OLD | NEW |
| (Empty) |
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "crypto/openpgp_symmetric_encryption.h" | |
6 | |
7 #include <vector> | |
8 #include <stdlib.h> | |
9 | |
10 #include <openssl/evp.h> | |
11 #include <openssl/aes.h> | |
12 #include <openssl/sha.h> | |
13 | |
14 #include "base/rand_util.h" | |
15 #include "base/logging.h" | |
16 | |
17 namespace crypto { | |
18 | |
19 namespace { | |
20 | |
21 // Reader wraps a StringPiece and provides methods to read several datatypes | |
22 // while advancing the StringPiece. | |
23 class Reader { | |
24 public: | |
25 Reader(base::StringPiece input) | |
26 : data_(input) { | |
27 } | |
28 | |
29 bool U8(uint8* out) { | |
30 if (data_.size() < 1) | |
31 return false; | |
32 *out = static_cast<uint8>(data_[0]); | |
33 data_.remove_prefix(1); | |
34 return true; | |
35 } | |
36 | |
37 bool U32(uint32* out) { | |
38 if (data_.size() < 4) | |
39 return false; | |
40 *out = static_cast<uint32>(data_[0]) << 24 | | |
41 static_cast<uint32>(data_[1]) << 16 | | |
42 static_cast<uint32>(data_[2]) << 8 | | |
43 static_cast<uint32>(data_[3]); | |
44 data_.remove_prefix(4); | |
45 return true; | |
46 } | |
47 | |
48 // Prefix sets |*out| to the first |n| bytes of the StringPiece and advances | |
49 // the StringPiece by |n|. | |
50 bool Prefix(uint32 n, base::StringPiece *out) { | |
51 if (data_.size() < n) | |
52 return false; | |
53 *out = base::StringPiece(data_.data(), n); | |
54 data_.remove_prefix(n); | |
55 return true; | |
56 } | |
57 | |
58 // Remainder returns the remainer of the StringPiece and advances it to the | |
59 // end. | |
60 base::StringPiece Remainder() { | |
61 base::StringPiece ret = data_; | |
62 data_ = base::StringPiece(); | |
63 return ret; | |
64 } | |
65 | |
66 typedef base::StringPiece Position; | |
67 | |
68 Position tell() const { | |
69 return data_; | |
70 } | |
71 | |
72 void Seek(Position p) { | |
73 data_ = p; | |
74 } | |
75 | |
76 bool Skip(uint32 n) { | |
77 if (data_.size() < n) | |
78 return false; | |
79 data_.remove_prefix(n); | |
80 return true; | |
81 } | |
82 | |
83 bool empty() const { | |
84 return data_.empty(); | |
85 } | |
86 | |
87 size_t size() const { | |
88 return data_.size(); | |
89 } | |
90 | |
91 private: | |
92 base::StringPiece data_; | |
93 }; | |
94 | |
95 // SaltedIteratedS2K implements the salted and iterated string-to-key | |
96 // convertion. See RFC 4880, section 3.7.1.3. | |
97 void SaltedIteratedS2K(uint32 cipher_key_length, | |
98 const EVP_MD *hash_function, | |
99 base::StringPiece passphrase, | |
100 base::StringPiece salt, | |
101 uint32 count, | |
102 uint8 *out_key) { | |
103 const std::string combined = salt.as_string() + passphrase.as_string(); | |
104 const size_t combined_len = combined.size(); | |
105 | |
106 uint32 done = 0; | |
107 uint8 zero[1] = {0}; | |
108 | |
109 EVP_MD_CTX ctx; | |
110 EVP_MD_CTX_init(&context); | |
111 | |
112 for (uint32 i = 0; done < cipher_key_length; i++) { | |
113 CHECK_EQ(EVP_DigestInit_ex(&ctx, hash_function, NULL), 1); | |
114 | |
115 for (uint32 j = 0; j < i; j++) | |
116 EVP_DigestUpdate(&ctx, zero, sizeof(zero)); | |
117 | |
118 uint32 written = 0; | |
119 while (written < count) { | |
120 if (written + combined_len > count) { | |
121 uint32 todo = count - written; | |
122 EVP_DigestUpdate(&ctx, combined.data(), todo); | |
123 written = count; | |
124 } else { | |
125 EVP_DigestUpdate(&ctx, combined.data(), combined_len); | |
126 written += combined_len; | |
127 } | |
128 } | |
129 | |
130 uint32 num_hash_bytes; | |
131 uint8 hash[EVP_MAX_MD_SIZE]; | |
132 CHECK_EQ(EVP_DigestFinal_ex(&ctx, hash, &num_hash_bytes), 1); | |
133 | |
134 uint32 todo = cipher_key_length - done; | |
135 if (todo > num_hash_bytes) | |
136 todo = num_hash_bytes; | |
137 memcpy(out_key + done, hash, todo); | |
138 done += todo; | |
139 } | |
140 | |
141 EVP_MD_CTX_cleanup(&context); | |
142 } | |
143 | |
144 // These constants are the tag numbers for the various packet types that we | |
145 // use. | |
146 static const uint32 kSymmetricKeyEncryptedTag = 3; | |
147 static const uint32 kSymmetricallyEncryptedTag = 18; | |
148 static const uint32 kCompressedTag = 8; | |
149 static const uint32 kLiteralDataTag = 11; | |
150 | |
151 class Decrypter { | |
152 public: | |
153 ~Decrypter() { | |
154 for (std::vector<void*>::iterator | |
155 i = arena_.begin(); i != arena_.end(); i++) { | |
156 free(*i); | |
157 } | |
158 arena_.clear(); | |
159 } | |
160 | |
161 OpenPGPSymmetricEncrytion::Result Decrypt(base::StringPiece in, | |
162 base::StringPiece passphrase, | |
163 base::StringPiece *out_contents) { | |
164 Reader reader(in); | |
165 uint32 tag; | |
166 base::StringPiece contents; | |
167 AES_KEY key; | |
168 | |
169 if (!ParsePacket(&reader, &tag, &contents)) | |
170 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
171 if (tag != kSymmetricKeyEncryptedTag) | |
172 return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED; | |
173 Reader inner(contents); | |
174 OpenPGPSymmetricEncrytion::Result result = | |
175 ParseSymmetricKeyEncrypted(&inner, passphrase, &key); | |
176 if (result != OpenPGPSymmetricEncrytion::OK) | |
177 return result; | |
178 | |
179 if (!ParsePacket(&reader, &tag, &contents)) | |
180 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
181 if (tag != kSymmetricallyEncryptedTag) | |
182 return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED; | |
183 if (!reader.empty()) | |
184 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
185 inner = Reader(contents); | |
186 if (!ParseSymmetricallyEncrypted(&inner, &key, &contents)) | |
187 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
188 | |
189 reader = Reader(contents); | |
190 if (!ParsePacket(&reader, &tag, &contents)) | |
191 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
192 if (tag == kCompressedTag) | |
193 return OpenPGPSymmetricEncrytion::COMPRESSED; | |
194 if (tag != kLiteralDataTag) | |
195 return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED; | |
196 inner = Reader(contents); | |
197 if (!ParseLiteralData(&inner, out_contents)) | |
198 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
199 | |
200 return OpenPGPSymmetricEncrytion::OK; | |
201 } | |
202 | |
203 private: | |
204 // ParsePacket parses an OpenPGP packet from reader. See RFC 4880, section | |
205 // 4.2.2. | |
206 bool ParsePacket(Reader *reader, | |
207 uint32 *out_tag, | |
208 base::StringPiece *out_contents) { | |
209 uint8 header; | |
210 if (!reader->U8(&header)) | |
211 return false; | |
212 if ((header & 0x80) == 0) { | |
213 // Tag byte must have MSB set. | |
214 return false; | |
215 } | |
216 | |
217 if ((header & 0x40) == 0) { | |
218 // Old format packet. | |
219 *out_tag = (header & 0x3f) >> 2; | |
220 | |
221 uint8 length_type = header & 3; | |
222 if (length_type == 3) { | |
223 *out_contents = reader->Remainder(); | |
224 return true; | |
225 } | |
226 | |
227 const uint32 length_bytes = 1 << length_type; | |
228 uint32 length = 0; | |
229 for (uint32 i = 0; i < length_bytes; i++) { | |
230 uint8 length_byte; | |
231 if (!reader->U8(&length_byte)) | |
232 return false; | |
233 length <<= 8; | |
234 length |= length_byte; | |
235 } | |
236 | |
237 return reader->Prefix(length, out_contents); | |
238 } | |
239 | |
240 // New format packet. | |
241 *out_tag = header & 0x3f; | |
242 uint32 length; | |
243 bool is_partial; | |
244 if (!ParseLength(reader, &length, &is_partial)) | |
245 return false; | |
246 if (is_partial) | |
247 return ParseStreamContents(reader, length, out_contents); | |
248 return reader->Prefix(length, out_contents); | |
249 } | |
250 | |
251 // ParseStreamContents parses all the chunks of a partial length stream from | |
252 // reader. See http://tools.ietf.org/html/rfc4880#section-4.2.2.4 | |
253 bool ParseStreamContents(Reader *reader, | |
254 uint32 length, | |
255 base::StringPiece *out_contents) { | |
256 const Reader::Position beginning_of_stream = reader->tell(); | |
257 const uint32 first_chunk_length = length; | |
258 | |
259 // First we parse the stream to find its length. | |
260 if (!reader->Skip(length)) | |
261 return false; | |
262 | |
263 for (;;) { | |
264 uint32 chunk_length; | |
265 bool is_partial; | |
266 | |
267 if (!ParseLength(reader, &chunk_length, &is_partial)) | |
268 return false; | |
269 if (length + chunk_length < length) | |
270 return false; | |
271 length += chunk_length; | |
272 if (!reader->Skip(chunk_length)) | |
273 return false; | |
274 if (!is_partial) | |
275 break; | |
276 } | |
277 | |
278 // Now we have the length of the whole stream in |length|. | |
279 char* buf = reinterpret_cast<char*>(malloc(length)); | |
280 arena_.push_back(buf); | |
281 uint32 j = 0; | |
282 reader->Seek(beginning_of_stream); | |
283 | |
284 base::StringPiece first_chunk; | |
285 if (!reader->Prefix(first_chunk_length, &first_chunk)) | |
286 return false; | |
287 memcpy(buf + j, first_chunk.data(), first_chunk_length); | |
288 j += first_chunk_length; | |
289 | |
290 // Now we parse the stream again, this time copying into |buf| | |
291 for (;;) { | |
292 uint32 chunk_length; | |
293 bool is_partial; | |
294 | |
295 if (!ParseLength(reader, &chunk_length, &is_partial)) | |
296 return false; | |
297 base::StringPiece chunk; | |
298 if (!reader->Prefix(chunk_length, &chunk)) | |
299 return false; | |
300 memcpy(buf + j, chunk.data(), chunk_length); | |
301 j += chunk_length; | |
302 if (!is_partial) | |
303 break; | |
304 } | |
305 | |
306 *out_contents = base::StringPiece(buf, length); | |
307 return true; | |
308 } | |
309 | |
310 // ParseLength parses an OpenPGP length from reader. See RFC 4880, section | |
311 // 4.2.2. | |
312 bool ParseLength(Reader *reader, uint32 *out_length, bool *out_is_prefix) { | |
313 uint8 length_spec; | |
314 if (!reader->U8(&length_spec)) | |
315 return false; | |
316 | |
317 *out_is_prefix = false; | |
318 if (length_spec < 192) { | |
319 *out_length = length_spec; | |
320 return true; | |
321 } else if (length_spec < 224) { | |
322 uint8 next_byte; | |
323 if (!reader->U8(&next_byte)) | |
324 return false; | |
325 | |
326 *out_length = (length_spec - 192) << 8; | |
327 *out_length += next_byte; | |
328 return true; | |
329 } else if (length_spec < 255) { | |
330 *out_length = 1u << (length_spec & 0x1f); | |
331 *out_is_prefix = true; | |
332 return true; | |
333 } else { | |
334 return reader->U32(out_length); | |
335 } | |
336 } | |
337 | |
338 // ParseSymmetricKeyEncrypted parses a passphrase protected session key. See | |
339 // RFC 4880, section 5.3. | |
340 OpenPGPSymmetricEncrytion::Result ParseSymmetricKeyEncrypted( | |
341 Reader *reader, | |
342 base::StringPiece passphrase, | |
343 AES_KEY *out_key) { | |
344 uint8 version, cipher, s2k_type, hash_func_id; | |
345 if (!reader->U8(&version) || version != 4) | |
346 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
347 | |
348 if (!reader->U8(&cipher) || | |
349 !reader->U8(&s2k_type) || | |
350 !reader->U8(&hash_func_id)) { | |
351 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
352 } | |
353 | |
354 uint8 cipher_key_length = OpenPGPCipherIdToKeyLength(cipher); | |
355 if (cipher_key_length == 0) | |
356 return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER; | |
357 | |
358 const EVP_MD *hash_function; | |
359 switch (hash_func_id) { | |
360 case 2: // SHA-1 | |
361 hash_function = EVP_sha1(); | |
362 break; | |
363 case 8: // SHA-256 | |
364 hash_function = EVP_sha256(); | |
365 break; | |
366 default: | |
367 return OpenPGPSymmetricEncrytion::UNKNOWN_HASH; | |
368 } | |
369 | |
370 base::StringPiece salt; | |
371 uint8 key[32]; | |
372 uint8 count_spec; | |
373 switch (s2k_type) { | |
374 case 1: | |
375 if (!reader->Prefix(8, &salt)) | |
376 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
377 case 0: | |
378 SaltedIteratedS2K(cipher_key_length, hash_function, passphrase, salt, | |
379 passphrase.size() + salt.size(), key); | |
380 break; | |
381 case 3: | |
382 if (!reader->Prefix(8, &salt) || | |
383 !reader->U8(&count_spec)) { | |
384 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
385 } | |
386 SaltedIteratedS2K( | |
387 cipher_key_length, hash_function, passphrase, salt, | |
388 static_cast<uint32>( | |
389 16 + (count_spec&15)) << ((count_spec >> 4) + 6), key); | |
390 break; | |
391 default: | |
392 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
393 } | |
394 | |
395 if (AES_set_encrypt_key(key, 8 * cipher_key_length, out_key)) | |
396 return OpenPGPSymmetricEncrytion::INTERNAL_ERROR; | |
397 | |
398 if (reader->empty()) { | |
399 // The resulting key is used directly. | |
400 return OpenPGPSymmetricEncrytion::OK; | |
401 } | |
402 | |
403 // The S2K derived key encrypts another key that follows: | |
404 base::StringPiece encrypted_key = reader->Remainder(); | |
405 if (encrypted_key.size() < 1) | |
406 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
407 | |
408 uint8* plaintext_key = reinterpret_cast<uint8*>( | |
409 malloc(encrypted_key.size())); | |
410 arena_.push_back(plaintext_key); | |
411 | |
412 int num = 0; | |
413 uint8 iv[16] = {0}; | |
414 | |
415 AES_cfb128_encrypt(reinterpret_cast<const uint8*>(encrypted_key.data()), | |
416 plaintext_key, | |
417 encrypted_key.size(), | |
418 out_key, | |
419 iv, | |
420 &num, | |
421 AES_DECRYPT); | |
422 | |
423 cipher_key_length = OpenPGPCipherIdToKeyLength(plaintext_key[0]); | |
424 if (cipher_key_length == 0) | |
425 return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER; | |
426 if (encrypted_key.size() != 1u + cipher_key_length) | |
427 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | |
428 if (AES_set_encrypt_key(plaintext_key + 1, 8 * cipher_key_length, | |
429 out_key)) { | |
430 return OpenPGPSymmetricEncrytion::INTERNAL_ERROR; | |
431 } | |
432 return OpenPGPSymmetricEncrytion::OK; | |
433 } | |
434 | |
435 uint32 OpenPGPCipherIdToKeyLength(uint8 cipher) { | |
436 switch (cipher) { | |
437 case 7: // AES-128 | |
438 return 16; | |
439 case 8: // AES-192 | |
440 return 24; | |
441 case 9: // AES-256 | |
442 return 32; | |
443 default: | |
444 return 0; | |
445 } | |
446 } | |
447 | |
448 // ParseSymmetricallyEncrypted parses a Symmetrically Encrypted packet. See | |
449 // RFC 4880, sections 5.7 and 5.13. | |
450 bool ParseSymmetricallyEncrypted(Reader *reader, | |
451 AES_KEY *key, | |
452 base::StringPiece *out_plaintext) { | |
453 uint8 version; | |
454 if (!reader->U8(&version) || version != 1) | |
455 return false; | |
456 | |
457 base::StringPiece prefix_sp; | |
458 if (!reader->Prefix(AES_BLOCK_SIZE + 2, &prefix_sp)) | |
459 return false; | |
460 uint8 prefix[AES_BLOCK_SIZE + 2]; | |
461 memcpy(prefix, prefix_sp.data(), sizeof(prefix)); | |
462 | |
463 uint8 prefix_copy[AES_BLOCK_SIZE + 2]; | |
464 uint8 fre[AES_BLOCK_SIZE]; | |
465 | |
466 memset(prefix_copy, 0, AES_BLOCK_SIZE); | |
467 AES_ecb_encrypt(prefix_copy, fre, key, AES_ENCRYPT); | |
468 for (uint32 i = 0; i < AES_BLOCK_SIZE; i++) | |
469 prefix_copy[i] = fre[i] ^ prefix[i]; | |
470 AES_ecb_encrypt(prefix, fre, key, AES_ENCRYPT); | |
471 prefix_copy[AES_BLOCK_SIZE] = prefix[AES_BLOCK_SIZE] ^ fre[0]; | |
472 prefix_copy[AES_BLOCK_SIZE + 1] = prefix[AES_BLOCK_SIZE + 1] ^ fre[1]; | |
473 | |
474 if (prefix_copy[AES_BLOCK_SIZE - 2] != prefix_copy[AES_BLOCK_SIZE] || | |
475 prefix_copy[AES_BLOCK_SIZE - 1] != prefix_copy[AES_BLOCK_SIZE + 1]) { | |
476 return false; | |
477 } | |
478 | |
479 fre[0] = prefix[AES_BLOCK_SIZE]; | |
480 fre[1] = prefix[AES_BLOCK_SIZE + 1]; | |
481 | |
482 uint32 out_used = 2; | |
483 | |
484 const uint32 plaintext_size = reader->size(); | |
485 if (plaintext_size < SHA_DIGEST_LENGTH + 2) { | |
486 // Too small to contain an MDC trailer. | |
487 return false; | |
488 } | |
489 | |
490 uint8* plaintext = reinterpret_cast<uint8*>(malloc(plaintext_size)); | |
491 arena_.push_back(plaintext); | |
492 | |
493 for (uint32 i = 0; i < plaintext_size; i++) { | |
494 uint8 b; | |
495 if (!reader->U8(&b)) | |
496 return false; | |
497 if (out_used == AES_BLOCK_SIZE) { | |
498 AES_ecb_encrypt(fre, fre, key, AES_ENCRYPT); | |
499 out_used = 0; | |
500 } | |
501 | |
502 plaintext[i] = b ^ fre[out_used]; | |
503 fre[out_used++] = b; | |
504 } | |
505 | |
506 // The plaintext should be followed by a Modification Detection Code | |
507 // packet. This packet is specified such that the header is always | |
508 // serialized as exactly these two bytes: | |
509 if (plaintext[plaintext_size - SHA_DIGEST_LENGTH - 2] != 0xd3 || | |
510 plaintext[plaintext_size - SHA_DIGEST_LENGTH - 1] != 0x14) { | |
511 return false; | |
512 } | |
513 | |
514 SHA_CTX sha1; | |
515 SHA1_Init(&sha1); | |
516 SHA1_Update(&sha1, prefix_copy, sizeof(prefix_copy)); | |
517 SHA1_Update(&sha1, plaintext, plaintext_size - SHA_DIGEST_LENGTH); | |
518 uint8 digest[SHA_DIGEST_LENGTH]; | |
519 SHA1_Final(digest, &sha1); | |
520 | |
521 if (memcmp(digest, &plaintext[plaintext_size - SHA_DIGEST_LENGTH], | |
522 SHA_DIGEST_LENGTH) != 0) { | |
523 return false; | |
524 } | |
525 | |
526 *out_plaintext = base::StringPiece(reinterpret_cast<char*>(plaintext), | |
527 plaintext_size - SHA_DIGEST_LENGTH); | |
528 return true; | |
529 } | |
530 | |
531 // ParseLiteralData parses a Literal Data packet. See RFC 4880, section 5.9. | |
532 bool ParseLiteralData(Reader *reader, base::StringPiece *out_data) { | |
533 uint8 is_binary, filename_len; | |
534 if (!reader->U8(&is_binary) || | |
535 !reader->U8(&filename_len) || | |
536 !reader->Skip(filename_len) || | |
537 !reader->Skip(sizeof(uint32) /* mtime */)) { | |
538 return false; | |
539 } | |
540 | |
541 *out_data = reader->Remainder(); | |
542 return true; | |
543 } | |
544 | |
545 // arena_ contains malloced pointers that are used as temporary space during | |
546 // the decryption. | |
547 std::vector<void*> arena_; | |
548 }; | |
549 | |
550 class Encrypter { | |
551 public: | |
552 // ByteString is used throughout in order to avoid signedness issues with a | |
553 // std::string. | |
554 typedef std::basic_string<uint8> ByteString; | |
555 | |
556 static ByteString Encrypt(base::StringPiece plaintext, | |
557 base::StringPiece passphrase) { | |
558 ByteString key; | |
559 ByteString ske = SerializeSymmetricKeyEncrypted(passphrase, &key); | |
560 | |
561 ByteString literal_data = SerializeLiteralData(plaintext); | |
562 ByteString se = SerializeSymmetricallyEncrypted(literal_data, key); | |
563 return ske + se; | |
564 } | |
565 | |
566 private: | |
567 static ByteString MakePacket(uint32 tag, const ByteString& contents) { | |
568 ByteString header; | |
569 header.push_back(0x80 | 0x40 | tag); | |
570 | |
571 if (contents.size() < 192) { | |
572 header.push_back(contents.size()); | |
573 } else if (contents.size() < 8384) { | |
574 size_t length = contents.size(); | |
575 length -= 192; | |
576 header.push_back(192 + (length >> 8)); | |
577 header.push_back(length & 0xff); | |
578 } else { | |
579 size_t length = contents.size(); | |
580 header.push_back(255); | |
581 header.push_back(length >> 24); | |
582 header.push_back(length >> 16); | |
583 header.push_back(length >> 8); | |
584 header.push_back(length); | |
585 } | |
586 | |
587 return header + contents; | |
588 } | |
589 | |
590 static ByteString SerializeLiteralData(base::StringPiece contents) { | |
591 ByteString literal_data; | |
592 literal_data.push_back(0x74); // text mode | |
593 literal_data.push_back(0x00); // no filename | |
594 literal_data.push_back(0x00); // zero mtime | |
595 literal_data.push_back(0x00); | |
596 literal_data.push_back(0x00); | |
597 literal_data.push_back(0x00); | |
598 literal_data += ByteString(reinterpret_cast<const uint8*>(contents.data()), | |
599 contents.size()); | |
600 return MakePacket(kLiteralDataTag, literal_data); | |
601 } | |
602 | |
603 static ByteString SerializeSymmetricKeyEncrypted(base::StringPiece passphrase, | |
604 ByteString *out_key) { | |
605 ByteString ske; | |
606 ske.push_back(4); // version 4 | |
607 ske.push_back(7); // AES-128 | |
608 ske.push_back(3); // iterated and salted S2K | |
609 ske.push_back(2); // SHA-1 | |
610 | |
611 uint64 salt64 = base::RandUint64(); | |
612 ByteString salt(sizeof(salt64), 0); | |
613 | |
614 // It's a random value, so endianness doesn't matter. | |
615 ske += ByteString(reinterpret_cast<uint8*>(&salt64), sizeof(salt64)); | |
616 ske.push_back(96); // iteration count of 65536 | |
617 | |
618 uint8 key[16]; | |
619 SaltedIteratedS2K( | |
620 sizeof(key), EVP_sha1(), passphrase, | |
621 base::StringPiece(reinterpret_cast<char*>(&salt64), sizeof(salt64)), | |
622 65536, key); | |
623 *out_key = ByteString(key, sizeof(key)); | |
624 return MakePacket(kSymmetricKeyEncryptedTag, ske); | |
625 } | |
626 | |
627 static ByteString SerializeSymmetricallyEncrypted(ByteString plaintext, | |
628 const ByteString& key) { | |
629 ByteString packet; | |
630 packet.push_back(1); // version 1 | |
631 static const uint32 kBlockSize = 16; // AES block size | |
632 | |
633 uint8 prefix[kBlockSize + 2], fre[kBlockSize], iv[kBlockSize]; | |
634 base::RandBytes(iv, kBlockSize); | |
635 memset(fre, 0, sizeof(fre)); | |
636 | |
637 AES_KEY aes_key; | |
638 AES_set_encrypt_key(key.data(), 8 * key.size(), &aes_key); | |
639 | |
640 AES_ecb_encrypt(fre, fre, &aes_key, AES_ENCRYPT); | |
641 for (uint32 i = 0; i < 16; i++) | |
642 prefix[i] = iv[i] ^ fre[i]; | |
643 AES_ecb_encrypt(prefix, fre, &aes_key, AES_ENCRYPT); | |
644 prefix[kBlockSize] = iv[kBlockSize - 2] ^ fre[0]; | |
645 prefix[kBlockSize + 1] = iv[kBlockSize - 1] ^ fre[1]; | |
646 | |
647 packet += ByteString(prefix, sizeof(prefix)); | |
648 | |
649 ByteString plaintext_copy = plaintext; | |
650 plaintext_copy.push_back(0xd3); // MDC packet | |
651 plaintext_copy.push_back(20); // packet length (20 bytes) | |
652 | |
653 SHA_CTX sha1; | |
654 SHA1_Init(&sha1); | |
655 SHA1_Update(&sha1, iv, sizeof(iv)); | |
656 SHA1_Update(&sha1, iv + kBlockSize - 2, 2); | |
657 SHA1_Update(&sha1, plaintext_copy.data(), plaintext_copy.size()); | |
658 uint8 digest[SHA_DIGEST_LENGTH]; | |
659 SHA1_Final(digest, &sha1); | |
660 | |
661 plaintext_copy += ByteString(digest, sizeof(digest)); | |
662 | |
663 fre[0] = prefix[kBlockSize]; | |
664 fre[1] = prefix[kBlockSize+1]; | |
665 uint32 out_used = 2; | |
666 | |
667 for (size_t i = 0; i < plaintext_copy.size(); i++) { | |
668 if (out_used == kBlockSize) { | |
669 AES_ecb_encrypt(fre, fre, &aes_key, AES_ENCRYPT); | |
670 out_used = 0; | |
671 } | |
672 | |
673 uint8 c = plaintext_copy[i] ^ fre[out_used]; | |
674 fre[out_used++] = c; | |
675 packet.push_back(c); | |
676 } | |
677 | |
678 return MakePacket(kSymmetricallyEncryptedTag, packet); | |
679 } | |
680 }; | |
681 | |
682 } // anonymous namespace | |
683 | |
684 // static | |
685 OpenPGPSymmetricEncrytion::Result OpenPGPSymmetricEncrytion::Decrypt( | |
686 base::StringPiece encrypted, | |
687 base::StringPiece passphrase, | |
688 std::string *out) { | |
689 Decrypter decrypter; | |
690 | |
691 base::StringPiece result; | |
692 Result reader = decrypter.Decrypt(encrypted, passphrase, &result); | |
693 if (reader == OK) | |
694 *out = result.as_string(); | |
695 return reader; | |
696 } | |
697 | |
698 // static | |
699 std::string OpenPGPSymmetricEncrytion::Encrypt( | |
700 base::StringPiece plaintext, | |
701 base::StringPiece passphrase) { | |
702 Encrypter::ByteString b = | |
703 Encrypter::Encrypt(plaintext, passphrase); | |
704 return std::string(reinterpret_cast<const char*>(b.data()), b.size()); | |
705 } | |
706 | |
707 } // namespace crypto | |
OLD | NEW |