OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2008, Google Inc. |
| 2 // All rights reserved. |
| 3 // |
| 4 // Redistribution and use in source and binary forms, with or without |
| 5 // modification, are permitted provided that the following conditions are |
| 6 // met: |
| 7 // |
| 8 // * Redistributions of source code must retain the above copyright |
| 9 // notice, this list of conditions and the following disclaimer. |
| 10 // * Redistributions in binary form must reproduce the above |
| 11 // copyright notice, this list of conditions and the following disclaimer |
| 12 // in the documentation and/or other materials provided with the |
| 13 // distribution. |
| 14 // * Neither the name of Google Inc. nor the names of its |
| 15 // contributors may be used to endorse or promote products derived from |
| 16 // this software without specific prior written permission. |
| 17 // |
| 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 |
| 30 // --- |
| 31 // Author: Paul Pluzhnikov |
| 32 // |
| 33 // Allow dynamic symbol lookup in an in-memory Elf image. |
| 34 // |
| 35 |
| 36 #include "base/elf_mem_image.h" |
| 37 |
| 38 #ifdef HAVE_ELF_MEM_IMAGE // defined in elf_mem_image.h |
| 39 |
| 40 #include "base/logging.h" |
| 41 |
| 42 // From binutils/include/elf/common.h (this doesn't appear to be documented |
| 43 // anywhere else). |
| 44 // |
| 45 // /* This flag appears in a Versym structure. It means that the symbol |
| 46 // is hidden, and is only visible with an explicit version number. |
| 47 // This is a GNU extension. */ |
| 48 // #define VERSYM_HIDDEN 0x8000 |
| 49 // |
| 50 // /* This is the mask for the rest of the Versym information. */ |
| 51 // #define VERSYM_VERSION 0x7fff |
| 52 |
| 53 #define VERSYM_VERSION 0x7fff |
| 54 |
| 55 namespace base { |
| 56 |
| 57 namespace { |
| 58 template <int N> class ElfClass { |
| 59 public: |
| 60 static const int kElfClass = -1; |
| 61 static int ElfBind(const ElfW(Sym) *) { |
| 62 CHECK(false); // << "Unexpected word size"; |
| 63 return 0; |
| 64 } |
| 65 static int ElfType(const ElfW(Sym) *) { |
| 66 CHECK(false); // << "Unexpected word size"; |
| 67 return 0; |
| 68 } |
| 69 }; |
| 70 |
| 71 template <> class ElfClass<32> { |
| 72 public: |
| 73 static const int kElfClass = ELFCLASS32; |
| 74 static int ElfBind(const ElfW(Sym) *symbol) { |
| 75 return ELF32_ST_BIND(symbol->st_info); |
| 76 } |
| 77 static int ElfType(const ElfW(Sym) *symbol) { |
| 78 return ELF32_ST_TYPE(symbol->st_info); |
| 79 } |
| 80 }; |
| 81 |
| 82 template <> class ElfClass<64> { |
| 83 public: |
| 84 static const int kElfClass = ELFCLASS64; |
| 85 static int ElfBind(const ElfW(Sym) *symbol) { |
| 86 return ELF64_ST_BIND(symbol->st_info); |
| 87 } |
| 88 static int ElfType(const ElfW(Sym) *symbol) { |
| 89 return ELF64_ST_TYPE(symbol->st_info); |
| 90 } |
| 91 }; |
| 92 |
| 93 typedef ElfClass<__WORDSIZE> CurrentElfClass; |
| 94 |
| 95 // Extract an element from one of the ELF tables, cast it to desired type. |
| 96 // This is just a simple arithmetic and a glorified cast. |
| 97 // Callers are responsible for bounds checking. |
| 98 template <class T> |
| 99 const T* GetTableElement(const ElfW(Ehdr) *ehdr, |
| 100 ElfW(Off) table_offset, |
| 101 ElfW(Word) element_size, |
| 102 size_t index) { |
| 103 return reinterpret_cast<const T*>(reinterpret_cast<const char *>(ehdr) |
| 104 + table_offset |
| 105 + index * element_size); |
| 106 } |
| 107 } // namespace |
| 108 |
| 109 const void *const ElfMemImage::kInvalidBase = |
| 110 reinterpret_cast<const void *>(~0L); |
| 111 |
| 112 ElfMemImage::ElfMemImage(const void *base) { |
| 113 CHECK(base != kInvalidBase); |
| 114 Init(base); |
| 115 } |
| 116 |
| 117 int ElfMemImage::GetNumSymbols() const { |
| 118 if (!hash_) { |
| 119 return 0; |
| 120 } |
| 121 // See http://www.caldera.com/developers/gabi/latest/ch5.dynamic.html#hash |
| 122 return hash_[1]; |
| 123 } |
| 124 |
| 125 const ElfW(Sym) *ElfMemImage::GetDynsym(int index) const { |
| 126 CHECK_LT(index, GetNumSymbols()); |
| 127 return dynsym_ + index; |
| 128 } |
| 129 |
| 130 const ElfW(Versym) *ElfMemImage::GetVersym(int index) const { |
| 131 CHECK_LT(index, GetNumSymbols()); |
| 132 return versym_ + index; |
| 133 } |
| 134 |
| 135 const ElfW(Phdr) *ElfMemImage::GetPhdr(int index) const { |
| 136 CHECK_LT(index, ehdr_->e_phnum); |
| 137 return GetTableElement<ElfW(Phdr)>(ehdr_, |
| 138 ehdr_->e_phoff, |
| 139 ehdr_->e_phentsize, |
| 140 index); |
| 141 } |
| 142 |
| 143 const char *ElfMemImage::GetDynstr(ElfW(Word) offset) const { |
| 144 CHECK_LT(offset, strsize_); |
| 145 return dynstr_ + offset; |
| 146 } |
| 147 |
| 148 const void *ElfMemImage::GetSymAddr(const ElfW(Sym) *sym) const { |
| 149 if (sym->st_shndx == SHN_UNDEF || sym->st_shndx >= SHN_LORESERVE) { |
| 150 // Symbol corresponds to "special" (e.g. SHN_ABS) section. |
| 151 return reinterpret_cast<const void *>(sym->st_value); |
| 152 } |
| 153 CHECK_LT(link_base_, sym->st_value); |
| 154 return GetTableElement<char>(ehdr_, 0, 1, sym->st_value) - link_base_; |
| 155 } |
| 156 |
| 157 const ElfW(Verdef) *ElfMemImage::GetVerdef(int index) const { |
| 158 CHECK_LE(index, verdefnum_); |
| 159 const ElfW(Verdef) *version_definition = verdef_; |
| 160 while (version_definition->vd_ndx < index && version_definition->vd_next) { |
| 161 const char *const version_definition_as_char = |
| 162 reinterpret_cast<const char *>(version_definition); |
| 163 version_definition = |
| 164 reinterpret_cast<const ElfW(Verdef) *>(version_definition_as_char + |
| 165 version_definition->vd_next); |
| 166 } |
| 167 return version_definition->vd_ndx == index ? version_definition : NULL; |
| 168 } |
| 169 |
| 170 const ElfW(Verdaux) *ElfMemImage::GetVerdefAux( |
| 171 const ElfW(Verdef) *verdef) const { |
| 172 return reinterpret_cast<const ElfW(Verdaux) *>(verdef+1); |
| 173 } |
| 174 |
| 175 const char *ElfMemImage::GetVerstr(ElfW(Word) offset) const { |
| 176 CHECK_LT(offset, strsize_); |
| 177 return dynstr_ + offset; |
| 178 } |
| 179 |
| 180 void ElfMemImage::Init(const void *base) { |
| 181 ehdr_ = NULL; |
| 182 dynsym_ = NULL; |
| 183 dynstr_ = NULL; |
| 184 versym_ = NULL; |
| 185 verdef_ = NULL; |
| 186 hash_ = NULL; |
| 187 strsize_ = 0; |
| 188 verdefnum_ = 0; |
| 189 link_base_ = ~0L; // Sentinel: PT_LOAD .p_vaddr can't possibly be this. |
| 190 if (!base) { |
| 191 return; |
| 192 } |
| 193 const intptr_t base_as_uintptr_t = reinterpret_cast<uintptr_t>(base); |
| 194 // Fake VDSO has low bit set. |
| 195 const bool fake_vdso = ((base_as_uintptr_t & 1) != 0); |
| 196 base = reinterpret_cast<const void *>(base_as_uintptr_t & ~1); |
| 197 const char *const base_as_char = reinterpret_cast<const char *>(base); |
| 198 if (base_as_char[EI_MAG0] != ELFMAG0 || base_as_char[EI_MAG1] != ELFMAG1 || |
| 199 base_as_char[EI_MAG2] != ELFMAG2 || base_as_char[EI_MAG3] != ELFMAG3) { |
| 200 RAW_DCHECK(false, "no ELF magic"); // at %p", base); |
| 201 return; |
| 202 } |
| 203 int elf_class = base_as_char[EI_CLASS]; |
| 204 if (elf_class != CurrentElfClass::kElfClass) { |
| 205 DCHECK_EQ(elf_class, CurrentElfClass::kElfClass); |
| 206 return; |
| 207 } |
| 208 switch (base_as_char[EI_DATA]) { |
| 209 case ELFDATA2LSB: { |
| 210 if (__LITTLE_ENDIAN != __BYTE_ORDER) { |
| 211 DCHECK_EQ(__LITTLE_ENDIAN, __BYTE_ORDER); // << ": wrong byte order"; |
| 212 return; |
| 213 } |
| 214 break; |
| 215 } |
| 216 case ELFDATA2MSB: { |
| 217 if (__BIG_ENDIAN != __BYTE_ORDER) { |
| 218 DCHECK_EQ(__BIG_ENDIAN, __BYTE_ORDER); // << ": wrong byte order"; |
| 219 return; |
| 220 } |
| 221 break; |
| 222 } |
| 223 default: { |
| 224 RAW_DCHECK(false, "unexpected data encoding"); // << base_as_char[EI_DATA]
; |
| 225 return; |
| 226 } |
| 227 } |
| 228 |
| 229 ehdr_ = reinterpret_cast<const ElfW(Ehdr) *>(base); |
| 230 const ElfW(Phdr) *dynamic_program_header = NULL; |
| 231 for (int i = 0; i < ehdr_->e_phnum; ++i) { |
| 232 const ElfW(Phdr) *const program_header = GetPhdr(i); |
| 233 switch (program_header->p_type) { |
| 234 case PT_LOAD: |
| 235 if (link_base_ == ~0L) { |
| 236 link_base_ = program_header->p_vaddr; |
| 237 } |
| 238 break; |
| 239 case PT_DYNAMIC: |
| 240 dynamic_program_header = program_header; |
| 241 break; |
| 242 } |
| 243 } |
| 244 if (link_base_ == ~0L || !dynamic_program_header) { |
| 245 RAW_DCHECK(~0L != link_base_, "no PT_LOADs in VDSO"); |
| 246 RAW_DCHECK(dynamic_program_header, "no PT_DYNAMIC in VDSO"); |
| 247 // Mark this image as not present. Can not recur infinitely. |
| 248 Init(0); |
| 249 return; |
| 250 } |
| 251 ptrdiff_t relocation = |
| 252 base_as_char - reinterpret_cast<const char *>(link_base_); |
| 253 ElfW(Dyn) *dynamic_entry = |
| 254 reinterpret_cast<ElfW(Dyn) *>(dynamic_program_header->p_vaddr + |
| 255 relocation); |
| 256 for (; dynamic_entry->d_tag != DT_NULL; ++dynamic_entry) { |
| 257 ElfW(Xword) value = dynamic_entry->d_un.d_val; |
| 258 if (fake_vdso) { |
| 259 // A complication: in the real VDSO, dynamic entries are not relocated |
| 260 // (it wasn't loaded by a dynamic loader). But when testing with a |
| 261 // "fake" dlopen()ed vdso library, the loader relocates some (but |
| 262 // not all!) of them before we get here. |
| 263 if (dynamic_entry->d_tag == DT_VERDEF) { |
| 264 // The only dynamic entry (of the ones we care about) libc-2.3.6 |
| 265 // loader doesn't relocate. |
| 266 value += relocation; |
| 267 } |
| 268 } else { |
| 269 // Real VDSO. Everything needs to be relocated. |
| 270 value += relocation; |
| 271 } |
| 272 switch (dynamic_entry->d_tag) { |
| 273 case DT_HASH: |
| 274 hash_ = reinterpret_cast<ElfW(Word) *>(value); |
| 275 break; |
| 276 case DT_SYMTAB: |
| 277 dynsym_ = reinterpret_cast<ElfW(Sym) *>(value); |
| 278 break; |
| 279 case DT_STRTAB: |
| 280 dynstr_ = reinterpret_cast<const char *>(value); |
| 281 break; |
| 282 case DT_VERSYM: |
| 283 versym_ = reinterpret_cast<ElfW(Versym) *>(value); |
| 284 break; |
| 285 case DT_VERDEF: |
| 286 verdef_ = reinterpret_cast<ElfW(Verdef) *>(value); |
| 287 break; |
| 288 case DT_VERDEFNUM: |
| 289 verdefnum_ = dynamic_entry->d_un.d_val; |
| 290 break; |
| 291 case DT_STRSZ: |
| 292 strsize_ = dynamic_entry->d_un.d_val; |
| 293 break; |
| 294 default: |
| 295 // Unrecognized entries explicitly ignored. |
| 296 break; |
| 297 } |
| 298 } |
| 299 if (!hash_ || !dynsym_ || !dynstr_ || !versym_ || |
| 300 !verdef_ || !verdefnum_ || !strsize_) { |
| 301 RAW_DCHECK(hash_, "invalid VDSO (no DT_HASH)"); |
| 302 RAW_DCHECK(dynsym_, "invalid VDSO (no DT_SYMTAB)"); |
| 303 RAW_DCHECK(dynstr_, "invalid VDSO (no DT_STRTAB)"); |
| 304 RAW_DCHECK(versym_, "invalid VDSO (no DT_VERSYM)"); |
| 305 RAW_DCHECK(verdef_, "invalid VDSO (no DT_VERDEF)"); |
| 306 RAW_DCHECK(verdefnum_, "invalid VDSO (no DT_VERDEFNUM)"); |
| 307 RAW_DCHECK(strsize_, "invalid VDSO (no DT_STRSZ)"); |
| 308 // Mark this image as not present. Can not recur infinitely. |
| 309 Init(0); |
| 310 return; |
| 311 } |
| 312 } |
| 313 |
| 314 bool ElfMemImage::LookupSymbol(const char *name, |
| 315 const char *version, |
| 316 int type, |
| 317 SymbolInfo *info) const { |
| 318 for (SymbolIterator it = begin(); it != end(); ++it) { |
| 319 if (strcmp(it->name, name) == 0 && strcmp(it->version, version) == 0 && |
| 320 CurrentElfClass::ElfType(it->symbol) == type) { |
| 321 if (info) { |
| 322 *info = *it; |
| 323 } |
| 324 return true; |
| 325 } |
| 326 } |
| 327 return false; |
| 328 } |
| 329 |
| 330 bool ElfMemImage::LookupSymbolByAddress(const void *address, |
| 331 SymbolInfo *info_out) const { |
| 332 for (SymbolIterator it = begin(); it != end(); ++it) { |
| 333 const char *const symbol_start = |
| 334 reinterpret_cast<const char *>(it->address); |
| 335 const char *const symbol_end = symbol_start + it->symbol->st_size; |
| 336 if (symbol_start <= address && address < symbol_end) { |
| 337 if (info_out) { |
| 338 // Client wants to know details for that symbol (the usual case). |
| 339 if (CurrentElfClass::ElfBind(it->symbol) == STB_GLOBAL) { |
| 340 // Strong symbol; just return it. |
| 341 *info_out = *it; |
| 342 return true; |
| 343 } else { |
| 344 // Weak or local. Record it, but keep looking for a strong one. |
| 345 *info_out = *it; |
| 346 } |
| 347 } else { |
| 348 // Client only cares if there is an overlapping symbol. |
| 349 return true; |
| 350 } |
| 351 } |
| 352 } |
| 353 return false; |
| 354 } |
| 355 |
| 356 ElfMemImage::SymbolIterator::SymbolIterator(const void *const image, int index) |
| 357 : index_(index), image_(image) { |
| 358 } |
| 359 |
| 360 const ElfMemImage::SymbolInfo *ElfMemImage::SymbolIterator::operator->() const { |
| 361 return &info_; |
| 362 } |
| 363 |
| 364 const ElfMemImage::SymbolInfo& ElfMemImage::SymbolIterator::operator*() const { |
| 365 return info_; |
| 366 } |
| 367 |
| 368 bool ElfMemImage::SymbolIterator::operator==(const SymbolIterator &rhs) const { |
| 369 return this->image_ == rhs.image_ && this->index_ == rhs.index_; |
| 370 } |
| 371 |
| 372 bool ElfMemImage::SymbolIterator::operator!=(const SymbolIterator &rhs) const { |
| 373 return !(*this == rhs); |
| 374 } |
| 375 |
| 376 ElfMemImage::SymbolIterator &ElfMemImage::SymbolIterator::operator++() { |
| 377 this->Update(1); |
| 378 return *this; |
| 379 } |
| 380 |
| 381 ElfMemImage::SymbolIterator ElfMemImage::begin() const { |
| 382 SymbolIterator it(this, 0); |
| 383 it.Update(0); |
| 384 return it; |
| 385 } |
| 386 |
| 387 ElfMemImage::SymbolIterator ElfMemImage::end() const { |
| 388 return SymbolIterator(this, GetNumSymbols()); |
| 389 } |
| 390 |
| 391 void ElfMemImage::SymbolIterator::Update(int increment) { |
| 392 const ElfMemImage *image = reinterpret_cast<const ElfMemImage *>(image_); |
| 393 CHECK(image->IsPresent() || increment == 0); |
| 394 if (!image->IsPresent()) { |
| 395 return; |
| 396 } |
| 397 index_ += increment; |
| 398 if (index_ >= image->GetNumSymbols()) { |
| 399 index_ = image->GetNumSymbols(); |
| 400 return; |
| 401 } |
| 402 const ElfW(Sym) *symbol = image->GetDynsym(index_); |
| 403 const ElfW(Versym) *version_symbol = image->GetVersym(index_); |
| 404 CHECK(symbol && version_symbol); |
| 405 const char *const symbol_name = image->GetDynstr(symbol->st_name); |
| 406 const ElfW(Versym) version_index = version_symbol[0] & VERSYM_VERSION; |
| 407 const ElfW(Verdef) *version_definition = NULL; |
| 408 const char *version_name = ""; |
| 409 if (symbol->st_shndx == SHN_UNDEF) { |
| 410 // Undefined symbols reference DT_VERNEED, not DT_VERDEF, and |
| 411 // version_index could well be greater than verdefnum_, so calling |
| 412 // GetVerdef(version_index) may trigger assertion. |
| 413 } else { |
| 414 version_definition = image->GetVerdef(version_index); |
| 415 } |
| 416 if (version_definition) { |
| 417 // I am expecting 1 or 2 auxiliary entries: 1 for the version itself, |
| 418 // optional 2nd if the version has a parent. |
| 419 CHECK_LE(1, version_definition->vd_cnt); |
| 420 CHECK_LE(version_definition->vd_cnt, 2); |
| 421 const ElfW(Verdaux) *version_aux = image->GetVerdefAux(version_definition); |
| 422 version_name = image->GetVerstr(version_aux->vda_name); |
| 423 } |
| 424 info_.name = symbol_name; |
| 425 info_.version = version_name; |
| 426 info_.address = image->GetSymAddr(symbol); |
| 427 info_.symbol = symbol; |
| 428 } |
| 429 |
| 430 } // namespace base |
| 431 |
| 432 #endif // HAVE_ELF_MEM_IMAGE |
OLD | NEW |