OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * jcarith.c |
| 3 * |
| 4 * Developed 1997-2009 by Guido Vollbeding. |
| 5 * This file is part of the Independent JPEG Group's software. |
| 6 * For conditions of distribution and use, see the accompanying README file. |
| 7 * |
| 8 * This file contains portable arithmetic entropy encoding routines for JPEG |
| 9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
| 10 * |
| 11 * Both sequential and progressive modes are supported in this single module. |
| 12 * |
| 13 * Suspension is not currently supported in this module. |
| 14 */ |
| 15 |
| 16 #define JPEG_INTERNALS |
| 17 #include "jinclude.h" |
| 18 #include "jpeglib.h" |
| 19 |
| 20 |
| 21 /* Expanded entropy encoder object for arithmetic encoding. */ |
| 22 |
| 23 typedef struct { |
| 24 struct jpeg_entropy_encoder pub; /* public fields */ |
| 25 |
| 26 INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ |
| 27 INT32 a; /* A register, normalized size of coding interval */ |
| 28 INT32 sc; /* counter for stacked 0xFF values which might overflow */ |
| 29 INT32 zc; /* counter for pending 0x00 output values which might * |
| 30 * be discarded at the end ("Pacman" termination) */ |
| 31 int ct; /* bit shift counter, determines when next byte will be written */ |
| 32 int buffer; /* buffer for most recent output byte != 0xFF */ |
| 33 |
| 34 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
| 35 int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
| 36 |
| 37 unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| 38 int next_restart_num; /* next restart number to write (0-7) */ |
| 39 |
| 40 /* Pointers to statistics areas (these workspaces have image lifespan) */ |
| 41 unsigned char * dc_stats[NUM_ARITH_TBLS]; |
| 42 unsigned char * ac_stats[NUM_ARITH_TBLS]; |
| 43 |
| 44 /* Statistics bin for coding with fixed probability 0.5 */ |
| 45 unsigned char fixed_bin[4]; |
| 46 } arith_entropy_encoder; |
| 47 |
| 48 typedef arith_entropy_encoder * arith_entropy_ptr; |
| 49 |
| 50 /* The following two definitions specify the allocation chunk size |
| 51 * for the statistics area. |
| 52 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
| 53 * 49 statistics bins for DC, and 245 statistics bins for AC coding. |
| 54 * |
| 55 * We use a compact representation with 1 byte per statistics bin, |
| 56 * thus the numbers directly represent byte sizes. |
| 57 * This 1 byte per statistics bin contains the meaning of the MPS |
| 58 * (more probable symbol) in the highest bit (mask 0x80), and the |
| 59 * index into the probability estimation state machine table |
| 60 * in the lower bits (mask 0x7F). |
| 61 */ |
| 62 |
| 63 #define DC_STAT_BINS 64 |
| 64 #define AC_STAT_BINS 256 |
| 65 |
| 66 /* NOTE: Uncomment the following #define if you want to use the |
| 67 * given formula for calculating the AC conditioning parameter Kx |
| 68 * for spectral selection progressive coding in section G.1.3.2 |
| 69 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). |
| 70 * Although the spec and P&M authors claim that this "has proven |
| 71 * to give good results for 8 bit precision samples", I'm not |
| 72 * convinced yet that this is really beneficial. |
| 73 * Early tests gave only very marginal compression enhancements |
| 74 * (a few - around 5 or so - bytes even for very large files), |
| 75 * which would turn out rather negative if we'd suppress the |
| 76 * DAC (Define Arithmetic Conditioning) marker segments for |
| 77 * the default parameters in the future. |
| 78 * Note that currently the marker writing module emits 12-byte |
| 79 * DAC segments for a full-component scan in a color image. |
| 80 * This is not worth worrying about IMHO. However, since the |
| 81 * spec defines the default values to be used if the tables |
| 82 * are omitted (unlike Huffman tables, which are required |
| 83 * anyway), one might optimize this behaviour in the future, |
| 84 * and then it would be disadvantageous to use custom tables if |
| 85 * they don't provide sufficient gain to exceed the DAC size. |
| 86 * |
| 87 * On the other hand, I'd consider it as a reasonable result |
| 88 * that the conditioning has no significant influence on the |
| 89 * compression performance. This means that the basic |
| 90 * statistical model is already rather stable. |
| 91 * |
| 92 * Thus, at the moment, we use the default conditioning values |
| 93 * anyway, and do not use the custom formula. |
| 94 * |
| 95 #define CALCULATE_SPECTRAL_CONDITIONING |
| 96 */ |
| 97 |
| 98 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
| 99 * We assume that int right shift is unsigned if INT32 right shift is, |
| 100 * which should be safe. |
| 101 */ |
| 102 |
| 103 #ifdef RIGHT_SHIFT_IS_UNSIGNED |
| 104 #define ISHIFT_TEMPS int ishift_temp; |
| 105 #define IRIGHT_SHIFT(x,shft) \ |
| 106 ((ishift_temp = (x)) < 0 ? \ |
| 107 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
| 108 (ishift_temp >> (shft))) |
| 109 #else |
| 110 #define ISHIFT_TEMPS |
| 111 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
| 112 #endif |
| 113 |
| 114 |
| 115 LOCAL(void) |
| 116 emit_byte (int val, j_compress_ptr cinfo) |
| 117 /* Write next output byte; we do not support suspension in this module. */ |
| 118 { |
| 119 struct jpeg_destination_mgr * dest = cinfo->dest; |
| 120 |
| 121 *dest->next_output_byte++ = (JOCTET) val; |
| 122 if (--dest->free_in_buffer == 0) |
| 123 if (! (*dest->empty_output_buffer) (cinfo)) |
| 124 ERREXIT(cinfo, JERR_CANT_SUSPEND); |
| 125 } |
| 126 |
| 127 |
| 128 /* |
| 129 * Finish up at the end of an arithmetic-compressed scan. |
| 130 */ |
| 131 |
| 132 METHODDEF(void) |
| 133 finish_pass (j_compress_ptr cinfo) |
| 134 { |
| 135 arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
| 136 INT32 temp; |
| 137 |
| 138 /* Section D.1.8: Termination of encoding */ |
| 139 |
| 140 /* Find the e->c in the coding interval with the largest |
| 141 * number of trailing zero bits */ |
| 142 if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) |
| 143 e->c = temp + 0x8000L; |
| 144 else |
| 145 e->c = temp; |
| 146 /* Send remaining bytes to output */ |
| 147 e->c <<= e->ct; |
| 148 if (e->c & 0xF8000000L) { |
| 149 /* One final overflow has to be handled */ |
| 150 if (e->buffer >= 0) { |
| 151 if (e->zc) |
| 152 do emit_byte(0x00, cinfo); |
| 153 while (--e->zc); |
| 154 emit_byte(e->buffer + 1, cinfo); |
| 155 if (e->buffer + 1 == 0xFF) |
| 156 emit_byte(0x00, cinfo); |
| 157 } |
| 158 e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
| 159 e->sc = 0; |
| 160 } else { |
| 161 if (e->buffer == 0) |
| 162 ++e->zc; |
| 163 else if (e->buffer >= 0) { |
| 164 if (e->zc) |
| 165 do emit_byte(0x00, cinfo); |
| 166 while (--e->zc); |
| 167 emit_byte(e->buffer, cinfo); |
| 168 } |
| 169 if (e->sc) { |
| 170 if (e->zc) |
| 171 do emit_byte(0x00, cinfo); |
| 172 while (--e->zc); |
| 173 do { |
| 174 emit_byte(0xFF, cinfo); |
| 175 emit_byte(0x00, cinfo); |
| 176 } while (--e->sc); |
| 177 } |
| 178 } |
| 179 /* Output final bytes only if they are not 0x00 */ |
| 180 if (e->c & 0x7FFF800L) { |
| 181 if (e->zc) /* output final pending zero bytes */ |
| 182 do emit_byte(0x00, cinfo); |
| 183 while (--e->zc); |
| 184 emit_byte((e->c >> 19) & 0xFF, cinfo); |
| 185 if (((e->c >> 19) & 0xFF) == 0xFF) |
| 186 emit_byte(0x00, cinfo); |
| 187 if (e->c & 0x7F800L) { |
| 188 emit_byte((e->c >> 11) & 0xFF, cinfo); |
| 189 if (((e->c >> 11) & 0xFF) == 0xFF) |
| 190 emit_byte(0x00, cinfo); |
| 191 } |
| 192 } |
| 193 } |
| 194 |
| 195 |
| 196 /* |
| 197 * The core arithmetic encoding routine (common in JPEG and JBIG). |
| 198 * This needs to go as fast as possible. |
| 199 * Machine-dependent optimization facilities |
| 200 * are not utilized in this portable implementation. |
| 201 * However, this code should be fairly efficient and |
| 202 * may be a good base for further optimizations anyway. |
| 203 * |
| 204 * Parameter 'val' to be encoded may be 0 or 1 (binary decision). |
| 205 * |
| 206 * Note: I've added full "Pacman" termination support to the |
| 207 * byte output routines, which is equivalent to the optional |
| 208 * Discard_final_zeros procedure (Figure D.15) in the spec. |
| 209 * Thus, we always produce the shortest possible output |
| 210 * stream compliant to the spec (no trailing zero bytes, |
| 211 * except for FF stuffing). |
| 212 * |
| 213 * I've also introduced a new scheme for accessing |
| 214 * the probability estimation state machine table, |
| 215 * derived from Markus Kuhn's JBIG implementation. |
| 216 */ |
| 217 |
| 218 LOCAL(void) |
| 219 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) |
| 220 { |
| 221 register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
| 222 register unsigned char nl, nm; |
| 223 register INT32 qe, temp; |
| 224 register int sv; |
| 225 |
| 226 /* Fetch values from our compact representation of Table D.2: |
| 227 * Qe values and probability estimation state machine |
| 228 */ |
| 229 sv = *st; |
| 230 qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
| 231 nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
| 232 nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
| 233 |
| 234 /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ |
| 235 e->a -= qe; |
| 236 if (val != (sv >> 7)) { |
| 237 /* Encode the less probable symbol */ |
| 238 if (e->a >= qe) { |
| 239 /* If the interval size (qe) for the less probable symbol (LPS) |
| 240 * is larger than the interval size for the MPS, then exchange |
| 241 * the two symbols for coding efficiency, otherwise code the LPS |
| 242 * as usual: */ |
| 243 e->c += e->a; |
| 244 e->a = qe; |
| 245 } |
| 246 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
| 247 } else { |
| 248 /* Encode the more probable symbol */ |
| 249 if (e->a >= 0x8000L) |
| 250 return; /* A >= 0x8000 -> ready, no renormalization required */ |
| 251 if (e->a < qe) { |
| 252 /* If the interval size (qe) for the less probable symbol (LPS) |
| 253 * is larger than the interval size for the MPS, then exchange |
| 254 * the two symbols for coding efficiency: */ |
| 255 e->c += e->a; |
| 256 e->a = qe; |
| 257 } |
| 258 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
| 259 } |
| 260 |
| 261 /* Renormalization & data output per section D.1.6 */ |
| 262 do { |
| 263 e->a <<= 1; |
| 264 e->c <<= 1; |
| 265 if (--e->ct == 0) { |
| 266 /* Another byte is ready for output */ |
| 267 temp = e->c >> 19; |
| 268 if (temp > 0xFF) { |
| 269 /* Handle overflow over all stacked 0xFF bytes */ |
| 270 if (e->buffer >= 0) { |
| 271 if (e->zc) |
| 272 do emit_byte(0x00, cinfo); |
| 273 while (--e->zc); |
| 274 emit_byte(e->buffer + 1, cinfo); |
| 275 if (e->buffer + 1 == 0xFF) |
| 276 emit_byte(0x00, cinfo); |
| 277 } |
| 278 e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
| 279 e->sc = 0; |
| 280 /* Note: The 3 spacer bits in the C register guarantee |
| 281 * that the new buffer byte can't be 0xFF here |
| 282 * (see page 160 in the P&M JPEG book). */ |
| 283 e->buffer = temp & 0xFF; /* new output byte, might overflow later */ |
| 284 } else if (temp == 0xFF) { |
| 285 ++e->sc; /* stack 0xFF byte (which might overflow later) */ |
| 286 } else { |
| 287 /* Output all stacked 0xFF bytes, they will not overflow any more */ |
| 288 if (e->buffer == 0) |
| 289 ++e->zc; |
| 290 else if (e->buffer >= 0) { |
| 291 if (e->zc) |
| 292 do emit_byte(0x00, cinfo); |
| 293 while (--e->zc); |
| 294 emit_byte(e->buffer, cinfo); |
| 295 } |
| 296 if (e->sc) { |
| 297 if (e->zc) |
| 298 do emit_byte(0x00, cinfo); |
| 299 while (--e->zc); |
| 300 do { |
| 301 emit_byte(0xFF, cinfo); |
| 302 emit_byte(0x00, cinfo); |
| 303 } while (--e->sc); |
| 304 } |
| 305 e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ |
| 306 } |
| 307 e->c &= 0x7FFFFL; |
| 308 e->ct += 8; |
| 309 } |
| 310 } while (e->a < 0x8000L); |
| 311 } |
| 312 |
| 313 |
| 314 /* |
| 315 * Emit a restart marker & resynchronize predictions. |
| 316 */ |
| 317 |
| 318 LOCAL(void) |
| 319 emit_restart (j_compress_ptr cinfo, int restart_num) |
| 320 { |
| 321 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 322 int ci; |
| 323 jpeg_component_info * compptr; |
| 324 |
| 325 finish_pass(cinfo); |
| 326 |
| 327 emit_byte(0xFF, cinfo); |
| 328 emit_byte(JPEG_RST0 + restart_num, cinfo); |
| 329 |
| 330 /* Re-initialize statistics areas */ |
| 331 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 332 compptr = cinfo->cur_comp_info[ci]; |
| 333 /* DC needs no table for refinement scan */ |
| 334 if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
| 335 MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
| 336 /* Reset DC predictions to 0 */ |
| 337 entropy->last_dc_val[ci] = 0; |
| 338 entropy->dc_context[ci] = 0; |
| 339 } |
| 340 /* AC needs no table when not present */ |
| 341 if (cinfo->progressive_mode == 0 || cinfo->Se) { |
| 342 MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
| 343 } |
| 344 } |
| 345 |
| 346 /* Reset arithmetic encoding variables */ |
| 347 entropy->c = 0; |
| 348 entropy->a = 0x10000L; |
| 349 entropy->sc = 0; |
| 350 entropy->zc = 0; |
| 351 entropy->ct = 11; |
| 352 entropy->buffer = -1; /* empty */ |
| 353 } |
| 354 |
| 355 |
| 356 /* |
| 357 * MCU encoding for DC initial scan (either spectral selection, |
| 358 * or first pass of successive approximation). |
| 359 */ |
| 360 |
| 361 METHODDEF(boolean) |
| 362 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 363 { |
| 364 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 365 JBLOCKROW block; |
| 366 unsigned char *st; |
| 367 int blkn, ci, tbl; |
| 368 int v, v2, m; |
| 369 ISHIFT_TEMPS |
| 370 |
| 371 /* Emit restart marker if needed */ |
| 372 if (cinfo->restart_interval) { |
| 373 if (entropy->restarts_to_go == 0) { |
| 374 emit_restart(cinfo, entropy->next_restart_num); |
| 375 entropy->restarts_to_go = cinfo->restart_interval; |
| 376 entropy->next_restart_num++; |
| 377 entropy->next_restart_num &= 7; |
| 378 } |
| 379 entropy->restarts_to_go--; |
| 380 } |
| 381 |
| 382 /* Encode the MCU data blocks */ |
| 383 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 384 block = MCU_data[blkn]; |
| 385 ci = cinfo->MCU_membership[blkn]; |
| 386 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
| 387 |
| 388 /* Compute the DC value after the required point transform by Al. |
| 389 * This is simply an arithmetic right shift. |
| 390 */ |
| 391 m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); |
| 392 |
| 393 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
| 394 |
| 395 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
| 396 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
| 397 |
| 398 /* Figure F.4: Encode_DC_DIFF */ |
| 399 if ((v = m - entropy->last_dc_val[ci]) == 0) { |
| 400 arith_encode(cinfo, st, 0); |
| 401 entropy->dc_context[ci] = 0; /* zero diff category */ |
| 402 } else { |
| 403 entropy->last_dc_val[ci] = m; |
| 404 arith_encode(cinfo, st, 1); |
| 405 /* Figure F.6: Encoding nonzero value v */ |
| 406 /* Figure F.7: Encoding the sign of v */ |
| 407 if (v > 0) { |
| 408 arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
| 409 st += 2; /* Table F.4: SP = S0 + 2 */ |
| 410 entropy->dc_context[ci] = 4; /* small positive diff category */ |
| 411 } else { |
| 412 v = -v; |
| 413 arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
| 414 st += 3; /* Table F.4: SN = S0 + 3 */ |
| 415 entropy->dc_context[ci] = 8; /* small negative diff category */ |
| 416 } |
| 417 /* Figure F.8: Encoding the magnitude category of v */ |
| 418 m = 0; |
| 419 if (v -= 1) { |
| 420 arith_encode(cinfo, st, 1); |
| 421 m = 1; |
| 422 v2 = v; |
| 423 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
| 424 while (v2 >>= 1) { |
| 425 arith_encode(cinfo, st, 1); |
| 426 m <<= 1; |
| 427 st += 1; |
| 428 } |
| 429 } |
| 430 arith_encode(cinfo, st, 0); |
| 431 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
| 432 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
| 433 entropy->dc_context[ci] = 0; /* zero diff category */ |
| 434 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
| 435 entropy->dc_context[ci] += 8; /* large diff category */ |
| 436 /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| 437 st += 14; |
| 438 while (m >>= 1) |
| 439 arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| 440 } |
| 441 } |
| 442 |
| 443 return TRUE; |
| 444 } |
| 445 |
| 446 |
| 447 /* |
| 448 * MCU encoding for AC initial scan (either spectral selection, |
| 449 * or first pass of successive approximation). |
| 450 */ |
| 451 |
| 452 METHODDEF(boolean) |
| 453 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 454 { |
| 455 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 456 JBLOCKROW block; |
| 457 unsigned char *st; |
| 458 int tbl, k, ke; |
| 459 int v, v2, m; |
| 460 |
| 461 /* Emit restart marker if needed */ |
| 462 if (cinfo->restart_interval) { |
| 463 if (entropy->restarts_to_go == 0) { |
| 464 emit_restart(cinfo, entropy->next_restart_num); |
| 465 entropy->restarts_to_go = cinfo->restart_interval; |
| 466 entropy->next_restart_num++; |
| 467 entropy->next_restart_num &= 7; |
| 468 } |
| 469 entropy->restarts_to_go--; |
| 470 } |
| 471 |
| 472 /* Encode the MCU data block */ |
| 473 block = MCU_data[0]; |
| 474 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
| 475 |
| 476 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
| 477 |
| 478 /* Establish EOB (end-of-block) index */ |
| 479 for (ke = cinfo->Se; ke > 0; ke--) |
| 480 /* We must apply the point transform by Al. For AC coefficients this |
| 481 * is an integer division with rounding towards 0. To do this portably |
| 482 * in C, we shift after obtaining the absolute value. |
| 483 */ |
| 484 if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { |
| 485 if (v >>= cinfo->Al) break; |
| 486 } else { |
| 487 v = -v; |
| 488 if (v >>= cinfo->Al) break; |
| 489 } |
| 490 |
| 491 /* Figure F.5: Encode_AC_Coefficients */ |
| 492 for (k = cinfo->Ss; k <= ke; k++) { |
| 493 st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 494 arith_encode(cinfo, st, 0); /* EOB decision */ |
| 495 for (;;) { |
| 496 if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { |
| 497 if (v >>= cinfo->Al) { |
| 498 arith_encode(cinfo, st + 1, 1); |
| 499 arith_encode(cinfo, entropy->fixed_bin, 0); |
| 500 break; |
| 501 } |
| 502 } else { |
| 503 v = -v; |
| 504 if (v >>= cinfo->Al) { |
| 505 arith_encode(cinfo, st + 1, 1); |
| 506 arith_encode(cinfo, entropy->fixed_bin, 1); |
| 507 break; |
| 508 } |
| 509 } |
| 510 arith_encode(cinfo, st + 1, 0); st += 3; k++; |
| 511 } |
| 512 st += 2; |
| 513 /* Figure F.8: Encoding the magnitude category of v */ |
| 514 m = 0; |
| 515 if (v -= 1) { |
| 516 arith_encode(cinfo, st, 1); |
| 517 m = 1; |
| 518 v2 = v; |
| 519 if (v2 >>= 1) { |
| 520 arith_encode(cinfo, st, 1); |
| 521 m <<= 1; |
| 522 st = entropy->ac_stats[tbl] + |
| 523 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
| 524 while (v2 >>= 1) { |
| 525 arith_encode(cinfo, st, 1); |
| 526 m <<= 1; |
| 527 st += 1; |
| 528 } |
| 529 } |
| 530 } |
| 531 arith_encode(cinfo, st, 0); |
| 532 /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| 533 st += 14; |
| 534 while (m >>= 1) |
| 535 arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| 536 } |
| 537 /* Encode EOB decision only if k <= cinfo->Se */ |
| 538 if (k <= cinfo->Se) { |
| 539 st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 540 arith_encode(cinfo, st, 1); |
| 541 } |
| 542 |
| 543 return TRUE; |
| 544 } |
| 545 |
| 546 |
| 547 /* |
| 548 * MCU encoding for DC successive approximation refinement scan. |
| 549 */ |
| 550 |
| 551 METHODDEF(boolean) |
| 552 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 553 { |
| 554 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 555 unsigned char *st; |
| 556 int Al, blkn; |
| 557 |
| 558 /* Emit restart marker if needed */ |
| 559 if (cinfo->restart_interval) { |
| 560 if (entropy->restarts_to_go == 0) { |
| 561 emit_restart(cinfo, entropy->next_restart_num); |
| 562 entropy->restarts_to_go = cinfo->restart_interval; |
| 563 entropy->next_restart_num++; |
| 564 entropy->next_restart_num &= 7; |
| 565 } |
| 566 entropy->restarts_to_go--; |
| 567 } |
| 568 |
| 569 st = entropy->fixed_bin; /* use fixed probability estimation */ |
| 570 Al = cinfo->Al; |
| 571 |
| 572 /* Encode the MCU data blocks */ |
| 573 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 574 /* We simply emit the Al'th bit of the DC coefficient value. */ |
| 575 arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); |
| 576 } |
| 577 |
| 578 return TRUE; |
| 579 } |
| 580 |
| 581 |
| 582 /* |
| 583 * MCU encoding for AC successive approximation refinement scan. |
| 584 */ |
| 585 |
| 586 METHODDEF(boolean) |
| 587 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 588 { |
| 589 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 590 JBLOCKROW block; |
| 591 unsigned char *st; |
| 592 int tbl, k, ke, kex; |
| 593 int v; |
| 594 |
| 595 /* Emit restart marker if needed */ |
| 596 if (cinfo->restart_interval) { |
| 597 if (entropy->restarts_to_go == 0) { |
| 598 emit_restart(cinfo, entropy->next_restart_num); |
| 599 entropy->restarts_to_go = cinfo->restart_interval; |
| 600 entropy->next_restart_num++; |
| 601 entropy->next_restart_num &= 7; |
| 602 } |
| 603 entropy->restarts_to_go--; |
| 604 } |
| 605 |
| 606 /* Encode the MCU data block */ |
| 607 block = MCU_data[0]; |
| 608 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
| 609 |
| 610 /* Section G.1.3.3: Encoding of AC coefficients */ |
| 611 |
| 612 /* Establish EOB (end-of-block) index */ |
| 613 for (ke = cinfo->Se; ke > 0; ke--) |
| 614 /* We must apply the point transform by Al. For AC coefficients this |
| 615 * is an integer division with rounding towards 0. To do this portably |
| 616 * in C, we shift after obtaining the absolute value. |
| 617 */ |
| 618 if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { |
| 619 if (v >>= cinfo->Al) break; |
| 620 } else { |
| 621 v = -v; |
| 622 if (v >>= cinfo->Al) break; |
| 623 } |
| 624 |
| 625 /* Establish EOBx (previous stage end-of-block) index */ |
| 626 for (kex = ke; kex > 0; kex--) |
| 627 if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) { |
| 628 if (v >>= cinfo->Ah) break; |
| 629 } else { |
| 630 v = -v; |
| 631 if (v >>= cinfo->Ah) break; |
| 632 } |
| 633 |
| 634 /* Figure G.10: Encode_AC_Coefficients_SA */ |
| 635 for (k = cinfo->Ss; k <= ke; k++) { |
| 636 st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 637 if (k > kex) |
| 638 arith_encode(cinfo, st, 0); /* EOB decision */ |
| 639 for (;;) { |
| 640 if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { |
| 641 if (v >>= cinfo->Al) { |
| 642 if (v >> 1) /* previously nonzero coef */ |
| 643 arith_encode(cinfo, st + 2, (v & 1)); |
| 644 else { /* newly nonzero coef */ |
| 645 arith_encode(cinfo, st + 1, 1); |
| 646 arith_encode(cinfo, entropy->fixed_bin, 0); |
| 647 } |
| 648 break; |
| 649 } |
| 650 } else { |
| 651 v = -v; |
| 652 if (v >>= cinfo->Al) { |
| 653 if (v >> 1) /* previously nonzero coef */ |
| 654 arith_encode(cinfo, st + 2, (v & 1)); |
| 655 else { /* newly nonzero coef */ |
| 656 arith_encode(cinfo, st + 1, 1); |
| 657 arith_encode(cinfo, entropy->fixed_bin, 1); |
| 658 } |
| 659 break; |
| 660 } |
| 661 } |
| 662 arith_encode(cinfo, st + 1, 0); st += 3; k++; |
| 663 } |
| 664 } |
| 665 /* Encode EOB decision only if k <= cinfo->Se */ |
| 666 if (k <= cinfo->Se) { |
| 667 st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 668 arith_encode(cinfo, st, 1); |
| 669 } |
| 670 |
| 671 return TRUE; |
| 672 } |
| 673 |
| 674 |
| 675 /* |
| 676 * Encode and output one MCU's worth of arithmetic-compressed coefficients. |
| 677 */ |
| 678 |
| 679 METHODDEF(boolean) |
| 680 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 681 { |
| 682 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 683 jpeg_component_info * compptr; |
| 684 JBLOCKROW block; |
| 685 unsigned char *st; |
| 686 int blkn, ci, tbl, k, ke; |
| 687 int v, v2, m; |
| 688 |
| 689 /* Emit restart marker if needed */ |
| 690 if (cinfo->restart_interval) { |
| 691 if (entropy->restarts_to_go == 0) { |
| 692 emit_restart(cinfo, entropy->next_restart_num); |
| 693 entropy->restarts_to_go = cinfo->restart_interval; |
| 694 entropy->next_restart_num++; |
| 695 entropy->next_restart_num &= 7; |
| 696 } |
| 697 entropy->restarts_to_go--; |
| 698 } |
| 699 |
| 700 /* Encode the MCU data blocks */ |
| 701 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 702 block = MCU_data[blkn]; |
| 703 ci = cinfo->MCU_membership[blkn]; |
| 704 compptr = cinfo->cur_comp_info[ci]; |
| 705 |
| 706 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
| 707 |
| 708 tbl = compptr->dc_tbl_no; |
| 709 |
| 710 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
| 711 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
| 712 |
| 713 /* Figure F.4: Encode_DC_DIFF */ |
| 714 if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { |
| 715 arith_encode(cinfo, st, 0); |
| 716 entropy->dc_context[ci] = 0; /* zero diff category */ |
| 717 } else { |
| 718 entropy->last_dc_val[ci] = (*block)[0]; |
| 719 arith_encode(cinfo, st, 1); |
| 720 /* Figure F.6: Encoding nonzero value v */ |
| 721 /* Figure F.7: Encoding the sign of v */ |
| 722 if (v > 0) { |
| 723 arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
| 724 st += 2; /* Table F.4: SP = S0 + 2 */ |
| 725 entropy->dc_context[ci] = 4; /* small positive diff category */ |
| 726 } else { |
| 727 v = -v; |
| 728 arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
| 729 st += 3; /* Table F.4: SN = S0 + 3 */ |
| 730 entropy->dc_context[ci] = 8; /* small negative diff category */ |
| 731 } |
| 732 /* Figure F.8: Encoding the magnitude category of v */ |
| 733 m = 0; |
| 734 if (v -= 1) { |
| 735 arith_encode(cinfo, st, 1); |
| 736 m = 1; |
| 737 v2 = v; |
| 738 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
| 739 while (v2 >>= 1) { |
| 740 arith_encode(cinfo, st, 1); |
| 741 m <<= 1; |
| 742 st += 1; |
| 743 } |
| 744 } |
| 745 arith_encode(cinfo, st, 0); |
| 746 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
| 747 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
| 748 entropy->dc_context[ci] = 0; /* zero diff category */ |
| 749 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
| 750 entropy->dc_context[ci] += 8; /* large diff category */ |
| 751 /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| 752 st += 14; |
| 753 while (m >>= 1) |
| 754 arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| 755 } |
| 756 |
| 757 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
| 758 |
| 759 tbl = compptr->ac_tbl_no; |
| 760 |
| 761 /* Establish EOB (end-of-block) index */ |
| 762 for (ke = DCTSIZE2 - 1; ke > 0; ke--) |
| 763 if ((*block)[jpeg_natural_order[ke]]) break; |
| 764 |
| 765 /* Figure F.5: Encode_AC_Coefficients */ |
| 766 for (k = 1; k <= ke; k++) { |
| 767 st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 768 arith_encode(cinfo, st, 0); /* EOB decision */ |
| 769 while ((v = (*block)[jpeg_natural_order[k]]) == 0) { |
| 770 arith_encode(cinfo, st + 1, 0); st += 3; k++; |
| 771 } |
| 772 arith_encode(cinfo, st + 1, 1); |
| 773 /* Figure F.6: Encoding nonzero value v */ |
| 774 /* Figure F.7: Encoding the sign of v */ |
| 775 if (v > 0) { |
| 776 arith_encode(cinfo, entropy->fixed_bin, 0); |
| 777 } else { |
| 778 v = -v; |
| 779 arith_encode(cinfo, entropy->fixed_bin, 1); |
| 780 } |
| 781 st += 2; |
| 782 /* Figure F.8: Encoding the magnitude category of v */ |
| 783 m = 0; |
| 784 if (v -= 1) { |
| 785 arith_encode(cinfo, st, 1); |
| 786 m = 1; |
| 787 v2 = v; |
| 788 if (v2 >>= 1) { |
| 789 arith_encode(cinfo, st, 1); |
| 790 m <<= 1; |
| 791 st = entropy->ac_stats[tbl] + |
| 792 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
| 793 while (v2 >>= 1) { |
| 794 arith_encode(cinfo, st, 1); |
| 795 m <<= 1; |
| 796 st += 1; |
| 797 } |
| 798 } |
| 799 } |
| 800 arith_encode(cinfo, st, 0); |
| 801 /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| 802 st += 14; |
| 803 while (m >>= 1) |
| 804 arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| 805 } |
| 806 /* Encode EOB decision only if k <= DCTSIZE2 - 1 */ |
| 807 if (k <= DCTSIZE2 - 1) { |
| 808 st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 809 arith_encode(cinfo, st, 1); |
| 810 } |
| 811 } |
| 812 |
| 813 return TRUE; |
| 814 } |
| 815 |
| 816 |
| 817 /* |
| 818 * Initialize for an arithmetic-compressed scan. |
| 819 */ |
| 820 |
| 821 METHODDEF(void) |
| 822 start_pass (j_compress_ptr cinfo, boolean gather_statistics) |
| 823 { |
| 824 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 825 int ci, tbl; |
| 826 jpeg_component_info * compptr; |
| 827 |
| 828 if (gather_statistics) |
| 829 /* Make sure to avoid that in the master control logic! |
| 830 * We are fully adaptive here and need no extra |
| 831 * statistics gathering pass! |
| 832 */ |
| 833 ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 834 |
| 835 /* We assume jcmaster.c already validated the progressive scan parameters. */ |
| 836 |
| 837 /* Select execution routines */ |
| 838 if (cinfo->progressive_mode) { |
| 839 if (cinfo->Ah == 0) { |
| 840 if (cinfo->Ss == 0) |
| 841 entropy->pub.encode_mcu = encode_mcu_DC_first; |
| 842 else |
| 843 entropy->pub.encode_mcu = encode_mcu_AC_first; |
| 844 } else { |
| 845 if (cinfo->Ss == 0) |
| 846 entropy->pub.encode_mcu = encode_mcu_DC_refine; |
| 847 else |
| 848 entropy->pub.encode_mcu = encode_mcu_AC_refine; |
| 849 } |
| 850 } else |
| 851 entropy->pub.encode_mcu = encode_mcu; |
| 852 |
| 853 /* Allocate & initialize requested statistics areas */ |
| 854 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 855 compptr = cinfo->cur_comp_info[ci]; |
| 856 /* DC needs no table for refinement scan */ |
| 857 if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
| 858 tbl = compptr->dc_tbl_no; |
| 859 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
| 860 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
| 861 if (entropy->dc_stats[tbl] == NULL) |
| 862 entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
| 863 ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
| 864 MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
| 865 /* Initialize DC predictions to 0 */ |
| 866 entropy->last_dc_val[ci] = 0; |
| 867 entropy->dc_context[ci] = 0; |
| 868 } |
| 869 /* AC needs no table when not present */ |
| 870 if (cinfo->progressive_mode == 0 || cinfo->Se) { |
| 871 tbl = compptr->ac_tbl_no; |
| 872 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
| 873 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
| 874 if (entropy->ac_stats[tbl] == NULL) |
| 875 entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
| 876 ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
| 877 MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
| 878 #ifdef CALCULATE_SPECTRAL_CONDITIONING |
| 879 if (cinfo->progressive_mode) |
| 880 /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ |
| 881 cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); |
| 882 #endif |
| 883 } |
| 884 } |
| 885 |
| 886 /* Initialize arithmetic encoding variables */ |
| 887 entropy->c = 0; |
| 888 entropy->a = 0x10000L; |
| 889 entropy->sc = 0; |
| 890 entropy->zc = 0; |
| 891 entropy->ct = 11; |
| 892 entropy->buffer = -1; /* empty */ |
| 893 |
| 894 /* Initialize restart stuff */ |
| 895 entropy->restarts_to_go = cinfo->restart_interval; |
| 896 entropy->next_restart_num = 0; |
| 897 } |
| 898 |
| 899 |
| 900 /* |
| 901 * Module initialization routine for arithmetic entropy encoding. |
| 902 */ |
| 903 |
| 904 GLOBAL(void) |
| 905 jinit_arith_encoder (j_compress_ptr cinfo) |
| 906 { |
| 907 arith_entropy_ptr entropy; |
| 908 int i; |
| 909 |
| 910 entropy = (arith_entropy_ptr) |
| 911 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 912 SIZEOF(arith_entropy_encoder)); |
| 913 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
| 914 entropy->pub.start_pass = start_pass; |
| 915 entropy->pub.finish_pass = finish_pass; |
| 916 |
| 917 /* Mark tables unallocated */ |
| 918 for (i = 0; i < NUM_ARITH_TBLS; i++) { |
| 919 entropy->dc_stats[i] = NULL; |
| 920 entropy->ac_stats[i] = NULL; |
| 921 } |
| 922 |
| 923 /* Initialize index for fixed probability estimation */ |
| 924 entropy->fixed_bin[0] = 113; |
| 925 } |
OLD | NEW |