| OLD | NEW |
| 1 // Copyright 2011 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 10 matching lines...) Expand all Loading... |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | 27 |
| 28 #include <stdarg.h> | 28 #include <stdarg.h> |
| 29 #include <limits.h> | 29 #include <limits.h> |
| 30 | 30 |
| 31 #include "v8.h" | |
| 32 | |
| 33 #include "conversions-inl.h" | 31 #include "conversions-inl.h" |
| 34 #include "dtoa.h" | 32 #include "dtoa.h" |
| 35 #include "factory.h" | |
| 36 #include "scanner-base.h" | 33 #include "scanner-base.h" |
| 37 #include "strtod.h" | 34 #include "strtod.h" |
| 35 #include "utils.h" |
| 38 | 36 |
| 39 namespace v8 { | 37 namespace v8 { |
| 40 namespace internal { | 38 namespace internal { |
| 41 | 39 |
| 42 namespace { | |
| 43 | |
| 44 // C++-style iterator adaptor for StringInputBuffer | |
| 45 // (unlike C++ iterators the end-marker has different type). | |
| 46 class StringInputBufferIterator { | |
| 47 public: | |
| 48 class EndMarker {}; | |
| 49 | |
| 50 explicit StringInputBufferIterator(StringInputBuffer* buffer); | |
| 51 | |
| 52 int operator*() const; | |
| 53 void operator++(); | |
| 54 bool operator==(EndMarker const&) const { return end_; } | |
| 55 bool operator!=(EndMarker const& m) const { return !end_; } | |
| 56 | |
| 57 private: | |
| 58 StringInputBuffer* const buffer_; | |
| 59 int current_; | |
| 60 bool end_; | |
| 61 }; | |
| 62 | |
| 63 | |
| 64 StringInputBufferIterator::StringInputBufferIterator( | |
| 65 StringInputBuffer* buffer) : buffer_(buffer) { | |
| 66 ++(*this); | |
| 67 } | |
| 68 | |
| 69 int StringInputBufferIterator::operator*() const { | |
| 70 return current_; | |
| 71 } | |
| 72 | |
| 73 | |
| 74 void StringInputBufferIterator::operator++() { | |
| 75 end_ = !buffer_->has_more(); | |
| 76 if (!end_) { | |
| 77 current_ = buffer_->GetNext(); | |
| 78 } | |
| 79 } | |
| 80 } | |
| 81 | |
| 82 | |
| 83 template <class Iterator, class EndMark> | |
| 84 static bool SubStringEquals(Iterator* current, | |
| 85 EndMark end, | |
| 86 const char* substring) { | |
| 87 ASSERT(**current == *substring); | |
| 88 for (substring++; *substring != '\0'; substring++) { | |
| 89 ++*current; | |
| 90 if (*current == end || **current != *substring) return false; | |
| 91 } | |
| 92 ++*current; | |
| 93 return true; | |
| 94 } | |
| 95 | |
| 96 | |
| 97 // Maximum number of significant digits in decimal representation. | |
| 98 // The longest possible double in decimal representation is | |
| 99 // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 | |
| 100 // (768 digits). If we parse a number whose first digits are equal to a | |
| 101 // mean of 2 adjacent doubles (that could have up to 769 digits) the result | |
| 102 // must be rounded to the bigger one unless the tail consists of zeros, so | |
| 103 // we don't need to preserve all the digits. | |
| 104 const int kMaxSignificantDigits = 772; | |
| 105 | |
| 106 | |
| 107 static const double JUNK_STRING_VALUE = OS::nan_value(); | |
| 108 | |
| 109 | |
| 110 // Returns true if a nonspace found and false if the end has reached. | |
| 111 template <class Iterator, class EndMark> | |
| 112 static inline bool AdvanceToNonspace(UnicodeCache* unicode_cache, | |
| 113 Iterator* current, | |
| 114 EndMark end) { | |
| 115 while (*current != end) { | |
| 116 if (!unicode_cache->IsWhiteSpace(**current)) return true; | |
| 117 ++*current; | |
| 118 } | |
| 119 return false; | |
| 120 } | |
| 121 | |
| 122 | |
| 123 static bool isDigit(int x, int radix) { | |
| 124 return (x >= '0' && x <= '9' && x < '0' + radix) | |
| 125 || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) | |
| 126 || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); | |
| 127 } | |
| 128 | |
| 129 | |
| 130 static double SignedZero(bool negative) { | |
| 131 return negative ? -0.0 : 0.0; | |
| 132 } | |
| 133 | |
| 134 | |
| 135 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. | |
| 136 template <int radix_log_2, class Iterator, class EndMark> | |
| 137 static double InternalStringToIntDouble(UnicodeCache* unicode_cache, | |
| 138 Iterator current, | |
| 139 EndMark end, | |
| 140 bool negative, | |
| 141 bool allow_trailing_junk) { | |
| 142 ASSERT(current != end); | |
| 143 | |
| 144 // Skip leading 0s. | |
| 145 while (*current == '0') { | |
| 146 ++current; | |
| 147 if (current == end) return SignedZero(negative); | |
| 148 } | |
| 149 | |
| 150 int64_t number = 0; | |
| 151 int exponent = 0; | |
| 152 const int radix = (1 << radix_log_2); | |
| 153 | |
| 154 do { | |
| 155 int digit; | |
| 156 if (*current >= '0' && *current <= '9' && *current < '0' + radix) { | |
| 157 digit = static_cast<char>(*current) - '0'; | |
| 158 } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) { | |
| 159 digit = static_cast<char>(*current) - 'a' + 10; | |
| 160 } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) { | |
| 161 digit = static_cast<char>(*current) - 'A' + 10; | |
| 162 } else { | |
| 163 if (allow_trailing_junk || | |
| 164 !AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
| 165 break; | |
| 166 } else { | |
| 167 return JUNK_STRING_VALUE; | |
| 168 } | |
| 169 } | |
| 170 | |
| 171 number = number * radix + digit; | |
| 172 int overflow = static_cast<int>(number >> 53); | |
| 173 if (overflow != 0) { | |
| 174 // Overflow occurred. Need to determine which direction to round the | |
| 175 // result. | |
| 176 int overflow_bits_count = 1; | |
| 177 while (overflow > 1) { | |
| 178 overflow_bits_count++; | |
| 179 overflow >>= 1; | |
| 180 } | |
| 181 | |
| 182 int dropped_bits_mask = ((1 << overflow_bits_count) - 1); | |
| 183 int dropped_bits = static_cast<int>(number) & dropped_bits_mask; | |
| 184 number >>= overflow_bits_count; | |
| 185 exponent = overflow_bits_count; | |
| 186 | |
| 187 bool zero_tail = true; | |
| 188 while (true) { | |
| 189 ++current; | |
| 190 if (current == end || !isDigit(*current, radix)) break; | |
| 191 zero_tail = zero_tail && *current == '0'; | |
| 192 exponent += radix_log_2; | |
| 193 } | |
| 194 | |
| 195 if (!allow_trailing_junk && | |
| 196 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
| 197 return JUNK_STRING_VALUE; | |
| 198 } | |
| 199 | |
| 200 int middle_value = (1 << (overflow_bits_count - 1)); | |
| 201 if (dropped_bits > middle_value) { | |
| 202 number++; // Rounding up. | |
| 203 } else if (dropped_bits == middle_value) { | |
| 204 // Rounding to even to consistency with decimals: half-way case rounds | |
| 205 // up if significant part is odd and down otherwise. | |
| 206 if ((number & 1) != 0 || !zero_tail) { | |
| 207 number++; // Rounding up. | |
| 208 } | |
| 209 } | |
| 210 | |
| 211 // Rounding up may cause overflow. | |
| 212 if ((number & ((int64_t)1 << 53)) != 0) { | |
| 213 exponent++; | |
| 214 number >>= 1; | |
| 215 } | |
| 216 break; | |
| 217 } | |
| 218 ++current; | |
| 219 } while (current != end); | |
| 220 | |
| 221 ASSERT(number < ((int64_t)1 << 53)); | |
| 222 ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); | |
| 223 | |
| 224 if (exponent == 0) { | |
| 225 if (negative) { | |
| 226 if (number == 0) return -0.0; | |
| 227 number = -number; | |
| 228 } | |
| 229 return static_cast<double>(number); | |
| 230 } | |
| 231 | |
| 232 ASSERT(number != 0); | |
| 233 // The double could be constructed faster from number (mantissa), exponent | |
| 234 // and sign. Assuming it's a rare case more simple code is used. | |
| 235 return static_cast<double>(negative ? -number : number) * pow(2.0, exponent); | |
| 236 } | |
| 237 | |
| 238 | |
| 239 template <class Iterator, class EndMark> | |
| 240 static double InternalStringToInt(UnicodeCache* unicode_cache, | |
| 241 Iterator current, | |
| 242 EndMark end, | |
| 243 int radix) { | |
| 244 const bool allow_trailing_junk = true; | |
| 245 const double empty_string_val = JUNK_STRING_VALUE; | |
| 246 | |
| 247 if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
| 248 return empty_string_val; | |
| 249 } | |
| 250 | |
| 251 bool negative = false; | |
| 252 bool leading_zero = false; | |
| 253 | |
| 254 if (*current == '+') { | |
| 255 // Ignore leading sign; skip following spaces. | |
| 256 ++current; | |
| 257 if (current == end) { | |
| 258 return JUNK_STRING_VALUE; | |
| 259 } | |
| 260 } else if (*current == '-') { | |
| 261 ++current; | |
| 262 if (current == end) { | |
| 263 return JUNK_STRING_VALUE; | |
| 264 } | |
| 265 negative = true; | |
| 266 } | |
| 267 | |
| 268 if (radix == 0) { | |
| 269 // Radix detection. | |
| 270 if (*current == '0') { | |
| 271 ++current; | |
| 272 if (current == end) return SignedZero(negative); | |
| 273 if (*current == 'x' || *current == 'X') { | |
| 274 radix = 16; | |
| 275 ++current; | |
| 276 if (current == end) return JUNK_STRING_VALUE; | |
| 277 } else { | |
| 278 radix = 8; | |
| 279 leading_zero = true; | |
| 280 } | |
| 281 } else { | |
| 282 radix = 10; | |
| 283 } | |
| 284 } else if (radix == 16) { | |
| 285 if (*current == '0') { | |
| 286 // Allow "0x" prefix. | |
| 287 ++current; | |
| 288 if (current == end) return SignedZero(negative); | |
| 289 if (*current == 'x' || *current == 'X') { | |
| 290 ++current; | |
| 291 if (current == end) return JUNK_STRING_VALUE; | |
| 292 } else { | |
| 293 leading_zero = true; | |
| 294 } | |
| 295 } | |
| 296 } | |
| 297 | |
| 298 if (radix < 2 || radix > 36) return JUNK_STRING_VALUE; | |
| 299 | |
| 300 // Skip leading zeros. | |
| 301 while (*current == '0') { | |
| 302 leading_zero = true; | |
| 303 ++current; | |
| 304 if (current == end) return SignedZero(negative); | |
| 305 } | |
| 306 | |
| 307 if (!leading_zero && !isDigit(*current, radix)) { | |
| 308 return JUNK_STRING_VALUE; | |
| 309 } | |
| 310 | |
| 311 if (IsPowerOf2(radix)) { | |
| 312 switch (radix) { | |
| 313 case 2: | |
| 314 return InternalStringToIntDouble<1>( | |
| 315 unicode_cache, current, end, negative, allow_trailing_junk); | |
| 316 case 4: | |
| 317 return InternalStringToIntDouble<2>( | |
| 318 unicode_cache, current, end, negative, allow_trailing_junk); | |
| 319 case 8: | |
| 320 return InternalStringToIntDouble<3>( | |
| 321 unicode_cache, current, end, negative, allow_trailing_junk); | |
| 322 | |
| 323 case 16: | |
| 324 return InternalStringToIntDouble<4>( | |
| 325 unicode_cache, current, end, negative, allow_trailing_junk); | |
| 326 | |
| 327 case 32: | |
| 328 return InternalStringToIntDouble<5>( | |
| 329 unicode_cache, current, end, negative, allow_trailing_junk); | |
| 330 default: | |
| 331 UNREACHABLE(); | |
| 332 } | |
| 333 } | |
| 334 | |
| 335 if (radix == 10) { | |
| 336 // Parsing with strtod. | |
| 337 const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308. | |
| 338 // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero | |
| 339 // end. | |
| 340 const int kBufferSize = kMaxSignificantDigits + 2; | |
| 341 char buffer[kBufferSize]; | |
| 342 int buffer_pos = 0; | |
| 343 while (*current >= '0' && *current <= '9') { | |
| 344 if (buffer_pos <= kMaxSignificantDigits) { | |
| 345 // If the number has more than kMaxSignificantDigits it will be parsed | |
| 346 // as infinity. | |
| 347 ASSERT(buffer_pos < kBufferSize); | |
| 348 buffer[buffer_pos++] = static_cast<char>(*current); | |
| 349 } | |
| 350 ++current; | |
| 351 if (current == end) break; | |
| 352 } | |
| 353 | |
| 354 if (!allow_trailing_junk && | |
| 355 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
| 356 return JUNK_STRING_VALUE; | |
| 357 } | |
| 358 | |
| 359 ASSERT(buffer_pos < kBufferSize); | |
| 360 buffer[buffer_pos] = '\0'; | |
| 361 Vector<const char> buffer_vector(buffer, buffer_pos); | |
| 362 return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0); | |
| 363 } | |
| 364 | |
| 365 // The following code causes accumulating rounding error for numbers greater | |
| 366 // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10, | |
| 367 // 16, or 32, then mathInt may be an implementation-dependent approximation to | |
| 368 // the mathematical integer value" (15.1.2.2). | |
| 369 | |
| 370 int lim_0 = '0' + (radix < 10 ? radix : 10); | |
| 371 int lim_a = 'a' + (radix - 10); | |
| 372 int lim_A = 'A' + (radix - 10); | |
| 373 | |
| 374 // NOTE: The code for computing the value may seem a bit complex at | |
| 375 // first glance. It is structured to use 32-bit multiply-and-add | |
| 376 // loops as long as possible to avoid loosing precision. | |
| 377 | |
| 378 double v = 0.0; | |
| 379 bool done = false; | |
| 380 do { | |
| 381 // Parse the longest part of the string starting at index j | |
| 382 // possible while keeping the multiplier, and thus the part | |
| 383 // itself, within 32 bits. | |
| 384 unsigned int part = 0, multiplier = 1; | |
| 385 while (true) { | |
| 386 int d; | |
| 387 if (*current >= '0' && *current < lim_0) { | |
| 388 d = *current - '0'; | |
| 389 } else if (*current >= 'a' && *current < lim_a) { | |
| 390 d = *current - 'a' + 10; | |
| 391 } else if (*current >= 'A' && *current < lim_A) { | |
| 392 d = *current - 'A' + 10; | |
| 393 } else { | |
| 394 done = true; | |
| 395 break; | |
| 396 } | |
| 397 | |
| 398 // Update the value of the part as long as the multiplier fits | |
| 399 // in 32 bits. When we can't guarantee that the next iteration | |
| 400 // will not overflow the multiplier, we stop parsing the part | |
| 401 // by leaving the loop. | |
| 402 const unsigned int kMaximumMultiplier = 0xffffffffU / 36; | |
| 403 uint32_t m = multiplier * radix; | |
| 404 if (m > kMaximumMultiplier) break; | |
| 405 part = part * radix + d; | |
| 406 multiplier = m; | |
| 407 ASSERT(multiplier > part); | |
| 408 | |
| 409 ++current; | |
| 410 if (current == end) { | |
| 411 done = true; | |
| 412 break; | |
| 413 } | |
| 414 } | |
| 415 | |
| 416 // Update the value and skip the part in the string. | |
| 417 v = v * multiplier + part; | |
| 418 } while (!done); | |
| 419 | |
| 420 if (!allow_trailing_junk && | |
| 421 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
| 422 return JUNK_STRING_VALUE; | |
| 423 } | |
| 424 | |
| 425 return negative ? -v : v; | |
| 426 } | |
| 427 | |
| 428 | |
| 429 // Converts a string to a double value. Assumes the Iterator supports | |
| 430 // the following operations: | |
| 431 // 1. current == end (other ops are not allowed), current != end. | |
| 432 // 2. *current - gets the current character in the sequence. | |
| 433 // 3. ++current (advances the position). | |
| 434 template <class Iterator, class EndMark> | |
| 435 static double InternalStringToDouble(UnicodeCache* unicode_cache, | |
| 436 Iterator current, | |
| 437 EndMark end, | |
| 438 int flags, | |
| 439 double empty_string_val) { | |
| 440 // To make sure that iterator dereferencing is valid the following | |
| 441 // convention is used: | |
| 442 // 1. Each '++current' statement is followed by check for equality to 'end'. | |
| 443 // 2. If AdvanceToNonspace returned false then current == end. | |
| 444 // 3. If 'current' becomes be equal to 'end' the function returns or goes to | |
| 445 // 'parsing_done'. | |
| 446 // 4. 'current' is not dereferenced after the 'parsing_done' label. | |
| 447 // 5. Code before 'parsing_done' may rely on 'current != end'. | |
| 448 if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
| 449 return empty_string_val; | |
| 450 } | |
| 451 | |
| 452 const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0; | |
| 453 | |
| 454 // The longest form of simplified number is: "-<significant digits>'.1eXXX\0". | |
| 455 const int kBufferSize = kMaxSignificantDigits + 10; | |
| 456 char buffer[kBufferSize]; // NOLINT: size is known at compile time. | |
| 457 int buffer_pos = 0; | |
| 458 | |
| 459 // Exponent will be adjusted if insignificant digits of the integer part | |
| 460 // or insignificant leading zeros of the fractional part are dropped. | |
| 461 int exponent = 0; | |
| 462 int significant_digits = 0; | |
| 463 int insignificant_digits = 0; | |
| 464 bool nonzero_digit_dropped = false; | |
| 465 bool fractional_part = false; | |
| 466 | |
| 467 bool negative = false; | |
| 468 | |
| 469 if (*current == '+') { | |
| 470 // Ignore leading sign. | |
| 471 ++current; | |
| 472 if (current == end) return JUNK_STRING_VALUE; | |
| 473 } else if (*current == '-') { | |
| 474 ++current; | |
| 475 if (current == end) return JUNK_STRING_VALUE; | |
| 476 negative = true; | |
| 477 } | |
| 478 | |
| 479 static const char kInfinitySymbol[] = "Infinity"; | |
| 480 if (*current == kInfinitySymbol[0]) { | |
| 481 if (!SubStringEquals(¤t, end, kInfinitySymbol)) { | |
| 482 return JUNK_STRING_VALUE; | |
| 483 } | |
| 484 | |
| 485 if (!allow_trailing_junk && | |
| 486 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
| 487 return JUNK_STRING_VALUE; | |
| 488 } | |
| 489 | |
| 490 ASSERT(buffer_pos == 0); | |
| 491 return negative ? -V8_INFINITY : V8_INFINITY; | |
| 492 } | |
| 493 | |
| 494 bool leading_zero = false; | |
| 495 if (*current == '0') { | |
| 496 ++current; | |
| 497 if (current == end) return SignedZero(negative); | |
| 498 | |
| 499 leading_zero = true; | |
| 500 | |
| 501 // It could be hexadecimal value. | |
| 502 if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { | |
| 503 ++current; | |
| 504 if (current == end || !isDigit(*current, 16)) { | |
| 505 return JUNK_STRING_VALUE; // "0x". | |
| 506 } | |
| 507 | |
| 508 return InternalStringToIntDouble<4>(unicode_cache, | |
| 509 current, | |
| 510 end, | |
| 511 negative, | |
| 512 allow_trailing_junk); | |
| 513 } | |
| 514 | |
| 515 // Ignore leading zeros in the integer part. | |
| 516 while (*current == '0') { | |
| 517 ++current; | |
| 518 if (current == end) return SignedZero(negative); | |
| 519 } | |
| 520 } | |
| 521 | |
| 522 bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0; | |
| 523 | |
| 524 // Copy significant digits of the integer part (if any) to the buffer. | |
| 525 while (*current >= '0' && *current <= '9') { | |
| 526 if (significant_digits < kMaxSignificantDigits) { | |
| 527 ASSERT(buffer_pos < kBufferSize); | |
| 528 buffer[buffer_pos++] = static_cast<char>(*current); | |
| 529 significant_digits++; | |
| 530 // Will later check if it's an octal in the buffer. | |
| 531 } else { | |
| 532 insignificant_digits++; // Move the digit into the exponential part. | |
| 533 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; | |
| 534 } | |
| 535 octal = octal && *current < '8'; | |
| 536 ++current; | |
| 537 if (current == end) goto parsing_done; | |
| 538 } | |
| 539 | |
| 540 if (significant_digits == 0) { | |
| 541 octal = false; | |
| 542 } | |
| 543 | |
| 544 if (*current == '.') { | |
| 545 if (octal && !allow_trailing_junk) return JUNK_STRING_VALUE; | |
| 546 if (octal) goto parsing_done; | |
| 547 | |
| 548 ++current; | |
| 549 if (current == end) { | |
| 550 if (significant_digits == 0 && !leading_zero) { | |
| 551 return JUNK_STRING_VALUE; | |
| 552 } else { | |
| 553 goto parsing_done; | |
| 554 } | |
| 555 } | |
| 556 | |
| 557 if (significant_digits == 0) { | |
| 558 // octal = false; | |
| 559 // Integer part consists of 0 or is absent. Significant digits start after | |
| 560 // leading zeros (if any). | |
| 561 while (*current == '0') { | |
| 562 ++current; | |
| 563 if (current == end) return SignedZero(negative); | |
| 564 exponent--; // Move this 0 into the exponent. | |
| 565 } | |
| 566 } | |
| 567 | |
| 568 // We don't emit a '.', but adjust the exponent instead. | |
| 569 fractional_part = true; | |
| 570 | |
| 571 // There is a fractional part. | |
| 572 while (*current >= '0' && *current <= '9') { | |
| 573 if (significant_digits < kMaxSignificantDigits) { | |
| 574 ASSERT(buffer_pos < kBufferSize); | |
| 575 buffer[buffer_pos++] = static_cast<char>(*current); | |
| 576 significant_digits++; | |
| 577 exponent--; | |
| 578 } else { | |
| 579 // Ignore insignificant digits in the fractional part. | |
| 580 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; | |
| 581 } | |
| 582 ++current; | |
| 583 if (current == end) goto parsing_done; | |
| 584 } | |
| 585 } | |
| 586 | |
| 587 if (!leading_zero && exponent == 0 && significant_digits == 0) { | |
| 588 // If leading_zeros is true then the string contains zeros. | |
| 589 // If exponent < 0 then string was [+-]\.0*... | |
| 590 // If significant_digits != 0 the string is not equal to 0. | |
| 591 // Otherwise there are no digits in the string. | |
| 592 return JUNK_STRING_VALUE; | |
| 593 } | |
| 594 | |
| 595 // Parse exponential part. | |
| 596 if (*current == 'e' || *current == 'E') { | |
| 597 if (octal) return JUNK_STRING_VALUE; | |
| 598 ++current; | |
| 599 if (current == end) { | |
| 600 if (allow_trailing_junk) { | |
| 601 goto parsing_done; | |
| 602 } else { | |
| 603 return JUNK_STRING_VALUE; | |
| 604 } | |
| 605 } | |
| 606 char sign = '+'; | |
| 607 if (*current == '+' || *current == '-') { | |
| 608 sign = static_cast<char>(*current); | |
| 609 ++current; | |
| 610 if (current == end) { | |
| 611 if (allow_trailing_junk) { | |
| 612 goto parsing_done; | |
| 613 } else { | |
| 614 return JUNK_STRING_VALUE; | |
| 615 } | |
| 616 } | |
| 617 } | |
| 618 | |
| 619 if (current == end || *current < '0' || *current > '9') { | |
| 620 if (allow_trailing_junk) { | |
| 621 goto parsing_done; | |
| 622 } else { | |
| 623 return JUNK_STRING_VALUE; | |
| 624 } | |
| 625 } | |
| 626 | |
| 627 const int max_exponent = INT_MAX / 2; | |
| 628 ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); | |
| 629 int num = 0; | |
| 630 do { | |
| 631 // Check overflow. | |
| 632 int digit = *current - '0'; | |
| 633 if (num >= max_exponent / 10 | |
| 634 && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { | |
| 635 num = max_exponent; | |
| 636 } else { | |
| 637 num = num * 10 + digit; | |
| 638 } | |
| 639 ++current; | |
| 640 } while (current != end && *current >= '0' && *current <= '9'); | |
| 641 | |
| 642 exponent += (sign == '-' ? -num : num); | |
| 643 } | |
| 644 | |
| 645 if (!allow_trailing_junk && | |
| 646 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
| 647 return JUNK_STRING_VALUE; | |
| 648 } | |
| 649 | |
| 650 parsing_done: | |
| 651 exponent += insignificant_digits; | |
| 652 | |
| 653 if (octal) { | |
| 654 return InternalStringToIntDouble<3>(unicode_cache, | |
| 655 buffer, | |
| 656 buffer + buffer_pos, | |
| 657 negative, | |
| 658 allow_trailing_junk); | |
| 659 } | |
| 660 | |
| 661 if (nonzero_digit_dropped) { | |
| 662 buffer[buffer_pos++] = '1'; | |
| 663 exponent--; | |
| 664 } | |
| 665 | |
| 666 ASSERT(buffer_pos < kBufferSize); | |
| 667 buffer[buffer_pos] = '\0'; | |
| 668 | |
| 669 double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); | |
| 670 return negative ? -converted : converted; | |
| 671 } | |
| 672 | 40 |
| 673 | 41 |
| 674 double StringToDouble(UnicodeCache* unicode_cache, | 42 double StringToDouble(UnicodeCache* unicode_cache, |
| 675 String* str, int flags, double empty_string_val) { | |
| 676 StringShape shape(str); | |
| 677 if (shape.IsSequentialAscii()) { | |
| 678 const char* begin = SeqAsciiString::cast(str)->GetChars(); | |
| 679 const char* end = begin + str->length(); | |
| 680 return InternalStringToDouble(unicode_cache, begin, end, flags, | |
| 681 empty_string_val); | |
| 682 } else if (shape.IsSequentialTwoByte()) { | |
| 683 const uc16* begin = SeqTwoByteString::cast(str)->GetChars(); | |
| 684 const uc16* end = begin + str->length(); | |
| 685 return InternalStringToDouble(unicode_cache, begin, end, flags, | |
| 686 empty_string_val); | |
| 687 } else { | |
| 688 StringInputBuffer buffer(str); | |
| 689 return InternalStringToDouble(unicode_cache, | |
| 690 StringInputBufferIterator(&buffer), | |
| 691 StringInputBufferIterator::EndMarker(), | |
| 692 flags, | |
| 693 empty_string_val); | |
| 694 } | |
| 695 } | |
| 696 | |
| 697 | |
| 698 double StringToInt(UnicodeCache* unicode_cache, | |
| 699 String* str, | |
| 700 int radix) { | |
| 701 StringShape shape(str); | |
| 702 if (shape.IsSequentialAscii()) { | |
| 703 const char* begin = SeqAsciiString::cast(str)->GetChars(); | |
| 704 const char* end = begin + str->length(); | |
| 705 return InternalStringToInt(unicode_cache, begin, end, radix); | |
| 706 } else if (shape.IsSequentialTwoByte()) { | |
| 707 const uc16* begin = SeqTwoByteString::cast(str)->GetChars(); | |
| 708 const uc16* end = begin + str->length(); | |
| 709 return InternalStringToInt(unicode_cache, begin, end, radix); | |
| 710 } else { | |
| 711 StringInputBuffer buffer(str); | |
| 712 return InternalStringToInt(unicode_cache, | |
| 713 StringInputBufferIterator(&buffer), | |
| 714 StringInputBufferIterator::EndMarker(), | |
| 715 radix); | |
| 716 } | |
| 717 } | |
| 718 | |
| 719 | |
| 720 double StringToDouble(UnicodeCache* unicode_cache, | |
| 721 const char* str, int flags, double empty_string_val) { | 43 const char* str, int flags, double empty_string_val) { |
| 722 const char* end = str + StrLength(str); | 44 const char* end = str + StrLength(str); |
| 723 return InternalStringToDouble(unicode_cache, str, end, flags, | 45 return InternalStringToDouble(unicode_cache, str, end, flags, |
| 724 empty_string_val); | 46 empty_string_val); |
| 725 } | 47 } |
| 726 | 48 |
| 727 | 49 |
| 728 double StringToDouble(UnicodeCache* unicode_cache, | 50 double StringToDouble(UnicodeCache* unicode_cache, |
| 729 Vector<const char> str, | 51 Vector<const char> str, |
| 730 int flags, | 52 int flags, |
| (...skipping 12 matching lines...) Expand all Loading... |
| 743 empty_string_val); | 65 empty_string_val); |
| 744 } | 66 } |
| 745 | 67 |
| 746 | 68 |
| 747 const char* DoubleToCString(double v, Vector<char> buffer) { | 69 const char* DoubleToCString(double v, Vector<char> buffer) { |
| 748 switch (fpclassify(v)) { | 70 switch (fpclassify(v)) { |
| 749 case FP_NAN: return "NaN"; | 71 case FP_NAN: return "NaN"; |
| 750 case FP_INFINITE: return (v < 0.0 ? "-Infinity" : "Infinity"); | 72 case FP_INFINITE: return (v < 0.0 ? "-Infinity" : "Infinity"); |
| 751 case FP_ZERO: return "0"; | 73 case FP_ZERO: return "0"; |
| 752 default: { | 74 default: { |
| 753 StringBuilder builder(buffer.start(), buffer.length()); | 75 SimpleStringBuilder builder(buffer.start(), buffer.length()); |
| 754 int decimal_point; | 76 int decimal_point; |
| 755 int sign; | 77 int sign; |
| 756 const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1; | 78 const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1; |
| 757 char decimal_rep[kV8DtoaBufferCapacity]; | 79 char decimal_rep[kV8DtoaBufferCapacity]; |
| 758 int length; | 80 int length; |
| 759 | 81 |
| 760 DoubleToAscii(v, DTOA_SHORTEST, 0, | 82 DoubleToAscii(v, DTOA_SHORTEST, 0, |
| 761 Vector<char>(decimal_rep, kV8DtoaBufferCapacity), | 83 Vector<char>(decimal_rep, kV8DtoaBufferCapacity), |
| 762 &sign, &length, &decimal_point); | 84 &sign, &length, &decimal_point); |
| 763 | 85 |
| (...skipping 20 matching lines...) Expand all Loading... |
| 784 // ECMA-262 section 9.8.1 step 9 and 10 combined. | 106 // ECMA-262 section 9.8.1 step 9 and 10 combined. |
| 785 builder.AddCharacter(decimal_rep[0]); | 107 builder.AddCharacter(decimal_rep[0]); |
| 786 if (length != 1) { | 108 if (length != 1) { |
| 787 builder.AddCharacter('.'); | 109 builder.AddCharacter('.'); |
| 788 builder.AddString(decimal_rep + 1); | 110 builder.AddString(decimal_rep + 1); |
| 789 } | 111 } |
| 790 builder.AddCharacter('e'); | 112 builder.AddCharacter('e'); |
| 791 builder.AddCharacter((decimal_point >= 0) ? '+' : '-'); | 113 builder.AddCharacter((decimal_point >= 0) ? '+' : '-'); |
| 792 int exponent = decimal_point - 1; | 114 int exponent = decimal_point - 1; |
| 793 if (exponent < 0) exponent = -exponent; | 115 if (exponent < 0) exponent = -exponent; |
| 794 builder.AddFormatted("%d", exponent); | 116 builder.AddDecimalInteger(exponent); |
| 795 } | 117 } |
| 796 return builder.Finalize(); | 118 return builder.Finalize(); |
| 797 } | 119 } |
| 798 } | 120 } |
| 799 } | 121 } |
| 800 | 122 |
| 801 | 123 |
| 802 const char* IntToCString(int n, Vector<char> buffer) { | 124 const char* IntToCString(int n, Vector<char> buffer) { |
| 803 bool negative = false; | 125 bool negative = false; |
| 804 if (n < 0) { | 126 if (n < 0) { |
| (...skipping 57 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 862 decimal_point = 1; | 184 decimal_point = 1; |
| 863 } | 185 } |
| 864 | 186 |
| 865 if (zero_prefix_length + decimal_rep_length < decimal_point + f) { | 187 if (zero_prefix_length + decimal_rep_length < decimal_point + f) { |
| 866 zero_postfix_length = decimal_point + f - decimal_rep_length - | 188 zero_postfix_length = decimal_point + f - decimal_rep_length - |
| 867 zero_prefix_length; | 189 zero_prefix_length; |
| 868 } | 190 } |
| 869 | 191 |
| 870 unsigned rep_length = | 192 unsigned rep_length = |
| 871 zero_prefix_length + decimal_rep_length + zero_postfix_length; | 193 zero_prefix_length + decimal_rep_length + zero_postfix_length; |
| 872 StringBuilder rep_builder(rep_length + 1); | 194 SimpleStringBuilder rep_builder(rep_length + 1); |
| 873 rep_builder.AddPadding('0', zero_prefix_length); | 195 rep_builder.AddPadding('0', zero_prefix_length); |
| 874 rep_builder.AddString(decimal_rep); | 196 rep_builder.AddString(decimal_rep); |
| 875 rep_builder.AddPadding('0', zero_postfix_length); | 197 rep_builder.AddPadding('0', zero_postfix_length); |
| 876 char* rep = rep_builder.Finalize(); | 198 char* rep = rep_builder.Finalize(); |
| 877 | 199 |
| 878 // Create the result string by appending a minus and putting in a | 200 // Create the result string by appending a minus and putting in a |
| 879 // decimal point if needed. | 201 // decimal point if needed. |
| 880 unsigned result_size = decimal_point + f + 2; | 202 unsigned result_size = decimal_point + f + 2; |
| 881 StringBuilder builder(result_size + 1); | 203 SimpleStringBuilder builder(result_size + 1); |
| 882 if (negative) builder.AddCharacter('-'); | 204 if (negative) builder.AddCharacter('-'); |
| 883 builder.AddSubstring(rep, decimal_point); | 205 builder.AddSubstring(rep, decimal_point); |
| 884 if (f > 0) { | 206 if (f > 0) { |
| 885 builder.AddCharacter('.'); | 207 builder.AddCharacter('.'); |
| 886 builder.AddSubstring(rep + decimal_point, f); | 208 builder.AddSubstring(rep + decimal_point, f); |
| 887 } | 209 } |
| 888 DeleteArray(rep); | 210 DeleteArray(rep); |
| 889 return builder.Finalize(); | 211 return builder.Finalize(); |
| 890 } | 212 } |
| 891 | 213 |
| 892 | 214 |
| 893 static char* CreateExponentialRepresentation(char* decimal_rep, | 215 static char* CreateExponentialRepresentation(char* decimal_rep, |
| 894 int exponent, | 216 int exponent, |
| 895 bool negative, | 217 bool negative, |
| 896 int significant_digits) { | 218 int significant_digits) { |
| 897 bool negative_exponent = false; | 219 bool negative_exponent = false; |
| 898 if (exponent < 0) { | 220 if (exponent < 0) { |
| 899 negative_exponent = true; | 221 negative_exponent = true; |
| 900 exponent = -exponent; | 222 exponent = -exponent; |
| 901 } | 223 } |
| 902 | 224 |
| 903 // Leave room in the result for appending a minus, for a period, the | 225 // Leave room in the result for appending a minus, for a period, the |
| 904 // letter 'e', a minus or a plus depending on the exponent, and a | 226 // letter 'e', a minus or a plus depending on the exponent, and a |
| 905 // three digit exponent. | 227 // three digit exponent. |
| 906 unsigned result_size = significant_digits + 7; | 228 unsigned result_size = significant_digits + 7; |
| 907 StringBuilder builder(result_size + 1); | 229 SimpleStringBuilder builder(result_size + 1); |
| 908 | 230 |
| 909 if (negative) builder.AddCharacter('-'); | 231 if (negative) builder.AddCharacter('-'); |
| 910 builder.AddCharacter(decimal_rep[0]); | 232 builder.AddCharacter(decimal_rep[0]); |
| 911 if (significant_digits != 1) { | 233 if (significant_digits != 1) { |
| 912 builder.AddCharacter('.'); | 234 builder.AddCharacter('.'); |
| 913 builder.AddString(decimal_rep + 1); | 235 builder.AddString(decimal_rep + 1); |
| 914 int rep_length = StrLength(decimal_rep); | 236 int rep_length = StrLength(decimal_rep); |
| 915 builder.AddPadding('0', significant_digits - rep_length); | 237 builder.AddPadding('0', significant_digits - rep_length); |
| 916 } | 238 } |
| 917 | 239 |
| 918 builder.AddCharacter('e'); | 240 builder.AddCharacter('e'); |
| 919 builder.AddCharacter(negative_exponent ? '-' : '+'); | 241 builder.AddCharacter(negative_exponent ? '-' : '+'); |
| 920 builder.AddFormatted("%d", exponent); | 242 builder.AddDecimalInteger(exponent); |
| 921 return builder.Finalize(); | 243 return builder.Finalize(); |
| 922 } | 244 } |
| 923 | 245 |
| 924 | 246 |
| 925 | 247 |
| 926 char* DoubleToExponentialCString(double value, int f) { | 248 char* DoubleToExponentialCString(double value, int f) { |
| 927 const int kMaxDigitsAfterPoint = 20; | 249 const int kMaxDigitsAfterPoint = 20; |
| 928 // f might be -1 to signal that f was undefined in JavaScript. | 250 // f might be -1 to signal that f was undefined in JavaScript. |
| 929 ASSERT(f >= -1 && f <= kMaxDigitsAfterPoint); | 251 ASSERT(f >= -1 && f <= kMaxDigitsAfterPoint); |
| 930 | 252 |
| (...skipping 71 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1002 CreateExponentialRepresentation(decimal_rep, exponent, negative, p); | 324 CreateExponentialRepresentation(decimal_rep, exponent, negative, p); |
| 1003 } else { | 325 } else { |
| 1004 // Use fixed notation. | 326 // Use fixed notation. |
| 1005 // | 327 // |
| 1006 // Leave room in the result for appending a minus, a period and in | 328 // Leave room in the result for appending a minus, a period and in |
| 1007 // the case where decimal_point is not positive for a zero in | 329 // the case where decimal_point is not positive for a zero in |
| 1008 // front of the period. | 330 // front of the period. |
| 1009 unsigned result_size = (decimal_point <= 0) | 331 unsigned result_size = (decimal_point <= 0) |
| 1010 ? -decimal_point + p + 3 | 332 ? -decimal_point + p + 3 |
| 1011 : p + 2; | 333 : p + 2; |
| 1012 StringBuilder builder(result_size + 1); | 334 SimpleStringBuilder builder(result_size + 1); |
| 1013 if (negative) builder.AddCharacter('-'); | 335 if (negative) builder.AddCharacter('-'); |
| 1014 if (decimal_point <= 0) { | 336 if (decimal_point <= 0) { |
| 1015 builder.AddString("0."); | 337 builder.AddString("0."); |
| 1016 builder.AddPadding('0', -decimal_point); | 338 builder.AddPadding('0', -decimal_point); |
| 1017 builder.AddString(decimal_rep); | 339 builder.AddString(decimal_rep); |
| 1018 builder.AddPadding('0', p - decimal_rep_length); | 340 builder.AddPadding('0', p - decimal_rep_length); |
| 1019 } else { | 341 } else { |
| 1020 const int m = Min(decimal_rep_length, decimal_point); | 342 const int m = Min(decimal_rep_length, decimal_point); |
| 1021 builder.AddSubstring(decimal_rep, m); | 343 builder.AddSubstring(decimal_rep, m); |
| 1022 builder.AddPadding('0', decimal_point - decimal_rep_length); | 344 builder.AddPadding('0', decimal_point - decimal_rep_length); |
| (...skipping 71 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 1094 } | 416 } |
| 1095 decimal_buffer[decimal_pos] = '\0'; | 417 decimal_buffer[decimal_pos] = '\0'; |
| 1096 | 418 |
| 1097 // Compute the result size. | 419 // Compute the result size. |
| 1098 int integer_part_size = kBufferSize - 2 - integer_pos; | 420 int integer_part_size = kBufferSize - 2 - integer_pos; |
| 1099 // Make room for zero termination. | 421 // Make room for zero termination. |
| 1100 unsigned result_size = integer_part_size + decimal_pos; | 422 unsigned result_size = integer_part_size + decimal_pos; |
| 1101 // If the number has a decimal part, leave room for the period. | 423 // If the number has a decimal part, leave room for the period. |
| 1102 if (decimal_pos > 0) result_size++; | 424 if (decimal_pos > 0) result_size++; |
| 1103 // Allocate result and fill in the parts. | 425 // Allocate result and fill in the parts. |
| 1104 StringBuilder builder(result_size + 1); | 426 SimpleStringBuilder builder(result_size + 1); |
| 1105 builder.AddSubstring(integer_buffer + integer_pos + 1, integer_part_size); | 427 builder.AddSubstring(integer_buffer + integer_pos + 1, integer_part_size); |
| 1106 if (decimal_pos > 0) builder.AddCharacter('.'); | 428 if (decimal_pos > 0) builder.AddCharacter('.'); |
| 1107 builder.AddSubstring(decimal_buffer, decimal_pos); | 429 builder.AddSubstring(decimal_buffer, decimal_pos); |
| 1108 return builder.Finalize(); | 430 return builder.Finalize(); |
| 1109 } | 431 } |
| 1110 | 432 |
| 1111 | 433 |
| 1112 static Mutex* dtoa_lock_one = OS::CreateMutex(); | 434 static Mutex* dtoa_lock_one = OS::CreateMutex(); |
| 1113 static Mutex* dtoa_lock_zero = OS::CreateMutex(); | 435 static Mutex* dtoa_lock_zero = OS::CreateMutex(); |
| 1114 | 436 |
| 1115 | 437 |
| 1116 } } // namespace v8::internal | 438 } } // namespace v8::internal |
| 1117 | 439 |
| 1118 | 440 |
| 1119 extern "C" { | 441 extern "C" { |
| 1120 void ACQUIRE_DTOA_LOCK(int n) { | 442 void ACQUIRE_DTOA_LOCK(int n) { |
| 1121 ASSERT(n == 0 || n == 1); | 443 ASSERT(n == 0 || n == 1); |
| 1122 (n == 0 ? v8::internal::dtoa_lock_zero : v8::internal::dtoa_lock_one)->Lock(); | 444 (n == 0 ? v8::internal::dtoa_lock_zero : v8::internal::dtoa_lock_one)->Lock(); |
| 1123 } | 445 } |
| 1124 | 446 |
| 1125 | 447 |
| 1126 void FREE_DTOA_LOCK(int n) { | 448 void FREE_DTOA_LOCK(int n) { |
| 1127 ASSERT(n == 0 || n == 1); | 449 ASSERT(n == 0 || n == 1); |
| 1128 (n == 0 ? v8::internal::dtoa_lock_zero : v8::internal::dtoa_lock_one)-> | 450 (n == 0 ? v8::internal::dtoa_lock_zero : v8::internal::dtoa_lock_one)-> |
| 1129 Unlock(); | 451 Unlock(); |
| 1130 } | 452 } |
| 1131 } | 453 } |
| OLD | NEW |