| Index: base/stl_util-inl.h
|
| diff --git a/base/stl_util-inl.h b/base/stl_util-inl.h
|
| deleted file mode 100644
|
| index 2161c59a0330ee241888d22ef07ed2e6d0b398a2..0000000000000000000000000000000000000000
|
| --- a/base/stl_util-inl.h
|
| +++ /dev/null
|
| @@ -1,452 +0,0 @@
|
| -// Copyright (c) 2010 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -// STL utility functions. Usually, these replace built-in, but slow(!),
|
| -// STL functions with more efficient versions.
|
| -
|
| -#ifndef BASE_STL_UTIL_INL_H_
|
| -#define BASE_STL_UTIL_INL_H_
|
| -#pragma once
|
| -
|
| -#include <string.h> // for memcpy
|
| -#include <functional>
|
| -#include <set>
|
| -#include <string>
|
| -#include <vector>
|
| -#include <cassert>
|
| -
|
| -// Clear internal memory of an STL object.
|
| -// STL clear()/reserve(0) does not always free internal memory allocated
|
| -// This function uses swap/destructor to ensure the internal memory is freed.
|
| -template<class T> void STLClearObject(T* obj) {
|
| - T tmp;
|
| - tmp.swap(*obj);
|
| - obj->reserve(0); // this is because sometimes "T tmp" allocates objects with
|
| - // memory (arena implementation?). use reserve()
|
| - // to clear() even if it doesn't always work
|
| -}
|
| -
|
| -// Reduce memory usage on behalf of object if it is using more than
|
| -// "bytes" bytes of space. By default, we clear objects over 1MB.
|
| -template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) {
|
| - if (obj->capacity() >= limit) {
|
| - STLClearObject(obj);
|
| - } else {
|
| - obj->clear();
|
| - }
|
| -}
|
| -
|
| -// Reserve space for STL object.
|
| -// STL's reserve() will always copy.
|
| -// This function avoid the copy if we already have capacity
|
| -template<class T> void STLReserveIfNeeded(T* obj, int new_size) {
|
| - if (obj->capacity() < new_size) // increase capacity
|
| - obj->reserve(new_size);
|
| - else if (obj->size() > new_size) // reduce size
|
| - obj->resize(new_size);
|
| -}
|
| -
|
| -// STLDeleteContainerPointers()
|
| -// For a range within a container of pointers, calls delete
|
| -// (non-array version) on these pointers.
|
| -// NOTE: for these three functions, we could just implement a DeleteObject
|
| -// functor and then call for_each() on the range and functor, but this
|
| -// requires us to pull in all of algorithm.h, which seems expensive.
|
| -// For hash_[multi]set, it is important that this deletes behind the iterator
|
| -// because the hash_set may call the hash function on the iterator when it is
|
| -// advanced, which could result in the hash function trying to deference a
|
| -// stale pointer.
|
| -template <class ForwardIterator>
|
| -void STLDeleteContainerPointers(ForwardIterator begin, ForwardIterator end) {
|
| - while (begin != end) {
|
| - ForwardIterator temp = begin;
|
| - ++begin;
|
| - delete *temp;
|
| - }
|
| -}
|
| -
|
| -// STLDeleteContainerPairPointers()
|
| -// For a range within a container of pairs, calls delete
|
| -// (non-array version) on BOTH items in the pairs.
|
| -// NOTE: Like STLDeleteContainerPointers, it is important that this deletes
|
| -// behind the iterator because if both the key and value are deleted, the
|
| -// container may call the hash function on the iterator when it is advanced,
|
| -// which could result in the hash function trying to dereference a stale
|
| -// pointer.
|
| -template <class ForwardIterator>
|
| -void STLDeleteContainerPairPointers(ForwardIterator begin,
|
| - ForwardIterator end) {
|
| - while (begin != end) {
|
| - ForwardIterator temp = begin;
|
| - ++begin;
|
| - delete temp->first;
|
| - delete temp->second;
|
| - }
|
| -}
|
| -
|
| -// STLDeleteContainerPairFirstPointers()
|
| -// For a range within a container of pairs, calls delete (non-array version)
|
| -// on the FIRST item in the pairs.
|
| -// NOTE: Like STLDeleteContainerPointers, deleting behind the iterator.
|
| -template <class ForwardIterator>
|
| -void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
|
| - ForwardIterator end) {
|
| - while (begin != end) {
|
| - ForwardIterator temp = begin;
|
| - ++begin;
|
| - delete temp->first;
|
| - }
|
| -}
|
| -
|
| -// STLDeleteContainerPairSecondPointers()
|
| -// For a range within a container of pairs, calls delete
|
| -// (non-array version) on the SECOND item in the pairs.
|
| -template <class ForwardIterator>
|
| -void STLDeleteContainerPairSecondPointers(ForwardIterator begin,
|
| - ForwardIterator end) {
|
| - while (begin != end) {
|
| - delete begin->second;
|
| - ++begin;
|
| - }
|
| -}
|
| -
|
| -template<typename T>
|
| -inline void STLAssignToVector(std::vector<T>* vec,
|
| - const T* ptr,
|
| - size_t n) {
|
| - vec->resize(n);
|
| - memcpy(&vec->front(), ptr, n*sizeof(T));
|
| -}
|
| -
|
| -/***** Hack to allow faster assignment to a vector *****/
|
| -
|
| -// This routine speeds up an assignment of 32 bytes to a vector from
|
| -// about 250 cycles per assignment to about 140 cycles.
|
| -//
|
| -// Usage:
|
| -// STLAssignToVectorChar(&vec, ptr, size);
|
| -// STLAssignToString(&str, ptr, size);
|
| -
|
| -inline void STLAssignToVectorChar(std::vector<char>* vec,
|
| - const char* ptr,
|
| - size_t n) {
|
| - STLAssignToVector(vec, ptr, n);
|
| -}
|
| -
|
| -inline void STLAssignToString(std::string* str, const char* ptr, size_t n) {
|
| - str->resize(n);
|
| - memcpy(&*str->begin(), ptr, n);
|
| -}
|
| -
|
| -// To treat a possibly-empty vector as an array, use these functions.
|
| -// If you know the array will never be empty, you can use &*v.begin()
|
| -// directly, but that is allowed to dump core if v is empty. This
|
| -// function is the most efficient code that will work, taking into
|
| -// account how our STL is actually implemented. THIS IS NON-PORTABLE
|
| -// CODE, so call us instead of repeating the nonportable code
|
| -// everywhere. If our STL implementation changes, we will need to
|
| -// change this as well.
|
| -
|
| -template<typename T>
|
| -inline T* vector_as_array(std::vector<T>* v) {
|
| -# ifdef NDEBUG
|
| - return &*v->begin();
|
| -# else
|
| - return v->empty() ? NULL : &*v->begin();
|
| -# endif
|
| -}
|
| -
|
| -template<typename T>
|
| -inline const T* vector_as_array(const std::vector<T>* v) {
|
| -# ifdef NDEBUG
|
| - return &*v->begin();
|
| -# else
|
| - return v->empty() ? NULL : &*v->begin();
|
| -# endif
|
| -}
|
| -
|
| -// Return a mutable char* pointing to a string's internal buffer,
|
| -// which may not be null-terminated. Writing through this pointer will
|
| -// modify the string.
|
| -//
|
| -// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
|
| -// next call to a string method that invalidates iterators.
|
| -//
|
| -// As of 2006-04, there is no standard-blessed way of getting a
|
| -// mutable reference to a string's internal buffer. However, issue 530
|
| -// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
|
| -// proposes this as the method. According to Matt Austern, this should
|
| -// already work on all current implementations.
|
| -inline char* string_as_array(std::string* str) {
|
| - // DO NOT USE const_cast<char*>(str->data())! See the unittest for why.
|
| - return str->empty() ? NULL : &*str->begin();
|
| -}
|
| -
|
| -// These are methods that test two hash maps/sets for equality. These exist
|
| -// because the == operator in the STL can return false when the maps/sets
|
| -// contain identical elements. This is because it compares the internal hash
|
| -// tables which may be different if the order of insertions and deletions
|
| -// differed.
|
| -
|
| -template <class HashSet>
|
| -inline bool HashSetEquality(const HashSet& set_a, const HashSet& set_b) {
|
| - if (set_a.size() != set_b.size()) return false;
|
| - for (typename HashSet::const_iterator i = set_a.begin();
|
| - i != set_a.end(); ++i) {
|
| - if (set_b.find(*i) == set_b.end())
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -template <class HashMap>
|
| -inline bool HashMapEquality(const HashMap& map_a, const HashMap& map_b) {
|
| - if (map_a.size() != map_b.size()) return false;
|
| - for (typename HashMap::const_iterator i = map_a.begin();
|
| - i != map_a.end(); ++i) {
|
| - typename HashMap::const_iterator j = map_b.find(i->first);
|
| - if (j == map_b.end()) return false;
|
| - if (i->second != j->second) return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -// The following functions are useful for cleaning up STL containers
|
| -// whose elements point to allocated memory.
|
| -
|
| -// STLDeleteElements() deletes all the elements in an STL container and clears
|
| -// the container. This function is suitable for use with a vector, set,
|
| -// hash_set, or any other STL container which defines sensible begin(), end(),
|
| -// and clear() methods.
|
| -//
|
| -// If container is NULL, this function is a no-op.
|
| -//
|
| -// As an alternative to calling STLDeleteElements() directly, consider
|
| -// STLElementDeleter (defined below), which ensures that your container's
|
| -// elements are deleted when the STLElementDeleter goes out of scope.
|
| -template <class T>
|
| -void STLDeleteElements(T *container) {
|
| - if (!container) return;
|
| - STLDeleteContainerPointers(container->begin(), container->end());
|
| - container->clear();
|
| -}
|
| -
|
| -// Given an STL container consisting of (key, value) pairs, STLDeleteValues
|
| -// deletes all the "value" components and clears the container. Does nothing
|
| -// in the case it's given a NULL pointer.
|
| -
|
| -template <class T>
|
| -void STLDeleteValues(T *v) {
|
| - if (!v) return;
|
| - for (typename T::iterator i = v->begin(); i != v->end(); ++i) {
|
| - delete i->second;
|
| - }
|
| - v->clear();
|
| -}
|
| -
|
| -
|
| -// The following classes provide a convenient way to delete all elements or
|
| -// values from STL containers when they goes out of scope. This greatly
|
| -// simplifies code that creates temporary objects and has multiple return
|
| -// statements. Example:
|
| -//
|
| -// vector<MyProto *> tmp_proto;
|
| -// STLElementDeleter<vector<MyProto *> > d(&tmp_proto);
|
| -// if (...) return false;
|
| -// ...
|
| -// return success;
|
| -
|
| -// Given a pointer to an STL container this class will delete all the element
|
| -// pointers when it goes out of scope.
|
| -
|
| -template<class STLContainer> class STLElementDeleter {
|
| - public:
|
| - STLElementDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {}
|
| - ~STLElementDeleter<STLContainer>() { STLDeleteElements(container_ptr_); }
|
| - private:
|
| - STLContainer *container_ptr_;
|
| -};
|
| -
|
| -// Given a pointer to an STL container this class will delete all the value
|
| -// pointers when it goes out of scope.
|
| -
|
| -template<class STLContainer> class STLValueDeleter {
|
| - public:
|
| - STLValueDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {}
|
| - ~STLValueDeleter<STLContainer>() { STLDeleteValues(container_ptr_); }
|
| - private:
|
| - STLContainer *container_ptr_;
|
| -};
|
| -
|
| -
|
| -// Forward declare some callback classes in callback.h for STLBinaryFunction
|
| -template <class R, class T1, class T2>
|
| -class ResultCallback2;
|
| -
|
| -// STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h
|
| -// It provides an operator () method instead of a Run method, so it may be
|
| -// passed to STL functions in <algorithm>.
|
| -//
|
| -// The client should create callback with NewPermanentCallback, and should
|
| -// delete callback after it is done using the STLBinaryFunction.
|
| -
|
| -template <class Result, class Arg1, class Arg2>
|
| -class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> {
|
| - public:
|
| - typedef ResultCallback2<Result, Arg1, Arg2> Callback;
|
| -
|
| - STLBinaryFunction(Callback* callback)
|
| - : callback_(callback) {
|
| - assert(callback_);
|
| - }
|
| -
|
| - Result operator() (Arg1 arg1, Arg2 arg2) {
|
| - return callback_->Run(arg1, arg2);
|
| - }
|
| -
|
| - private:
|
| - Callback* callback_;
|
| -};
|
| -
|
| -// STLBinaryPredicate is a specialized version of STLBinaryFunction, where the
|
| -// return type is bool and both arguments have type Arg. It can be used
|
| -// wherever STL requires a StrictWeakOrdering, such as in sort() or
|
| -// lower_bound().
|
| -//
|
| -// templated typedefs are not supported, so instead we use inheritance.
|
| -
|
| -template <class Arg>
|
| -class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> {
|
| - public:
|
| - typedef typename STLBinaryPredicate<Arg>::Callback Callback;
|
| - STLBinaryPredicate(Callback* callback)
|
| - : STLBinaryFunction<bool, Arg, Arg>(callback) {
|
| - }
|
| -};
|
| -
|
| -// Functors that compose arbitrary unary and binary functions with a
|
| -// function that "projects" one of the members of a pair.
|
| -// Specifically, if p1 and p2, respectively, are the functions that
|
| -// map a pair to its first and second, respectively, members, the
|
| -// table below summarizes the functions that can be constructed:
|
| -//
|
| -// * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x))
|
| -// * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x))
|
| -// * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y))
|
| -// * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y))
|
| -//
|
| -// A typical usage for these functions would be when iterating over
|
| -// the contents of an STL map. For other sample usage, see the unittest.
|
| -
|
| -template<typename Pair, typename UnaryOp>
|
| -class UnaryOperateOnFirst
|
| - : public std::unary_function<Pair, typename UnaryOp::result_type> {
|
| - public:
|
| - UnaryOperateOnFirst() {
|
| - }
|
| -
|
| - UnaryOperateOnFirst(const UnaryOp& f) : f_(f) {
|
| - }
|
| -
|
| - typename UnaryOp::result_type operator()(const Pair& p) const {
|
| - return f_(p.first);
|
| - }
|
| -
|
| - private:
|
| - UnaryOp f_;
|
| -};
|
| -
|
| -template<typename Pair, typename UnaryOp>
|
| -UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) {
|
| - return UnaryOperateOnFirst<Pair, UnaryOp>(f);
|
| -}
|
| -
|
| -template<typename Pair, typename UnaryOp>
|
| -class UnaryOperateOnSecond
|
| - : public std::unary_function<Pair, typename UnaryOp::result_type> {
|
| - public:
|
| - UnaryOperateOnSecond() {
|
| - }
|
| -
|
| - UnaryOperateOnSecond(const UnaryOp& f) : f_(f) {
|
| - }
|
| -
|
| - typename UnaryOp::result_type operator()(const Pair& p) const {
|
| - return f_(p.second);
|
| - }
|
| -
|
| - private:
|
| - UnaryOp f_;
|
| -};
|
| -
|
| -template<typename Pair, typename UnaryOp>
|
| -UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) {
|
| - return UnaryOperateOnSecond<Pair, UnaryOp>(f);
|
| -}
|
| -
|
| -template<typename Pair, typename BinaryOp>
|
| -class BinaryOperateOnFirst
|
| - : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
|
| - public:
|
| - BinaryOperateOnFirst() {
|
| - }
|
| -
|
| - BinaryOperateOnFirst(const BinaryOp& f) : f_(f) {
|
| - }
|
| -
|
| - typename BinaryOp::result_type operator()(const Pair& p1,
|
| - const Pair& p2) const {
|
| - return f_(p1.first, p2.first);
|
| - }
|
| -
|
| - private:
|
| - BinaryOp f_;
|
| -};
|
| -
|
| -template<typename Pair, typename BinaryOp>
|
| -BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) {
|
| - return BinaryOperateOnFirst<Pair, BinaryOp>(f);
|
| -}
|
| -
|
| -template<typename Pair, typename BinaryOp>
|
| -class BinaryOperateOnSecond
|
| - : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
|
| - public:
|
| - BinaryOperateOnSecond() {
|
| - }
|
| -
|
| - BinaryOperateOnSecond(const BinaryOp& f) : f_(f) {
|
| - }
|
| -
|
| - typename BinaryOp::result_type operator()(const Pair& p1,
|
| - const Pair& p2) const {
|
| - return f_(p1.second, p2.second);
|
| - }
|
| -
|
| - private:
|
| - BinaryOp f_;
|
| -};
|
| -
|
| -template<typename Pair, typename BinaryOp>
|
| -BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) {
|
| - return BinaryOperateOnSecond<Pair, BinaryOp>(f);
|
| -}
|
| -
|
| -// Translates a set into a vector.
|
| -template<typename T>
|
| -std::vector<T> SetToVector(const std::set<T>& values) {
|
| - std::vector<T> result;
|
| - result.reserve(values.size());
|
| - result.insert(result.begin(), values.begin(), values.end());
|
| - return result;
|
| -}
|
| -
|
| -// Test to see if a set, map, hash_set or hash_map contains a particular key.
|
| -// Returns true if the key is in the collection.
|
| -template <typename Collection, typename Key>
|
| -bool ContainsKey(const Collection& collection, const Key& key) {
|
| - return collection.find(key) != collection.end();
|
| -}
|
| -
|
| -#endif // BASE_STL_UTIL_INL_H_
|
|
|