OLD | NEW |
(Empty) | |
| 1 // Copyright 2009 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 // This benchmark is based on a JavaScript log processing module used |
| 29 // by the V8 profiler to generate execution time profiles for runs of |
| 30 // JavaScript applications, and it effectively measures how fast the |
| 31 // JavaScript engine is at allocating nodes and reclaiming the memory |
| 32 // used for old nodes. Because of the way splay trees work, the engine |
| 33 // also has to deal with a lot of changes to the large tree object |
| 34 // graph. |
| 35 |
| 36 var Splay = new BenchmarkSuite('Splay', 81491, [ |
| 37 new Benchmark("Splay", SplayRun, SplaySetup, SplayTearDown) |
| 38 ]); |
| 39 |
| 40 |
| 41 // Configuration. |
| 42 var kSplayTreeSize = 8000; |
| 43 var kSplayTreeModifications = 80; |
| 44 var kSplayTreePayloadDepth = 5; |
| 45 |
| 46 var splayTree = null; |
| 47 |
| 48 |
| 49 function GeneratePayloadTree(depth, tag) { |
| 50 if (depth == 0) { |
| 51 return { |
| 52 array : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], |
| 53 string : 'String for key ' + tag + ' in leaf node' |
| 54 }; |
| 55 } else { |
| 56 return { |
| 57 left: GeneratePayloadTree(depth - 1, tag), |
| 58 right: GeneratePayloadTree(depth - 1, tag) |
| 59 }; |
| 60 } |
| 61 } |
| 62 |
| 63 |
| 64 function GenerateKey() { |
| 65 // The benchmark framework guarantees that Math.random is |
| 66 // deterministic; see base.js. |
| 67 return Math.random(); |
| 68 } |
| 69 |
| 70 |
| 71 function InsertNewNode() { |
| 72 // Insert new node with a unique key. |
| 73 var key; |
| 74 do { |
| 75 key = GenerateKey(); |
| 76 } while (splayTree.find(key) != null); |
| 77 var payload = GeneratePayloadTree(kSplayTreePayloadDepth, String(key)); |
| 78 splayTree.insert(key, payload); |
| 79 return key; |
| 80 } |
| 81 |
| 82 |
| 83 |
| 84 function SplaySetup() { |
| 85 splayTree = new SplayTree(); |
| 86 for (var i = 0; i < kSplayTreeSize; i++) InsertNewNode(); |
| 87 } |
| 88 |
| 89 |
| 90 function SplayTearDown() { |
| 91 // Allow the garbage collector to reclaim the memory |
| 92 // used by the splay tree no matter how we exit the |
| 93 // tear down function. |
| 94 var keys = splayTree.exportKeys(); |
| 95 splayTree = null; |
| 96 |
| 97 // Verify that the splay tree has the right size. |
| 98 var length = keys.length; |
| 99 if (length != kSplayTreeSize) { |
| 100 throw new Error("Splay tree has wrong size"); |
| 101 } |
| 102 |
| 103 // Verify that the splay tree has sorted, unique keys. |
| 104 for (var i = 0; i < length - 1; i++) { |
| 105 if (keys[i] >= keys[i + 1]) { |
| 106 throw new Error("Splay tree not sorted"); |
| 107 } |
| 108 } |
| 109 } |
| 110 |
| 111 |
| 112 function SplayRun() { |
| 113 // Replace a few nodes in the splay tree. |
| 114 for (var i = 0; i < kSplayTreeModifications; i++) { |
| 115 var key = InsertNewNode(); |
| 116 var greatest = splayTree.findGreatestLessThan(key); |
| 117 if (greatest == null) splayTree.remove(key); |
| 118 else splayTree.remove(greatest.key); |
| 119 } |
| 120 } |
| 121 |
| 122 |
| 123 /** |
| 124 * Constructs a Splay tree. A splay tree is a self-balancing binary |
| 125 * search tree with the additional property that recently accessed |
| 126 * elements are quick to access again. It performs basic operations |
| 127 * such as insertion, look-up and removal in O(log(n)) amortized time. |
| 128 * |
| 129 * @constructor |
| 130 */ |
| 131 function SplayTree() { |
| 132 }; |
| 133 |
| 134 |
| 135 /** |
| 136 * Pointer to the root node of the tree. |
| 137 * |
| 138 * @type {SplayTree.Node} |
| 139 * @private |
| 140 */ |
| 141 SplayTree.prototype.root_ = null; |
| 142 |
| 143 |
| 144 /** |
| 145 * @return {boolean} Whether the tree is empty. |
| 146 */ |
| 147 SplayTree.prototype.isEmpty = function() { |
| 148 return !this.root_; |
| 149 }; |
| 150 |
| 151 |
| 152 /** |
| 153 * Inserts a node into the tree with the specified key and value if |
| 154 * the tree does not already contain a node with the specified key. If |
| 155 * the value is inserted, it becomes the root of the tree. |
| 156 * |
| 157 * @param {number} key Key to insert into the tree. |
| 158 * @param {*} value Value to insert into the tree. |
| 159 */ |
| 160 SplayTree.prototype.insert = function(key, value) { |
| 161 if (this.isEmpty()) { |
| 162 this.root_ = new SplayTree.Node(key, value); |
| 163 return; |
| 164 } |
| 165 // Splay on the key to move the last node on the search path for |
| 166 // the key to the root of the tree. |
| 167 this.splay_(key); |
| 168 if (this.root_.key == key) { |
| 169 return; |
| 170 } |
| 171 var node = new SplayTree.Node(key, value); |
| 172 if (key > this.root_.key) { |
| 173 node.left = this.root_; |
| 174 node.right = this.root_.right; |
| 175 this.root_.right = null; |
| 176 } else { |
| 177 node.right = this.root_; |
| 178 node.left = this.root_.left; |
| 179 this.root_.left = null; |
| 180 } |
| 181 this.root_ = node; |
| 182 }; |
| 183 |
| 184 |
| 185 /** |
| 186 * Removes a node with the specified key from the tree if the tree |
| 187 * contains a node with this key. The removed node is returned. If the |
| 188 * key is not found, an exception is thrown. |
| 189 * |
| 190 * @param {number} key Key to find and remove from the tree. |
| 191 * @return {SplayTree.Node} The removed node. |
| 192 */ |
| 193 SplayTree.prototype.remove = function(key) { |
| 194 if (this.isEmpty()) { |
| 195 throw Error('Key not found: ' + key); |
| 196 } |
| 197 this.splay_(key); |
| 198 if (this.root_.key != key) { |
| 199 throw Error('Key not found: ' + key); |
| 200 } |
| 201 var removed = this.root_; |
| 202 if (!this.root_.left) { |
| 203 this.root_ = this.root_.right; |
| 204 } else { |
| 205 var right = this.root_.right; |
| 206 this.root_ = this.root_.left; |
| 207 // Splay to make sure that the new root has an empty right child. |
| 208 this.splay_(key); |
| 209 // Insert the original right child as the right child of the new |
| 210 // root. |
| 211 this.root_.right = right; |
| 212 } |
| 213 return removed; |
| 214 }; |
| 215 |
| 216 |
| 217 /** |
| 218 * Returns the node having the specified key or null if the tree doesn't contain |
| 219 * a node with the specified key. |
| 220 * |
| 221 * @param {number} key Key to find in the tree. |
| 222 * @return {SplayTree.Node} Node having the specified key. |
| 223 */ |
| 224 SplayTree.prototype.find = function(key) { |
| 225 if (this.isEmpty()) { |
| 226 return null; |
| 227 } |
| 228 this.splay_(key); |
| 229 return this.root_.key == key ? this.root_ : null; |
| 230 }; |
| 231 |
| 232 |
| 233 /** |
| 234 * @return {SplayTree.Node} Node having the maximum key value. |
| 235 */ |
| 236 SplayTree.prototype.findMax = function(opt_startNode) { |
| 237 if (this.isEmpty()) { |
| 238 return null; |
| 239 } |
| 240 var current = opt_startNode || this.root_; |
| 241 while (current.right) { |
| 242 current = current.right; |
| 243 } |
| 244 return current; |
| 245 }; |
| 246 |
| 247 |
| 248 /** |
| 249 * @return {SplayTree.Node} Node having the maximum key value that |
| 250 * is less than the specified key value. |
| 251 */ |
| 252 SplayTree.prototype.findGreatestLessThan = function(key) { |
| 253 if (this.isEmpty()) { |
| 254 return null; |
| 255 } |
| 256 // Splay on the key to move the node with the given key or the last |
| 257 // node on the search path to the top of the tree. |
| 258 this.splay_(key); |
| 259 // Now the result is either the root node or the greatest node in |
| 260 // the left subtree. |
| 261 if (this.root_.key < key) { |
| 262 return this.root_; |
| 263 } else if (this.root_.left) { |
| 264 return this.findMax(this.root_.left); |
| 265 } else { |
| 266 return null; |
| 267 } |
| 268 }; |
| 269 |
| 270 |
| 271 /** |
| 272 * @return {Array<*>} An array containing all the keys of tree's nodes. |
| 273 */ |
| 274 SplayTree.prototype.exportKeys = function() { |
| 275 var result = []; |
| 276 if (!this.isEmpty()) { |
| 277 this.root_.traverse_(function(node) { result.push(node.key); }); |
| 278 } |
| 279 return result; |
| 280 }; |
| 281 |
| 282 |
| 283 /** |
| 284 * Perform the splay operation for the given key. Moves the node with |
| 285 * the given key to the top of the tree. If no node has the given |
| 286 * key, the last node on the search path is moved to the top of the |
| 287 * tree. This is the simplified top-down splaying algorithm from: |
| 288 * "Self-adjusting Binary Search Trees" by Sleator and Tarjan |
| 289 * |
| 290 * @param {number} key Key to splay the tree on. |
| 291 * @private |
| 292 */ |
| 293 SplayTree.prototype.splay_ = function(key) { |
| 294 if (this.isEmpty()) { |
| 295 return; |
| 296 } |
| 297 // Create a dummy node. The use of the dummy node is a bit |
| 298 // counter-intuitive: The right child of the dummy node will hold |
| 299 // the L tree of the algorithm. The left child of the dummy node |
| 300 // will hold the R tree of the algorithm. Using a dummy node, left |
| 301 // and right will always be nodes and we avoid special cases. |
| 302 var dummy, left, right; |
| 303 dummy = left = right = new SplayTree.Node(null, null); |
| 304 var current = this.root_; |
| 305 while (true) { |
| 306 if (key < current.key) { |
| 307 if (!current.left) { |
| 308 break; |
| 309 } |
| 310 if (key < current.left.key) { |
| 311 // Rotate right. |
| 312 var tmp = current.left; |
| 313 current.left = tmp.right; |
| 314 tmp.right = current; |
| 315 current = tmp; |
| 316 if (!current.left) { |
| 317 break; |
| 318 } |
| 319 } |
| 320 // Link right. |
| 321 right.left = current; |
| 322 right = current; |
| 323 current = current.left; |
| 324 } else if (key > current.key) { |
| 325 if (!current.right) { |
| 326 break; |
| 327 } |
| 328 if (key > current.right.key) { |
| 329 // Rotate left. |
| 330 var tmp = current.right; |
| 331 current.right = tmp.left; |
| 332 tmp.left = current; |
| 333 current = tmp; |
| 334 if (!current.right) { |
| 335 break; |
| 336 } |
| 337 } |
| 338 // Link left. |
| 339 left.right = current; |
| 340 left = current; |
| 341 current = current.right; |
| 342 } else { |
| 343 break; |
| 344 } |
| 345 } |
| 346 // Assemble. |
| 347 left.right = current.left; |
| 348 right.left = current.right; |
| 349 current.left = dummy.right; |
| 350 current.right = dummy.left; |
| 351 this.root_ = current; |
| 352 }; |
| 353 |
| 354 |
| 355 /** |
| 356 * Constructs a Splay tree node. |
| 357 * |
| 358 * @param {number} key Key. |
| 359 * @param {*} value Value. |
| 360 */ |
| 361 SplayTree.Node = function(key, value) { |
| 362 this.key = key; |
| 363 this.value = value; |
| 364 }; |
| 365 |
| 366 |
| 367 /** |
| 368 * @type {SplayTree.Node} |
| 369 */ |
| 370 SplayTree.Node.prototype.left = null; |
| 371 |
| 372 |
| 373 /** |
| 374 * @type {SplayTree.Node} |
| 375 */ |
| 376 SplayTree.Node.prototype.right = null; |
| 377 |
| 378 |
| 379 /** |
| 380 * Performs an ordered traversal of the subtree starting at |
| 381 * this SplayTree.Node. |
| 382 * |
| 383 * @param {function(SplayTree.Node)} f Visitor function. |
| 384 * @private |
| 385 */ |
| 386 SplayTree.Node.prototype.traverse_ = function(f) { |
| 387 var current = this; |
| 388 while (current) { |
| 389 var left = current.left; |
| 390 if (left) left.traverse_(f); |
| 391 f(current); |
| 392 current = current.right; |
| 393 } |
| 394 }; |
OLD | NEW |