OLD | NEW |
---|---|
1 // Copyright 2006-2008 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
11 // with the distribution. | 11 // with the distribution. |
12 // * Neither the name of Google Inc. nor the names of its | 12 // * Neither the name of Google Inc. nor the names of its |
13 // contributors may be used to endorse or promote products derived | 13 // contributors may be used to endorse or promote products derived |
14 // from this software without specific prior written permission. | 14 // from this software without specific prior written permission. |
15 // | 15 // |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | 27 |
28 #ifndef V8_CONVERSIONS_INL_H_ | 28 #ifndef V8_CONVERSIONS_INL_H_ |
29 #define V8_CONVERSIONS_INL_H_ | 29 #define V8_CONVERSIONS_INL_H_ |
30 | 30 |
31 #include <limits.h> // Required for INT_MAX etc. | |
31 #include <math.h> | 32 #include <math.h> |
32 #include <float.h> // required for DBL_MAX and on Win32 for finite() | 33 #include <float.h> // Required for DBL_MAX and on Win32 for finite() |
33 #include <stdarg.h> | 34 #include <stdarg.h> |
34 | 35 |
35 // ---------------------------------------------------------------------------- | 36 // ---------------------------------------------------------------------------- |
36 // Extra POSIX/ANSI functions for Win32/MSVC. | 37 // Extra POSIX/ANSI functions for Win32/MSVC. |
37 | 38 |
38 #include "conversions.h" | 39 #include "conversions.h" |
40 #include "strtod.h" | |
39 #include "platform.h" | 41 #include "platform.h" |
40 | 42 |
41 namespace v8 { | 43 namespace v8 { |
42 namespace internal { | 44 namespace internal { |
43 | 45 |
44 // The fast double-to-unsigned-int conversion routine does not guarantee | 46 // The fast double-to-unsigned-int conversion routine does not guarantee |
45 // rounding towards zero, or any reasonable value if the argument is larger | 47 // rounding towards zero, or any reasonable value if the argument is larger |
46 // than what fits in an unsigned 32-bit integer. | 48 // than what fits in an unsigned 32-bit integer. |
47 static inline unsigned int FastD2UI(double x) { | 49 static inline unsigned int FastD2UI(double x) { |
48 // There is no unsigned version of lrint, so there is no fast path | 50 // There is no unsigned version of lrint, so there is no fast path |
(...skipping 21 matching lines...) Expand all Loading... | |
70 } | 72 } |
71 | 73 |
72 | 74 |
73 static inline double DoubleToInteger(double x) { | 75 static inline double DoubleToInteger(double x) { |
74 if (isnan(x)) return 0; | 76 if (isnan(x)) return 0; |
75 if (!isfinite(x) || x == 0) return x; | 77 if (!isfinite(x) || x == 0) return x; |
76 return (x >= 0) ? floor(x) : ceil(x); | 78 return (x >= 0) ? floor(x) : ceil(x); |
77 } | 79 } |
78 | 80 |
79 | 81 |
80 int32_t NumberToInt32(Object* number) { | |
81 if (number->IsSmi()) return Smi::cast(number)->value(); | |
82 return DoubleToInt32(number->Number()); | |
83 } | |
84 | |
85 | |
86 uint32_t NumberToUint32(Object* number) { | |
87 if (number->IsSmi()) return Smi::cast(number)->value(); | |
88 return DoubleToUint32(number->Number()); | |
89 } | |
90 | |
91 | |
92 int32_t DoubleToInt32(double x) { | 82 int32_t DoubleToInt32(double x) { |
93 int32_t i = FastD2I(x); | 83 int32_t i = FastD2I(x); |
94 if (FastI2D(i) == x) return i; | 84 if (FastI2D(i) == x) return i; |
95 static const double two32 = 4294967296.0; | 85 static const double two32 = 4294967296.0; |
96 static const double two31 = 2147483648.0; | 86 static const double two31 = 2147483648.0; |
97 if (!isfinite(x) || x == 0) return 0; | 87 if (!isfinite(x) || x == 0) return 0; |
98 if (x < 0 || x >= two32) x = modulo(x, two32); | 88 if (x < 0 || x >= two32) x = modulo(x, two32); |
99 x = (x >= 0) ? floor(x) : ceil(x) + two32; | 89 x = (x >= 0) ? floor(x) : ceil(x) + two32; |
100 return (int32_t) ((x >= two31) ? x - two32 : x); | 90 return (int32_t) ((x >= two31) ? x - two32 : x); |
101 } | 91 } |
102 | 92 |
103 | 93 |
94 template <class Iterator, class EndMark> | |
95 static bool SubStringEquals(Iterator* current, | |
96 EndMark end, | |
97 const char* substring) { | |
98 ASSERT(**current == *substring); | |
99 for (substring++; *substring != '\0'; substring++) { | |
100 ++*current; | |
101 if (*current == end || **current != *substring) return false; | |
102 } | |
103 ++*current; | |
104 return true; | |
105 } | |
106 | |
107 | |
108 // Returns true if a nonspace found and false if the end has reached. | |
Rico
2011/07/05 08:54:57
nonspace found -> nonspace is found
end has reache
Lasse Reichstein
2011/07/05 10:43:18
rewritten.
| |
109 template <class Iterator, class EndMark> | |
110 static inline bool AdvanceToNonspace(UnicodeCache* unicode_cache, | |
111 Iterator* current, | |
112 EndMark end) { | |
113 while (*current != end) { | |
114 if (!unicode_cache->IsWhiteSpace(**current)) return true; | |
115 ++*current; | |
116 } | |
117 return false; | |
118 } | |
119 | |
120 | |
121 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. | |
122 template <int radix_log_2, class Iterator, class EndMark> | |
123 static double InternalStringToIntDouble(UnicodeCache* unicode_cache, | |
124 Iterator current, | |
125 EndMark end, | |
126 bool negative, | |
127 bool allow_trailing_junk) { | |
128 ASSERT(current != end); | |
129 | |
130 // Skip leading 0s. | |
131 while (*current == '0') { | |
132 ++current; | |
133 if (current == end) return SignedZero(negative); | |
134 } | |
135 | |
136 int64_t number = 0; | |
137 int exponent = 0; | |
138 const int radix = (1 << radix_log_2); | |
139 | |
140 do { | |
141 int digit; | |
142 if (*current >= '0' && *current <= '9' && *current < '0' + radix) { | |
143 digit = static_cast<char>(*current) - '0'; | |
144 } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) { | |
145 digit = static_cast<char>(*current) - 'a' + 10; | |
146 } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) { | |
147 digit = static_cast<char>(*current) - 'A' + 10; | |
148 } else { | |
149 if (allow_trailing_junk || | |
150 !AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
151 break; | |
152 } else { | |
153 return JUNK_STRING_VALUE; | |
154 } | |
155 } | |
156 | |
157 number = number * radix + digit; | |
158 int overflow = static_cast<int>(number >> 53); | |
159 if (overflow != 0) { | |
160 // Overflow occurred. Need to determine which direction to round the | |
161 // result. | |
162 int overflow_bits_count = 1; | |
163 while (overflow > 1) { | |
164 overflow_bits_count++; | |
165 overflow >>= 1; | |
166 } | |
167 | |
168 int dropped_bits_mask = ((1 << overflow_bits_count) - 1); | |
169 int dropped_bits = static_cast<int>(number) & dropped_bits_mask; | |
170 number >>= overflow_bits_count; | |
171 exponent = overflow_bits_count; | |
172 | |
173 bool zero_tail = true; | |
174 while (true) { | |
175 ++current; | |
176 if (current == end || !isDigit(*current, radix)) break; | |
177 zero_tail = zero_tail && *current == '0'; | |
178 exponent += radix_log_2; | |
179 } | |
180 | |
181 if (!allow_trailing_junk && | |
182 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
183 return JUNK_STRING_VALUE; | |
184 } | |
185 | |
186 int middle_value = (1 << (overflow_bits_count - 1)); | |
187 if (dropped_bits > middle_value) { | |
188 number++; // Rounding up. | |
189 } else if (dropped_bits == middle_value) { | |
190 // Rounding to even to consistency with decimals: half-way case rounds | |
191 // up if significant part is odd and down otherwise. | |
192 if ((number & 1) != 0 || !zero_tail) { | |
193 number++; // Rounding up. | |
194 } | |
195 } | |
196 | |
197 // Rounding up may cause overflow. | |
198 if ((number & ((int64_t)1 << 53)) != 0) { | |
199 exponent++; | |
200 number >>= 1; | |
201 } | |
202 break; | |
203 } | |
204 ++current; | |
205 } while (current != end); | |
206 | |
207 ASSERT(number < ((int64_t)1 << 53)); | |
208 ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); | |
209 | |
210 if (exponent == 0) { | |
211 if (negative) { | |
212 if (number == 0) return -0.0; | |
213 number = -number; | |
214 } | |
215 return static_cast<double>(number); | |
216 } | |
217 | |
218 ASSERT(number != 0); | |
219 // The double could be constructed faster from number (mantissa), exponent | |
220 // and sign. Assuming it's a rare case more simple code is used. | |
221 return static_cast<double>(negative ? -number : number) * pow(2.0, exponent); | |
222 } | |
223 | |
224 | |
225 template <class Iterator, class EndMark> | |
226 static double InternalStringToInt(UnicodeCache* unicode_cache, | |
227 Iterator current, | |
228 EndMark end, | |
229 int radix) { | |
230 const bool allow_trailing_junk = true; | |
231 const double empty_string_val = JUNK_STRING_VALUE; | |
232 | |
233 if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
234 return empty_string_val; | |
235 } | |
236 | |
237 bool negative = false; | |
238 bool leading_zero = false; | |
239 | |
240 if (*current == '+') { | |
241 // Ignore leading sign; skip following spaces. | |
242 ++current; | |
243 if (current == end) { | |
244 return JUNK_STRING_VALUE; | |
245 } | |
246 } else if (*current == '-') { | |
247 ++current; | |
248 if (current == end) { | |
249 return JUNK_STRING_VALUE; | |
250 } | |
251 negative = true; | |
252 } | |
253 | |
254 if (radix == 0) { | |
255 // Radix detection. | |
256 if (*current == '0') { | |
257 ++current; | |
258 if (current == end) return SignedZero(negative); | |
259 if (*current == 'x' || *current == 'X') { | |
260 radix = 16; | |
261 ++current; | |
262 if (current == end) return JUNK_STRING_VALUE; | |
263 } else { | |
264 radix = 8; | |
265 leading_zero = true; | |
266 } | |
267 } else { | |
268 radix = 10; | |
269 } | |
270 } else if (radix == 16) { | |
271 if (*current == '0') { | |
272 // Allow "0x" prefix. | |
273 ++current; | |
274 if (current == end) return SignedZero(negative); | |
275 if (*current == 'x' || *current == 'X') { | |
276 ++current; | |
277 if (current == end) return JUNK_STRING_VALUE; | |
278 } else { | |
279 leading_zero = true; | |
280 } | |
281 } | |
282 } | |
283 | |
284 if (radix < 2 || radix > 36) return JUNK_STRING_VALUE; | |
285 | |
286 // Skip leading zeros. | |
287 while (*current == '0') { | |
288 leading_zero = true; | |
289 ++current; | |
290 if (current == end) return SignedZero(negative); | |
291 } | |
292 | |
293 if (!leading_zero && !isDigit(*current, radix)) { | |
294 return JUNK_STRING_VALUE; | |
295 } | |
296 | |
297 if (IsPowerOf2(radix)) { | |
298 switch (radix) { | |
299 case 2: | |
300 return InternalStringToIntDouble<1>( | |
301 unicode_cache, current, end, negative, allow_trailing_junk); | |
302 case 4: | |
303 return InternalStringToIntDouble<2>( | |
304 unicode_cache, current, end, negative, allow_trailing_junk); | |
305 case 8: | |
306 return InternalStringToIntDouble<3>( | |
307 unicode_cache, current, end, negative, allow_trailing_junk); | |
308 | |
309 case 16: | |
310 return InternalStringToIntDouble<4>( | |
311 unicode_cache, current, end, negative, allow_trailing_junk); | |
312 | |
313 case 32: | |
314 return InternalStringToIntDouble<5>( | |
315 unicode_cache, current, end, negative, allow_trailing_junk); | |
316 default: | |
317 UNREACHABLE(); | |
318 } | |
319 } | |
320 | |
321 if (radix == 10) { | |
322 // Parsing with strtod. | |
323 const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308. | |
324 // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero | |
325 // end. | |
326 const int kBufferSize = kMaxSignificantDigits + 2; | |
327 char buffer[kBufferSize]; | |
328 int buffer_pos = 0; | |
329 while (*current >= '0' && *current <= '9') { | |
330 if (buffer_pos <= kMaxSignificantDigits) { | |
331 // If the number has more than kMaxSignificantDigits it will be parsed | |
332 // as infinity. | |
333 ASSERT(buffer_pos < kBufferSize); | |
334 buffer[buffer_pos++] = static_cast<char>(*current); | |
335 } | |
336 ++current; | |
337 if (current == end) break; | |
338 } | |
339 | |
340 if (!allow_trailing_junk && | |
341 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
342 return JUNK_STRING_VALUE; | |
343 } | |
344 | |
345 ASSERT(buffer_pos < kBufferSize); | |
346 buffer[buffer_pos] = '\0'; | |
347 Vector<const char> buffer_vector(buffer, buffer_pos); | |
348 return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0); | |
349 } | |
350 | |
351 // The following code causes accumulating rounding error for numbers greater | |
352 // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10, | |
353 // 16, or 32, then mathInt may be an implementation-dependent approximation to | |
354 // the mathematical integer value" (15.1.2.2). | |
355 | |
356 int lim_0 = '0' + (radix < 10 ? radix : 10); | |
357 int lim_a = 'a' + (radix - 10); | |
358 int lim_A = 'A' + (radix - 10); | |
359 | |
360 // NOTE: The code for computing the value may seem a bit complex at | |
361 // first glance. It is structured to use 32-bit multiply-and-add | |
362 // loops as long as possible to avoid loosing precision. | |
363 | |
364 double v = 0.0; | |
365 bool done = false; | |
366 do { | |
367 // Parse the longest part of the string starting at index j | |
368 // possible while keeping the multiplier, and thus the part | |
369 // itself, within 32 bits. | |
370 unsigned int part = 0, multiplier = 1; | |
371 while (true) { | |
372 int d; | |
373 if (*current >= '0' && *current < lim_0) { | |
374 d = *current - '0'; | |
375 } else if (*current >= 'a' && *current < lim_a) { | |
376 d = *current - 'a' + 10; | |
377 } else if (*current >= 'A' && *current < lim_A) { | |
378 d = *current - 'A' + 10; | |
379 } else { | |
380 done = true; | |
381 break; | |
382 } | |
383 | |
384 // Update the value of the part as long as the multiplier fits | |
385 // in 32 bits. When we can't guarantee that the next iteration | |
386 // will not overflow the multiplier, we stop parsing the part | |
387 // by leaving the loop. | |
388 const unsigned int kMaximumMultiplier = 0xffffffffU / 36; | |
389 uint32_t m = multiplier * radix; | |
390 if (m > kMaximumMultiplier) break; | |
391 part = part * radix + d; | |
392 multiplier = m; | |
393 ASSERT(multiplier > part); | |
394 | |
395 ++current; | |
396 if (current == end) { | |
397 done = true; | |
398 break; | |
399 } | |
400 } | |
401 | |
402 // Update the value and skip the part in the string. | |
403 v = v * multiplier + part; | |
404 } while (!done); | |
405 | |
406 if (!allow_trailing_junk && | |
407 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
408 return JUNK_STRING_VALUE; | |
409 } | |
410 | |
411 return negative ? -v : v; | |
412 } | |
413 | |
414 | |
415 // Converts a string to a double value. Assumes the Iterator supports | |
416 // the following operations: | |
417 // 1. current == end (other ops are not allowed), current != end. | |
418 // 2. *current - gets the current character in the sequence. | |
419 // 3. ++current (advances the position). | |
420 template <class Iterator, class EndMark> | |
421 static double InternalStringToDouble(UnicodeCache* unicode_cache, | |
422 Iterator current, | |
423 EndMark end, | |
424 int flags, | |
425 double empty_string_val) { | |
426 // To make sure that iterator dereferencing is valid the following | |
427 // convention is used: | |
428 // 1. Each '++current' statement is followed by check for equality to 'end'. | |
429 // 2. If AdvanceToNonspace returned false then current == end. | |
430 // 3. If 'current' becomes be equal to 'end' the function returns or goes to | |
431 // 'parsing_done'. | |
432 // 4. 'current' is not dereferenced after the 'parsing_done' label. | |
433 // 5. Code before 'parsing_done' may rely on 'current != end'. | |
434 if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
435 return empty_string_val; | |
436 } | |
437 | |
438 const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0; | |
439 | |
440 // The longest form of simplified number is: "-<significant digits>'.1eXXX\0". | |
441 const int kBufferSize = kMaxSignificantDigits + 10; | |
442 char buffer[kBufferSize]; // NOLINT: size is known at compile time. | |
443 int buffer_pos = 0; | |
444 | |
445 // Exponent will be adjusted if insignificant digits of the integer part | |
446 // or insignificant leading zeros of the fractional part are dropped. | |
447 int exponent = 0; | |
448 int significant_digits = 0; | |
449 int insignificant_digits = 0; | |
450 bool nonzero_digit_dropped = false; | |
451 bool fractional_part = false; | |
452 | |
453 bool negative = false; | |
454 | |
455 if (*current == '+') { | |
456 // Ignore leading sign. | |
457 ++current; | |
458 if (current == end) return JUNK_STRING_VALUE; | |
459 } else if (*current == '-') { | |
460 ++current; | |
461 if (current == end) return JUNK_STRING_VALUE; | |
462 negative = true; | |
463 } | |
464 | |
465 static const char kInfinitySymbol[] = "Infinity"; | |
466 if (*current == kInfinitySymbol[0]) { | |
467 if (!SubStringEquals(¤t, end, kInfinitySymbol)) { | |
468 return JUNK_STRING_VALUE; | |
469 } | |
470 | |
471 if (!allow_trailing_junk && | |
472 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
473 return JUNK_STRING_VALUE; | |
474 } | |
475 | |
476 ASSERT(buffer_pos == 0); | |
477 return negative ? -V8_INFINITY : V8_INFINITY; | |
478 } | |
479 | |
480 bool leading_zero = false; | |
481 if (*current == '0') { | |
482 ++current; | |
483 if (current == end) return SignedZero(negative); | |
484 | |
485 leading_zero = true; | |
486 | |
487 // It could be hexadecimal value. | |
488 if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { | |
489 ++current; | |
490 if (current == end || !isDigit(*current, 16)) { | |
491 return JUNK_STRING_VALUE; // "0x". | |
492 } | |
493 | |
494 return InternalStringToIntDouble<4>(unicode_cache, | |
495 current, | |
496 end, | |
497 negative, | |
498 allow_trailing_junk); | |
499 } | |
500 | |
501 // Ignore leading zeros in the integer part. | |
502 while (*current == '0') { | |
503 ++current; | |
504 if (current == end) return SignedZero(negative); | |
505 } | |
506 } | |
507 | |
508 bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0; | |
509 | |
510 // Copy significant digits of the integer part (if any) to the buffer. | |
511 while (*current >= '0' && *current <= '9') { | |
512 if (significant_digits < kMaxSignificantDigits) { | |
513 ASSERT(buffer_pos < kBufferSize); | |
514 buffer[buffer_pos++] = static_cast<char>(*current); | |
515 significant_digits++; | |
516 // Will later check if it's an octal in the buffer. | |
517 } else { | |
518 insignificant_digits++; // Move the digit into the exponential part. | |
519 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; | |
520 } | |
521 octal = octal && *current < '8'; | |
522 ++current; | |
523 if (current == end) goto parsing_done; | |
524 } | |
525 | |
526 if (significant_digits == 0) { | |
527 octal = false; | |
528 } | |
529 | |
530 if (*current == '.') { | |
531 if (octal && !allow_trailing_junk) return JUNK_STRING_VALUE; | |
532 if (octal) goto parsing_done; | |
533 | |
534 ++current; | |
535 if (current == end) { | |
536 if (significant_digits == 0 && !leading_zero) { | |
537 return JUNK_STRING_VALUE; | |
538 } else { | |
539 goto parsing_done; | |
540 } | |
541 } | |
542 | |
543 if (significant_digits == 0) { | |
544 // octal = false; | |
545 // Integer part consists of 0 or is absent. Significant digits start after | |
546 // leading zeros (if any). | |
547 while (*current == '0') { | |
548 ++current; | |
549 if (current == end) return SignedZero(negative); | |
550 exponent--; // Move this 0 into the exponent. | |
551 } | |
552 } | |
553 | |
554 // We don't emit a '.', but adjust the exponent instead. | |
555 fractional_part = true; | |
556 | |
557 // There is a fractional part. | |
558 while (*current >= '0' && *current <= '9') { | |
559 if (significant_digits < kMaxSignificantDigits) { | |
560 ASSERT(buffer_pos < kBufferSize); | |
561 buffer[buffer_pos++] = static_cast<char>(*current); | |
562 significant_digits++; | |
563 exponent--; | |
564 } else { | |
565 // Ignore insignificant digits in the fractional part. | |
566 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; | |
567 } | |
568 ++current; | |
569 if (current == end) goto parsing_done; | |
570 } | |
571 } | |
572 | |
573 if (!leading_zero && exponent == 0 && significant_digits == 0) { | |
574 // If leading_zeros is true then the string contains zeros. | |
575 // If exponent < 0 then string was [+-]\.0*... | |
576 // If significant_digits != 0 the string is not equal to 0. | |
577 // Otherwise there are no digits in the string. | |
578 return JUNK_STRING_VALUE; | |
579 } | |
580 | |
581 // Parse exponential part. | |
582 if (*current == 'e' || *current == 'E') { | |
583 if (octal) return JUNK_STRING_VALUE; | |
584 ++current; | |
585 if (current == end) { | |
586 if (allow_trailing_junk) { | |
587 goto parsing_done; | |
588 } else { | |
589 return JUNK_STRING_VALUE; | |
590 } | |
591 } | |
592 char sign = '+'; | |
593 if (*current == '+' || *current == '-') { | |
594 sign = static_cast<char>(*current); | |
595 ++current; | |
596 if (current == end) { | |
597 if (allow_trailing_junk) { | |
598 goto parsing_done; | |
599 } else { | |
600 return JUNK_STRING_VALUE; | |
601 } | |
602 } | |
603 } | |
604 | |
605 if (current == end || *current < '0' || *current > '9') { | |
606 if (allow_trailing_junk) { | |
607 goto parsing_done; | |
608 } else { | |
609 return JUNK_STRING_VALUE; | |
610 } | |
611 } | |
612 | |
613 const int max_exponent = INT_MAX / 2; | |
614 ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); | |
615 int num = 0; | |
616 do { | |
617 // Check overflow. | |
618 int digit = *current - '0'; | |
619 if (num >= max_exponent / 10 | |
620 && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { | |
621 num = max_exponent; | |
622 } else { | |
623 num = num * 10 + digit; | |
624 } | |
625 ++current; | |
626 } while (current != end && *current >= '0' && *current <= '9'); | |
627 | |
628 exponent += (sign == '-' ? -num : num); | |
629 } | |
630 | |
631 if (!allow_trailing_junk && | |
632 AdvanceToNonspace(unicode_cache, ¤t, end)) { | |
633 return JUNK_STRING_VALUE; | |
634 } | |
635 | |
636 parsing_done: | |
637 exponent += insignificant_digits; | |
638 | |
639 if (octal) { | |
640 return InternalStringToIntDouble<3>(unicode_cache, | |
641 buffer, | |
642 buffer + buffer_pos, | |
643 negative, | |
644 allow_trailing_junk); | |
645 } | |
646 | |
647 if (nonzero_digit_dropped) { | |
648 buffer[buffer_pos++] = '1'; | |
649 exponent--; | |
650 } | |
651 | |
652 ASSERT(buffer_pos < kBufferSize); | |
653 buffer[buffer_pos] = '\0'; | |
654 | |
655 double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); | |
656 return negative ? -converted : converted; | |
657 } | |
658 | |
104 } } // namespace v8::internal | 659 } } // namespace v8::internal |
105 | 660 |
106 #endif // V8_CONVERSIONS_INL_H_ | 661 #endif // V8_CONVERSIONS_INL_H_ |
OLD | NEW |