OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2003-2005 Tom Wu |
| 3 * All Rights Reserved. |
| 4 * |
| 5 * Permission is hereby granted, free of charge, to any person obtaining |
| 6 * a copy of this software and associated documentation files (the |
| 7 * "Software"), to deal in the Software without restriction, including |
| 8 * without limitation the rights to use, copy, modify, merge, publish, |
| 9 * distribute, sublicense, and/or sell copies of the Software, and to |
| 10 * permit persons to whom the Software is furnished to do so, subject to |
| 11 * the following conditions: |
| 12 * |
| 13 * The above copyright notice and this permission notice shall be |
| 14 * included in all copies or substantial portions of the Software. |
| 15 * |
| 16 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
| 17 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
| 18 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
| 19 * |
| 20 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |
| 21 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |
| 22 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |
| 23 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |
| 24 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 25 * |
| 26 * In addition, the following condition applies: |
| 27 * |
| 28 * All redistributions must retain an intact copy of this copyright notice |
| 29 * and disclaimer. |
| 30 */ |
| 31 |
| 32 |
| 33 // The code has been adapted for use as a benchmark by Google. |
| 34 var Crypto = new BenchmarkSuite('Crypto', 266181, [ |
| 35 new Benchmark("Encrypt", encrypt), |
| 36 new Benchmark("Decrypt", decrypt) |
| 37 ]); |
| 38 |
| 39 |
| 40 // Basic JavaScript BN library - subset useful for RSA encryption. |
| 41 |
| 42 // Bits per digit |
| 43 var dbits; |
| 44 var BI_DB; |
| 45 var BI_DM; |
| 46 var BI_DV; |
| 47 |
| 48 var BI_FP; |
| 49 var BI_FV; |
| 50 var BI_F1; |
| 51 var BI_F2; |
| 52 |
| 53 // JavaScript engine analysis |
| 54 var canary = 0xdeadbeefcafe; |
| 55 var j_lm = ((canary&0xffffff)==0xefcafe); |
| 56 |
| 57 // (public) Constructor |
| 58 function BigInteger(a,b,c) { |
| 59 this.array = new Array(); |
| 60 if(a != null) |
| 61 if("number" == typeof a) this.fromNumber(a,b,c); |
| 62 else if(b == null && "string" != typeof a) this.fromString(a,256); |
| 63 else this.fromString(a,b); |
| 64 } |
| 65 |
| 66 // return new, unset BigInteger |
| 67 function nbi() { return new BigInteger(null); } |
| 68 |
| 69 // am: Compute w_j += (x*this_i), propagate carries, |
| 70 // c is initial carry, returns final carry. |
| 71 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue |
| 72 // We need to select the fastest one that works in this environment. |
| 73 |
| 74 // am1: use a single mult and divide to get the high bits, |
| 75 // max digit bits should be 26 because |
| 76 // max internal value = 2*dvalue^2-2*dvalue (< 2^53) |
| 77 function am1(i,x,w,j,c,n) { |
| 78 var this_array = this.array; |
| 79 var w_array = w.array; |
| 80 while(--n >= 0) { |
| 81 var v = x*this_array[i++]+w_array[j]+c; |
| 82 c = Math.floor(v/0x4000000); |
| 83 w_array[j++] = v&0x3ffffff; |
| 84 } |
| 85 return c; |
| 86 } |
| 87 |
| 88 // am2 avoids a big mult-and-extract completely. |
| 89 // Max digit bits should be <= 30 because we do bitwise ops |
| 90 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) |
| 91 function am2(i,x,w,j,c,n) { |
| 92 var this_array = this.array; |
| 93 var w_array = w.array; |
| 94 var xl = x&0x7fff, xh = x>>15; |
| 95 while(--n >= 0) { |
| 96 var l = this_array[i]&0x7fff; |
| 97 var h = this_array[i++]>>15; |
| 98 var m = xh*l+h*xl; |
| 99 l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff); |
| 100 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); |
| 101 w_array[j++] = l&0x3fffffff; |
| 102 } |
| 103 return c; |
| 104 } |
| 105 |
| 106 // Alternately, set max digit bits to 28 since some |
| 107 // browsers slow down when dealing with 32-bit numbers. |
| 108 function am3(i,x,w,j,c,n) { |
| 109 var this_array = this.array; |
| 110 var w_array = w.array; |
| 111 |
| 112 var xl = x&0x3fff, xh = x>>14; |
| 113 while(--n >= 0) { |
| 114 var l = this_array[i]&0x3fff; |
| 115 var h = this_array[i++]>>14; |
| 116 var m = xh*l+h*xl; |
| 117 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c; |
| 118 c = (l>>28)+(m>>14)+xh*h; |
| 119 w_array[j++] = l&0xfffffff; |
| 120 } |
| 121 return c; |
| 122 } |
| 123 |
| 124 // This is tailored to VMs with 2-bit tagging. It makes sure |
| 125 // that all the computations stay within the 29 bits available. |
| 126 function am4(i,x,w,j,c,n) { |
| 127 var this_array = this.array; |
| 128 var w_array = w.array; |
| 129 |
| 130 var xl = x&0x1fff, xh = x>>13; |
| 131 while(--n >= 0) { |
| 132 var l = this_array[i]&0x1fff; |
| 133 var h = this_array[i++]>>13; |
| 134 var m = xh*l+h*xl; |
| 135 l = xl*l+((m&0x1fff)<<13)+w_array[j]+c; |
| 136 c = (l>>26)+(m>>13)+xh*h; |
| 137 w_array[j++] = l&0x3ffffff; |
| 138 } |
| 139 return c; |
| 140 } |
| 141 |
| 142 // am3/28 is best for SM, Rhino, but am4/26 is best for v8. |
| 143 // Kestrel (Opera 9.5) gets its best result with am4/26. |
| 144 // IE7 does 9% better with am3/28 than with am4/26. |
| 145 // Firefox (SM) gets 10% faster with am3/28 than with am4/26. |
| 146 |
| 147 setupEngine = function(fn, bits) { |
| 148 BigInteger.prototype.am = fn; |
| 149 dbits = bits; |
| 150 |
| 151 BI_DB = dbits; |
| 152 BI_DM = ((1<<dbits)-1); |
| 153 BI_DV = (1<<dbits); |
| 154 |
| 155 BI_FP = 52; |
| 156 BI_FV = Math.pow(2,BI_FP); |
| 157 BI_F1 = BI_FP-dbits; |
| 158 BI_F2 = 2*dbits-BI_FP; |
| 159 } |
| 160 |
| 161 |
| 162 // Digit conversions |
| 163 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; |
| 164 var BI_RC = new Array(); |
| 165 var rr,vv; |
| 166 rr = "0".charCodeAt(0); |
| 167 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; |
| 168 rr = "a".charCodeAt(0); |
| 169 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
| 170 rr = "A".charCodeAt(0); |
| 171 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; |
| 172 |
| 173 function int2char(n) { return BI_RM.charAt(n); } |
| 174 function intAt(s,i) { |
| 175 var c = BI_RC[s.charCodeAt(i)]; |
| 176 return (c==null)?-1:c; |
| 177 } |
| 178 |
| 179 // (protected) copy this to r |
| 180 function bnpCopyTo(r) { |
| 181 var this_array = this.array; |
| 182 var r_array = r.array; |
| 183 |
| 184 for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i]; |
| 185 r.t = this.t; |
| 186 r.s = this.s; |
| 187 } |
| 188 |
| 189 // (protected) set from integer value x, -DV <= x < DV |
| 190 function bnpFromInt(x) { |
| 191 var this_array = this.array; |
| 192 this.t = 1; |
| 193 this.s = (x<0)?-1:0; |
| 194 if(x > 0) this_array[0] = x; |
| 195 else if(x < -1) this_array[0] = x+DV; |
| 196 else this.t = 0; |
| 197 } |
| 198 |
| 199 // return bigint initialized to value |
| 200 function nbv(i) { var r = nbi(); r.fromInt(i); return r; } |
| 201 |
| 202 // (protected) set from string and radix |
| 203 function bnpFromString(s,b) { |
| 204 var this_array = this.array; |
| 205 var k; |
| 206 if(b == 16) k = 4; |
| 207 else if(b == 8) k = 3; |
| 208 else if(b == 256) k = 8; // byte array |
| 209 else if(b == 2) k = 1; |
| 210 else if(b == 32) k = 5; |
| 211 else if(b == 4) k = 2; |
| 212 else { this.fromRadix(s,b); return; } |
| 213 this.t = 0; |
| 214 this.s = 0; |
| 215 var i = s.length, mi = false, sh = 0; |
| 216 while(--i >= 0) { |
| 217 var x = (k==8)?s[i]&0xff:intAt(s,i); |
| 218 if(x < 0) { |
| 219 if(s.charAt(i) == "-") mi = true; |
| 220 continue; |
| 221 } |
| 222 mi = false; |
| 223 if(sh == 0) |
| 224 this_array[this.t++] = x; |
| 225 else if(sh+k > BI_DB) { |
| 226 this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh; |
| 227 this_array[this.t++] = (x>>(BI_DB-sh)); |
| 228 } |
| 229 else |
| 230 this_array[this.t-1] |= x<<sh; |
| 231 sh += k; |
| 232 if(sh >= BI_DB) sh -= BI_DB; |
| 233 } |
| 234 if(k == 8 && (s[0]&0x80) != 0) { |
| 235 this.s = -1; |
| 236 if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh; |
| 237 } |
| 238 this.clamp(); |
| 239 if(mi) BigInteger.ZERO.subTo(this,this); |
| 240 } |
| 241 |
| 242 // (protected) clamp off excess high words |
| 243 function bnpClamp() { |
| 244 var this_array = this.array; |
| 245 var c = this.s&BI_DM; |
| 246 while(this.t > 0 && this_array[this.t-1] == c) --this.t; |
| 247 } |
| 248 |
| 249 // (public) return string representation in given radix |
| 250 function bnToString(b) { |
| 251 var this_array = this.array; |
| 252 if(this.s < 0) return "-"+this.negate().toString(b); |
| 253 var k; |
| 254 if(b == 16) k = 4; |
| 255 else if(b == 8) k = 3; |
| 256 else if(b == 2) k = 1; |
| 257 else if(b == 32) k = 5; |
| 258 else if(b == 4) k = 2; |
| 259 else return this.toRadix(b); |
| 260 var km = (1<<k)-1, d, m = false, r = "", i = this.t; |
| 261 var p = BI_DB-(i*BI_DB)%k; |
| 262 if(i-- > 0) { |
| 263 if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); } |
| 264 while(i >= 0) { |
| 265 if(p < k) { |
| 266 d = (this_array[i]&((1<<p)-1))<<(k-p); |
| 267 d |= this_array[--i]>>(p+=BI_DB-k); |
| 268 } |
| 269 else { |
| 270 d = (this_array[i]>>(p-=k))&km; |
| 271 if(p <= 0) { p += BI_DB; --i; } |
| 272 } |
| 273 if(d > 0) m = true; |
| 274 if(m) r += int2char(d); |
| 275 } |
| 276 } |
| 277 return m?r:"0"; |
| 278 } |
| 279 |
| 280 // (public) -this |
| 281 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } |
| 282 |
| 283 // (public) |this| |
| 284 function bnAbs() { return (this.s<0)?this.negate():this; } |
| 285 |
| 286 // (public) return + if this > a, - if this < a, 0 if equal |
| 287 function bnCompareTo(a) { |
| 288 var this_array = this.array; |
| 289 var a_array = a.array; |
| 290 |
| 291 var r = this.s-a.s; |
| 292 if(r != 0) return r; |
| 293 var i = this.t; |
| 294 r = i-a.t; |
| 295 if(r != 0) return r; |
| 296 while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r; |
| 297 return 0; |
| 298 } |
| 299 |
| 300 // returns bit length of the integer x |
| 301 function nbits(x) { |
| 302 var r = 1, t; |
| 303 if((t=x>>>16) != 0) { x = t; r += 16; } |
| 304 if((t=x>>8) != 0) { x = t; r += 8; } |
| 305 if((t=x>>4) != 0) { x = t; r += 4; } |
| 306 if((t=x>>2) != 0) { x = t; r += 2; } |
| 307 if((t=x>>1) != 0) { x = t; r += 1; } |
| 308 return r; |
| 309 } |
| 310 |
| 311 // (public) return the number of bits in "this" |
| 312 function bnBitLength() { |
| 313 var this_array = this.array; |
| 314 if(this.t <= 0) return 0; |
| 315 return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM)); |
| 316 } |
| 317 |
| 318 // (protected) r = this << n*DB |
| 319 function bnpDLShiftTo(n,r) { |
| 320 var this_array = this.array; |
| 321 var r_array = r.array; |
| 322 var i; |
| 323 for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i]; |
| 324 for(i = n-1; i >= 0; --i) r_array[i] = 0; |
| 325 r.t = this.t+n; |
| 326 r.s = this.s; |
| 327 } |
| 328 |
| 329 // (protected) r = this >> n*DB |
| 330 function bnpDRShiftTo(n,r) { |
| 331 var this_array = this.array; |
| 332 var r_array = r.array; |
| 333 for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i]; |
| 334 r.t = Math.max(this.t-n,0); |
| 335 r.s = this.s; |
| 336 } |
| 337 |
| 338 // (protected) r = this << n |
| 339 function bnpLShiftTo(n,r) { |
| 340 var this_array = this.array; |
| 341 var r_array = r.array; |
| 342 var bs = n%BI_DB; |
| 343 var cbs = BI_DB-bs; |
| 344 var bm = (1<<cbs)-1; |
| 345 var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i; |
| 346 for(i = this.t-1; i >= 0; --i) { |
| 347 r_array[i+ds+1] = (this_array[i]>>cbs)|c; |
| 348 c = (this_array[i]&bm)<<bs; |
| 349 } |
| 350 for(i = ds-1; i >= 0; --i) r_array[i] = 0; |
| 351 r_array[ds] = c; |
| 352 r.t = this.t+ds+1; |
| 353 r.s = this.s; |
| 354 r.clamp(); |
| 355 } |
| 356 |
| 357 // (protected) r = this >> n |
| 358 function bnpRShiftTo(n,r) { |
| 359 var this_array = this.array; |
| 360 var r_array = r.array; |
| 361 r.s = this.s; |
| 362 var ds = Math.floor(n/BI_DB); |
| 363 if(ds >= this.t) { r.t = 0; return; } |
| 364 var bs = n%BI_DB; |
| 365 var cbs = BI_DB-bs; |
| 366 var bm = (1<<bs)-1; |
| 367 r_array[0] = this_array[ds]>>bs; |
| 368 for(var i = ds+1; i < this.t; ++i) { |
| 369 r_array[i-ds-1] |= (this_array[i]&bm)<<cbs; |
| 370 r_array[i-ds] = this_array[i]>>bs; |
| 371 } |
| 372 if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs; |
| 373 r.t = this.t-ds; |
| 374 r.clamp(); |
| 375 } |
| 376 |
| 377 // (protected) r = this - a |
| 378 function bnpSubTo(a,r) { |
| 379 var this_array = this.array; |
| 380 var r_array = r.array; |
| 381 var a_array = a.array; |
| 382 var i = 0, c = 0, m = Math.min(a.t,this.t); |
| 383 while(i < m) { |
| 384 c += this_array[i]-a_array[i]; |
| 385 r_array[i++] = c&BI_DM; |
| 386 c >>= BI_DB; |
| 387 } |
| 388 if(a.t < this.t) { |
| 389 c -= a.s; |
| 390 while(i < this.t) { |
| 391 c += this_array[i]; |
| 392 r_array[i++] = c&BI_DM; |
| 393 c >>= BI_DB; |
| 394 } |
| 395 c += this.s; |
| 396 } |
| 397 else { |
| 398 c += this.s; |
| 399 while(i < a.t) { |
| 400 c -= a_array[i]; |
| 401 r_array[i++] = c&BI_DM; |
| 402 c >>= BI_DB; |
| 403 } |
| 404 c -= a.s; |
| 405 } |
| 406 r.s = (c<0)?-1:0; |
| 407 if(c < -1) r_array[i++] = BI_DV+c; |
| 408 else if(c > 0) r_array[i++] = c; |
| 409 r.t = i; |
| 410 r.clamp(); |
| 411 } |
| 412 |
| 413 // (protected) r = this * a, r != this,a (HAC 14.12) |
| 414 // "this" should be the larger one if appropriate. |
| 415 function bnpMultiplyTo(a,r) { |
| 416 var this_array = this.array; |
| 417 var r_array = r.array; |
| 418 var x = this.abs(), y = a.abs(); |
| 419 var y_array = y.array; |
| 420 |
| 421 var i = x.t; |
| 422 r.t = i+y.t; |
| 423 while(--i >= 0) r_array[i] = 0; |
| 424 for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t); |
| 425 r.s = 0; |
| 426 r.clamp(); |
| 427 if(this.s != a.s) BigInteger.ZERO.subTo(r,r); |
| 428 } |
| 429 |
| 430 // (protected) r = this^2, r != this (HAC 14.16) |
| 431 function bnpSquareTo(r) { |
| 432 var x = this.abs(); |
| 433 var x_array = x.array; |
| 434 var r_array = r.array; |
| 435 |
| 436 var i = r.t = 2*x.t; |
| 437 while(--i >= 0) r_array[i] = 0; |
| 438 for(i = 0; i < x.t-1; ++i) { |
| 439 var c = x.am(i,x_array[i],r,2*i,0,1); |
| 440 if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) { |
| 441 r_array[i+x.t] -= BI_DV; |
| 442 r_array[i+x.t+1] = 1; |
| 443 } |
| 444 } |
| 445 if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1); |
| 446 r.s = 0; |
| 447 r.clamp(); |
| 448 } |
| 449 |
| 450 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) |
| 451 // r != q, this != m. q or r may be null. |
| 452 function bnpDivRemTo(m,q,r) { |
| 453 var pm = m.abs(); |
| 454 if(pm.t <= 0) return; |
| 455 var pt = this.abs(); |
| 456 if(pt.t < pm.t) { |
| 457 if(q != null) q.fromInt(0); |
| 458 if(r != null) this.copyTo(r); |
| 459 return; |
| 460 } |
| 461 if(r == null) r = nbi(); |
| 462 var y = nbi(), ts = this.s, ms = m.s; |
| 463 var pm_array = pm.array; |
| 464 var nsh = BI_DB-nbits(pm_array[pm.t-1]); // normalize modulus |
| 465 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } |
| 466 else { pm.copyTo(y); pt.copyTo(r); } |
| 467 var ys = y.t; |
| 468 |
| 469 var y_array = y.array; |
| 470 var y0 = y_array[ys-1]; |
| 471 if(y0 == 0) return; |
| 472 var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0); |
| 473 var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2; |
| 474 var i = r.t, j = i-ys, t = (q==null)?nbi():q; |
| 475 y.dlShiftTo(j,t); |
| 476 |
| 477 var r_array = r.array; |
| 478 if(r.compareTo(t) >= 0) { |
| 479 r_array[r.t++] = 1; |
| 480 r.subTo(t,r); |
| 481 } |
| 482 BigInteger.ONE.dlShiftTo(ys,t); |
| 483 t.subTo(y,y); // "negative" y so we can replace sub with am later |
| 484 while(y.t < ys) y_array[y.t++] = 0; |
| 485 while(--j >= 0) { |
| 486 // Estimate quotient digit |
| 487 var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*
d2); |
| 488 if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out |
| 489 y.dlShiftTo(j,t); |
| 490 r.subTo(t,r); |
| 491 while(r_array[i] < --qd) r.subTo(t,r); |
| 492 } |
| 493 } |
| 494 if(q != null) { |
| 495 r.drShiftTo(ys,q); |
| 496 if(ts != ms) BigInteger.ZERO.subTo(q,q); |
| 497 } |
| 498 r.t = ys; |
| 499 r.clamp(); |
| 500 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder |
| 501 if(ts < 0) BigInteger.ZERO.subTo(r,r); |
| 502 } |
| 503 |
| 504 // (public) this mod a |
| 505 function bnMod(a) { |
| 506 var r = nbi(); |
| 507 this.abs().divRemTo(a,null,r); |
| 508 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); |
| 509 return r; |
| 510 } |
| 511 |
| 512 // Modular reduction using "classic" algorithm |
| 513 function Classic(m) { this.m = m; } |
| 514 function cConvert(x) { |
| 515 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); |
| 516 else return x; |
| 517 } |
| 518 function cRevert(x) { return x; } |
| 519 function cReduce(x) { x.divRemTo(this.m,null,x); } |
| 520 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
| 521 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
| 522 |
| 523 Classic.prototype.convert = cConvert; |
| 524 Classic.prototype.revert = cRevert; |
| 525 Classic.prototype.reduce = cReduce; |
| 526 Classic.prototype.mulTo = cMulTo; |
| 527 Classic.prototype.sqrTo = cSqrTo; |
| 528 |
| 529 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction |
| 530 // justification: |
| 531 // xy == 1 (mod m) |
| 532 // xy = 1+km |
| 533 // xy(2-xy) = (1+km)(1-km) |
| 534 // x[y(2-xy)] = 1-k^2m^2 |
| 535 // x[y(2-xy)] == 1 (mod m^2) |
| 536 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 |
| 537 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. |
| 538 // JS multiply "overflows" differently from C/C++, so care is needed here. |
| 539 function bnpInvDigit() { |
| 540 var this_array = this.array; |
| 541 if(this.t < 1) return 0; |
| 542 var x = this_array[0]; |
| 543 if((x&1) == 0) return 0; |
| 544 var y = x&3; // y == 1/x mod 2^2 |
| 545 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 |
| 546 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 |
| 547 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 |
| 548 // last step - calculate inverse mod DV directly; |
| 549 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints |
| 550 y = (y*(2-x*y%BI_DV))%BI_DV; // y == 1/x mod 2^dbits |
| 551 // we really want the negative inverse, and -DV < y < DV |
| 552 return (y>0)?BI_DV-y:-y; |
| 553 } |
| 554 |
| 555 // Montgomery reduction |
| 556 function Montgomery(m) { |
| 557 this.m = m; |
| 558 this.mp = m.invDigit(); |
| 559 this.mpl = this.mp&0x7fff; |
| 560 this.mph = this.mp>>15; |
| 561 this.um = (1<<(BI_DB-15))-1; |
| 562 this.mt2 = 2*m.t; |
| 563 } |
| 564 |
| 565 // xR mod m |
| 566 function montConvert(x) { |
| 567 var r = nbi(); |
| 568 x.abs().dlShiftTo(this.m.t,r); |
| 569 r.divRemTo(this.m,null,r); |
| 570 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); |
| 571 return r; |
| 572 } |
| 573 |
| 574 // x/R mod m |
| 575 function montRevert(x) { |
| 576 var r = nbi(); |
| 577 x.copyTo(r); |
| 578 this.reduce(r); |
| 579 return r; |
| 580 } |
| 581 |
| 582 // x = x/R mod m (HAC 14.32) |
| 583 function montReduce(x) { |
| 584 var x_array = x.array; |
| 585 while(x.t <= this.mt2) // pad x so am has enough room later |
| 586 x_array[x.t++] = 0; |
| 587 for(var i = 0; i < this.m.t; ++i) { |
| 588 // faster way of calculating u0 = x[i]*mp mod DV |
| 589 var j = x_array[i]&0x7fff; |
| 590 var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))
&BI_DM; |
| 591 // use am to combine the multiply-shift-add into one call |
| 592 j = i+this.m.t; |
| 593 x_array[j] += this.m.am(0,u0,x,i,0,this.m.t); |
| 594 // propagate carry |
| 595 while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; } |
| 596 } |
| 597 x.clamp(); |
| 598 x.drShiftTo(this.m.t,x); |
| 599 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |
| 600 } |
| 601 |
| 602 // r = "x^2/R mod m"; x != r |
| 603 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
| 604 |
| 605 // r = "xy/R mod m"; x,y != r |
| 606 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
| 607 |
| 608 Montgomery.prototype.convert = montConvert; |
| 609 Montgomery.prototype.revert = montRevert; |
| 610 Montgomery.prototype.reduce = montReduce; |
| 611 Montgomery.prototype.mulTo = montMulTo; |
| 612 Montgomery.prototype.sqrTo = montSqrTo; |
| 613 |
| 614 // (protected) true iff this is even |
| 615 function bnpIsEven() { |
| 616 var this_array = this.array; |
| 617 return ((this.t>0)?(this_array[0]&1):this.s) == 0; |
| 618 } |
| 619 |
| 620 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) |
| 621 function bnpExp(e,z) { |
| 622 if(e > 0xffffffff || e < 1) return BigInteger.ONE; |
| 623 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; |
| 624 g.copyTo(r); |
| 625 while(--i >= 0) { |
| 626 z.sqrTo(r,r2); |
| 627 if((e&(1<<i)) > 0) z.mulTo(r2,g,r); |
| 628 else { var t = r; r = r2; r2 = t; } |
| 629 } |
| 630 return z.revert(r); |
| 631 } |
| 632 |
| 633 // (public) this^e % m, 0 <= e < 2^32 |
| 634 function bnModPowInt(e,m) { |
| 635 var z; |
| 636 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); |
| 637 return this.exp(e,z); |
| 638 } |
| 639 |
| 640 // protected |
| 641 BigInteger.prototype.copyTo = bnpCopyTo; |
| 642 BigInteger.prototype.fromInt = bnpFromInt; |
| 643 BigInteger.prototype.fromString = bnpFromString; |
| 644 BigInteger.prototype.clamp = bnpClamp; |
| 645 BigInteger.prototype.dlShiftTo = bnpDLShiftTo; |
| 646 BigInteger.prototype.drShiftTo = bnpDRShiftTo; |
| 647 BigInteger.prototype.lShiftTo = bnpLShiftTo; |
| 648 BigInteger.prototype.rShiftTo = bnpRShiftTo; |
| 649 BigInteger.prototype.subTo = bnpSubTo; |
| 650 BigInteger.prototype.multiplyTo = bnpMultiplyTo; |
| 651 BigInteger.prototype.squareTo = bnpSquareTo; |
| 652 BigInteger.prototype.divRemTo = bnpDivRemTo; |
| 653 BigInteger.prototype.invDigit = bnpInvDigit; |
| 654 BigInteger.prototype.isEven = bnpIsEven; |
| 655 BigInteger.prototype.exp = bnpExp; |
| 656 |
| 657 // public |
| 658 BigInteger.prototype.toString = bnToString; |
| 659 BigInteger.prototype.negate = bnNegate; |
| 660 BigInteger.prototype.abs = bnAbs; |
| 661 BigInteger.prototype.compareTo = bnCompareTo; |
| 662 BigInteger.prototype.bitLength = bnBitLength; |
| 663 BigInteger.prototype.mod = bnMod; |
| 664 BigInteger.prototype.modPowInt = bnModPowInt; |
| 665 |
| 666 // "constants" |
| 667 BigInteger.ZERO = nbv(0); |
| 668 BigInteger.ONE = nbv(1); |
| 669 // Copyright (c) 2005 Tom Wu |
| 670 // All Rights Reserved. |
| 671 // See "LICENSE" for details. |
| 672 |
| 673 // Extended JavaScript BN functions, required for RSA private ops. |
| 674 |
| 675 // (public) |
| 676 function bnClone() { var r = nbi(); this.copyTo(r); return r; } |
| 677 |
| 678 // (public) return value as integer |
| 679 function bnIntValue() { |
| 680 var this_array = this.array; |
| 681 if(this.s < 0) { |
| 682 if(this.t == 1) return this_array[0]-BI_DV; |
| 683 else if(this.t == 0) return -1; |
| 684 } |
| 685 else if(this.t == 1) return this_array[0]; |
| 686 else if(this.t == 0) return 0; |
| 687 // assumes 16 < DB < 32 |
| 688 return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0]; |
| 689 } |
| 690 |
| 691 // (public) return value as byte |
| 692 function bnByteValue() { |
| 693 var this_array = this.array; |
| 694 return (this.t==0)?this.s:(this_array[0]<<24)>>24; |
| 695 } |
| 696 |
| 697 // (public) return value as short (assumes DB>=16) |
| 698 function bnShortValue() { |
| 699 var this_array = this.array; |
| 700 return (this.t==0)?this.s:(this_array[0]<<16)>>16; |
| 701 } |
| 702 |
| 703 // (protected) return x s.t. r^x < DV |
| 704 function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); } |
| 705 |
| 706 // (public) 0 if this == 0, 1 if this > 0 |
| 707 function bnSigNum() { |
| 708 var this_array = this.array; |
| 709 if(this.s < 0) return -1; |
| 710 else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0; |
| 711 else return 1; |
| 712 } |
| 713 |
| 714 // (protected) convert to radix string |
| 715 function bnpToRadix(b) { |
| 716 if(b == null) b = 10; |
| 717 if(this.signum() == 0 || b < 2 || b > 36) return "0"; |
| 718 var cs = this.chunkSize(b); |
| 719 var a = Math.pow(b,cs); |
| 720 var d = nbv(a), y = nbi(), z = nbi(), r = ""; |
| 721 this.divRemTo(d,y,z); |
| 722 while(y.signum() > 0) { |
| 723 r = (a+z.intValue()).toString(b).substr(1) + r; |
| 724 y.divRemTo(d,y,z); |
| 725 } |
| 726 return z.intValue().toString(b) + r; |
| 727 } |
| 728 |
| 729 // (protected) convert from radix string |
| 730 function bnpFromRadix(s,b) { |
| 731 this.fromInt(0); |
| 732 if(b == null) b = 10; |
| 733 var cs = this.chunkSize(b); |
| 734 var d = Math.pow(b,cs), mi = false, j = 0, w = 0; |
| 735 for(var i = 0; i < s.length; ++i) { |
| 736 var x = intAt(s,i); |
| 737 if(x < 0) { |
| 738 if(s.charAt(i) == "-" && this.signum() == 0) mi = true; |
| 739 continue; |
| 740 } |
| 741 w = b*w+x; |
| 742 if(++j >= cs) { |
| 743 this.dMultiply(d); |
| 744 this.dAddOffset(w,0); |
| 745 j = 0; |
| 746 w = 0; |
| 747 } |
| 748 } |
| 749 if(j > 0) { |
| 750 this.dMultiply(Math.pow(b,j)); |
| 751 this.dAddOffset(w,0); |
| 752 } |
| 753 if(mi) BigInteger.ZERO.subTo(this,this); |
| 754 } |
| 755 |
| 756 // (protected) alternate constructor |
| 757 function bnpFromNumber(a,b,c) { |
| 758 if("number" == typeof b) { |
| 759 // new BigInteger(int,int,RNG) |
| 760 if(a < 2) this.fromInt(1); |
| 761 else { |
| 762 this.fromNumber(a,c); |
| 763 if(!this.testBit(a-1)) // force MSB set |
| 764 this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); |
| 765 if(this.isEven()) this.dAddOffset(1,0); // force odd |
| 766 while(!this.isProbablePrime(b)) { |
| 767 this.dAddOffset(2,0); |
| 768 if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); |
| 769 } |
| 770 } |
| 771 } |
| 772 else { |
| 773 // new BigInteger(int,RNG) |
| 774 var x = new Array(), t = a&7; |
| 775 x.length = (a>>3)+1; |
| 776 b.nextBytes(x); |
| 777 if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; |
| 778 this.fromString(x,256); |
| 779 } |
| 780 } |
| 781 |
| 782 // (public) convert to bigendian byte array |
| 783 function bnToByteArray() { |
| 784 var this_array = this.array; |
| 785 var i = this.t, r = new Array(); |
| 786 r[0] = this.s; |
| 787 var p = BI_DB-(i*BI_DB)%8, d, k = 0; |
| 788 if(i-- > 0) { |
| 789 if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p) |
| 790 r[k++] = d|(this.s<<(BI_DB-p)); |
| 791 while(i >= 0) { |
| 792 if(p < 8) { |
| 793 d = (this_array[i]&((1<<p)-1))<<(8-p); |
| 794 d |= this_array[--i]>>(p+=BI_DB-8); |
| 795 } |
| 796 else { |
| 797 d = (this_array[i]>>(p-=8))&0xff; |
| 798 if(p <= 0) { p += BI_DB; --i; } |
| 799 } |
| 800 if((d&0x80) != 0) d |= -256; |
| 801 if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; |
| 802 if(k > 0 || d != this.s) r[k++] = d; |
| 803 } |
| 804 } |
| 805 return r; |
| 806 } |
| 807 |
| 808 function bnEquals(a) { return(this.compareTo(a)==0); } |
| 809 function bnMin(a) { return(this.compareTo(a)<0)?this:a; } |
| 810 function bnMax(a) { return(this.compareTo(a)>0)?this:a; } |
| 811 |
| 812 // (protected) r = this op a (bitwise) |
| 813 function bnpBitwiseTo(a,op,r) { |
| 814 var this_array = this.array; |
| 815 var a_array = a.array; |
| 816 var r_array = r.array; |
| 817 var i, f, m = Math.min(a.t,this.t); |
| 818 for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]); |
| 819 if(a.t < this.t) { |
| 820 f = a.s&BI_DM; |
| 821 for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f); |
| 822 r.t = this.t; |
| 823 } |
| 824 else { |
| 825 f = this.s&BI_DM; |
| 826 for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]); |
| 827 r.t = a.t; |
| 828 } |
| 829 r.s = op(this.s,a.s); |
| 830 r.clamp(); |
| 831 } |
| 832 |
| 833 // (public) this & a |
| 834 function op_and(x,y) { return x&y; } |
| 835 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } |
| 836 |
| 837 // (public) this | a |
| 838 function op_or(x,y) { return x|y; } |
| 839 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } |
| 840 |
| 841 // (public) this ^ a |
| 842 function op_xor(x,y) { return x^y; } |
| 843 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } |
| 844 |
| 845 // (public) this & ~a |
| 846 function op_andnot(x,y) { return x&~y; } |
| 847 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } |
| 848 |
| 849 // (public) ~this |
| 850 function bnNot() { |
| 851 var this_array = this.array; |
| 852 var r = nbi(); |
| 853 var r_array = r.array; |
| 854 |
| 855 for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i]; |
| 856 r.t = this.t; |
| 857 r.s = ~this.s; |
| 858 return r; |
| 859 } |
| 860 |
| 861 // (public) this << n |
| 862 function bnShiftLeft(n) { |
| 863 var r = nbi(); |
| 864 if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); |
| 865 return r; |
| 866 } |
| 867 |
| 868 // (public) this >> n |
| 869 function bnShiftRight(n) { |
| 870 var r = nbi(); |
| 871 if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); |
| 872 return r; |
| 873 } |
| 874 |
| 875 // return index of lowest 1-bit in x, x < 2^31 |
| 876 function lbit(x) { |
| 877 if(x == 0) return -1; |
| 878 var r = 0; |
| 879 if((x&0xffff) == 0) { x >>= 16; r += 16; } |
| 880 if((x&0xff) == 0) { x >>= 8; r += 8; } |
| 881 if((x&0xf) == 0) { x >>= 4; r += 4; } |
| 882 if((x&3) == 0) { x >>= 2; r += 2; } |
| 883 if((x&1) == 0) ++r; |
| 884 return r; |
| 885 } |
| 886 |
| 887 // (public) returns index of lowest 1-bit (or -1 if none) |
| 888 function bnGetLowestSetBit() { |
| 889 var this_array = this.array; |
| 890 for(var i = 0; i < this.t; ++i) |
| 891 if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]); |
| 892 if(this.s < 0) return this.t*BI_DB; |
| 893 return -1; |
| 894 } |
| 895 |
| 896 // return number of 1 bits in x |
| 897 function cbit(x) { |
| 898 var r = 0; |
| 899 while(x != 0) { x &= x-1; ++r; } |
| 900 return r; |
| 901 } |
| 902 |
| 903 // (public) return number of set bits |
| 904 function bnBitCount() { |
| 905 var r = 0, x = this.s&BI_DM; |
| 906 for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x); |
| 907 return r; |
| 908 } |
| 909 |
| 910 // (public) true iff nth bit is set |
| 911 function bnTestBit(n) { |
| 912 var this_array = this.array; |
| 913 var j = Math.floor(n/BI_DB); |
| 914 if(j >= this.t) return(this.s!=0); |
| 915 return((this_array[j]&(1<<(n%BI_DB)))!=0); |
| 916 } |
| 917 |
| 918 // (protected) this op (1<<n) |
| 919 function bnpChangeBit(n,op) { |
| 920 var r = BigInteger.ONE.shiftLeft(n); |
| 921 this.bitwiseTo(r,op,r); |
| 922 return r; |
| 923 } |
| 924 |
| 925 // (public) this | (1<<n) |
| 926 function bnSetBit(n) { return this.changeBit(n,op_or); } |
| 927 |
| 928 // (public) this & ~(1<<n) |
| 929 function bnClearBit(n) { return this.changeBit(n,op_andnot); } |
| 930 |
| 931 // (public) this ^ (1<<n) |
| 932 function bnFlipBit(n) { return this.changeBit(n,op_xor); } |
| 933 |
| 934 // (protected) r = this + a |
| 935 function bnpAddTo(a,r) { |
| 936 var this_array = this.array; |
| 937 var a_array = a.array; |
| 938 var r_array = r.array; |
| 939 var i = 0, c = 0, m = Math.min(a.t,this.t); |
| 940 while(i < m) { |
| 941 c += this_array[i]+a_array[i]; |
| 942 r_array[i++] = c&BI_DM; |
| 943 c >>= BI_DB; |
| 944 } |
| 945 if(a.t < this.t) { |
| 946 c += a.s; |
| 947 while(i < this.t) { |
| 948 c += this_array[i]; |
| 949 r_array[i++] = c&BI_DM; |
| 950 c >>= BI_DB; |
| 951 } |
| 952 c += this.s; |
| 953 } |
| 954 else { |
| 955 c += this.s; |
| 956 while(i < a.t) { |
| 957 c += a_array[i]; |
| 958 r_array[i++] = c&BI_DM; |
| 959 c >>= BI_DB; |
| 960 } |
| 961 c += a.s; |
| 962 } |
| 963 r.s = (c<0)?-1:0; |
| 964 if(c > 0) r_array[i++] = c; |
| 965 else if(c < -1) r_array[i++] = BI_DV+c; |
| 966 r.t = i; |
| 967 r.clamp(); |
| 968 } |
| 969 |
| 970 // (public) this + a |
| 971 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } |
| 972 |
| 973 // (public) this - a |
| 974 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } |
| 975 |
| 976 // (public) this * a |
| 977 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } |
| 978 |
| 979 // (public) this / a |
| 980 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } |
| 981 |
| 982 // (public) this % a |
| 983 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } |
| 984 |
| 985 // (public) [this/a,this%a] |
| 986 function bnDivideAndRemainder(a) { |
| 987 var q = nbi(), r = nbi(); |
| 988 this.divRemTo(a,q,r); |
| 989 return new Array(q,r); |
| 990 } |
| 991 |
| 992 // (protected) this *= n, this >= 0, 1 < n < DV |
| 993 function bnpDMultiply(n) { |
| 994 var this_array = this.array; |
| 995 this_array[this.t] = this.am(0,n-1,this,0,0,this.t); |
| 996 ++this.t; |
| 997 this.clamp(); |
| 998 } |
| 999 |
| 1000 // (protected) this += n << w words, this >= 0 |
| 1001 function bnpDAddOffset(n,w) { |
| 1002 var this_array = this.array; |
| 1003 while(this.t <= w) this_array[this.t++] = 0; |
| 1004 this_array[w] += n; |
| 1005 while(this_array[w] >= BI_DV) { |
| 1006 this_array[w] -= BI_DV; |
| 1007 if(++w >= this.t) this_array[this.t++] = 0; |
| 1008 ++this_array[w]; |
| 1009 } |
| 1010 } |
| 1011 |
| 1012 // A "null" reducer |
| 1013 function NullExp() {} |
| 1014 function nNop(x) { return x; } |
| 1015 function nMulTo(x,y,r) { x.multiplyTo(y,r); } |
| 1016 function nSqrTo(x,r) { x.squareTo(r); } |
| 1017 |
| 1018 NullExp.prototype.convert = nNop; |
| 1019 NullExp.prototype.revert = nNop; |
| 1020 NullExp.prototype.mulTo = nMulTo; |
| 1021 NullExp.prototype.sqrTo = nSqrTo; |
| 1022 |
| 1023 // (public) this^e |
| 1024 function bnPow(e) { return this.exp(e,new NullExp()); } |
| 1025 |
| 1026 // (protected) r = lower n words of "this * a", a.t <= n |
| 1027 // "this" should be the larger one if appropriate. |
| 1028 function bnpMultiplyLowerTo(a,n,r) { |
| 1029 var r_array = r.array; |
| 1030 var a_array = a.array; |
| 1031 var i = Math.min(this.t+a.t,n); |
| 1032 r.s = 0; // assumes a,this >= 0 |
| 1033 r.t = i; |
| 1034 while(i > 0) r_array[--i] = 0; |
| 1035 var j; |
| 1036 for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0
,this.t); |
| 1037 for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i); |
| 1038 r.clamp(); |
| 1039 } |
| 1040 |
| 1041 // (protected) r = "this * a" without lower n words, n > 0 |
| 1042 // "this" should be the larger one if appropriate. |
| 1043 function bnpMultiplyUpperTo(a,n,r) { |
| 1044 var r_array = r.array; |
| 1045 var a_array = a.array; |
| 1046 --n; |
| 1047 var i = r.t = this.t+a.t-n; |
| 1048 r.s = 0; // assumes a,this >= 0 |
| 1049 while(--i >= 0) r_array[i] = 0; |
| 1050 for(i = Math.max(n-this.t,0); i < a.t; ++i) |
| 1051 r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n); |
| 1052 r.clamp(); |
| 1053 r.drShiftTo(1,r); |
| 1054 } |
| 1055 |
| 1056 // Barrett modular reduction |
| 1057 function Barrett(m) { |
| 1058 // setup Barrett |
| 1059 this.r2 = nbi(); |
| 1060 this.q3 = nbi(); |
| 1061 BigInteger.ONE.dlShiftTo(2*m.t,this.r2); |
| 1062 this.mu = this.r2.divide(m); |
| 1063 this.m = m; |
| 1064 } |
| 1065 |
| 1066 function barrettConvert(x) { |
| 1067 if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); |
| 1068 else if(x.compareTo(this.m) < 0) return x; |
| 1069 else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } |
| 1070 } |
| 1071 |
| 1072 function barrettRevert(x) { return x; } |
| 1073 |
| 1074 // x = x mod m (HAC 14.42) |
| 1075 function barrettReduce(x) { |
| 1076 x.drShiftTo(this.m.t-1,this.r2); |
| 1077 if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } |
| 1078 this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); |
| 1079 this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); |
| 1080 while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); |
| 1081 x.subTo(this.r2,x); |
| 1082 while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); |
| 1083 } |
| 1084 |
| 1085 // r = x^2 mod m; x != r |
| 1086 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } |
| 1087 |
| 1088 // r = x*y mod m; x,y != r |
| 1089 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } |
| 1090 |
| 1091 Barrett.prototype.convert = barrettConvert; |
| 1092 Barrett.prototype.revert = barrettRevert; |
| 1093 Barrett.prototype.reduce = barrettReduce; |
| 1094 Barrett.prototype.mulTo = barrettMulTo; |
| 1095 Barrett.prototype.sqrTo = barrettSqrTo; |
| 1096 |
| 1097 // (public) this^e % m (HAC 14.85) |
| 1098 function bnModPow(e,m) { |
| 1099 var e_array = e.array; |
| 1100 var i = e.bitLength(), k, r = nbv(1), z; |
| 1101 if(i <= 0) return r; |
| 1102 else if(i < 18) k = 1; |
| 1103 else if(i < 48) k = 3; |
| 1104 else if(i < 144) k = 4; |
| 1105 else if(i < 768) k = 5; |
| 1106 else k = 6; |
| 1107 if(i < 8) |
| 1108 z = new Classic(m); |
| 1109 else if(m.isEven()) |
| 1110 z = new Barrett(m); |
| 1111 else |
| 1112 z = new Montgomery(m); |
| 1113 |
| 1114 // precomputation |
| 1115 var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; |
| 1116 g[1] = z.convert(this); |
| 1117 if(k > 1) { |
| 1118 var g2 = nbi(); |
| 1119 z.sqrTo(g[1],g2); |
| 1120 while(n <= km) { |
| 1121 g[n] = nbi(); |
| 1122 z.mulTo(g2,g[n-2],g[n]); |
| 1123 n += 2; |
| 1124 } |
| 1125 } |
| 1126 |
| 1127 var j = e.t-1, w, is1 = true, r2 = nbi(), t; |
| 1128 i = nbits(e_array[j])-1; |
| 1129 while(j >= 0) { |
| 1130 if(i >= k1) w = (e_array[j]>>(i-k1))&km; |
| 1131 else { |
| 1132 w = (e_array[j]&((1<<(i+1))-1))<<(k1-i); |
| 1133 if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1); |
| 1134 } |
| 1135 |
| 1136 n = k; |
| 1137 while((w&1) == 0) { w >>= 1; --n; } |
| 1138 if((i -= n) < 0) { i += BI_DB; --j; } |
| 1139 if(is1) { // ret == 1, don't bother squaring or multiplying it |
| 1140 g[w].copyTo(r); |
| 1141 is1 = false; |
| 1142 } |
| 1143 else { |
| 1144 while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } |
| 1145 if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } |
| 1146 z.mulTo(r2,g[w],r); |
| 1147 } |
| 1148 |
| 1149 while(j >= 0 && (e_array[j]&(1<<i)) == 0) { |
| 1150 z.sqrTo(r,r2); t = r; r = r2; r2 = t; |
| 1151 if(--i < 0) { i = BI_DB-1; --j; } |
| 1152 } |
| 1153 } |
| 1154 return z.revert(r); |
| 1155 } |
| 1156 |
| 1157 // (public) gcd(this,a) (HAC 14.54) |
| 1158 function bnGCD(a) { |
| 1159 var x = (this.s<0)?this.negate():this.clone(); |
| 1160 var y = (a.s<0)?a.negate():a.clone(); |
| 1161 if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } |
| 1162 var i = x.getLowestSetBit(), g = y.getLowestSetBit(); |
| 1163 if(g < 0) return x; |
| 1164 if(i < g) g = i; |
| 1165 if(g > 0) { |
| 1166 x.rShiftTo(g,x); |
| 1167 y.rShiftTo(g,y); |
| 1168 } |
| 1169 while(x.signum() > 0) { |
| 1170 if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); |
| 1171 if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); |
| 1172 if(x.compareTo(y) >= 0) { |
| 1173 x.subTo(y,x); |
| 1174 x.rShiftTo(1,x); |
| 1175 } |
| 1176 else { |
| 1177 y.subTo(x,y); |
| 1178 y.rShiftTo(1,y); |
| 1179 } |
| 1180 } |
| 1181 if(g > 0) y.lShiftTo(g,y); |
| 1182 return y; |
| 1183 } |
| 1184 |
| 1185 // (protected) this % n, n < 2^26 |
| 1186 function bnpModInt(n) { |
| 1187 var this_array = this.array; |
| 1188 if(n <= 0) return 0; |
| 1189 var d = BI_DV%n, r = (this.s<0)?n-1:0; |
| 1190 if(this.t > 0) |
| 1191 if(d == 0) r = this_array[0]%n; |
| 1192 else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n; |
| 1193 return r; |
| 1194 } |
| 1195 |
| 1196 // (public) 1/this % m (HAC 14.61) |
| 1197 function bnModInverse(m) { |
| 1198 var ac = m.isEven(); |
| 1199 if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; |
| 1200 var u = m.clone(), v = this.clone(); |
| 1201 var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); |
| 1202 while(u.signum() != 0) { |
| 1203 while(u.isEven()) { |
| 1204 u.rShiftTo(1,u); |
| 1205 if(ac) { |
| 1206 if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } |
| 1207 a.rShiftTo(1,a); |
| 1208 } |
| 1209 else if(!b.isEven()) b.subTo(m,b); |
| 1210 b.rShiftTo(1,b); |
| 1211 } |
| 1212 while(v.isEven()) { |
| 1213 v.rShiftTo(1,v); |
| 1214 if(ac) { |
| 1215 if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } |
| 1216 c.rShiftTo(1,c); |
| 1217 } |
| 1218 else if(!d.isEven()) d.subTo(m,d); |
| 1219 d.rShiftTo(1,d); |
| 1220 } |
| 1221 if(u.compareTo(v) >= 0) { |
| 1222 u.subTo(v,u); |
| 1223 if(ac) a.subTo(c,a); |
| 1224 b.subTo(d,b); |
| 1225 } |
| 1226 else { |
| 1227 v.subTo(u,v); |
| 1228 if(ac) c.subTo(a,c); |
| 1229 d.subTo(b,d); |
| 1230 } |
| 1231 } |
| 1232 if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; |
| 1233 if(d.compareTo(m) >= 0) return d.subtract(m); |
| 1234 if(d.signum() < 0) d.addTo(m,d); else return d; |
| 1235 if(d.signum() < 0) return d.add(m); else return d; |
| 1236 } |
| 1237 |
| 1238 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,8
3,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,
193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,
311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,
433,439,443,449,457,461,463,467,479,487,491,499,503,509]; |
| 1239 var lplim = (1<<26)/lowprimes[lowprimes.length-1]; |
| 1240 |
| 1241 // (public) test primality with certainty >= 1-.5^t |
| 1242 function bnIsProbablePrime(t) { |
| 1243 var i, x = this.abs(); |
| 1244 var x_array = x.array; |
| 1245 if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) { |
| 1246 for(i = 0; i < lowprimes.length; ++i) |
| 1247 if(x_array[0] == lowprimes[i]) return true; |
| 1248 return false; |
| 1249 } |
| 1250 if(x.isEven()) return false; |
| 1251 i = 1; |
| 1252 while(i < lowprimes.length) { |
| 1253 var m = lowprimes[i], j = i+1; |
| 1254 while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; |
| 1255 m = x.modInt(m); |
| 1256 while(i < j) if(m%lowprimes[i++] == 0) return false; |
| 1257 } |
| 1258 return x.millerRabin(t); |
| 1259 } |
| 1260 |
| 1261 // (protected) true if probably prime (HAC 4.24, Miller-Rabin) |
| 1262 function bnpMillerRabin(t) { |
| 1263 var n1 = this.subtract(BigInteger.ONE); |
| 1264 var k = n1.getLowestSetBit(); |
| 1265 if(k <= 0) return false; |
| 1266 var r = n1.shiftRight(k); |
| 1267 t = (t+1)>>1; |
| 1268 if(t > lowprimes.length) t = lowprimes.length; |
| 1269 var a = nbi(); |
| 1270 for(var i = 0; i < t; ++i) { |
| 1271 a.fromInt(lowprimes[i]); |
| 1272 var y = a.modPow(r,this); |
| 1273 if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { |
| 1274 var j = 1; |
| 1275 while(j++ < k && y.compareTo(n1) != 0) { |
| 1276 y = y.modPowInt(2,this); |
| 1277 if(y.compareTo(BigInteger.ONE) == 0) return false; |
| 1278 } |
| 1279 if(y.compareTo(n1) != 0) return false; |
| 1280 } |
| 1281 } |
| 1282 return true; |
| 1283 } |
| 1284 |
| 1285 // protected |
| 1286 BigInteger.prototype.chunkSize = bnpChunkSize; |
| 1287 BigInteger.prototype.toRadix = bnpToRadix; |
| 1288 BigInteger.prototype.fromRadix = bnpFromRadix; |
| 1289 BigInteger.prototype.fromNumber = bnpFromNumber; |
| 1290 BigInteger.prototype.bitwiseTo = bnpBitwiseTo; |
| 1291 BigInteger.prototype.changeBit = bnpChangeBit; |
| 1292 BigInteger.prototype.addTo = bnpAddTo; |
| 1293 BigInteger.prototype.dMultiply = bnpDMultiply; |
| 1294 BigInteger.prototype.dAddOffset = bnpDAddOffset; |
| 1295 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; |
| 1296 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; |
| 1297 BigInteger.prototype.modInt = bnpModInt; |
| 1298 BigInteger.prototype.millerRabin = bnpMillerRabin; |
| 1299 |
| 1300 // public |
| 1301 BigInteger.prototype.clone = bnClone; |
| 1302 BigInteger.prototype.intValue = bnIntValue; |
| 1303 BigInteger.prototype.byteValue = bnByteValue; |
| 1304 BigInteger.prototype.shortValue = bnShortValue; |
| 1305 BigInteger.prototype.signum = bnSigNum; |
| 1306 BigInteger.prototype.toByteArray = bnToByteArray; |
| 1307 BigInteger.prototype.equals = bnEquals; |
| 1308 BigInteger.prototype.min = bnMin; |
| 1309 BigInteger.prototype.max = bnMax; |
| 1310 BigInteger.prototype.and = bnAnd; |
| 1311 BigInteger.prototype.or = bnOr; |
| 1312 BigInteger.prototype.xor = bnXor; |
| 1313 BigInteger.prototype.andNot = bnAndNot; |
| 1314 BigInteger.prototype.not = bnNot; |
| 1315 BigInteger.prototype.shiftLeft = bnShiftLeft; |
| 1316 BigInteger.prototype.shiftRight = bnShiftRight; |
| 1317 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; |
| 1318 BigInteger.prototype.bitCount = bnBitCount; |
| 1319 BigInteger.prototype.testBit = bnTestBit; |
| 1320 BigInteger.prototype.setBit = bnSetBit; |
| 1321 BigInteger.prototype.clearBit = bnClearBit; |
| 1322 BigInteger.prototype.flipBit = bnFlipBit; |
| 1323 BigInteger.prototype.add = bnAdd; |
| 1324 BigInteger.prototype.subtract = bnSubtract; |
| 1325 BigInteger.prototype.multiply = bnMultiply; |
| 1326 BigInteger.prototype.divide = bnDivide; |
| 1327 BigInteger.prototype.remainder = bnRemainder; |
| 1328 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; |
| 1329 BigInteger.prototype.modPow = bnModPow; |
| 1330 BigInteger.prototype.modInverse = bnModInverse; |
| 1331 BigInteger.prototype.pow = bnPow; |
| 1332 BigInteger.prototype.gcd = bnGCD; |
| 1333 BigInteger.prototype.isProbablePrime = bnIsProbablePrime; |
| 1334 |
| 1335 // BigInteger interfaces not implemented in jsbn: |
| 1336 |
| 1337 // BigInteger(int signum, byte[] magnitude) |
| 1338 // double doubleValue() |
| 1339 // float floatValue() |
| 1340 // int hashCode() |
| 1341 // long longValue() |
| 1342 // static BigInteger valueOf(long val) |
| 1343 // prng4.js - uses Arcfour as a PRNG |
| 1344 |
| 1345 function Arcfour() { |
| 1346 this.i = 0; |
| 1347 this.j = 0; |
| 1348 this.S = new Array(); |
| 1349 } |
| 1350 |
| 1351 // Initialize arcfour context from key, an array of ints, each from [0..255] |
| 1352 function ARC4init(key) { |
| 1353 var i, j, t; |
| 1354 for(i = 0; i < 256; ++i) |
| 1355 this.S[i] = i; |
| 1356 j = 0; |
| 1357 for(i = 0; i < 256; ++i) { |
| 1358 j = (j + this.S[i] + key[i % key.length]) & 255; |
| 1359 t = this.S[i]; |
| 1360 this.S[i] = this.S[j]; |
| 1361 this.S[j] = t; |
| 1362 } |
| 1363 this.i = 0; |
| 1364 this.j = 0; |
| 1365 } |
| 1366 |
| 1367 function ARC4next() { |
| 1368 var t; |
| 1369 this.i = (this.i + 1) & 255; |
| 1370 this.j = (this.j + this.S[this.i]) & 255; |
| 1371 t = this.S[this.i]; |
| 1372 this.S[this.i] = this.S[this.j]; |
| 1373 this.S[this.j] = t; |
| 1374 return this.S[(t + this.S[this.i]) & 255]; |
| 1375 } |
| 1376 |
| 1377 Arcfour.prototype.init = ARC4init; |
| 1378 Arcfour.prototype.next = ARC4next; |
| 1379 |
| 1380 // Plug in your RNG constructor here |
| 1381 function prng_newstate() { |
| 1382 return new Arcfour(); |
| 1383 } |
| 1384 |
| 1385 // Pool size must be a multiple of 4 and greater than 32. |
| 1386 // An array of bytes the size of the pool will be passed to init() |
| 1387 var rng_psize = 256; |
| 1388 // Random number generator - requires a PRNG backend, e.g. prng4.js |
| 1389 |
| 1390 // For best results, put code like |
| 1391 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> |
| 1392 // in your main HTML document. |
| 1393 |
| 1394 var rng_state; |
| 1395 var rng_pool; |
| 1396 var rng_pptr; |
| 1397 |
| 1398 // Mix in a 32-bit integer into the pool |
| 1399 function rng_seed_int(x) { |
| 1400 rng_pool[rng_pptr++] ^= x & 255; |
| 1401 rng_pool[rng_pptr++] ^= (x >> 8) & 255; |
| 1402 rng_pool[rng_pptr++] ^= (x >> 16) & 255; |
| 1403 rng_pool[rng_pptr++] ^= (x >> 24) & 255; |
| 1404 if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; |
| 1405 } |
| 1406 |
| 1407 // Mix in the current time (w/milliseconds) into the pool |
| 1408 function rng_seed_time() { |
| 1409 // Use pre-computed date to avoid making the benchmark |
| 1410 // results dependent on the current date. |
| 1411 rng_seed_int(1122926989487); |
| 1412 } |
| 1413 |
| 1414 // Initialize the pool with junk if needed. |
| 1415 if(rng_pool == null) { |
| 1416 rng_pool = new Array(); |
| 1417 rng_pptr = 0; |
| 1418 var t; |
| 1419 while(rng_pptr < rng_psize) { // extract some randomness from Math.random() |
| 1420 t = Math.floor(65536 * Math.random()); |
| 1421 rng_pool[rng_pptr++] = t >>> 8; |
| 1422 rng_pool[rng_pptr++] = t & 255; |
| 1423 } |
| 1424 rng_pptr = 0; |
| 1425 rng_seed_time(); |
| 1426 //rng_seed_int(window.screenX); |
| 1427 //rng_seed_int(window.screenY); |
| 1428 } |
| 1429 |
| 1430 function rng_get_byte() { |
| 1431 if(rng_state == null) { |
| 1432 rng_seed_time(); |
| 1433 rng_state = prng_newstate(); |
| 1434 rng_state.init(rng_pool); |
| 1435 for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) |
| 1436 rng_pool[rng_pptr] = 0; |
| 1437 rng_pptr = 0; |
| 1438 //rng_pool = null; |
| 1439 } |
| 1440 // TODO: allow reseeding after first request |
| 1441 return rng_state.next(); |
| 1442 } |
| 1443 |
| 1444 function rng_get_bytes(ba) { |
| 1445 var i; |
| 1446 for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); |
| 1447 } |
| 1448 |
| 1449 function SecureRandom() {} |
| 1450 |
| 1451 SecureRandom.prototype.nextBytes = rng_get_bytes; |
| 1452 // Depends on jsbn.js and rng.js |
| 1453 |
| 1454 // convert a (hex) string to a bignum object |
| 1455 function parseBigInt(str,r) { |
| 1456 return new BigInteger(str,r); |
| 1457 } |
| 1458 |
| 1459 function linebrk(s,n) { |
| 1460 var ret = ""; |
| 1461 var i = 0; |
| 1462 while(i + n < s.length) { |
| 1463 ret += s.substring(i,i+n) + "\n"; |
| 1464 i += n; |
| 1465 } |
| 1466 return ret + s.substring(i,s.length); |
| 1467 } |
| 1468 |
| 1469 function byte2Hex(b) { |
| 1470 if(b < 0x10) |
| 1471 return "0" + b.toString(16); |
| 1472 else |
| 1473 return b.toString(16); |
| 1474 } |
| 1475 |
| 1476 // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint |
| 1477 function pkcs1pad2(s,n) { |
| 1478 if(n < s.length + 11) { |
| 1479 alert("Message too long for RSA"); |
| 1480 return null; |
| 1481 } |
| 1482 var ba = new Array(); |
| 1483 var i = s.length - 1; |
| 1484 while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--); |
| 1485 ba[--n] = 0; |
| 1486 var rng = new SecureRandom(); |
| 1487 var x = new Array(); |
| 1488 while(n > 2) { // random non-zero pad |
| 1489 x[0] = 0; |
| 1490 while(x[0] == 0) rng.nextBytes(x); |
| 1491 ba[--n] = x[0]; |
| 1492 } |
| 1493 ba[--n] = 2; |
| 1494 ba[--n] = 0; |
| 1495 return new BigInteger(ba); |
| 1496 } |
| 1497 |
| 1498 // "empty" RSA key constructor |
| 1499 function RSAKey() { |
| 1500 this.n = null; |
| 1501 this.e = 0; |
| 1502 this.d = null; |
| 1503 this.p = null; |
| 1504 this.q = null; |
| 1505 this.dmp1 = null; |
| 1506 this.dmq1 = null; |
| 1507 this.coeff = null; |
| 1508 } |
| 1509 |
| 1510 // Set the public key fields N and e from hex strings |
| 1511 function RSASetPublic(N,E) { |
| 1512 if(N != null && E != null && N.length > 0 && E.length > 0) { |
| 1513 this.n = parseBigInt(N,16); |
| 1514 this.e = parseInt(E,16); |
| 1515 } |
| 1516 else |
| 1517 alert("Invalid RSA public key"); |
| 1518 } |
| 1519 |
| 1520 // Perform raw public operation on "x": return x^e (mod n) |
| 1521 function RSADoPublic(x) { |
| 1522 return x.modPowInt(this.e, this.n); |
| 1523 } |
| 1524 |
| 1525 // Return the PKCS#1 RSA encryption of "text" as an even-length hex string |
| 1526 function RSAEncrypt(text) { |
| 1527 var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); |
| 1528 if(m == null) return null; |
| 1529 var c = this.doPublic(m); |
| 1530 if(c == null) return null; |
| 1531 var h = c.toString(16); |
| 1532 if((h.length & 1) == 0) return h; else return "0" + h; |
| 1533 } |
| 1534 |
| 1535 // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string |
| 1536 //function RSAEncryptB64(text) { |
| 1537 // var h = this.encrypt(text); |
| 1538 // if(h) return hex2b64(h); else return null; |
| 1539 //} |
| 1540 |
| 1541 // protected |
| 1542 RSAKey.prototype.doPublic = RSADoPublic; |
| 1543 |
| 1544 // public |
| 1545 RSAKey.prototype.setPublic = RSASetPublic; |
| 1546 RSAKey.prototype.encrypt = RSAEncrypt; |
| 1547 //RSAKey.prototype.encrypt_b64 = RSAEncryptB64; |
| 1548 // Depends on rsa.js and jsbn2.js |
| 1549 |
| 1550 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext |
| 1551 function pkcs1unpad2(d,n) { |
| 1552 var b = d.toByteArray(); |
| 1553 var i = 0; |
| 1554 while(i < b.length && b[i] == 0) ++i; |
| 1555 if(b.length-i != n-1 || b[i] != 2) |
| 1556 return null; |
| 1557 ++i; |
| 1558 while(b[i] != 0) |
| 1559 if(++i >= b.length) return null; |
| 1560 var ret = ""; |
| 1561 while(++i < b.length) |
| 1562 ret += String.fromCharCode(b[i]); |
| 1563 return ret; |
| 1564 } |
| 1565 |
| 1566 // Set the private key fields N, e, and d from hex strings |
| 1567 function RSASetPrivate(N,E,D) { |
| 1568 if(N != null && E != null && N.length > 0 && E.length > 0) { |
| 1569 this.n = parseBigInt(N,16); |
| 1570 this.e = parseInt(E,16); |
| 1571 this.d = parseBigInt(D,16); |
| 1572 } |
| 1573 else |
| 1574 alert("Invalid RSA private key"); |
| 1575 } |
| 1576 |
| 1577 // Set the private key fields N, e, d and CRT params from hex strings |
| 1578 function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { |
| 1579 if(N != null && E != null && N.length > 0 && E.length > 0) { |
| 1580 this.n = parseBigInt(N,16); |
| 1581 this.e = parseInt(E,16); |
| 1582 this.d = parseBigInt(D,16); |
| 1583 this.p = parseBigInt(P,16); |
| 1584 this.q = parseBigInt(Q,16); |
| 1585 this.dmp1 = parseBigInt(DP,16); |
| 1586 this.dmq1 = parseBigInt(DQ,16); |
| 1587 this.coeff = parseBigInt(C,16); |
| 1588 } |
| 1589 else |
| 1590 alert("Invalid RSA private key"); |
| 1591 } |
| 1592 |
| 1593 // Generate a new random private key B bits long, using public expt E |
| 1594 function RSAGenerate(B,E) { |
| 1595 var rng = new SecureRandom(); |
| 1596 var qs = B>>1; |
| 1597 this.e = parseInt(E,16); |
| 1598 var ee = new BigInteger(E,16); |
| 1599 for(;;) { |
| 1600 for(;;) { |
| 1601 this.p = new BigInteger(B-qs,1,rng); |
| 1602 if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0
&& this.p.isProbablePrime(10)) break; |
| 1603 } |
| 1604 for(;;) { |
| 1605 this.q = new BigInteger(qs,1,rng); |
| 1606 if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0
&& this.q.isProbablePrime(10)) break; |
| 1607 } |
| 1608 if(this.p.compareTo(this.q) <= 0) { |
| 1609 var t = this.p; |
| 1610 this.p = this.q; |
| 1611 this.q = t; |
| 1612 } |
| 1613 var p1 = this.p.subtract(BigInteger.ONE); |
| 1614 var q1 = this.q.subtract(BigInteger.ONE); |
| 1615 var phi = p1.multiply(q1); |
| 1616 if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { |
| 1617 this.n = this.p.multiply(this.q); |
| 1618 this.d = ee.modInverse(phi); |
| 1619 this.dmp1 = this.d.mod(p1); |
| 1620 this.dmq1 = this.d.mod(q1); |
| 1621 this.coeff = this.q.modInverse(this.p); |
| 1622 break; |
| 1623 } |
| 1624 } |
| 1625 } |
| 1626 |
| 1627 // Perform raw private operation on "x": return x^d (mod n) |
| 1628 function RSADoPrivate(x) { |
| 1629 if(this.p == null || this.q == null) |
| 1630 return x.modPow(this.d, this.n); |
| 1631 |
| 1632 // TODO: re-calculate any missing CRT params |
| 1633 var xp = x.mod(this.p).modPow(this.dmp1, this.p); |
| 1634 var xq = x.mod(this.q).modPow(this.dmq1, this.q); |
| 1635 |
| 1636 while(xp.compareTo(xq) < 0) |
| 1637 xp = xp.add(this.p); |
| 1638 return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(x
q); |
| 1639 } |
| 1640 |
| 1641 // Return the PKCS#1 RSA decryption of "ctext". |
| 1642 // "ctext" is an even-length hex string and the output is a plain string. |
| 1643 function RSADecrypt(ctext) { |
| 1644 var c = parseBigInt(ctext, 16); |
| 1645 var m = this.doPrivate(c); |
| 1646 if(m == null) return null; |
| 1647 return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); |
| 1648 } |
| 1649 |
| 1650 // Return the PKCS#1 RSA decryption of "ctext". |
| 1651 // "ctext" is a Base64-encoded string and the output is a plain string. |
| 1652 //function RSAB64Decrypt(ctext) { |
| 1653 // var h = b64tohex(ctext); |
| 1654 // if(h) return this.decrypt(h); else return null; |
| 1655 //} |
| 1656 |
| 1657 // protected |
| 1658 RSAKey.prototype.doPrivate = RSADoPrivate; |
| 1659 |
| 1660 // public |
| 1661 RSAKey.prototype.setPrivate = RSASetPrivate; |
| 1662 RSAKey.prototype.setPrivateEx = RSASetPrivateEx; |
| 1663 RSAKey.prototype.generate = RSAGenerate; |
| 1664 RSAKey.prototype.decrypt = RSADecrypt; |
| 1665 //RSAKey.prototype.b64_decrypt = RSAB64Decrypt; |
| 1666 |
| 1667 |
| 1668 nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd9
4057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49
175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074
eafd036a5eb83359d2a698d3"; |
| 1669 eValue="10001"; |
| 1670 dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293f
c97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d
31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891
464fba23d0d965086277a161"; |
| 1671 pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bd
e14b2417951178ac152ceab6da7090905b478195498b352048f15e7d"; |
| 1672 qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d
54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f"; |
| 1673 dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500
038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25"; |
| 1674 dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d91433
7eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd"; |
| 1675 coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db17
34c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250"; |
| 1676 |
| 1677 setupEngine(am3, 28); |
| 1678 |
| 1679 var TEXT = "The quick brown fox jumped over the extremely lazy frog! " + |
| 1680 "Now is the time for all good men to come to the party."; |
| 1681 var encrypted; |
| 1682 |
| 1683 function encrypt() { |
| 1684 var RSA = new RSAKey(); |
| 1685 RSA.setPublic(nValue, eValue); |
| 1686 RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value,
coeffValue); |
| 1687 encrypted = RSA.encrypt(TEXT); |
| 1688 } |
| 1689 |
| 1690 function decrypt() { |
| 1691 var RSA = new RSAKey(); |
| 1692 RSA.setPublic(nValue, eValue); |
| 1693 RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value,
coeffValue); |
| 1694 var decrypted = RSA.decrypt(encrypted); |
| 1695 if (decrypted != TEXT) { |
| 1696 throw new Error("Crypto operation failed"); |
| 1697 } |
| 1698 } |
OLD | NEW |