OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jdarith.c |
| 3 * |
| 4 * Developed 1997-2009 by Guido Vollbeding. |
| 5 * This file is part of the Independent JPEG Group's software. |
| 6 * For conditions of distribution and use, see the accompanying README file. |
| 7 * |
| 8 * This file contains portable arithmetic entropy decoding routines for JPEG |
| 9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
| 10 * |
| 11 * Both sequential and progressive modes are supported in this single module. |
| 12 * |
| 13 * Suspension is not currently supported in this module. |
| 14 */ |
| 15 |
| 16 #define JPEG_INTERNALS |
| 17 #include "jinclude.h" |
| 18 #include "jpeglib.h" |
| 19 |
| 20 |
| 21 /* Expanded entropy decoder object for arithmetic decoding. */ |
| 22 |
| 23 typedef struct { |
| 24 struct jpeg_entropy_decoder pub; /* public fields */ |
| 25 |
| 26 INT32 c; /* C register, base of coding interval + input bit buffer */ |
| 27 INT32 a; /* A register, normalized size of coding interval */ |
| 28 int ct; /* bit shift counter, # of bits left in bit buffer part of C */ |
| 29 /* init: ct = -16 */ |
| 30 /* run: ct = 0..7 */ |
| 31 /* error: ct = -1 */ |
| 32 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
| 33 int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
| 34 |
| 35 unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| 36 |
| 37 /* Pointers to statistics areas (these workspaces have image lifespan) */ |
| 38 unsigned char * dc_stats[NUM_ARITH_TBLS]; |
| 39 unsigned char * ac_stats[NUM_ARITH_TBLS]; |
| 40 |
| 41 /* Statistics bin for coding with fixed probability 0.5 */ |
| 42 unsigned char fixed_bin[4]; |
| 43 } arith_entropy_decoder; |
| 44 |
| 45 typedef arith_entropy_decoder * arith_entropy_ptr; |
| 46 |
| 47 /* The following two definitions specify the allocation chunk size |
| 48 * for the statistics area. |
| 49 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
| 50 * 49 statistics bins for DC, and 245 statistics bins for AC coding. |
| 51 * |
| 52 * We use a compact representation with 1 byte per statistics bin, |
| 53 * thus the numbers directly represent byte sizes. |
| 54 * This 1 byte per statistics bin contains the meaning of the MPS |
| 55 * (more probable symbol) in the highest bit (mask 0x80), and the |
| 56 * index into the probability estimation state machine table |
| 57 * in the lower bits (mask 0x7F). |
| 58 */ |
| 59 |
| 60 #define DC_STAT_BINS 64 |
| 61 #define AC_STAT_BINS 256 |
| 62 |
| 63 |
| 64 LOCAL(int) |
| 65 get_byte (j_decompress_ptr cinfo) |
| 66 /* Read next input byte; we do not support suspension in this module. */ |
| 67 { |
| 68 struct jpeg_source_mgr * src = cinfo->src; |
| 69 |
| 70 if (src->bytes_in_buffer == 0) |
| 71 if (! (*src->fill_input_buffer) (cinfo)) |
| 72 ERREXIT(cinfo, JERR_CANT_SUSPEND); |
| 73 src->bytes_in_buffer--; |
| 74 return GETJOCTET(*src->next_input_byte++); |
| 75 } |
| 76 |
| 77 |
| 78 /* |
| 79 * The core arithmetic decoding routine (common in JPEG and JBIG). |
| 80 * This needs to go as fast as possible. |
| 81 * Machine-dependent optimization facilities |
| 82 * are not utilized in this portable implementation. |
| 83 * However, this code should be fairly efficient and |
| 84 * may be a good base for further optimizations anyway. |
| 85 * |
| 86 * Return value is 0 or 1 (binary decision). |
| 87 * |
| 88 * Note: I've changed the handling of the code base & bit |
| 89 * buffer register C compared to other implementations |
| 90 * based on the standards layout & procedures. |
| 91 * While it also contains both the actual base of the |
| 92 * coding interval (16 bits) and the next-bits buffer, |
| 93 * the cut-point between these two parts is floating |
| 94 * (instead of fixed) with the bit shift counter CT. |
| 95 * Thus, we also need only one (variable instead of |
| 96 * fixed size) shift for the LPS/MPS decision, and |
| 97 * we can get away with any renormalization update |
| 98 * of C (except for new data insertion, of course). |
| 99 * |
| 100 * I've also introduced a new scheme for accessing |
| 101 * the probability estimation state machine table, |
| 102 * derived from Markus Kuhn's JBIG implementation. |
| 103 */ |
| 104 |
| 105 LOCAL(int) |
| 106 arith_decode (j_decompress_ptr cinfo, unsigned char *st) |
| 107 { |
| 108 register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
| 109 register unsigned char nl, nm; |
| 110 register INT32 qe, temp; |
| 111 register int sv, data; |
| 112 |
| 113 /* Renormalization & data input per section D.2.6 */ |
| 114 while (e->a < 0x8000L) { |
| 115 if (--e->ct < 0) { |
| 116 /* Need to fetch next data byte */ |
| 117 if (cinfo->unread_marker) |
| 118 data = 0; /* stuff zero data */ |
| 119 else { |
| 120 data = get_byte(cinfo); /* read next input byte */ |
| 121 if (data == 0xFF) { /* zero stuff or marker code */ |
| 122 do data = get_byte(cinfo); |
| 123 while (data == 0xFF); /* swallow extra 0xFF bytes */ |
| 124 if (data == 0) |
| 125 data = 0xFF; /* discard stuffed zero byte */ |
| 126 else { |
| 127 /* Note: Different from the Huffman decoder, hitting |
| 128 * a marker while processing the compressed data |
| 129 * segment is legal in arithmetic coding. |
| 130 * The convention is to supply zero data |
| 131 * then until decoding is complete. |
| 132 */ |
| 133 cinfo->unread_marker = data; |
| 134 data = 0; |
| 135 } |
| 136 } |
| 137 } |
| 138 e->c = (e->c << 8) | data; /* insert data into C register */ |
| 139 if ((e->ct += 8) < 0) /* update bit shift counter */ |
| 140 /* Need more initial bytes */ |
| 141 if (++e->ct == 0) |
| 142 /* Got 2 initial bytes -> re-init A and exit loop */ |
| 143 e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ |
| 144 } |
| 145 e->a <<= 1; |
| 146 } |
| 147 |
| 148 /* Fetch values from our compact representation of Table D.2: |
| 149 * Qe values and probability estimation state machine |
| 150 */ |
| 151 sv = *st; |
| 152 qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
| 153 nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
| 154 nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
| 155 |
| 156 /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ |
| 157 temp = e->a - qe; |
| 158 e->a = temp; |
| 159 temp <<= e->ct; |
| 160 if (e->c >= temp) { |
| 161 e->c -= temp; |
| 162 /* Conditional LPS (less probable symbol) exchange */ |
| 163 if (e->a < qe) { |
| 164 e->a = qe; |
| 165 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
| 166 } else { |
| 167 e->a = qe; |
| 168 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
| 169 sv ^= 0x80; /* Exchange LPS/MPS */ |
| 170 } |
| 171 } else if (e->a < 0x8000L) { |
| 172 /* Conditional MPS (more probable symbol) exchange */ |
| 173 if (e->a < qe) { |
| 174 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
| 175 sv ^= 0x80; /* Exchange LPS/MPS */ |
| 176 } else { |
| 177 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
| 178 } |
| 179 } |
| 180 |
| 181 return sv >> 7; |
| 182 } |
| 183 |
| 184 |
| 185 /* |
| 186 * Check for a restart marker & resynchronize decoder. |
| 187 */ |
| 188 |
| 189 LOCAL(void) |
| 190 process_restart (j_decompress_ptr cinfo) |
| 191 { |
| 192 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 193 int ci; |
| 194 jpeg_component_info * compptr; |
| 195 |
| 196 /* Advance past the RSTn marker */ |
| 197 if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
| 198 ERREXIT(cinfo, JERR_CANT_SUSPEND); |
| 199 |
| 200 /* Re-initialize statistics areas */ |
| 201 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 202 compptr = cinfo->cur_comp_info[ci]; |
| 203 if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
| 204 MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
| 205 /* Reset DC predictions to 0 */ |
| 206 entropy->last_dc_val[ci] = 0; |
| 207 entropy->dc_context[ci] = 0; |
| 208 } |
| 209 if (! cinfo->progressive_mode || cinfo->Ss) { |
| 210 MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
| 211 } |
| 212 } |
| 213 |
| 214 /* Reset arithmetic decoding variables */ |
| 215 entropy->c = 0; |
| 216 entropy->a = 0; |
| 217 entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
| 218 |
| 219 /* Reset restart counter */ |
| 220 entropy->restarts_to_go = cinfo->restart_interval; |
| 221 } |
| 222 |
| 223 |
| 224 /* |
| 225 * Arithmetic MCU decoding. |
| 226 * Each of these routines decodes and returns one MCU's worth of |
| 227 * arithmetic-compressed coefficients. |
| 228 * The coefficients are reordered from zigzag order into natural array order, |
| 229 * but are not dequantized. |
| 230 * |
| 231 * The i'th block of the MCU is stored into the block pointed to by |
| 232 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
| 233 */ |
| 234 |
| 235 /* |
| 236 * MCU decoding for DC initial scan (either spectral selection, |
| 237 * or first pass of successive approximation). |
| 238 */ |
| 239 |
| 240 METHODDEF(boolean) |
| 241 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
| 242 { |
| 243 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 244 JBLOCKROW block; |
| 245 unsigned char *st; |
| 246 int blkn, ci, tbl, sign; |
| 247 int v, m; |
| 248 |
| 249 /* Process restart marker if needed */ |
| 250 if (cinfo->restart_interval) { |
| 251 if (entropy->restarts_to_go == 0) |
| 252 process_restart(cinfo); |
| 253 entropy->restarts_to_go--; |
| 254 } |
| 255 |
| 256 if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
| 257 |
| 258 /* Outer loop handles each block in the MCU */ |
| 259 |
| 260 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 261 block = MCU_data[blkn]; |
| 262 ci = cinfo->MCU_membership[blkn]; |
| 263 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
| 264 |
| 265 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
| 266 |
| 267 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
| 268 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
| 269 |
| 270 /* Figure F.19: Decode_DC_DIFF */ |
| 271 if (arith_decode(cinfo, st) == 0) |
| 272 entropy->dc_context[ci] = 0; |
| 273 else { |
| 274 /* Figure F.21: Decoding nonzero value v */ |
| 275 /* Figure F.22: Decoding the sign of v */ |
| 276 sign = arith_decode(cinfo, st + 1); |
| 277 st += 2; st += sign; |
| 278 /* Figure F.23: Decoding the magnitude category of v */ |
| 279 if ((m = arith_decode(cinfo, st)) != 0) { |
| 280 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
| 281 while (arith_decode(cinfo, st)) { |
| 282 if ((m <<= 1) == 0x8000) { |
| 283 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
| 284 entropy->ct = -1; /* magnitude overflow */ |
| 285 return TRUE; |
| 286 } |
| 287 st += 1; |
| 288 } |
| 289 } |
| 290 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
| 291 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
| 292 entropy->dc_context[ci] = 0; /* zero diff category */ |
| 293 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
| 294 entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
| 295 else |
| 296 entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
| 297 v = m; |
| 298 /* Figure F.24: Decoding the magnitude bit pattern of v */ |
| 299 st += 14; |
| 300 while (m >>= 1) |
| 301 if (arith_decode(cinfo, st)) v |= m; |
| 302 v += 1; if (sign) v = -v; |
| 303 entropy->last_dc_val[ci] += v; |
| 304 } |
| 305 |
| 306 /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ |
| 307 (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); |
| 308 } |
| 309 |
| 310 return TRUE; |
| 311 } |
| 312 |
| 313 |
| 314 /* |
| 315 * MCU decoding for AC initial scan (either spectral selection, |
| 316 * or first pass of successive approximation). |
| 317 */ |
| 318 |
| 319 METHODDEF(boolean) |
| 320 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
| 321 { |
| 322 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 323 JBLOCKROW block; |
| 324 unsigned char *st; |
| 325 int tbl, sign, k; |
| 326 int v, m; |
| 327 |
| 328 /* Process restart marker if needed */ |
| 329 if (cinfo->restart_interval) { |
| 330 if (entropy->restarts_to_go == 0) |
| 331 process_restart(cinfo); |
| 332 entropy->restarts_to_go--; |
| 333 } |
| 334 |
| 335 if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
| 336 |
| 337 /* There is always only one block per MCU */ |
| 338 block = MCU_data[0]; |
| 339 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
| 340 |
| 341 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
| 342 |
| 343 /* Figure F.20: Decode_AC_coefficients */ |
| 344 for (k = cinfo->Ss; k <= cinfo->Se; k++) { |
| 345 st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 346 if (arith_decode(cinfo, st)) break; /* EOB flag */ |
| 347 while (arith_decode(cinfo, st + 1) == 0) { |
| 348 st += 3; k++; |
| 349 if (k > cinfo->Se) { |
| 350 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
| 351 entropy->ct = -1; /* spectral overflow */ |
| 352 return TRUE; |
| 353 } |
| 354 } |
| 355 /* Figure F.21: Decoding nonzero value v */ |
| 356 /* Figure F.22: Decoding the sign of v */ |
| 357 sign = arith_decode(cinfo, entropy->fixed_bin); |
| 358 st += 2; |
| 359 /* Figure F.23: Decoding the magnitude category of v */ |
| 360 if ((m = arith_decode(cinfo, st)) != 0) { |
| 361 if (arith_decode(cinfo, st)) { |
| 362 m <<= 1; |
| 363 st = entropy->ac_stats[tbl] + |
| 364 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
| 365 while (arith_decode(cinfo, st)) { |
| 366 if ((m <<= 1) == 0x8000) { |
| 367 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
| 368 entropy->ct = -1; /* magnitude overflow */ |
| 369 return TRUE; |
| 370 } |
| 371 st += 1; |
| 372 } |
| 373 } |
| 374 } |
| 375 v = m; |
| 376 /* Figure F.24: Decoding the magnitude bit pattern of v */ |
| 377 st += 14; |
| 378 while (m >>= 1) |
| 379 if (arith_decode(cinfo, st)) v |= m; |
| 380 v += 1; if (sign) v = -v; |
| 381 /* Scale and output coefficient in natural (dezigzagged) order */ |
| 382 (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al); |
| 383 } |
| 384 |
| 385 return TRUE; |
| 386 } |
| 387 |
| 388 |
| 389 /* |
| 390 * MCU decoding for DC successive approximation refinement scan. |
| 391 */ |
| 392 |
| 393 METHODDEF(boolean) |
| 394 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
| 395 { |
| 396 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 397 unsigned char *st; |
| 398 int p1, blkn; |
| 399 |
| 400 /* Process restart marker if needed */ |
| 401 if (cinfo->restart_interval) { |
| 402 if (entropy->restarts_to_go == 0) |
| 403 process_restart(cinfo); |
| 404 entropy->restarts_to_go--; |
| 405 } |
| 406 |
| 407 st = entropy->fixed_bin; /* use fixed probability estimation */ |
| 408 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
| 409 |
| 410 /* Outer loop handles each block in the MCU */ |
| 411 |
| 412 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 413 /* Encoded data is simply the next bit of the two's-complement DC value */ |
| 414 if (arith_decode(cinfo, st)) |
| 415 MCU_data[blkn][0][0] |= p1; |
| 416 } |
| 417 |
| 418 return TRUE; |
| 419 } |
| 420 |
| 421 |
| 422 /* |
| 423 * MCU decoding for AC successive approximation refinement scan. |
| 424 */ |
| 425 |
| 426 METHODDEF(boolean) |
| 427 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
| 428 { |
| 429 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 430 JBLOCKROW block; |
| 431 JCOEFPTR thiscoef; |
| 432 unsigned char *st; |
| 433 int tbl, k, kex; |
| 434 int p1, m1; |
| 435 |
| 436 /* Process restart marker if needed */ |
| 437 if (cinfo->restart_interval) { |
| 438 if (entropy->restarts_to_go == 0) |
| 439 process_restart(cinfo); |
| 440 entropy->restarts_to_go--; |
| 441 } |
| 442 |
| 443 if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
| 444 |
| 445 /* There is always only one block per MCU */ |
| 446 block = MCU_data[0]; |
| 447 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
| 448 |
| 449 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
| 450 m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ |
| 451 |
| 452 /* Establish EOBx (previous stage end-of-block) index */ |
| 453 for (kex = cinfo->Se; kex > 0; kex--) |
| 454 if ((*block)[jpeg_natural_order[kex]]) break; |
| 455 |
| 456 for (k = cinfo->Ss; k <= cinfo->Se; k++) { |
| 457 st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 458 if (k > kex) |
| 459 if (arith_decode(cinfo, st)) break; /* EOB flag */ |
| 460 for (;;) { |
| 461 thiscoef = *block + jpeg_natural_order[k]; |
| 462 if (*thiscoef) { /* previously nonzero coef */ |
| 463 if (arith_decode(cinfo, st + 2)) { |
| 464 if (*thiscoef < 0) |
| 465 *thiscoef += m1; |
| 466 else |
| 467 *thiscoef += p1; |
| 468 } |
| 469 break; |
| 470 } |
| 471 if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ |
| 472 if (arith_decode(cinfo, entropy->fixed_bin)) |
| 473 *thiscoef = m1; |
| 474 else |
| 475 *thiscoef = p1; |
| 476 break; |
| 477 } |
| 478 st += 3; k++; |
| 479 if (k > cinfo->Se) { |
| 480 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
| 481 entropy->ct = -1; /* spectral overflow */ |
| 482 return TRUE; |
| 483 } |
| 484 } |
| 485 } |
| 486 |
| 487 return TRUE; |
| 488 } |
| 489 |
| 490 |
| 491 /* |
| 492 * Decode one MCU's worth of arithmetic-compressed coefficients. |
| 493 */ |
| 494 |
| 495 METHODDEF(boolean) |
| 496 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
| 497 { |
| 498 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 499 jpeg_component_info * compptr; |
| 500 JBLOCKROW block; |
| 501 unsigned char *st; |
| 502 int blkn, ci, tbl, sign, k; |
| 503 int v, m; |
| 504 |
| 505 /* Process restart marker if needed */ |
| 506 if (cinfo->restart_interval) { |
| 507 if (entropy->restarts_to_go == 0) |
| 508 process_restart(cinfo); |
| 509 entropy->restarts_to_go--; |
| 510 } |
| 511 |
| 512 if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
| 513 |
| 514 /* Outer loop handles each block in the MCU */ |
| 515 |
| 516 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 517 block = MCU_data[blkn]; |
| 518 ci = cinfo->MCU_membership[blkn]; |
| 519 compptr = cinfo->cur_comp_info[ci]; |
| 520 |
| 521 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
| 522 |
| 523 tbl = compptr->dc_tbl_no; |
| 524 |
| 525 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
| 526 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
| 527 |
| 528 /* Figure F.19: Decode_DC_DIFF */ |
| 529 if (arith_decode(cinfo, st) == 0) |
| 530 entropy->dc_context[ci] = 0; |
| 531 else { |
| 532 /* Figure F.21: Decoding nonzero value v */ |
| 533 /* Figure F.22: Decoding the sign of v */ |
| 534 sign = arith_decode(cinfo, st + 1); |
| 535 st += 2; st += sign; |
| 536 /* Figure F.23: Decoding the magnitude category of v */ |
| 537 if ((m = arith_decode(cinfo, st)) != 0) { |
| 538 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
| 539 while (arith_decode(cinfo, st)) { |
| 540 if ((m <<= 1) == 0x8000) { |
| 541 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
| 542 entropy->ct = -1; /* magnitude overflow */ |
| 543 return TRUE; |
| 544 } |
| 545 st += 1; |
| 546 } |
| 547 } |
| 548 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
| 549 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
| 550 entropy->dc_context[ci] = 0; /* zero diff category */ |
| 551 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
| 552 entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
| 553 else |
| 554 entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
| 555 v = m; |
| 556 /* Figure F.24: Decoding the magnitude bit pattern of v */ |
| 557 st += 14; |
| 558 while (m >>= 1) |
| 559 if (arith_decode(cinfo, st)) v |= m; |
| 560 v += 1; if (sign) v = -v; |
| 561 entropy->last_dc_val[ci] += v; |
| 562 } |
| 563 |
| 564 (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; |
| 565 |
| 566 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
| 567 |
| 568 tbl = compptr->ac_tbl_no; |
| 569 |
| 570 /* Figure F.20: Decode_AC_coefficients */ |
| 571 for (k = 1; k <= DCTSIZE2 - 1; k++) { |
| 572 st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 573 if (arith_decode(cinfo, st)) break; /* EOB flag */ |
| 574 while (arith_decode(cinfo, st + 1) == 0) { |
| 575 st += 3; k++; |
| 576 if (k > DCTSIZE2 - 1) { |
| 577 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
| 578 entropy->ct = -1; /* spectral overflow */ |
| 579 return TRUE; |
| 580 } |
| 581 } |
| 582 /* Figure F.21: Decoding nonzero value v */ |
| 583 /* Figure F.22: Decoding the sign of v */ |
| 584 sign = arith_decode(cinfo, entropy->fixed_bin); |
| 585 st += 2; |
| 586 /* Figure F.23: Decoding the magnitude category of v */ |
| 587 if ((m = arith_decode(cinfo, st)) != 0) { |
| 588 if (arith_decode(cinfo, st)) { |
| 589 m <<= 1; |
| 590 st = entropy->ac_stats[tbl] + |
| 591 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
| 592 while (arith_decode(cinfo, st)) { |
| 593 if ((m <<= 1) == 0x8000) { |
| 594 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
| 595 entropy->ct = -1; /* magnitude overflow */ |
| 596 return TRUE; |
| 597 } |
| 598 st += 1; |
| 599 } |
| 600 } |
| 601 } |
| 602 v = m; |
| 603 /* Figure F.24: Decoding the magnitude bit pattern of v */ |
| 604 st += 14; |
| 605 while (m >>= 1) |
| 606 if (arith_decode(cinfo, st)) v |= m; |
| 607 v += 1; if (sign) v = -v; |
| 608 (*block)[jpeg_natural_order[k]] = (JCOEF) v; |
| 609 } |
| 610 } |
| 611 |
| 612 return TRUE; |
| 613 } |
| 614 |
| 615 |
| 616 /* |
| 617 * Initialize for an arithmetic-compressed scan. |
| 618 */ |
| 619 |
| 620 METHODDEF(void) |
| 621 start_pass (j_decompress_ptr cinfo) |
| 622 { |
| 623 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 624 int ci, tbl; |
| 625 jpeg_component_info * compptr; |
| 626 |
| 627 if (cinfo->progressive_mode) { |
| 628 /* Validate progressive scan parameters */ |
| 629 if (cinfo->Ss == 0) { |
| 630 if (cinfo->Se != 0) |
| 631 goto bad; |
| 632 } else { |
| 633 /* need not check Ss/Se < 0 since they came from unsigned bytes */ |
| 634 if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1) |
| 635 goto bad; |
| 636 /* AC scans may have only one component */ |
| 637 if (cinfo->comps_in_scan != 1) |
| 638 goto bad; |
| 639 } |
| 640 if (cinfo->Ah != 0) { |
| 641 /* Successive approximation refinement scan: must have Al = Ah-1. */ |
| 642 if (cinfo->Ah-1 != cinfo->Al) |
| 643 goto bad; |
| 644 } |
| 645 if (cinfo->Al > 13) { /* need not check for < 0 */ |
| 646 bad: |
| 647 ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
| 648 cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
| 649 } |
| 650 /* Update progression status, and verify that scan order is legal. |
| 651 * Note that inter-scan inconsistencies are treated as warnings |
| 652 * not fatal errors ... not clear if this is right way to behave. |
| 653 */ |
| 654 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 655 int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; |
| 656 int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
| 657 if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
| 658 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
| 659 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
| 660 int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
| 661 if (cinfo->Ah != expected) |
| 662 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
| 663 coef_bit_ptr[coefi] = cinfo->Al; |
| 664 } |
| 665 } |
| 666 /* Select MCU decoding routine */ |
| 667 if (cinfo->Ah == 0) { |
| 668 if (cinfo->Ss == 0) |
| 669 entropy->pub.decode_mcu = decode_mcu_DC_first; |
| 670 else |
| 671 entropy->pub.decode_mcu = decode_mcu_AC_first; |
| 672 } else { |
| 673 if (cinfo->Ss == 0) |
| 674 entropy->pub.decode_mcu = decode_mcu_DC_refine; |
| 675 else |
| 676 entropy->pub.decode_mcu = decode_mcu_AC_refine; |
| 677 } |
| 678 } else { |
| 679 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
| 680 * This ought to be an error condition, but we make it a warning. |
| 681 */ |
| 682 if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || |
| 683 (cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1)) |
| 684 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
| 685 /* Select MCU decoding routine */ |
| 686 entropy->pub.decode_mcu = decode_mcu; |
| 687 } |
| 688 |
| 689 /* Allocate & initialize requested statistics areas */ |
| 690 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 691 compptr = cinfo->cur_comp_info[ci]; |
| 692 if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
| 693 tbl = compptr->dc_tbl_no; |
| 694 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
| 695 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
| 696 if (entropy->dc_stats[tbl] == NULL) |
| 697 entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
| 698 ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
| 699 MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
| 700 /* Initialize DC predictions to 0 */ |
| 701 entropy->last_dc_val[ci] = 0; |
| 702 entropy->dc_context[ci] = 0; |
| 703 } |
| 704 if (! cinfo->progressive_mode || cinfo->Ss) { |
| 705 tbl = compptr->ac_tbl_no; |
| 706 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
| 707 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
| 708 if (entropy->ac_stats[tbl] == NULL) |
| 709 entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
| 710 ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
| 711 MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
| 712 } |
| 713 } |
| 714 |
| 715 /* Initialize arithmetic decoding variables */ |
| 716 entropy->c = 0; |
| 717 entropy->a = 0; |
| 718 entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
| 719 |
| 720 /* Initialize restart counter */ |
| 721 entropy->restarts_to_go = cinfo->restart_interval; |
| 722 } |
| 723 |
| 724 |
| 725 /* |
| 726 * Module initialization routine for arithmetic entropy decoding. |
| 727 */ |
| 728 |
| 729 GLOBAL(void) |
| 730 jinit_arith_decoder (j_decompress_ptr cinfo) |
| 731 { |
| 732 arith_entropy_ptr entropy; |
| 733 int i; |
| 734 |
| 735 entropy = (arith_entropy_ptr) |
| 736 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 737 SIZEOF(arith_entropy_decoder)); |
| 738 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
| 739 entropy->pub.start_pass = start_pass; |
| 740 |
| 741 /* Mark tables unallocated */ |
| 742 for (i = 0; i < NUM_ARITH_TBLS; i++) { |
| 743 entropy->dc_stats[i] = NULL; |
| 744 entropy->ac_stats[i] = NULL; |
| 745 } |
| 746 |
| 747 /* Initialize index for fixed probability estimation */ |
| 748 entropy->fixed_bin[0] = 113; |
| 749 |
| 750 if (cinfo->progressive_mode) { |
| 751 /* Create progression status table */ |
| 752 int *coef_bit_ptr, ci; |
| 753 cinfo->coef_bits = (int (*)[DCTSIZE2]) |
| 754 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 755 cinfo->num_components*DCTSIZE2*SIZEOF(int)); |
| 756 coef_bit_ptr = & cinfo->coef_bits[0][0]; |
| 757 for (ci = 0; ci < cinfo->num_components; ci++) |
| 758 for (i = 0; i < DCTSIZE2; i++) |
| 759 *coef_bit_ptr++ = -1; |
| 760 } |
| 761 } |
OLD | NEW |