OLD | NEW |
---|---|
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "crypto/openpgp_symmetric_encryption.h" | 5 #include "crypto/openpgp_symmetric_encryption.h" |
6 | 6 |
7 #include <vector> | 7 #include <vector> |
wtc
2011/07/01 18:33:32
<vector> is a C++ system header, so it should be l
agl
2011/07/01 20:04:59
Done.
| |
8 #include <stdlib.h> | 8 #include <stdlib.h> |
9 | 9 |
10 #include <openssl/evp.h> | 10 #include <sechash.h> |
11 #include <openssl/aes.h> | 11 #include <cryptohi.h> |
12 #include <openssl/sha.h> | |
13 | 12 |
13 #include "base/logging.h" | |
14 #include "base/rand_util.h" | 14 #include "base/rand_util.h" |
15 #include "base/logging.h" | 15 #include "crypto/scoped_nss_types.h" |
16 | 16 |
17 namespace crypto { | 17 namespace crypto { |
18 | 18 |
19 namespace { | 19 namespace { |
20 | 20 |
21 // Reader wraps a StringPiece and provides methods to read several datatypes | 21 // Reader wraps a StringPiece and provides methods to read several datatypes |
22 // while advancing the StringPiece. | 22 // while advancing the StringPiece. |
23 class Reader { | 23 class Reader { |
24 public: | 24 public: |
25 Reader(base::StringPiece input) | 25 Reader(base::StringPiece input) |
(...skipping 14 matching lines...) Expand all Loading... | |
40 *out = static_cast<uint32>(data_[0]) << 24 | | 40 *out = static_cast<uint32>(data_[0]) << 24 | |
41 static_cast<uint32>(data_[1]) << 16 | | 41 static_cast<uint32>(data_[1]) << 16 | |
42 static_cast<uint32>(data_[2]) << 8 | | 42 static_cast<uint32>(data_[2]) << 8 | |
43 static_cast<uint32>(data_[3]); | 43 static_cast<uint32>(data_[3]); |
44 data_.remove_prefix(4); | 44 data_.remove_prefix(4); |
45 return true; | 45 return true; |
46 } | 46 } |
47 | 47 |
48 // Prefix sets |*out| to the first |n| bytes of the StringPiece and advances | 48 // Prefix sets |*out| to the first |n| bytes of the StringPiece and advances |
49 // the StringPiece by |n|. | 49 // the StringPiece by |n|. |
50 bool Prefix(uint32 n, base::StringPiece *out) { | 50 bool Prefix(size_t n, base::StringPiece *out) { |
51 if (data_.size() < n) | 51 if (data_.size() < n) |
52 return false; | 52 return false; |
53 *out = base::StringPiece(data_.data(), n); | 53 *out = base::StringPiece(data_.data(), n); |
54 data_.remove_prefix(n); | 54 data_.remove_prefix(n); |
55 return true; | 55 return true; |
56 } | 56 } |
57 | 57 |
58 // Remainder returns the remainer of the StringPiece and advances it to the | 58 // Remainder returns the remainer of the StringPiece and advances it to the |
59 // end. | 59 // end. |
60 base::StringPiece Remainder() { | 60 base::StringPiece Remainder() { |
61 base::StringPiece ret = data_; | 61 base::StringPiece ret = data_; |
62 data_ = base::StringPiece(); | 62 data_ = base::StringPiece(); |
63 return ret; | 63 return ret; |
64 } | 64 } |
65 | 65 |
66 typedef base::StringPiece Position; | 66 typedef base::StringPiece Position; |
67 | 67 |
68 Position tell() const { | 68 Position tell() const { |
69 return data_; | 69 return data_; |
70 } | 70 } |
71 | 71 |
72 void Seek(Position p) { | 72 void Seek(Position p) { |
73 data_ = p; | 73 data_ = p; |
74 } | 74 } |
75 | 75 |
76 bool Skip(uint32 n) { | 76 bool Skip(size_t n) { |
77 if (data_.size() < n) | 77 if (data_.size() < n) |
78 return false; | 78 return false; |
79 data_.remove_prefix(n); | 79 data_.remove_prefix(n); |
80 return true; | 80 return true; |
81 } | 81 } |
82 | 82 |
83 bool empty() const { | 83 bool empty() const { |
84 return data_.empty(); | 84 return data_.empty(); |
85 } | 85 } |
86 | 86 |
87 size_t size() const { | 87 size_t size() const { |
88 return data_.size(); | 88 return data_.size(); |
89 } | 89 } |
90 | 90 |
91 private: | 91 private: |
92 base::StringPiece data_; | 92 base::StringPiece data_; |
93 }; | 93 }; |
94 | 94 |
95 // SaltedIteratedS2K implements the salted and iterated string-to-key | 95 // SaltedIteratedS2K implements the salted and iterated string-to-key |
96 // convertion. See RFC 4880, section 3.7.1.3. | 96 // convertion. See RFC 4880, section 3.7.1.3. |
97 void SaltedIteratedS2K(uint32 cipher_key_length, | 97 void SaltedIteratedS2K(unsigned cipher_key_length, |
98 const EVP_MD *hash_function, | 98 HASH_HashType hash_function, |
99 base::StringPiece passphrase, | 99 base::StringPiece passphrase, |
100 base::StringPiece salt, | 100 base::StringPiece salt, |
101 uint32 count, | 101 unsigned count, |
102 uint8 *out_key) { | 102 uint8 *out_key) { |
103 const std::string combined = salt.as_string() + passphrase.as_string(); | 103 const std::string combined = salt.as_string() + passphrase.as_string(); |
104 const size_t combined_len = combined.size(); | 104 const size_t combined_len = combined.size(); |
105 | 105 |
106 uint32 done = 0; | 106 unsigned done = 0; |
107 uint8 zero[1] = {0}; | 107 uint8 zero[1] = {0}; |
108 | 108 |
109 EVP_MD_CTX ctx; | 109 const struct SECHashObjectStr* hash = HASH_GetHashObject(hash_function); |
wtc
2011/07/01 18:33:32
struct SECHashObjectStr => SECHashObject
Please s
agl
2011/07/01 20:04:59
Done.
| |
110 EVP_MD_CTX_init(&context); | 110 void* hash_context = hash->create(); |
111 | 111 |
112 for (uint32 i = 0; done < cipher_key_length; i++) { | 112 for (unsigned i = 0; done < cipher_key_length; i++) { |
113 CHECK_EQ(EVP_DigestInit_ex(&ctx, hash_function, NULL), 1); | 113 hash->begin(hash_context); |
114 | 114 |
115 for (uint32 j = 0; j < i; j++) | 115 for (unsigned j = 0; j < i; j++) |
116 EVP_DigestUpdate(&ctx, zero, sizeof(zero)); | 116 hash->update(hash_context, zero, sizeof(zero)); |
117 | 117 |
118 uint32 written = 0; | 118 unsigned written = 0; |
119 while (written < count) { | 119 while (written < count) { |
120 if (written + combined_len > count) { | 120 if (written + combined_len > count) { |
121 uint32 todo = count - written; | 121 unsigned todo = count - written; |
122 EVP_DigestUpdate(&ctx, combined.data(), todo); | 122 hash->update(hash_context, |
123 reinterpret_cast<const uint8*>(combined.data()), | |
124 todo); | |
123 written = count; | 125 written = count; |
124 } else { | 126 } else { |
125 EVP_DigestUpdate(&ctx, combined.data(), combined_len); | 127 hash->update(hash_context, |
128 reinterpret_cast<const uint8*>(combined.data()), | |
129 combined_len); | |
126 written += combined_len; | 130 written += combined_len; |
127 } | 131 } |
128 } | 132 } |
129 | 133 |
130 uint32 num_hash_bytes; | 134 unsigned num_hash_bytes; |
131 uint8 hash[EVP_MAX_MD_SIZE]; | 135 uint8 digest[HASH_LENGTH_MAX]; |
132 CHECK_EQ(EVP_DigestFinal_ex(&ctx, hash, &num_hash_bytes), 1); | 136 hash->end(hash_context, digest, &num_hash_bytes, sizeof(digest)); |
133 | 137 |
134 uint32 todo = cipher_key_length - done; | 138 unsigned todo = cipher_key_length - done; |
135 if (todo > num_hash_bytes) | 139 if (todo > num_hash_bytes) |
136 todo = num_hash_bytes; | 140 todo = num_hash_bytes; |
137 memcpy(out_key + done, hash, todo); | 141 memcpy(out_key + done, digest, todo); |
138 done += todo; | 142 done += todo; |
139 } | 143 } |
140 | 144 |
141 EVP_MD_CTX_cleanup(&context); | 145 hash->destroy(hash_context, PR_TRUE); |
142 } | 146 } |
143 | 147 |
148 // SetKey sets up |out_key| to be an AES context, with the given key, in ECB | |
149 // mode and with no IV. | |
150 bool SetKey(const uint8* key, unsigned key_len, ScopedPK11Context* out_key) { | |
wtc
2011/07/01 18:33:32
This function should be named CreateAESContext.
agl
2011/07/01 20:04:59
Done.
| |
151 ScopedPK11Slot slot(PK11_GetBestSlot(CKM_AES_ECB, NULL)); | |
152 if (!slot.get()) | |
153 return false; | |
154 SECItem key_item; | |
155 key_item.type = siBuffer; | |
156 key_item.data = const_cast<uint8*>(key); | |
157 key_item.len = key_len; | |
158 ScopedPK11SymKey pk11_key(PK11_ImportSymKey( | |
159 slot.get(), CKM_AES_ECB, PK11_OriginUnwrap, CKA_ENCRYPT, &key_item, | |
160 NULL)); | |
161 if (!pk11_key.get()) | |
162 return false; | |
163 ScopedSECItem iv_param(PK11_ParamFromIV(CKM_AES_ECB, NULL)); | |
164 out_key->reset(PK11_CreateContextBySymKey(CKM_AES_ECB, CKA_ENCRYPT, | |
165 pk11_key.get(), iv_param.get())); | |
166 return out_key->get() != NULL; | |
167 } | |
168 | |
169 | |
144 // These constants are the tag numbers for the various packet types that we | 170 // These constants are the tag numbers for the various packet types that we |
145 // use. | 171 // use. |
146 static const uint32 kSymmetricKeyEncryptedTag = 3; | 172 static const unsigned kSymmetricKeyEncryptedTag = 3; |
147 static const uint32 kSymmetricallyEncryptedTag = 18; | 173 static const unsigned kSymmetricallyEncryptedTag = 18; |
148 static const uint32 kCompressedTag = 8; | 174 static const unsigned kCompressedTag = 8; |
149 static const uint32 kLiteralDataTag = 11; | 175 static const unsigned kLiteralDataTag = 11; |
150 | 176 |
151 class Decrypter { | 177 class Decrypter { |
152 public: | 178 public: |
153 ~Decrypter() { | 179 ~Decrypter() { |
154 for (std::vector<void*>::iterator | 180 for (std::vector<void*>::iterator |
155 i = arena_.begin(); i != arena_.end(); i++) { | 181 i = arena_.begin(); i != arena_.end(); i++) { |
156 free(*i); | 182 free(*i); |
157 } | 183 } |
158 arena_.clear(); | 184 arena_.clear(); |
159 } | 185 } |
160 | 186 |
161 OpenPGPSymmetricEncrytion::Result Decrypt(base::StringPiece in, | 187 OpenPGPSymmetricEncrytion::Result Decrypt(base::StringPiece in, |
162 base::StringPiece passphrase, | 188 base::StringPiece passphrase, |
163 base::StringPiece *out_contents) { | 189 base::StringPiece *out_contents) { |
164 Reader reader(in); | 190 Reader reader(in); |
165 uint32 tag; | 191 unsigned tag; |
166 base::StringPiece contents; | 192 base::StringPiece contents; |
167 AES_KEY key; | 193 ScopedPK11Context key; |
wtc
2011/07/01 18:33:32
"key" is a strange name for a PK11Context. I thin
agl
2011/07/01 20:04:59
Done.
| |
168 | 194 |
169 if (!ParsePacket(&reader, &tag, &contents)) | 195 if (!ParsePacket(&reader, &tag, &contents)) |
170 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | 196 return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
171 if (tag != kSymmetricKeyEncryptedTag) | 197 if (tag != kSymmetricKeyEncryptedTag) |
172 return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED; | 198 return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED; |
173 Reader inner(contents); | 199 Reader inner(contents); |
174 OpenPGPSymmetricEncrytion::Result result = | 200 OpenPGPSymmetricEncrytion::Result result = |
175 ParseSymmetricKeyEncrypted(&inner, passphrase, &key); | 201 ParseSymmetricKeyEncrypted(&inner, passphrase, &key); |
176 if (result != OpenPGPSymmetricEncrytion::OK) | 202 if (result != OpenPGPSymmetricEncrytion::OK) |
177 return result; | 203 return result; |
(...skipping 19 matching lines...) Expand all Loading... | |
197 if (!ParseLiteralData(&inner, out_contents)) | 223 if (!ParseLiteralData(&inner, out_contents)) |
198 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | 224 return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
199 | 225 |
200 return OpenPGPSymmetricEncrytion::OK; | 226 return OpenPGPSymmetricEncrytion::OK; |
201 } | 227 } |
202 | 228 |
203 private: | 229 private: |
204 // ParsePacket parses an OpenPGP packet from reader. See RFC 4880, section | 230 // ParsePacket parses an OpenPGP packet from reader. See RFC 4880, section |
205 // 4.2.2. | 231 // 4.2.2. |
206 bool ParsePacket(Reader *reader, | 232 bool ParsePacket(Reader *reader, |
207 uint32 *out_tag, | 233 unsigned *out_tag, |
208 base::StringPiece *out_contents) { | 234 base::StringPiece *out_contents) { |
209 uint8 header; | 235 uint8 header; |
210 if (!reader->U8(&header)) | 236 if (!reader->U8(&header)) |
211 return false; | 237 return false; |
212 if ((header & 0x80) == 0) { | 238 if ((header & 0x80) == 0) { |
213 // Tag byte must have MSB set. | 239 // Tag byte must have MSB set. |
214 return false; | 240 return false; |
215 } | 241 } |
216 | 242 |
217 if ((header & 0x40) == 0) { | 243 if ((header & 0x40) == 0) { |
218 // Old format packet. | 244 // Old format packet. |
219 *out_tag = (header & 0x3f) >> 2; | 245 *out_tag = (header & 0x3f) >> 2; |
220 | 246 |
221 uint8 length_type = header & 3; | 247 uint8 length_type = header & 3; |
222 if (length_type == 3) { | 248 if (length_type == 3) { |
223 *out_contents = reader->Remainder(); | 249 *out_contents = reader->Remainder(); |
224 return true; | 250 return true; |
225 } | 251 } |
226 | 252 |
227 const uint32 length_bytes = 1 << length_type; | 253 const unsigned length_bytes = 1 << length_type; |
228 uint32 length = 0; | 254 size_t length = 0; |
229 for (uint32 i = 0; i < length_bytes; i++) { | 255 for (unsigned i = 0; i < length_bytes; i++) { |
230 uint8 length_byte; | 256 uint8 length_byte; |
231 if (!reader->U8(&length_byte)) | 257 if (!reader->U8(&length_byte)) |
232 return false; | 258 return false; |
233 length <<= 8; | 259 length <<= 8; |
234 length |= length_byte; | 260 length |= length_byte; |
235 } | 261 } |
236 | 262 |
237 return reader->Prefix(length, out_contents); | 263 return reader->Prefix(length, out_contents); |
238 } | 264 } |
239 | 265 |
240 // New format packet. | 266 // New format packet. |
241 *out_tag = header & 0x3f; | 267 *out_tag = header & 0x3f; |
242 uint32 length; | 268 size_t length; |
243 bool is_partial; | 269 bool is_partial; |
244 if (!ParseLength(reader, &length, &is_partial)) | 270 if (!ParseLength(reader, &length, &is_partial)) |
245 return false; | 271 return false; |
246 if (is_partial) | 272 if (is_partial) |
247 return ParseStreamContents(reader, length, out_contents); | 273 return ParseStreamContents(reader, length, out_contents); |
248 return reader->Prefix(length, out_contents); | 274 return reader->Prefix(length, out_contents); |
249 } | 275 } |
250 | 276 |
251 // ParseStreamContents parses all the chunks of a partial length stream from | 277 // ParseStreamContents parses all the chunks of a partial length stream from |
252 // reader. See http://tools.ietf.org/html/rfc4880#section-4.2.2.4 | 278 // reader. See http://tools.ietf.org/html/rfc4880#section-4.2.2.4 |
253 bool ParseStreamContents(Reader *reader, | 279 bool ParseStreamContents(Reader *reader, |
254 uint32 length, | 280 size_t length, |
255 base::StringPiece *out_contents) { | 281 base::StringPiece *out_contents) { |
256 const Reader::Position beginning_of_stream = reader->tell(); | 282 const Reader::Position beginning_of_stream = reader->tell(); |
257 const uint32 first_chunk_length = length; | 283 const size_t first_chunk_length = length; |
258 | 284 |
259 // First we parse the stream to find its length. | 285 // First we parse the stream to find its length. |
260 if (!reader->Skip(length)) | 286 if (!reader->Skip(length)) |
261 return false; | 287 return false; |
262 | 288 |
263 for (;;) { | 289 for (;;) { |
264 uint32 chunk_length; | 290 size_t chunk_length; |
265 bool is_partial; | 291 bool is_partial; |
266 | 292 |
267 if (!ParseLength(reader, &chunk_length, &is_partial)) | 293 if (!ParseLength(reader, &chunk_length, &is_partial)) |
268 return false; | 294 return false; |
269 if (length + chunk_length < length) | 295 if (length + chunk_length < length) |
270 return false; | 296 return false; |
271 length += chunk_length; | 297 length += chunk_length; |
272 if (!reader->Skip(chunk_length)) | 298 if (!reader->Skip(chunk_length)) |
273 return false; | 299 return false; |
274 if (!is_partial) | 300 if (!is_partial) |
275 break; | 301 break; |
276 } | 302 } |
277 | 303 |
278 // Now we have the length of the whole stream in |length|. | 304 // Now we have the length of the whole stream in |length|. |
279 char* buf = reinterpret_cast<char*>(malloc(length)); | 305 char* buf = reinterpret_cast<char*>(malloc(length)); |
280 arena_.push_back(buf); | 306 arena_.push_back(buf); |
281 uint32 j = 0; | 307 size_t j = 0; |
282 reader->Seek(beginning_of_stream); | 308 reader->Seek(beginning_of_stream); |
283 | 309 |
284 base::StringPiece first_chunk; | 310 base::StringPiece first_chunk; |
285 if (!reader->Prefix(first_chunk_length, &first_chunk)) | 311 if (!reader->Prefix(first_chunk_length, &first_chunk)) |
286 return false; | 312 return false; |
287 memcpy(buf + j, first_chunk.data(), first_chunk_length); | 313 memcpy(buf + j, first_chunk.data(), first_chunk_length); |
288 j += first_chunk_length; | 314 j += first_chunk_length; |
289 | 315 |
290 // Now we parse the stream again, this time copying into |buf| | 316 // Now we parse the stream again, this time copying into |buf| |
291 for (;;) { | 317 for (;;) { |
292 uint32 chunk_length; | 318 size_t chunk_length; |
293 bool is_partial; | 319 bool is_partial; |
294 | 320 |
295 if (!ParseLength(reader, &chunk_length, &is_partial)) | 321 if (!ParseLength(reader, &chunk_length, &is_partial)) |
296 return false; | 322 return false; |
297 base::StringPiece chunk; | 323 base::StringPiece chunk; |
298 if (!reader->Prefix(chunk_length, &chunk)) | 324 if (!reader->Prefix(chunk_length, &chunk)) |
299 return false; | 325 return false; |
300 memcpy(buf + j, chunk.data(), chunk_length); | 326 memcpy(buf + j, chunk.data(), chunk_length); |
301 j += chunk_length; | 327 j += chunk_length; |
302 if (!is_partial) | 328 if (!is_partial) |
303 break; | 329 break; |
304 } | 330 } |
305 | 331 |
306 *out_contents = base::StringPiece(buf, length); | 332 *out_contents = base::StringPiece(buf, length); |
307 return true; | 333 return true; |
308 } | 334 } |
309 | 335 |
310 // ParseLength parses an OpenPGP length from reader. See RFC 4880, section | 336 // ParseLength parses an OpenPGP length from reader. See RFC 4880, section |
311 // 4.2.2. | 337 // 4.2.2. |
312 bool ParseLength(Reader *reader, uint32 *out_length, bool *out_is_prefix) { | 338 bool ParseLength(Reader *reader, size_t *out_length, bool *out_is_prefix) { |
313 uint8 length_spec; | 339 uint8 length_spec; |
314 if (!reader->U8(&length_spec)) | 340 if (!reader->U8(&length_spec)) |
315 return false; | 341 return false; |
316 | 342 |
317 *out_is_prefix = false; | 343 *out_is_prefix = false; |
318 if (length_spec < 192) { | 344 if (length_spec < 192) { |
319 *out_length = length_spec; | 345 *out_length = length_spec; |
320 return true; | 346 return true; |
321 } else if (length_spec < 224) { | 347 } else if (length_spec < 224) { |
322 uint8 next_byte; | 348 uint8 next_byte; |
323 if (!reader->U8(&next_byte)) | 349 if (!reader->U8(&next_byte)) |
324 return false; | 350 return false; |
325 | 351 |
326 *out_length = (length_spec - 192) << 8; | 352 *out_length = (length_spec - 192) << 8; |
327 *out_length += next_byte; | 353 *out_length += next_byte; |
328 return true; | 354 return true; |
329 } else if (length_spec < 255) { | 355 } else if (length_spec < 255) { |
330 *out_length = 1u << (length_spec & 0x1f); | 356 *out_length = 1u << (length_spec & 0x1f); |
331 *out_is_prefix = true; | 357 *out_is_prefix = true; |
332 return true; | 358 return true; |
333 } else { | 359 } else { |
334 return reader->U32(out_length); | 360 uint32 length32; |
361 return reader->U32(&length32); | |
362 *out_length = length32; | |
wtc
2011/07/01 18:33:32
BUG: this is after the return statement. I think
agl
2011/07/01 20:04:59
Thanks!
| |
335 } | 363 } |
336 } | 364 } |
337 | 365 |
338 // ParseSymmetricKeyEncrypted parses a passphrase protected session key. See | 366 // ParseSymmetricKeyEncrypted parses a passphrase protected session key. See |
339 // RFC 4880, section 5.3. | 367 // RFC 4880, section 5.3. |
340 OpenPGPSymmetricEncrytion::Result ParseSymmetricKeyEncrypted( | 368 OpenPGPSymmetricEncrytion::Result ParseSymmetricKeyEncrypted( |
341 Reader *reader, | 369 Reader *reader, |
342 base::StringPiece passphrase, | 370 base::StringPiece passphrase, |
343 AES_KEY *out_key) { | 371 ScopedPK11Context *out_key) { |
344 uint8 version, cipher, s2k_type, hash_func_id; | 372 uint8 version, cipher, s2k_type, hash_func_id; |
345 if (!reader->U8(&version) || version != 4) | 373 if (!reader->U8(&version) || version != 4) |
346 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | 374 return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
347 | 375 |
348 if (!reader->U8(&cipher) || | 376 if (!reader->U8(&cipher) || |
349 !reader->U8(&s2k_type) || | 377 !reader->U8(&s2k_type) || |
350 !reader->U8(&hash_func_id)) { | 378 !reader->U8(&hash_func_id)) { |
351 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | 379 return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
352 } | 380 } |
353 | 381 |
354 uint8 cipher_key_length = OpenPGPCipherIdToKeyLength(cipher); | 382 uint8 cipher_key_length = OpenPGPCipherIdToKeyLength(cipher); |
355 if (cipher_key_length == 0) | 383 if (cipher_key_length == 0) |
356 return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER; | 384 return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER; |
357 | 385 |
358 const EVP_MD *hash_function; | 386 HASH_HashType hash_function; |
359 switch (hash_func_id) { | 387 switch (hash_func_id) { |
360 case 2: // SHA-1 | 388 case 2: // SHA-1 |
361 hash_function = EVP_sha1(); | 389 hash_function = HASH_AlgSHA1; |
362 break; | 390 break; |
363 case 8: // SHA-256 | 391 case 8: // SHA-256 |
364 hash_function = EVP_sha256(); | 392 hash_function = HASH_AlgSHA256; |
365 break; | 393 break; |
366 default: | 394 default: |
367 return OpenPGPSymmetricEncrytion::UNKNOWN_HASH; | 395 return OpenPGPSymmetricEncrytion::UNKNOWN_HASH; |
368 } | 396 } |
369 | 397 |
398 // This chunk of code parses the S2K specifier. See RFC 4880, section 3.7.1. | |
370 base::StringPiece salt; | 399 base::StringPiece salt; |
371 uint8 key[32]; | 400 uint8 key[32]; |
372 uint8 count_spec; | 401 uint8 count_spec; |
373 switch (s2k_type) { | 402 switch (s2k_type) { |
374 case 1: | 403 case 1: |
375 if (!reader->Prefix(8, &salt)) | 404 if (!reader->Prefix(8, &salt)) |
376 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | 405 return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
406 // fallthrough | |
wtc
2011/07/01 18:33:32
Nit: fallthrough => Fall through.
agl
2011/07/01 20:04:59
Done.
| |
377 case 0: | 407 case 0: |
378 SaltedIteratedS2K(cipher_key_length, hash_function, passphrase, salt, | 408 SaltedIteratedS2K(cipher_key_length, hash_function, passphrase, salt, |
379 passphrase.size() + salt.size(), key); | 409 passphrase.size() + salt.size(), key); |
380 break; | 410 break; |
381 case 3: | 411 case 3: |
382 if (!reader->Prefix(8, &salt) || | 412 if (!reader->Prefix(8, &salt) || |
383 !reader->U8(&count_spec)) { | 413 !reader->U8(&count_spec)) { |
384 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | 414 return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
385 } | 415 } |
386 SaltedIteratedS2K( | 416 SaltedIteratedS2K( |
387 cipher_key_length, hash_function, passphrase, salt, | 417 cipher_key_length, hash_function, passphrase, salt, |
388 static_cast<uint32>( | 418 static_cast<unsigned>( |
389 16 + (count_spec&15)) << ((count_spec >> 4) + 6), key); | 419 16 + (count_spec&15)) << ((count_spec >> 4) + 6), key); |
390 break; | 420 break; |
391 default: | 421 default: |
392 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | 422 return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
393 } | 423 } |
394 | 424 |
395 if (AES_set_encrypt_key(key, 8 * cipher_key_length, out_key)) | 425 if (!SetKey(key, cipher_key_length, out_key)) |
396 return OpenPGPSymmetricEncrytion::INTERNAL_ERROR; | 426 return OpenPGPSymmetricEncrytion::INTERNAL_ERROR; |
397 | 427 |
398 if (reader->empty()) { | 428 if (reader->empty()) { |
399 // The resulting key is used directly. | 429 // The resulting key is used directly. |
400 return OpenPGPSymmetricEncrytion::OK; | 430 return OpenPGPSymmetricEncrytion::OK; |
401 } | 431 } |
402 | 432 |
403 // The S2K derived key encrypts another key that follows: | 433 // The S2K derived key encrypts another key that follows: |
404 base::StringPiece encrypted_key = reader->Remainder(); | 434 base::StringPiece encrypted_key = reader->Remainder(); |
405 if (encrypted_key.size() < 1) | 435 if (encrypted_key.size() < 1) |
406 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | 436 return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
407 | 437 |
408 uint8* plaintext_key = reinterpret_cast<uint8*>( | 438 uint8* plaintext_key = reinterpret_cast<uint8*>( |
409 malloc(encrypted_key.size())); | 439 malloc(encrypted_key.size())); |
410 arena_.push_back(plaintext_key); | 440 arena_.push_back(plaintext_key); |
411 | 441 |
412 int num = 0; | 442 CFBDecrypt(encrypted_key, out_key, plaintext_key); |
413 uint8 iv[16] = {0}; | |
414 | |
415 AES_cfb128_encrypt(reinterpret_cast<const uint8*>(encrypted_key.data()), | |
416 plaintext_key, | |
417 encrypted_key.size(), | |
418 out_key, | |
419 iv, | |
420 &num, | |
421 AES_DECRYPT); | |
422 | 443 |
423 cipher_key_length = OpenPGPCipherIdToKeyLength(plaintext_key[0]); | 444 cipher_key_length = OpenPGPCipherIdToKeyLength(plaintext_key[0]); |
424 if (cipher_key_length == 0) | 445 if (cipher_key_length == 0) |
425 return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER; | 446 return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER; |
426 if (encrypted_key.size() != 1u + cipher_key_length) | 447 if (encrypted_key.size() != 1u + cipher_key_length) |
427 return OpenPGPSymmetricEncrytion::PARSE_ERROR; | 448 return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
428 if (AES_set_encrypt_key(plaintext_key + 1, 8 * cipher_key_length, | 449 if (!SetKey(plaintext_key + 1, cipher_key_length, out_key)) |
429 out_key)) { | |
430 return OpenPGPSymmetricEncrytion::INTERNAL_ERROR; | 450 return OpenPGPSymmetricEncrytion::INTERNAL_ERROR; |
431 } | |
432 return OpenPGPSymmetricEncrytion::OK; | 451 return OpenPGPSymmetricEncrytion::OK; |
433 } | 452 } |
434 | 453 |
435 uint32 OpenPGPCipherIdToKeyLength(uint8 cipher) { | 454 // CFBDecrypt decrypts the cipher-feedback encrypted data in |in| to |out| |
455 // using |key| and assumes an IV of all zeros. | |
456 void CFBDecrypt(base::StringPiece in, ScopedPK11Context* key, uint8* out) { | |
457 // We need this for PK11_CipherOp to write to, but we never check it as we | |
458 // work in ECB mode, one block at a time. | |
459 int out_len; | |
460 | |
461 uint8 mask[AES_BLOCK_SIZE]; | |
462 memset(mask, 0, sizeof(mask)); | |
463 | |
464 unsigned used = AES_BLOCK_SIZE; | |
465 | |
466 for (size_t i = 0; i < in.size(); i++) { | |
467 if (used == AES_BLOCK_SIZE) { | |
468 PK11_CipherOp(key->get(), mask, &out_len, sizeof(mask), mask, | |
469 AES_BLOCK_SIZE); | |
470 used = 0; | |
471 } | |
472 | |
473 uint8 t = in[i]; | |
474 out[i] = t ^ mask[used]; | |
475 mask[used] = t; | |
476 used++; | |
477 } | |
478 } | |
479 | |
480 // OpenPGPCipherIdToKeyLength converts an OpenPGP cipher id (see RFC 4880, | |
481 // section 9.2) to the key length of that cipher. It returns 0 on error. | |
482 unsigned OpenPGPCipherIdToKeyLength(uint8 cipher) { | |
436 switch (cipher) { | 483 switch (cipher) { |
437 case 7: // AES-128 | 484 case 7: // AES-128 |
438 return 16; | 485 return 16; |
439 case 8: // AES-192 | 486 case 8: // AES-192 |
440 return 24; | 487 return 24; |
441 case 9: // AES-256 | 488 case 9: // AES-256 |
442 return 32; | 489 return 32; |
443 default: | 490 default: |
444 return 0; | 491 return 0; |
445 } | 492 } |
446 } | 493 } |
447 | 494 |
448 // ParseSymmetricallyEncrypted parses a Symmetrically Encrypted packet. See | 495 // ParseSymmetricallyEncrypted parses a Symmetrically Encrypted packet. See |
449 // RFC 4880, sections 5.7 and 5.13. | 496 // RFC 4880, sections 5.7 and 5.13. |
450 bool ParseSymmetricallyEncrypted(Reader *reader, | 497 bool ParseSymmetricallyEncrypted(Reader *reader, |
451 AES_KEY *key, | 498 ScopedPK11Context *key, |
452 base::StringPiece *out_plaintext) { | 499 base::StringPiece *out_plaintext) { |
500 // We need this for PK11_CipherOp to write to, but we never check it as we | |
501 // work in ECB mode, one block at a time. | |
502 int out_len; | |
503 | |
453 uint8 version; | 504 uint8 version; |
454 if (!reader->U8(&version) || version != 1) | 505 if (!reader->U8(&version) || version != 1) |
455 return false; | 506 return false; |
456 | 507 |
457 base::StringPiece prefix_sp; | 508 base::StringPiece prefix_sp; |
458 if (!reader->Prefix(AES_BLOCK_SIZE + 2, &prefix_sp)) | 509 if (!reader->Prefix(AES_BLOCK_SIZE + 2, &prefix_sp)) |
459 return false; | 510 return false; |
460 uint8 prefix[AES_BLOCK_SIZE + 2]; | 511 uint8 prefix[AES_BLOCK_SIZE + 2]; |
461 memcpy(prefix, prefix_sp.data(), sizeof(prefix)); | 512 memcpy(prefix, prefix_sp.data(), sizeof(prefix)); |
462 | 513 |
463 uint8 prefix_copy[AES_BLOCK_SIZE + 2]; | 514 uint8 prefix_copy[AES_BLOCK_SIZE + 2]; |
464 uint8 fre[AES_BLOCK_SIZE]; | 515 uint8 fre[AES_BLOCK_SIZE]; |
465 | 516 |
466 memset(prefix_copy, 0, AES_BLOCK_SIZE); | 517 memset(prefix_copy, 0, AES_BLOCK_SIZE); |
467 AES_ecb_encrypt(prefix_copy, fre, key, AES_ENCRYPT); | 518 PK11_CipherOp(key->get(), fre, &out_len, sizeof(fre), prefix_copy, |
468 for (uint32 i = 0; i < AES_BLOCK_SIZE; i++) | 519 AES_BLOCK_SIZE); |
520 for (unsigned i = 0; i < AES_BLOCK_SIZE; i++) | |
469 prefix_copy[i] = fre[i] ^ prefix[i]; | 521 prefix_copy[i] = fre[i] ^ prefix[i]; |
470 AES_ecb_encrypt(prefix, fre, key, AES_ENCRYPT); | 522 PK11_CipherOp(key->get(), fre, &out_len, sizeof(fre), prefix, |
523 AES_BLOCK_SIZE); | |
471 prefix_copy[AES_BLOCK_SIZE] = prefix[AES_BLOCK_SIZE] ^ fre[0]; | 524 prefix_copy[AES_BLOCK_SIZE] = prefix[AES_BLOCK_SIZE] ^ fre[0]; |
472 prefix_copy[AES_BLOCK_SIZE + 1] = prefix[AES_BLOCK_SIZE + 1] ^ fre[1]; | 525 prefix_copy[AES_BLOCK_SIZE + 1] = prefix[AES_BLOCK_SIZE + 1] ^ fre[1]; |
473 | 526 |
474 if (prefix_copy[AES_BLOCK_SIZE - 2] != prefix_copy[AES_BLOCK_SIZE] || | 527 if (prefix_copy[AES_BLOCK_SIZE - 2] != prefix_copy[AES_BLOCK_SIZE] || |
475 prefix_copy[AES_BLOCK_SIZE - 1] != prefix_copy[AES_BLOCK_SIZE + 1]) { | 528 prefix_copy[AES_BLOCK_SIZE - 1] != prefix_copy[AES_BLOCK_SIZE + 1]) { |
476 return false; | 529 return false; |
477 } | 530 } |
478 | 531 |
479 fre[0] = prefix[AES_BLOCK_SIZE]; | 532 fre[0] = prefix[AES_BLOCK_SIZE]; |
480 fre[1] = prefix[AES_BLOCK_SIZE + 1]; | 533 fre[1] = prefix[AES_BLOCK_SIZE + 1]; |
481 | 534 |
482 uint32 out_used = 2; | 535 unsigned out_used = 2; |
483 | 536 |
484 const uint32 plaintext_size = reader->size(); | 537 const size_t plaintext_size = reader->size(); |
485 if (plaintext_size < SHA_DIGEST_LENGTH + 2) { | 538 if (plaintext_size < SHA1_LENGTH + 2) { |
486 // Too small to contain an MDC trailer. | 539 // Too small to contain an MDC trailer. |
487 return false; | 540 return false; |
488 } | 541 } |
489 | 542 |
490 uint8* plaintext = reinterpret_cast<uint8*>(malloc(plaintext_size)); | 543 uint8* plaintext = reinterpret_cast<uint8*>(malloc(plaintext_size)); |
491 arena_.push_back(plaintext); | 544 arena_.push_back(plaintext); |
492 | 545 |
493 for (uint32 i = 0; i < plaintext_size; i++) { | 546 for (size_t i = 0; i < plaintext_size; i++) { |
494 uint8 b; | 547 uint8 b; |
495 if (!reader->U8(&b)) | 548 if (!reader->U8(&b)) |
496 return false; | 549 return false; |
497 if (out_used == AES_BLOCK_SIZE) { | 550 if (out_used == AES_BLOCK_SIZE) { |
498 AES_ecb_encrypt(fre, fre, key, AES_ENCRYPT); | 551 PK11_CipherOp(key->get(), fre, &out_len, sizeof(fre), fre, |
552 AES_BLOCK_SIZE); | |
499 out_used = 0; | 553 out_used = 0; |
500 } | 554 } |
501 | 555 |
502 plaintext[i] = b ^ fre[out_used]; | 556 plaintext[i] = b ^ fre[out_used]; |
503 fre[out_used++] = b; | 557 fre[out_used++] = b; |
504 } | 558 } |
505 | 559 |
506 // The plaintext should be followed by a Modification Detection Code | 560 // The plaintext should be followed by a Modification Detection Code |
507 // packet. This packet is specified such that the header is always | 561 // packet. This packet is specified such that the header is always |
508 // serialized as exactly these two bytes: | 562 // serialized as exactly these two bytes: |
509 if (plaintext[plaintext_size - SHA_DIGEST_LENGTH - 2] != 0xd3 || | 563 if (plaintext[plaintext_size - SHA1_LENGTH - 2] != 0xd3 || |
510 plaintext[plaintext_size - SHA_DIGEST_LENGTH - 1] != 0x14) { | 564 plaintext[plaintext_size - SHA1_LENGTH - 1] != 0x14) { |
511 return false; | 565 return false; |
512 } | 566 } |
513 | 567 |
514 SHA_CTX sha1; | 568 const struct SECHashObjectStr* hash = HASH_GetHashObject(HASH_AlgSHA1); |
515 SHA1_Init(&sha1); | 569 void* hash_context = hash->create(); |
516 SHA1_Update(&sha1, prefix_copy, sizeof(prefix_copy)); | 570 hash->begin(hash_context); |
517 SHA1_Update(&sha1, plaintext, plaintext_size - SHA_DIGEST_LENGTH); | 571 hash->update(hash_context, prefix_copy, sizeof(prefix_copy)); |
518 uint8 digest[SHA_DIGEST_LENGTH]; | 572 hash->update(hash_context, plaintext, plaintext_size - SHA1_LENGTH); |
519 SHA1_Final(digest, &sha1); | 573 uint8 digest[SHA1_LENGTH]; |
574 unsigned num_hash_bytes; | |
575 hash->end(hash_context, digest, &num_hash_bytes, sizeof(digest)); | |
576 hash->destroy(hash_context, PR_TRUE); | |
520 | 577 |
521 if (memcmp(digest, &plaintext[plaintext_size - SHA_DIGEST_LENGTH], | 578 if (memcmp(digest, &plaintext[plaintext_size - SHA1_LENGTH], |
522 SHA_DIGEST_LENGTH) != 0) { | 579 SHA1_LENGTH) != 0) { |
523 return false; | 580 return false; |
524 } | 581 } |
525 | 582 |
526 *out_plaintext = base::StringPiece(reinterpret_cast<char*>(plaintext), | 583 *out_plaintext = base::StringPiece(reinterpret_cast<char*>(plaintext), |
527 plaintext_size - SHA_DIGEST_LENGTH); | 584 plaintext_size - SHA1_LENGTH); |
528 return true; | 585 return true; |
529 } | 586 } |
530 | 587 |
531 // ParseLiteralData parses a Literal Data packet. See RFC 4880, section 5.9. | 588 // ParseLiteralData parses a Literal Data packet. See RFC 4880, section 5.9. |
532 bool ParseLiteralData(Reader *reader, base::StringPiece *out_data) { | 589 bool ParseLiteralData(Reader *reader, base::StringPiece *out_data) { |
533 uint8 is_binary, filename_len; | 590 uint8 is_binary, filename_len; |
534 if (!reader->U8(&is_binary) || | 591 if (!reader->U8(&is_binary) || |
535 !reader->U8(&filename_len) || | 592 !reader->U8(&filename_len) || |
536 !reader->Skip(filename_len) || | 593 !reader->Skip(filename_len) || |
537 !reader->Skip(sizeof(uint32) /* mtime */)) { | 594 !reader->Skip(sizeof(uint32) /* mtime */)) { |
(...skipping 19 matching lines...) Expand all Loading... | |
557 base::StringPiece passphrase) { | 614 base::StringPiece passphrase) { |
558 ByteString key; | 615 ByteString key; |
559 ByteString ske = SerializeSymmetricKeyEncrypted(passphrase, &key); | 616 ByteString ske = SerializeSymmetricKeyEncrypted(passphrase, &key); |
560 | 617 |
561 ByteString literal_data = SerializeLiteralData(plaintext); | 618 ByteString literal_data = SerializeLiteralData(plaintext); |
562 ByteString se = SerializeSymmetricallyEncrypted(literal_data, key); | 619 ByteString se = SerializeSymmetricallyEncrypted(literal_data, key); |
563 return ske + se; | 620 return ske + se; |
564 } | 621 } |
565 | 622 |
566 private: | 623 private: |
567 static ByteString MakePacket(uint32 tag, const ByteString& contents) { | 624 // MakePacket returns an OpenPGP packet tagged as type |tag|. It always uses |
625 // new-format headers. See RFC 4880, section 4.2. | |
626 static ByteString MakePacket(unsigned tag, const ByteString& contents) { | |
568 ByteString header; | 627 ByteString header; |
569 header.push_back(0x80 | 0x40 | tag); | 628 header.push_back(0x80 | 0x40 | tag); |
570 | 629 |
571 if (contents.size() < 192) { | 630 if (contents.size() < 192) { |
572 header.push_back(contents.size()); | 631 header.push_back(contents.size()); |
573 } else if (contents.size() < 8384) { | 632 } else if (contents.size() < 8384) { |
574 size_t length = contents.size(); | 633 size_t length = contents.size(); |
575 length -= 192; | 634 length -= 192; |
576 header.push_back(192 + (length >> 8)); | 635 header.push_back(192 + (length >> 8)); |
577 header.push_back(length & 0xff); | 636 header.push_back(length & 0xff); |
578 } else { | 637 } else { |
579 size_t length = contents.size(); | 638 size_t length = contents.size(); |
580 header.push_back(255); | 639 header.push_back(255); |
581 header.push_back(length >> 24); | 640 header.push_back(length >> 24); |
582 header.push_back(length >> 16); | 641 header.push_back(length >> 16); |
583 header.push_back(length >> 8); | 642 header.push_back(length >> 8); |
584 header.push_back(length); | 643 header.push_back(length); |
585 } | 644 } |
586 | 645 |
587 return header + contents; | 646 return header + contents; |
588 } | 647 } |
589 | 648 |
649 // SerializeLiteralData returns a Literal Data packet containing |contents| | |
650 // as binary data with no filename nor mtime specified. See RFC 4880, section | |
651 // 5.9. | |
590 static ByteString SerializeLiteralData(base::StringPiece contents) { | 652 static ByteString SerializeLiteralData(base::StringPiece contents) { |
591 ByteString literal_data; | 653 ByteString literal_data; |
592 literal_data.push_back(0x74); // text mode | 654 literal_data.push_back(0x74); // text mode |
593 literal_data.push_back(0x00); // no filename | 655 literal_data.push_back(0x00); // no filename |
594 literal_data.push_back(0x00); // zero mtime | 656 literal_data.push_back(0x00); // zero mtime |
595 literal_data.push_back(0x00); | 657 literal_data.push_back(0x00); |
596 literal_data.push_back(0x00); | 658 literal_data.push_back(0x00); |
597 literal_data.push_back(0x00); | 659 literal_data.push_back(0x00); |
598 literal_data += ByteString(reinterpret_cast<const uint8*>(contents.data()), | 660 literal_data += ByteString(reinterpret_cast<const uint8*>(contents.data()), |
599 contents.size()); | 661 contents.size()); |
600 return MakePacket(kLiteralDataTag, literal_data); | 662 return MakePacket(kLiteralDataTag, literal_data); |
601 } | 663 } |
602 | 664 |
665 // SerializeSymmetricKeyEncrypted generates a random AES-128 key from | |
666 // |passphrase|, sets |out_key| to it and returns a Symmetric Key Encrypted | |
667 // packet. See RFC 4880, section 5.3. | |
603 static ByteString SerializeSymmetricKeyEncrypted(base::StringPiece passphrase, | 668 static ByteString SerializeSymmetricKeyEncrypted(base::StringPiece passphrase, |
604 ByteString *out_key) { | 669 ByteString *out_key) { |
605 ByteString ske; | 670 ByteString ske; |
606 ske.push_back(4); // version 4 | 671 ske.push_back(4); // version 4 |
607 ske.push_back(7); // AES-128 | 672 ske.push_back(7); // AES-128 |
608 ske.push_back(3); // iterated and salted S2K | 673 ske.push_back(3); // iterated and salted S2K |
609 ske.push_back(2); // SHA-1 | 674 ske.push_back(2); // SHA-1 |
610 | 675 |
611 uint64 salt64 = base::RandUint64(); | 676 uint64 salt64 = base::RandUint64(); |
612 ByteString salt(sizeof(salt64), 0); | 677 ByteString salt(sizeof(salt64), 0); |
613 | 678 |
614 // It's a random value, so endianness doesn't matter. | 679 // It's a random value, so endianness doesn't matter. |
615 ske += ByteString(reinterpret_cast<uint8*>(&salt64), sizeof(salt64)); | 680 ske += ByteString(reinterpret_cast<uint8*>(&salt64), sizeof(salt64)); |
616 ske.push_back(96); // iteration count of 65536 | 681 ske.push_back(96); // iteration count of 65536 |
617 | 682 |
618 uint8 key[16]; | 683 uint8 key[16]; |
619 SaltedIteratedS2K( | 684 SaltedIteratedS2K( |
620 sizeof(key), EVP_sha1(), passphrase, | 685 sizeof(key), HASH_AlgSHA1, passphrase, |
621 base::StringPiece(reinterpret_cast<char*>(&salt64), sizeof(salt64)), | 686 base::StringPiece(reinterpret_cast<char*>(&salt64), sizeof(salt64)), |
622 65536, key); | 687 65536, key); |
623 *out_key = ByteString(key, sizeof(key)); | 688 *out_key = ByteString(key, sizeof(key)); |
624 return MakePacket(kSymmetricKeyEncryptedTag, ske); | 689 return MakePacket(kSymmetricKeyEncryptedTag, ske); |
625 } | 690 } |
626 | 691 |
692 // SerializeSymmetricallyEncrypted encrypts |plaintext| with |key| and | |
693 // returns a Symmetrically Encrypted packet containing the ciphertext. See | |
694 // RFC 4880, section 5.7. | |
627 static ByteString SerializeSymmetricallyEncrypted(ByteString plaintext, | 695 static ByteString SerializeSymmetricallyEncrypted(ByteString plaintext, |
628 const ByteString& key) { | 696 const ByteString& key) { |
697 // We need this for PK11_CipherOp to write to, but we never check it as we | |
698 // work in ECB mode, one block at a time. | |
699 int out_len; | |
700 | |
629 ByteString packet; | 701 ByteString packet; |
630 packet.push_back(1); // version 1 | 702 packet.push_back(1); // version 1 |
631 static const uint32 kBlockSize = 16; // AES block size | 703 static const unsigned kBlockSize = 16; // AES block size |
632 | 704 |
633 uint8 prefix[kBlockSize + 2], fre[kBlockSize], iv[kBlockSize]; | 705 uint8 prefix[kBlockSize + 2], fre[kBlockSize], iv[kBlockSize]; |
634 base::RandBytes(iv, kBlockSize); | 706 base::RandBytes(iv, kBlockSize); |
635 memset(fre, 0, sizeof(fre)); | 707 memset(fre, 0, sizeof(fre)); |
636 | 708 |
637 AES_KEY aes_key; | 709 ScopedPK11Context aes_key; |
638 AES_set_encrypt_key(key.data(), 8 * key.size(), &aes_key); | 710 CHECK(SetKey(key.data(), key.size(), &aes_key)); |
639 | 711 |
640 AES_ecb_encrypt(fre, fre, &aes_key, AES_ENCRYPT); | 712 PK11_CipherOp(aes_key.get(), fre, &out_len, sizeof(fre), fre, |
641 for (uint32 i = 0; i < 16; i++) | 713 AES_BLOCK_SIZE); |
714 for (unsigned i = 0; i < 16; i++) | |
642 prefix[i] = iv[i] ^ fre[i]; | 715 prefix[i] = iv[i] ^ fre[i]; |
643 AES_ecb_encrypt(prefix, fre, &aes_key, AES_ENCRYPT); | 716 PK11_CipherOp(aes_key.get(), fre, &out_len, sizeof(fre), prefix, |
717 AES_BLOCK_SIZE); | |
644 prefix[kBlockSize] = iv[kBlockSize - 2] ^ fre[0]; | 718 prefix[kBlockSize] = iv[kBlockSize - 2] ^ fre[0]; |
645 prefix[kBlockSize + 1] = iv[kBlockSize - 1] ^ fre[1]; | 719 prefix[kBlockSize + 1] = iv[kBlockSize - 1] ^ fre[1]; |
646 | 720 |
647 packet += ByteString(prefix, sizeof(prefix)); | 721 packet += ByteString(prefix, sizeof(prefix)); |
648 | 722 |
649 ByteString plaintext_copy = plaintext; | 723 ByteString plaintext_copy = plaintext; |
650 plaintext_copy.push_back(0xd3); // MDC packet | 724 plaintext_copy.push_back(0xd3); // MDC packet |
651 plaintext_copy.push_back(20); // packet length (20 bytes) | 725 plaintext_copy.push_back(20); // packet length (20 bytes) |
652 | 726 |
653 SHA_CTX sha1; | 727 const struct SECHashObjectStr* hash = HASH_GetHashObject(HASH_AlgSHA1); |
654 SHA1_Init(&sha1); | 728 void* hash_context = hash->create(); |
655 SHA1_Update(&sha1, iv, sizeof(iv)); | 729 hash->begin(hash_context); |
656 SHA1_Update(&sha1, iv + kBlockSize - 2, 2); | 730 hash->update(hash_context, iv, sizeof(iv)); |
657 SHA1_Update(&sha1, plaintext_copy.data(), plaintext_copy.size()); | 731 hash->update(hash_context, iv + kBlockSize - 2, 2); |
658 uint8 digest[SHA_DIGEST_LENGTH]; | 732 hash->update(hash_context, plaintext_copy.data(), plaintext_copy.size()); |
659 SHA1_Final(digest, &sha1); | 733 uint8 digest[SHA1_LENGTH]; |
734 unsigned num_hash_bytes; | |
735 hash->end(hash_context, digest, &num_hash_bytes, sizeof(digest)); | |
736 hash->destroy(hash_context, PR_TRUE); | |
660 | 737 |
661 plaintext_copy += ByteString(digest, sizeof(digest)); | 738 plaintext_copy += ByteString(digest, sizeof(digest)); |
662 | 739 |
663 fre[0] = prefix[kBlockSize]; | 740 fre[0] = prefix[kBlockSize]; |
664 fre[1] = prefix[kBlockSize+1]; | 741 fre[1] = prefix[kBlockSize+1]; |
665 uint32 out_used = 2; | 742 unsigned out_used = 2; |
666 | 743 |
667 for (size_t i = 0; i < plaintext_copy.size(); i++) { | 744 for (size_t i = 0; i < plaintext_copy.size(); i++) { |
668 if (out_used == kBlockSize) { | 745 if (out_used == kBlockSize) { |
669 AES_ecb_encrypt(fre, fre, &aes_key, AES_ENCRYPT); | 746 PK11_CipherOp(aes_key.get(), fre, &out_len, sizeof(fre), fre, |
747 AES_BLOCK_SIZE); | |
670 out_used = 0; | 748 out_used = 0; |
671 } | 749 } |
672 | 750 |
673 uint8 c = plaintext_copy[i] ^ fre[out_used]; | 751 uint8 c = plaintext_copy[i] ^ fre[out_used]; |
674 fre[out_used++] = c; | 752 fre[out_used++] = c; |
675 packet.push_back(c); | 753 packet.push_back(c); |
676 } | 754 } |
677 | 755 |
678 return MakePacket(kSymmetricallyEncryptedTag, packet); | 756 return MakePacket(kSymmetricallyEncryptedTag, packet); |
679 } | 757 } |
(...skipping 18 matching lines...) Expand all Loading... | |
698 // static | 776 // static |
699 std::string OpenPGPSymmetricEncrytion::Encrypt( | 777 std::string OpenPGPSymmetricEncrytion::Encrypt( |
700 base::StringPiece plaintext, | 778 base::StringPiece plaintext, |
701 base::StringPiece passphrase) { | 779 base::StringPiece passphrase) { |
702 Encrypter::ByteString b = | 780 Encrypter::ByteString b = |
703 Encrypter::Encrypt(plaintext, passphrase); | 781 Encrypter::Encrypt(plaintext, passphrase); |
704 return std::string(reinterpret_cast<const char*>(b.data()), b.size()); | 782 return std::string(reinterpret_cast<const char*>(b.data()), b.size()); |
705 } | 783 } |
706 | 784 |
707 } // namespace crypto | 785 } // namespace crypto |
OLD | NEW |