaryConstraint); |
+ |
+/** |
+ * Enforce this constraint. Assume that it is satisfied. |
+ */ |
+EqualityConstraint.prototype.execute = function () { |
+ this.output().value = this.input().value; |
+} |
+ |
+/* --- * |
+ * V a r i a b l e |
+ * --- */ |
+ |
+/** |
+ * A constrained variable. In addition to its value, it maintain the |
+ * structure of the constraint graph, the current dataflow graph, and |
+ * various parameters of interest to the DeltaBlue incremental |
+ * constraint solver. |
+ **/ |
+function Variable(name, initialValue) { |
+ this.value = initialValue || 0; |
+ this.constraints = new OrderedCollection(); |
+ this.determinedBy = null; |
+ this.mark = 0; |
+ this.walkStrength = Strength.WEAKEST; |
+ this.stay = true; |
+ this.name = name; |
+} |
+ |
+/** |
+ * Add the given constraint to the set of all constraints that refer |
+ * this variable. |
+ */ |
+Variable.prototype.addConstraint = function (c) { |
+ this.constraints.add(c); |
+} |
+ |
+/** |
+ * Removes all traces of c from this variable. |
+ */ |
+Variable.prototype.removeConstraint = function (c) { |
+ this.constraints.remove(c); |
+ if (this.determinedBy == c) this.determinedBy = null; |
+} |
+ |
+/* --- * |
+ * P l a n n e r |
+ * --- */ |
+ |
+/** |
+ * The DeltaBlue planner |
+ */ |
+function Planner() { |
+ this.currentMark = 0; |
+} |
+ |
+/** |
+ * Attempt to satisfy the given constraint and, if successful, |
+ * incrementally update the dataflow graph. Details: If satifying |
+ * the constraint is successful, it may override a weaker constraint |
+ * on its output. The algorithm attempts to resatisfy that |
+ * constraint using some other method. This process is repeated |
+ * until either a) it reaches a variable that was not previously |
+ * determined by any constraint or b) it reaches a constraint that |
+ * is too weak to be satisfied using any of its methods. The |
+ * variables of constraints that have been processed are marked with |
+ * a unique mark value so that we know where we've been. This allows |
+ * the algorithm to avoid getting into an infinite loop even if the |
+ * constraint graph has an inadvertent cycle. |
+ */ |
+Planner.prototype.incrementalAdd = function (c) { |
+ var mark = this.newMark(); |
+ var overridden = c.satisfy(mark); |
+ while (overridden != null) |
+ overridden = overridden.satisfy(mark); |
+} |
+ |
+/** |
+ * Entry point for retracting a constraint. Remove the given |
+ * constraint and incrementally update the dataflow graph. |
+ * Details: Retracting the given constraint may allow some currently |
+ * unsatisfiable downstream constraint to be satisfied. We therefore collect |
+ * a list of unsatisfied downstream constraints and attempt to |
+ * satisfy each one in turn. This list is traversed by constraint |
+ * strength, strongest first, as a heuristic for avoiding |
+ * unnecessarily adding and then overriding weak constraints. |
+ * Assume: c is satisfied. |
+ */ |
+Planner.prototype.incrementalRemove = function (c) { |
+ var out = c.output(); |
+ c.markUnsatisfied(); |
+ c.removeFromGraph(); |
+ var unsatisfied = this.removePropagateFrom(out); |
+ var strength = Strength.REQUIRED; |
+ do { |
+ for (var i = 0; i < unsatisfied.size(); i++) { |
+ var u = unsatisfied.at(i); |
+ if (u.strength == strength) |
+ this.incrementalAdd(u); |
+ } |
+ strength = strength.nextWeaker(); |
+ } while (strength != Strength.WEAKEST); |
+} |
+ |
+/** |
+ * Select a previously unused mark value. |
+ */ |
+Planner.prototype.newMark = function () { |
+ return ++this.currentMark; |
+} |
+ |
+/** |
+ * Extract a plan for resatisfaction starting from the given source |
+ * constraints, usually a set of input constraints. This method |
+ * assumes that stay optimization is desired; the plan will contain |
+ * only constraints whose output variables are not stay. Constraints |
+ * that do no computation, such as stay and edit constraints, are |
+ * not included in the plan. |
+ * Details: The outputs of a constraint are marked when it is added |
+ * to the plan under construction. A constraint may be appended to |
+ * the plan when all its input variables are known. A variable is |
+ * known if either a) the variable is marked (indicating that has |
+ * been computed by a constraint appearing earlier in the plan), b) |
+ * the variable is 'stay' (i.e. it is a constant at plan execution |
+ * time), or c) the variable is not determined by any |
+ * constraint. The last provision is for past states of history |
+ * variables, which are not stay but which are also not computed by |
+ * any constraint. |
+ * Assume: sources are all satisfied. |
+ */ |
+Planner.prototype.makePlan = function (sources) { |
+ var mark = this.newMark(); |
+ var plan = new Plan(); |
+ var todo = sources; |
+ while (todo.size() > 0) { |
+ var c = todo.removeFirst(); |
+ if (c.output().mark != mark && c.inputsKnown(mark)) { |
+ plan.addConstraint(c); |
+ c.output().mark = mark; |
+ this.addConstraintsConsumingTo(c.output(), todo); |
+ } |
+ } |
+ return plan; |
+} |
+ |
+/** |
+ * Extract a plan for resatisfying starting from the output of the |
+ * given constraints, usually a set of input constraints. |
+ */ |
+Planner.prototype.extractPlanFromConstraints = function (constraints) { |
+ var sources = new OrderedCollection(); |
+ for (var i = 0; i < constraints.size(); i++) { |
+ var c = constraints.at(i); |
+ if (c.isInput() && c.isSatisfied()) |
+ // not in plan already and eligible for inclusion |
+ sources.add(c); |
+ } |
+ return this.makePlan(sources); |
+} |
+ |
+/** |
+ * Recompute the walkabout strengths and stay flags of all variables |
+ * downstream of the given constraint and recompute the actual |
+ * values of all variables whose stay flag is true. If a cycle is |
+ * detected, remove the given constraint and answer |
+ * false. Otherwise, answer true. |
+ * Details: Cycles are detected when a marked variable is |
+ * encountered downstream of the given constraint. The sender is |
+ * assumed to have marked the inputs of the given constraint with |
+ * the given mark. Thus, encountering a marked node downstream of |
+ * the output constraint means that there is a path from the |
+ * constraint's output to one of its inputs. |
+ */ |
+Planner.prototype.addPropagate = function (c, mark) { |
+ var todo = new OrderedCollection(); |
+ todo.add(c); |
+ while (todo.size() > 0) { |
+ var d = todo.removeFirst(); |
+ if (d.output().mark == mark) { |
+ this.incrementalRemove(c); |
+ return false; |
+ } |
+ d.recalculate(); |
+ this.addConstraintsConsumingTo(d.output(), todo); |
+ } |
+ return true; |
+} |
+ |
+ |
+/** |
+ * Update the walkabout strengths and stay flags of all variables |
+ * downstream of the given constraint. Answer a collection of |
+ * unsatisfied constraints sorted in order of decreasing strength. |
+ */ |
+Planner.prototype.removePropagateFrom = function (out) { |
+ out.determinedBy = null; |
+ out.walkStrength = Strength.WEAKEST; |
+ out.stay = true; |
+ var unsatisfied = new OrderedCollection(); |
+ var todo = new OrderedCollection(); |
+ todo.add(out); |
+ while (todo.size() > 0) { |
+ var v = todo.removeFirst(); |
+ for (var i = 0; i < v.constraints.size(); i++) { |
+ var c = v.constraints.at(i); |
+ if (!c.isSatisfied()) |
+ unsatisfied.add(c); |
+ } |
+ var determining = v.determinedBy; |
+ for (var i = 0; i < v.constraints.size(); i++) { |
+ var next = v.constraints.at(i); |
+ if (next != determining && next.isSatisfied()) { |
+ next.recalculate(); |
+ todo.add(next.output()); |
+ } |
+ } |
+ } |
+ return unsatisfied; |
+} |
+ |
+Planner.prototype.addConstraintsConsumingTo = function (v, coll) { |
+ var determining = v.determinedBy; |
+ var cc = v.constraints; |
+ for (var i = 0; i < cc.size(); i++) { |
+ var c = cc.at(i); |
+ if (c != determining && c.isSatisfied()) |
+ coll.add(c); |
+ } |
+} |
+ |
+/* --- * |
+ * P l a n |
+ * --- */ |
+ |
+/** |
+ * A Plan is an ordered list of constraints to be executed in sequence |
+ * to resatisfy all currently satisfiable constraints in the face of |
+ * one or more changing inputs. |
+ */ |
+function Plan() { |
+ this.v = new OrderedCollection(); |
+} |
+ |
+Plan.prototype.addConstraint = function (c) { |
+ this.v.add(c); |
+} |
+ |
+Plan.prototype.size = function () { |
+ return this.v.size(); |
+} |
+ |
+Plan.prototype.constraintAt = function (index) { |
+ return this.v.at(index); |
+} |
+ |
+Plan.prototype.execute = function () { |
+ for (var i = 0; i < this.size(); i++) { |
+ var c = this.constraintAt(i); |
+ c.execute(); |
+ } |
+} |
+ |
+/* --- * |
+ * M a i n |
+ * --- */ |
+ |
+/** |
+ * This is the standard DeltaBlue benchmark. A long chain of equality |
+ * constraints is constructed with a stay constraint on one end. An |
+ * edit constraint is then added to the opposite end and the time is |
+ * measured for adding and removing this constraint, and extracting |
+ * and executing a constraint satisfaction plan. There are two cases. |
+ * In case 1, the added constraint is stronger than the stay |
+ * constraint and values must propagate down the entire length of the |
+ * chain. In case 2, the added constraint is weaker than the stay |
+ * constraint so it cannot be accomodated. The cost in this case is, |
+ * of course, very low. Typical situations lie somewhere between these |
+ * two extremes. |
+ */ |
+function chainTest(n) { |
+ planner = new Planner(); |
+ var prev = null, first = null, last = null; |
+ |
+ // Build chain of n equality constraints |
+ for (var i = 0; i <= n; i++) { |
+ var name = "v" + i; |
+ var v = new Variable(name); |
+ if (prev != null) |
+ new EqualityConstraint(prev, v, Strength.REQUIRED); |
+ if (i == 0) first = v; |
+ if (i == n) last = v; |
+ prev = v; |
+ } |
+ |
+ new StayConstraint(last, Strength.STRONG_DEFAULT); |
+ var edit = new EditConstraint(first, Strength.PREFERRED); |
+ var edits = new OrderedCollection(); |
+ edits.add(edit); |
+ var plan = planner.extractPlanFromConstraints(edits); |
+ for (var i = 0; i < 100; i++) { |
+ first.value = i; |
+ plan.execute(); |
+ if (last.value != i) |
+ alert("Chain test failed."); |
+ } |
+} |
+ |
+/** |
+ * This test constructs a two sets of variables related to each |
+ * other by a simple linear transformation (scale and offset). The |
+ * time is measured to change a variable on either side of the |
+ * mapping and to change the scale and offset factors. |
+ */ |
+function projectionTest(n) { |
+ planner = new Planner(); |
+ var scale = new Variable("scale", 10); |
+ var offset = new Variable("offset", 1000); |
+ var src = null, dst = null; |
+ |
+ var dests = new OrderedCollection(); |
+ for (var i = 0; i < n; i++) { |
+ src = new Variable("src" + i, i); |
+ dst = new Variable("dst" + i, i); |
+ dests.add(dst); |
+ new StayConstraint(src, Strength.NORMAL); |
+ new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED); |
+ } |
+ |
+ change(src, 17); |
+ if (dst.value != 1170) alert("Projection 1 failed"); |
+ change(dst, 1050); |
+ if (src.value != 5) alert("Projection 2 failed"); |
+ change(scale, 5); |
+ for (var i = 0; i < n - 1; i++) { |
+ if (dests.at(i).value != i * 5 + 1000) |
+ alert("Projection 3 failed"); |
+ } |
+ change(offset, 2000); |
+ for (var i = 0; i < n - 1; i++) { |
+ if (dests.at(i).value != i * 5 + 2000) |
+ alert("Projection 4 failed"); |
+ } |
+} |
+ |
+function change(v, newValue) { |
+ var edit = new EditConstraint(v, Strength.PREFERRED); |
+ var edits = new OrderedCollection(); |
+ edits.add(edit); |
+ var plan = planner.extractPlanFromConstraints(edits); |
+ for (var i = 0; i < 10; i++) { |
+ v.value = newValue; |
+ plan.execute(); |
+ } |
+ edit.destroyConstraint(); |
+} |
+ |
+// Global variable holding the current planner. |
+var planner = null; |
+ |
+function deltaBlue() { |
+ chainTest(100); |
+ projectionTest(100); |
+} |