Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(120)

Unified Diff: src/mips/code-stubs-mips.cc

Issue 7034008: Submit code-stubs-mips.cc. (Closed) Base URL: http://github.com/v8/v8.git@bleeding_edge
Patch Set: Created 9 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/mips/code-stubs-mips.h ('k') | src/mips/frames-mips.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/mips/code-stubs-mips.cc
diff --git a/src/mips/code-stubs-mips.cc b/src/mips/code-stubs-mips.cc
index d99f7241a6aa1e78bf0187700104d218b80ffba5..89981fdb193f3abaa76be880be78c463b7b0f2f2 100644
--- a/src/mips/code-stubs-mips.cc
+++ b/src/mips/code-stubs-mips.cc
@@ -40,24 +40,233 @@ namespace internal {
#define __ ACCESS_MASM(masm)
+static void EmitIdenticalObjectComparison(MacroAssembler* masm,
+ Label* slow,
+ Condition cc,
+ bool never_nan_nan);
+static void EmitSmiNonsmiComparison(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* rhs_not_nan,
+ Label* slow,
+ bool strict);
+static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
+ Register lhs,
+ Register rhs);
+
+
+// Check if the operand is a heap number.
+static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
+ Register scratch1, Register scratch2,
+ Label* not_a_heap_number) {
+ __ lw(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
+ __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
+ __ Branch(not_a_heap_number, ne, scratch1, Operand(scratch2));
+}
+
void ToNumberStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // The ToNumber stub takes one argument in a0.
+ Label check_heap_number, call_builtin;
+ __ JumpIfNotSmi(a0, &check_heap_number);
+ __ mov(v0, a0);
+ __ Ret();
+
+ __ bind(&check_heap_number);
+ EmitCheckForHeapNumber(masm, a0, a1, t0, &call_builtin);
+ __ mov(v0, a0);
+ __ Ret();
+
+ __ bind(&call_builtin);
+ __ push(a0);
+ __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
}
void FastNewClosureStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Create a new closure from the given function info in new
+ // space. Set the context to the current context in cp.
+ Label gc;
+
+ // Pop the function info from the stack.
+ __ pop(a3);
+
+ // Attempt to allocate new JSFunction in new space.
+ __ AllocateInNewSpace(JSFunction::kSize,
+ v0,
+ a1,
+ a2,
+ &gc,
+ TAG_OBJECT);
+
+ int map_index = strict_mode_ == kStrictMode
+ ? Context::STRICT_MODE_FUNCTION_MAP_INDEX
+ : Context::FUNCTION_MAP_INDEX;
+
+ // Compute the function map in the current global context and set that
+ // as the map of the allocated object.
+ __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
+ __ lw(a2, MemOperand(a2, Context::SlotOffset(map_index)));
+ __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
+
+ // Initialize the rest of the function. We don't have to update the
+ // write barrier because the allocated object is in new space.
+ __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex);
+ __ LoadRoot(a2, Heap::kTheHoleValueRootIndex);
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
+ __ sw(a1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
+ __ sw(a1, FieldMemOperand(v0, JSObject::kElementsOffset));
+ __ sw(a2, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset));
+ __ sw(a3, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
+ __ sw(cp, FieldMemOperand(v0, JSFunction::kContextOffset));
+ __ sw(a1, FieldMemOperand(v0, JSFunction::kLiteralsOffset));
+ __ sw(t0, FieldMemOperand(v0, JSFunction::kNextFunctionLinkOffset));
+
+ // Initialize the code pointer in the function to be the one
+ // found in the shared function info object.
+ __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset));
+ __ Addu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ sw(a3, FieldMemOperand(v0, JSFunction::kCodeEntryOffset));
+
+ // Return result. The argument function info has been popped already.
+ __ Ret();
+
+ // Create a new closure through the slower runtime call.
+ __ bind(&gc);
+ __ LoadRoot(t0, Heap::kFalseValueRootIndex);
+ __ Push(cp, a3, t0);
+ __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
}
void FastNewContextStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Try to allocate the context in new space.
+ Label gc;
+ int length = slots_ + Context::MIN_CONTEXT_SLOTS;
+
+ // Attempt to allocate the context in new space.
+ __ AllocateInNewSpace(FixedArray::SizeFor(length),
+ v0,
+ a1,
+ a2,
+ &gc,
+ TAG_OBJECT);
+
+ // Load the function from the stack.
+ __ lw(a3, MemOperand(sp, 0));
+
+ // Setup the object header.
+ __ LoadRoot(a2, Heap::kContextMapRootIndex);
+ __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
+ __ li(a2, Operand(Smi::FromInt(length)));
+ __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));
+
+ // Setup the fixed slots.
+ __ li(a1, Operand(Smi::FromInt(0)));
+ __ sw(a3, MemOperand(v0, Context::SlotOffset(Context::CLOSURE_INDEX)));
+ __ sw(v0, MemOperand(v0, Context::SlotOffset(Context::FCONTEXT_INDEX)));
+ __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::EXTENSION_INDEX)));
+
+ // Copy the global object from the surrounding context.
+ __ lw(a1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::GLOBAL_INDEX)));
+
+ // Initialize the rest of the slots to undefined.
+ __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
+ for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
+ __ sw(a1, MemOperand(v0, Context::SlotOffset(i)));
+ }
+
+ // Remove the on-stack argument and return.
+ __ mov(cp, v0);
+ __ Pop();
+ __ Ret();
+
+ // Need to collect. Call into runtime system.
+ __ bind(&gc);
+ __ TailCallRuntime(Runtime::kNewContext, 1, 1);
}
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Stack layout on entry:
+ // [sp]: constant elements.
+ // [sp + kPointerSize]: literal index.
+ // [sp + (2 * kPointerSize)]: literals array.
+
+ // All sizes here are multiples of kPointerSize.
+ int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
+ int size = JSArray::kSize + elements_size;
+
+ // Load boilerplate object into r3 and check if we need to create a
+ // boilerplate.
+ Label slow_case;
+ __ lw(a3, MemOperand(sp, 2 * kPointerSize));
+ __ lw(a0, MemOperand(sp, 1 * kPointerSize));
+ __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(t0, a3, t0);
+ __ lw(a3, MemOperand(t0));
+ __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
+ __ Branch(&slow_case, eq, a3, Operand(t1));
+
+ if (FLAG_debug_code) {
+ const char* message;
+ Heap::RootListIndex expected_map_index;
+ if (mode_ == CLONE_ELEMENTS) {
+ message = "Expected (writable) fixed array";
+ expected_map_index = Heap::kFixedArrayMapRootIndex;
+ } else {
+ ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
+ message = "Expected copy-on-write fixed array";
+ expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
+ }
+ __ push(a3);
+ __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
+ __ lw(a3, FieldMemOperand(a3, HeapObject::kMapOffset));
+ __ LoadRoot(at, expected_map_index);
+ __ Assert(eq, message, a3, Operand(at));
+ __ pop(a3);
+ }
+
+ // Allocate both the JS array and the elements array in one big
+ // allocation. This avoids multiple limit checks.
+ // Return new object in v0.
+ __ AllocateInNewSpace(size,
+ v0,
+ a1,
+ a2,
+ &slow_case,
+ TAG_OBJECT);
+
+ // Copy the JS array part.
+ for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
+ if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
+ __ lw(a1, FieldMemOperand(a3, i));
+ __ sw(a1, FieldMemOperand(v0, i));
+ }
+ }
+
+ if (length_ > 0) {
+ // Get hold of the elements array of the boilerplate and setup the
+ // elements pointer in the resulting object.
+ __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
+ __ Addu(a2, v0, Operand(JSArray::kSize));
+ __ sw(a2, FieldMemOperand(v0, JSArray::kElementsOffset));
+
+ // Copy the elements array.
+ __ CopyFields(a2, a3, a1.bit(), elements_size / kPointerSize);
+ }
+
+ // Return and remove the on-stack parameters.
+ __ Addu(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ __ bind(&slow_case);
+ __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
}
@@ -107,7 +316,62 @@ class ConvertToDoubleStub : public CodeStub {
void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+#ifndef BIG_ENDIAN_FLOATING_POINT
+ Register exponent = result1_;
+ Register mantissa = result2_;
+#else
+ Register exponent = result2_;
+ Register mantissa = result1_;
+#endif
+ Label not_special;
+ // Convert from Smi to integer.
+ __ sra(source_, source_, kSmiTagSize);
+ // Move sign bit from source to destination. This works because the sign bit
+ // in the exponent word of the double has the same position and polarity as
+ // the 2's complement sign bit in a Smi.
+ STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
+ __ And(exponent, source_, Operand(HeapNumber::kSignMask));
+ // Subtract from 0 if source was negative.
+ __ subu(at, zero_reg, source_);
+ __ movn(source_, at, exponent);
+
+ // We have -1, 0 or 1, which we treat specially. Register source_ contains
+ // absolute value: it is either equal to 1 (special case of -1 and 1),
+ // greater than 1 (not a special case) or less than 1 (special case of 0).
+ __ Branch(&not_special, gt, source_, Operand(1));
+
+ // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
+ static const uint32_t exponent_word_for_1 =
+ HeapNumber::kExponentBias << HeapNumber::kExponentShift;
+ // Safe to use 'at' as dest reg here.
+ __ Or(at, exponent, Operand(exponent_word_for_1));
+ __ movn(exponent, at, source_); // Write exp when source not 0.
+ // 1, 0 and -1 all have 0 for the second word.
+ __ mov(mantissa, zero_reg);
+ __ Ret();
+
+ __ bind(&not_special);
+ // Count leading zeros.
+ // Gets the wrong answer for 0, but we already checked for that case above.
+ __ clz(zeros_, source_);
+ // Compute exponent and or it into the exponent register.
+ // We use mantissa as a scratch register here.
+ __ li(mantissa, Operand(31 + HeapNumber::kExponentBias));
+ __ subu(mantissa, mantissa, zeros_);
+ __ sll(mantissa, mantissa, HeapNumber::kExponentShift);
+ __ Or(exponent, exponent, mantissa);
+
+ // Shift up the source chopping the top bit off.
+ __ Addu(zeros_, zeros_, Operand(1));
+ // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
+ __ sllv(source_, source_, zeros_);
+ // Compute lower part of fraction (last 12 bits).
+ __ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord);
+ // And the top (top 20 bits).
+ __ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord);
+ __ or_(exponent, exponent, source_);
+
+ __ Ret();
}
@@ -115,7 +379,34 @@ void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
FloatingPointHelper::Destination destination,
Register scratch1,
Register scratch2) {
- UNIMPLEMENTED_MIPS();
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ __ sra(scratch1, a0, kSmiTagSize);
+ __ mtc1(scratch1, f14);
+ __ cvt_d_w(f14, f14);
+ __ sra(scratch1, a1, kSmiTagSize);
+ __ mtc1(scratch1, f12);
+ __ cvt_d_w(f12, f12);
+ if (destination == kCoreRegisters) {
+ __ mfc1(a2, f14);
+ __ mfc1(a3, f15);
+
+ __ mfc1(a0, f12);
+ __ mfc1(a1, f13);
+ }
+ } else {
+ ASSERT(destination == kCoreRegisters);
+ // Write Smi from a0 to a3 and a2 in double format.
+ __ mov(scratch1, a0);
+ ConvertToDoubleStub stub1(a3, a2, scratch1, scratch2);
+ __ push(ra);
+ __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
+ // Write Smi from a1 to a1 and a0 in double format.
+ __ mov(scratch1, a1);
+ ConvertToDoubleStub stub2(a1, a0, scratch1, scratch2);
+ __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(ra);
+ }
}
@@ -126,7 +417,14 @@ void FloatingPointHelper::LoadOperands(
Register scratch1,
Register scratch2,
Label* slow) {
- UNIMPLEMENTED_MIPS();
+
+ // Load right operand (a0) to f12 or a2/a3.
+ LoadNumber(masm, destination,
+ a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow);
+
+ // Load left operand (a1) to f14 or a0/a1.
+ LoadNumber(masm, destination,
+ a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow);
}
@@ -140,7 +438,60 @@ void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
Register scratch1,
Register scratch2,
Label* not_number) {
- UNIMPLEMENTED_MIPS();
+ if (FLAG_debug_code) {
+ __ AbortIfNotRootValue(heap_number_map,
+ Heap::kHeapNumberMapRootIndex,
+ "HeapNumberMap register clobbered.");
+ }
+
+ Label is_smi, done;
+
+ __ JumpIfSmi(object, &is_smi);
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
+
+ // Handle loading a double from a heap number.
+ if (CpuFeatures::IsSupported(FPU) &&
+ destination == kFPURegisters) {
+ CpuFeatures::Scope scope(FPU);
+ // Load the double from tagged HeapNumber to double register.
+
+ // ARM uses a workaround here because of the unaligned HeapNumber
+ // kValueOffset. On MIPS this workaround is built into ldc1 so there's no
+ // point in generating even more instructions.
+ __ ldc1(dst, FieldMemOperand(object, HeapNumber::kValueOffset));
+ } else {
+ ASSERT(destination == kCoreRegisters);
+ // Load the double from heap number to dst1 and dst2 in double format.
+ __ lw(dst1, FieldMemOperand(object, HeapNumber::kValueOffset));
+ __ lw(dst2, FieldMemOperand(object,
+ HeapNumber::kValueOffset + kPointerSize));
+ }
+ __ Branch(&done);
+
+ // Handle loading a double from a smi.
+ __ bind(&is_smi);
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ // Convert smi to double using FPU instructions.
+ __ SmiUntag(scratch1, object);
+ __ mtc1(scratch1, dst);
+ __ cvt_d_w(dst, dst);
+ if (destination == kCoreRegisters) {
+ // Load the converted smi to dst1 and dst2 in double format.
+ __ mfc1(dst1, dst);
+ __ mfc1(dst2, FPURegister::from_code(dst.code() + 1));
+ }
+ } else {
+ ASSERT(destination == kCoreRegisters);
+ // Write smi to dst1 and dst2 double format.
+ __ mov(scratch1, object);
+ ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
+ __ push(ra);
+ __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(ra);
+ }
+
+ __ bind(&done);
}
@@ -153,7 +504,40 @@ void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
Register scratch3,
FPURegister double_scratch,
Label* not_number) {
- UNIMPLEMENTED_MIPS();
+ if (FLAG_debug_code) {
+ __ AbortIfNotRootValue(heap_number_map,
+ Heap::kHeapNumberMapRootIndex,
+ "HeapNumberMap register clobbered.");
+ }
+ Label is_smi;
+ Label done;
+ Label not_in_int32_range;
+
+ __ JumpIfSmi(object, &is_smi);
+ __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
+ __ Branch(not_number, ne, scratch1, Operand(heap_number_map));
+ __ ConvertToInt32(object,
+ dst,
+ scratch1,
+ scratch2,
+ double_scratch,
+ &not_in_int32_range);
+ __ jmp(&done);
+
+ __ bind(&not_in_int32_range);
+ __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ __ lw(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
+
+ __ EmitOutOfInt32RangeTruncate(dst,
+ scratch1,
+ scratch2,
+ scratch3);
+
+ __ jmp(&done);
+
+ __ bind(&is_smi);
+ __ SmiUntag(dst, object);
+ __ bind(&done);
}
@@ -165,7 +549,76 @@ void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
Register dst2,
Register scratch2,
FPURegister single_scratch) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(!int_scratch.is(scratch2));
+
+ Label done;
+
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ __ mtc1(int_scratch, single_scratch);
+ __ cvt_d_w(double_dst, single_scratch);
+ if (destination == kCoreRegisters) {
+ __ mfc1(dst1, double_dst);
+ __ mfc1(dst2, FPURegister::from_code(double_dst.code() + 1));
+ }
+ } else {
+ Label fewer_than_20_useful_bits;
+ // Expected output:
+ // | dst2 | dst1 |
+ // | s | exp | mantissa |
+
+ // Check for zero.
+ __ mov(dst2, int_scratch);
+ __ mov(dst1, int_scratch);
+ __ Branch(&done, eq, int_scratch, Operand(zero_reg));
+
+ // Preload the sign of the value.
+ __ And(dst2, int_scratch, Operand(HeapNumber::kSignMask));
+ // Get the absolute value of the object (as an unsigned integer).
+ Label skip_sub;
+ __ Branch(&skip_sub, ge, dst2, Operand(zero_reg));
+ __ Subu(int_scratch, zero_reg, int_scratch);
+ __ bind(&skip_sub);
+
+ // Get mantisssa[51:20].
+
+ // Get the position of the first set bit.
+ __ clz(dst1, int_scratch);
+ __ li(scratch2, 31);
+ __ Subu(dst1, scratch2, dst1);
+
+ // Set the exponent.
+ __ Addu(scratch2, dst1, Operand(HeapNumber::kExponentBias));
+ __ Ins(dst2, scratch2,
+ HeapNumber::kExponentShift, HeapNumber::kExponentBits);
+
+ // Clear the first non null bit.
+ __ li(scratch2, Operand(1));
+ __ sllv(scratch2, scratch2, dst1);
+ __ li(at, -1);
+ __ Xor(scratch2, scratch2, at);
+ __ And(int_scratch, int_scratch, scratch2);
+
+ // Get the number of bits to set in the lower part of the mantissa.
+ __ Subu(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
+ __ Branch(&fewer_than_20_useful_bits, lt, scratch2, Operand(zero_reg));
+ // Set the higher 20 bits of the mantissa.
+ __ srlv(at, int_scratch, scratch2);
+ __ or_(dst2, dst2, at);
+ __ li(at, 32);
+ __ subu(scratch2, at, scratch2);
+ __ sllv(dst1, int_scratch, scratch2);
+ __ Branch(&done);
+
+ __ bind(&fewer_than_20_useful_bits);
+ __ li(at, HeapNumber::kMantissaBitsInTopWord);
+ __ subu(scratch2, at, dst1);
+ __ sllv(scratch2, int_scratch, scratch2);
+ __ Or(dst2, dst2, scratch2);
+ // Set dst1 to 0.
+ __ mov(dst1, zero_reg);
+ }
+ __ bind(&done);
}
@@ -180,7 +633,81 @@ void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
Register scratch2,
FPURegister single_scratch,
Label* not_int32) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(!scratch1.is(object) && !scratch2.is(object));
+ ASSERT(!scratch1.is(scratch2));
+ ASSERT(!heap_number_map.is(object) &&
+ !heap_number_map.is(scratch1) &&
+ !heap_number_map.is(scratch2));
+
+ Label done, obj_is_not_smi;
+
+ __ JumpIfNotSmi(object, &obj_is_not_smi);
+ __ SmiUntag(scratch1, object);
+ ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
+ scratch2, single_scratch);
+ __ Branch(&done);
+
+ __ bind(&obj_is_not_smi);
+ if (FLAG_debug_code) {
+ __ AbortIfNotRootValue(heap_number_map,
+ Heap::kHeapNumberMapRootIndex,
+ "HeapNumberMap register clobbered.");
+ }
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
+
+ // Load the number.
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ // Load the double value.
+ __ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset));
+
+ // NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate).
+ // On MIPS a lot of things cannot be implemented the same way so right
+ // now it makes a lot more sense to just do things manually.
+
+ // Save FCSR.
+ __ cfc1(scratch1, FCSR);
+ // Disable FPU exceptions.
+ __ ctc1(zero_reg, FCSR);
+ __ trunc_w_d(single_scratch, double_dst);
+ // Retrieve FCSR.
+ __ cfc1(scratch2, FCSR);
+ // Restore FCSR.
+ __ ctc1(scratch1, FCSR);
+
+ // Check for inexact conversion.
+ __ srl(scratch2, scratch2, kFCSRFlagShift);
+ __ And(scratch2, scratch2, (kFCSRFlagMask | kFCSRInexactFlagBit));
+
+ // Jump to not_int32 if the operation did not succeed.
+ __ Branch(not_int32, ne, scratch2, Operand(zero_reg));
+
+ if (destination == kCoreRegisters) {
+ __ mfc1(dst1, double_dst);
+ __ mfc1(dst2, FPURegister::from_code(double_dst.code() + 1));
+ }
+
+ } else {
+ ASSERT(!scratch1.is(object) && !scratch2.is(object));
+ // Load the double value in the destination registers.
+ __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
+
+ // Check for 0 and -0.
+ __ And(scratch1, dst1, Operand(~HeapNumber::kSignMask));
+ __ Or(scratch1, scratch1, Operand(dst2));
+ __ Branch(&done, eq, scratch1, Operand(zero_reg));
+
+ // Check that the value can be exactly represented by a 32-bit integer.
+ // Jump to not_int32 if that's not the case.
+ DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
+
+ // dst1 and dst2 were trashed. Reload the double value.
+ __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
+ }
+
+ __ bind(&done);
}
@@ -193,7 +720,89 @@ void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
Register scratch3,
FPURegister double_scratch,
Label* not_int32) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(!dst.is(object));
+ ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
+ ASSERT(!scratch1.is(scratch2) &&
+ !scratch1.is(scratch3) &&
+ !scratch2.is(scratch3));
+
+ Label done;
+
+ // Untag the object into the destination register.
+ __ SmiUntag(dst, object);
+ // Just return if the object is a smi.
+ __ JumpIfSmi(object, &done);
+
+ if (FLAG_debug_code) {
+ __ AbortIfNotRootValue(heap_number_map,
+ Heap::kHeapNumberMapRootIndex,
+ "HeapNumberMap register clobbered.");
+ }
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
+
+ // Object is a heap number.
+ // Convert the floating point value to a 32-bit integer.
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ // Load the double value.
+ __ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
+
+ // NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate).
+ // On MIPS a lot of things cannot be implemented the same way so right
+ // now it makes a lot more sense to just do things manually.
+
+ // Save FCSR.
+ __ cfc1(scratch1, FCSR);
+ // Disable FPU exceptions.
+ __ ctc1(zero_reg, FCSR);
+ __ trunc_w_d(double_scratch, double_scratch);
+ // Retrieve FCSR.
+ __ cfc1(scratch2, FCSR);
+ // Restore FCSR.
+ __ ctc1(scratch1, FCSR);
+
+ // Check for inexact conversion.
+ __ srl(scratch2, scratch2, kFCSRFlagShift);
+ __ And(scratch2, scratch2, (kFCSRFlagMask | kFCSRInexactFlagBit));
+
+ // Jump to not_int32 if the operation did not succeed.
+ __ Branch(not_int32, ne, scratch2, Operand(zero_reg));
+ // Get the result in the destination register.
+ __ mfc1(dst, double_scratch);
+
+ } else {
+ // Load the double value in the destination registers.
+ __ lw(scratch2, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
+
+ // Check for 0 and -0.
+ __ And(dst, scratch1, Operand(~HeapNumber::kSignMask));
+ __ Or(dst, scratch2, Operand(dst));
+ __ Branch(&done, eq, dst, Operand(zero_reg));
+
+ DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
+
+ // Registers state after DoubleIs32BitInteger.
+ // dst: mantissa[51:20].
+ // scratch2: 1
+
+ // Shift back the higher bits of the mantissa.
+ __ srlv(dst, dst, scratch3);
+ // Set the implicit first bit.
+ __ li(at, 32);
+ __ subu(scratch3, at, scratch3);
+ __ sllv(scratch2, scratch2, scratch3);
+ __ Or(dst, dst, scratch2);
+ // Set the sign.
+ __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
+ Label skip_sub;
+ __ Branch(&skip_sub, ge, scratch1, Operand(zero_reg));
+ __ Subu(dst, zero_reg, dst);
+ __ bind(&skip_sub);
+ }
+
+ __ bind(&done);
}
@@ -203,7 +812,57 @@ void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
Register dst,
Register scratch,
Label* not_int32) {
- UNIMPLEMENTED_MIPS();
+ // Get exponent alone in scratch.
+ __ Ext(scratch,
+ src1,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+
+ // Substract the bias from the exponent.
+ __ Subu(scratch, scratch, Operand(HeapNumber::kExponentBias));
+
+ // src1: higher (exponent) part of the double value.
+ // src2: lower (mantissa) part of the double value.
+ // scratch: unbiased exponent.
+
+ // Fast cases. Check for obvious non 32-bit integer values.
+ // Negative exponent cannot yield 32-bit integers.
+ __ Branch(not_int32, lt, scratch, Operand(zero_reg));
+ // Exponent greater than 31 cannot yield 32-bit integers.
+ // Also, a positive value with an exponent equal to 31 is outside of the
+ // signed 32-bit integer range.
+ // Another way to put it is that if (exponent - signbit) > 30 then the
+ // number cannot be represented as an int32.
+ Register tmp = dst;
+ __ srl(at, src1, 31);
+ __ subu(tmp, scratch, at);
+ __ Branch(not_int32, gt, tmp, Operand(30));
+ // - Bits [21:0] in the mantissa are not null.
+ __ And(tmp, src2, 0x3fffff);
+ __ Branch(not_int32, ne, tmp, Operand(zero_reg));
+
+ // Otherwise the exponent needs to be big enough to shift left all the
+ // non zero bits left. So we need the (30 - exponent) last bits of the
+ // 31 higher bits of the mantissa to be null.
+ // Because bits [21:0] are null, we can check instead that the
+ // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null.
+
+ // Get the 32 higher bits of the mantissa in dst.
+ __ Ext(dst,
+ src2,
+ HeapNumber::kMantissaBitsInTopWord,
+ 32 - HeapNumber::kMantissaBitsInTopWord);
+ __ sll(at, src1, HeapNumber::kNonMantissaBitsInTopWord);
+ __ or_(dst, dst, at);
+
+ // Create the mask and test the lower bits (of the higher bits).
+ __ li(at, 32);
+ __ subu(scratch, at, scratch);
+ __ li(src2, 1);
+ __ sllv(src1, src2, scratch);
+ __ Subu(src1, src1, Operand(1));
+ __ And(src1, dst, src1);
+ __ Branch(not_int32, ne, src1, Operand(zero_reg));
}
@@ -212,18 +871,567 @@ void FloatingPointHelper::CallCCodeForDoubleOperation(
Token::Value op,
Register heap_number_result,
Register scratch) {
- UNIMPLEMENTED_MIPS();
+ // Using core registers:
+ // a0: Left value (least significant part of mantissa).
+ // a1: Left value (sign, exponent, top of mantissa).
+ // a2: Right value (least significant part of mantissa).
+ // a3: Right value (sign, exponent, top of mantissa).
+
+ // Assert that heap_number_result is saved.
+ // We currently always use s0 to pass it.
+ ASSERT(heap_number_result.is(s0));
+
+ // Push the current return address before the C call.
+ __ push(ra);
+ __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments.
+ if (!IsMipsSoftFloatABI) {
+ CpuFeatures::Scope scope(FPU);
+ // We are not using MIPS FPU instructions, and parameters for the runtime
+ // function call are prepaired in a0-a3 registers, but function we are
+ // calling is compiled with hard-float flag and expecting hard float ABI
+ // (parameters in f12/f14 registers). We need to copy parameters from
+ // a0-a3 registers to f12/f14 register pairs.
+ __ mtc1(a0, f12);
+ __ mtc1(a1, f13);
+ __ mtc1(a2, f14);
+ __ mtc1(a3, f15);
+ }
+ // Call C routine that may not cause GC or other trouble.
+ __ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()),
+ 4);
+ // Store answer in the overwritable heap number.
+ if (!IsMipsSoftFloatABI) {
+ CpuFeatures::Scope scope(FPU);
+ // Double returned in register f0.
+ __ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
+ } else {
+ // Double returned in registers v0 and v1.
+ __ sw(v1, FieldMemOperand(heap_number_result, HeapNumber::kExponentOffset));
+ __ sw(v0, FieldMemOperand(heap_number_result, HeapNumber::kMantissaOffset));
+ }
+ // Place heap_number_result in v0 and return to the pushed return address.
+ __ mov(v0, heap_number_result);
+ __ pop(ra);
+ __ Ret();
}
// See comment for class, this does NOT work for int32's that are in Smi range.
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label max_negative_int;
+ // the_int_ has the answer which is a signed int32 but not a Smi.
+ // We test for the special value that has a different exponent.
+ STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
+ // Test sign, and save for later conditionals.
+ __ And(sign_, the_int_, Operand(0x80000000u));
+ __ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u));
+
+ // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
+ // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
+ uint32_t non_smi_exponent =
+ (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
+ __ li(scratch_, Operand(non_smi_exponent));
+ // Set the sign bit in scratch_ if the value was negative.
+ __ or_(scratch_, scratch_, sign_);
+ // Subtract from 0 if the value was negative.
+ __ subu(at, zero_reg, the_int_);
+ __ movn(the_int_, at, sign_);
+ // We should be masking the implict first digit of the mantissa away here,
+ // but it just ends up combining harmlessly with the last digit of the
+ // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
+ // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
+ ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
+ const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
+ __ srl(at, the_int_, shift_distance);
+ __ or_(scratch_, scratch_, at);
+ __ sw(scratch_, FieldMemOperand(the_heap_number_,
+ HeapNumber::kExponentOffset));
+ __ sll(scratch_, the_int_, 32 - shift_distance);
+ __ sw(scratch_, FieldMemOperand(the_heap_number_,
+ HeapNumber::kMantissaOffset));
+ __ Ret();
+
+ __ bind(&max_negative_int);
+ // The max negative int32 is stored as a positive number in the mantissa of
+ // a double because it uses a sign bit instead of using two's complement.
+ // The actual mantissa bits stored are all 0 because the implicit most
+ // significant 1 bit is not stored.
+ non_smi_exponent += 1 << HeapNumber::kExponentShift;
+ __ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent));
+ __ sw(scratch_,
+ FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
+ __ mov(scratch_, zero_reg);
+ __ sw(scratch_,
+ FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
+ __ Ret();
+}
+
+
+// Handle the case where the lhs and rhs are the same object.
+// Equality is almost reflexive (everything but NaN), so this is a test
+// for "identity and not NaN".
+static void EmitIdenticalObjectComparison(MacroAssembler* masm,
+ Label* slow,
+ Condition cc,
+ bool never_nan_nan) {
+ Label not_identical;
+ Label heap_number, return_equal;
+ Register exp_mask_reg = t5;
+
+ __ Branch(&not_identical, ne, a0, Operand(a1));
+
+ // The two objects are identical. If we know that one of them isn't NaN then
+ // we now know they test equal.
+ if (cc != eq || !never_nan_nan) {
+ __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
+
+ // Test for NaN. Sadly, we can't just compare to factory->nan_value(),
+ // so we do the second best thing - test it ourselves.
+ // They are both equal and they are not both Smis so both of them are not
+ // Smis. If it's not a heap number, then return equal.
+ if (cc == less || cc == greater) {
+ __ GetObjectType(a0, t4, t4);
+ __ Branch(slow, greater, t4, Operand(FIRST_JS_OBJECT_TYPE));
+ } else {
+ __ GetObjectType(a0, t4, t4);
+ __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
+ // Comparing JS objects with <=, >= is complicated.
+ if (cc != eq) {
+ __ Branch(slow, greater, t4, Operand(FIRST_JS_OBJECT_TYPE));
+ // Normally here we fall through to return_equal, but undefined is
+ // special: (undefined == undefined) == true, but
+ // (undefined <= undefined) == false! See ECMAScript 11.8.5.
+ if (cc == less_equal || cc == greater_equal) {
+ __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
+ __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
+ __ Branch(&return_equal, ne, a0, Operand(t2));
+ if (cc == le) {
+ // undefined <= undefined should fail.
+ __ li(v0, Operand(GREATER));
+ } else {
+ // undefined >= undefined should fail.
+ __ li(v0, Operand(LESS));
+ }
+ __ Ret();
+ }
+ }
+ }
+ }
+
+ __ bind(&return_equal);
+ if (cc == less) {
+ __ li(v0, Operand(GREATER)); // Things aren't less than themselves.
+ } else if (cc == greater) {
+ __ li(v0, Operand(LESS)); // Things aren't greater than themselves.
+ } else {
+ __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
+ }
+ __ Ret();
+
+ if (cc != eq || !never_nan_nan) {
+ // For less and greater we don't have to check for NaN since the result of
+ // x < x is false regardless. For the others here is some code to check
+ // for NaN.
+ if (cc != lt && cc != gt) {
+ __ bind(&heap_number);
+ // It is a heap number, so return non-equal if it's NaN and equal if it's
+ // not NaN.
+
+ // The representation of NaN values has all exponent bits (52..62) set,
+ // and not all mantissa bits (0..51) clear.
+ // Read top bits of double representation (second word of value).
+ __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
+ // Test that exponent bits are all set.
+ __ And(t3, t2, Operand(exp_mask_reg));
+ // If all bits not set (ne cond), then not a NaN, objects are equal.
+ __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));
+
+ // Shift out flag and all exponent bits, retaining only mantissa.
+ __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
+ // Or with all low-bits of mantissa.
+ __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
+ __ Or(v0, t3, Operand(t2));
+ // For equal we already have the right value in v0: Return zero (equal)
+ // if all bits in mantissa are zero (it's an Infinity) and non-zero if
+ // not (it's a NaN). For <= and >= we need to load v0 with the failing
+ // value if it's a NaN.
+ if (cc != eq) {
+ // All-zero means Infinity means equal.
+ __ Ret(eq, v0, Operand(zero_reg));
+ if (cc == le) {
+ __ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
+ } else {
+ __ li(v0, Operand(LESS)); // NaN >= NaN should fail.
+ }
+ }
+ __ Ret();
+ }
+ // No fall through here.
+ }
+
+ __ bind(&not_identical);
+}
+
+
+static void EmitSmiNonsmiComparison(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* both_loaded_as_doubles,
+ Label* slow,
+ bool strict) {
+ ASSERT((lhs.is(a0) && rhs.is(a1)) ||
+ (lhs.is(a1) && rhs.is(a0)));
+
+ Label lhs_is_smi;
+ __ And(t0, lhs, Operand(kSmiTagMask));
+ __ Branch(&lhs_is_smi, eq, t0, Operand(zero_reg));
+ // Rhs is a Smi.
+ // Check whether the non-smi is a heap number.
+ __ GetObjectType(lhs, t4, t4);
+ if (strict) {
+ // If lhs was not a number and rhs was a Smi then strict equality cannot
+ // succeed. Return non-equal (lhs is already not zero).
+ __ mov(v0, lhs);
+ __ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE));
+ } else {
+ // Smi compared non-strictly with a non-Smi non-heap-number. Call
+ // the runtime.
+ __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
+ }
+
+ // Rhs is a smi, lhs is a number.
+ // Convert smi rhs to double.
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ __ sra(at, rhs, kSmiTagSize);
+ __ mtc1(at, f14);
+ __ cvt_d_w(f14, f14);
+ __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+ } else {
+ // Load lhs to a double in a2, a3.
+ __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
+ __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+
+ // Write Smi from rhs to a1 and a0 in double format. t5 is scratch.
+ __ mov(t6, rhs);
+ ConvertToDoubleStub stub1(a1, a0, t6, t5);
+ __ push(ra);
+ __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
+
+ __ pop(ra);
+ }
+
+ // We now have both loaded as doubles.
+ __ jmp(both_loaded_as_doubles);
+
+ __ bind(&lhs_is_smi);
+ // Lhs is a Smi. Check whether the non-smi is a heap number.
+ __ GetObjectType(rhs, t4, t4);
+ if (strict) {
+ // If lhs was not a number and rhs was a Smi then strict equality cannot
+ // succeed. Return non-equal.
+ __ li(v0, Operand(1));
+ __ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE));
+ } else {
+ // Smi compared non-strictly with a non-Smi non-heap-number. Call
+ // the runtime.
+ __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
+ }
+
+ // Lhs is a smi, rhs is a number.
+ // Convert smi lhs to double.
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ __ sra(at, lhs, kSmiTagSize);
+ __ mtc1(at, f12);
+ __ cvt_d_w(f12, f12);
+ __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ } else {
+ // Convert lhs to a double format. t5 is scratch.
+ __ mov(t6, lhs);
+ ConvertToDoubleStub stub2(a3, a2, t6, t5);
+ __ push(ra);
+ __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(ra);
+ // Load rhs to a double in a1, a0.
+ if (rhs.is(a0)) {
+ __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
+ __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ } else {
+ __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
+ }
+ }
+ // Fall through to both_loaded_as_doubles.
}
void EmitNanCheck(MacroAssembler* masm, Condition cc) {
- UNIMPLEMENTED_MIPS();
+ bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ // Lhs and rhs are already loaded to f12 and f14 register pairs.
+ __ mfc1(t0, f14); // f14 has LS 32 bits of rhs.
+ __ mfc1(t1, f15); // f15 has MS 32 bits of rhs.
+ __ mfc1(t2, f12); // f12 has LS 32 bits of lhs.
+ __ mfc1(t3, f13); // f13 has MS 32 bits of lhs.
+ } else {
+ // Lhs and rhs are already loaded to GP registers.
+ __ mov(t0, a0); // a0 has LS 32 bits of rhs.
+ __ mov(t1, a1); // a1 has MS 32 bits of rhs.
+ __ mov(t2, a2); // a2 has LS 32 bits of lhs.
+ __ mov(t3, a3); // a3 has MS 32 bits of lhs.
+ }
+ Register rhs_exponent = exp_first ? t0 : t1;
+ Register lhs_exponent = exp_first ? t2 : t3;
+ Register rhs_mantissa = exp_first ? t1 : t0;
+ Register lhs_mantissa = exp_first ? t3 : t2;
+ Label one_is_nan, neither_is_nan;
+ Label lhs_not_nan_exp_mask_is_loaded;
+
+ Register exp_mask_reg = t4;
+ __ li(exp_mask_reg, HeapNumber::kExponentMask);
+ __ and_(t5, lhs_exponent, exp_mask_reg);
+ __ Branch(&lhs_not_nan_exp_mask_is_loaded, ne, t5, Operand(exp_mask_reg));
+
+ __ sll(t5, lhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
+ __ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
+
+ __ Branch(&one_is_nan, ne, lhs_mantissa, Operand(zero_reg));
+
+ __ li(exp_mask_reg, HeapNumber::kExponentMask);
+ __ bind(&lhs_not_nan_exp_mask_is_loaded);
+ __ and_(t5, rhs_exponent, exp_mask_reg);
+
+ __ Branch(&neither_is_nan, ne, t5, Operand(exp_mask_reg));
+
+ __ sll(t5, rhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
+ __ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
+
+ __ Branch(&neither_is_nan, eq, rhs_mantissa, Operand(zero_reg));
+
+ __ bind(&one_is_nan);
+ // NaN comparisons always fail.
+ // Load whatever we need in v0 to make the comparison fail.
+ if (cc == lt || cc == le) {
+ __ li(v0, Operand(GREATER));
+ } else {
+ __ li(v0, Operand(LESS));
+ }
+ __ Ret(); // Return.
+
+ __ bind(&neither_is_nan);
+}
+
+
+static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
+ // f12 and f14 have the two doubles. Neither is a NaN.
+ // Call a native function to do a comparison between two non-NaNs.
+ // Call C routine that may not cause GC or other trouble.
+ // We use a call_was and return manually because we need arguments slots to
+ // be freed.
+
+ Label return_result_not_equal, return_result_equal;
+ if (cc == eq) {
+ // Doubles are not equal unless they have the same bit pattern.
+ // Exception: 0 and -0.
+ bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ // Lhs and rhs are already loaded to f12 and f14 register pairs.
+ __ mfc1(t0, f14); // f14 has LS 32 bits of rhs.
+ __ mfc1(t1, f15); // f15 has MS 32 bits of rhs.
+ __ mfc1(t2, f12); // f12 has LS 32 bits of lhs.
+ __ mfc1(t3, f13); // f13 has MS 32 bits of lhs.
+ } else {
+ // Lhs and rhs are already loaded to GP registers.
+ __ mov(t0, a0); // a0 has LS 32 bits of rhs.
+ __ mov(t1, a1); // a1 has MS 32 bits of rhs.
+ __ mov(t2, a2); // a2 has LS 32 bits of lhs.
+ __ mov(t3, a3); // a3 has MS 32 bits of lhs.
+ }
+ Register rhs_exponent = exp_first ? t0 : t1;
+ Register lhs_exponent = exp_first ? t2 : t3;
+ Register rhs_mantissa = exp_first ? t1 : t0;
+ Register lhs_mantissa = exp_first ? t3 : t2;
+
+ __ xor_(v0, rhs_mantissa, lhs_mantissa);
+ __ Branch(&return_result_not_equal, ne, v0, Operand(zero_reg));
+
+ __ subu(v0, rhs_exponent, lhs_exponent);
+ __ Branch(&return_result_equal, eq, v0, Operand(zero_reg));
+ // 0, -0 case.
+ __ sll(rhs_exponent, rhs_exponent, kSmiTagSize);
+ __ sll(lhs_exponent, lhs_exponent, kSmiTagSize);
+ __ or_(t4, rhs_exponent, lhs_exponent);
+ __ or_(t4, t4, rhs_mantissa);
+
+ __ Branch(&return_result_not_equal, ne, t4, Operand(zero_reg));
+
+ __ bind(&return_result_equal);
+ __ li(v0, Operand(EQUAL));
+ __ Ret();
+ }
+
+ __ bind(&return_result_not_equal);
+
+ if (!CpuFeatures::IsSupported(FPU)) {
+ __ push(ra);
+ __ PrepareCallCFunction(4, t4); // Two doubles count as 4 arguments.
+ if (!IsMipsSoftFloatABI) {
+ // We are not using MIPS FPU instructions, and parameters for the runtime
+ // function call are prepaired in a0-a3 registers, but function we are
+ // calling is compiled with hard-float flag and expecting hard float ABI
+ // (parameters in f12/f14 registers). We need to copy parameters from
+ // a0-a3 registers to f12/f14 register pairs.
+ __ mtc1(a0, f12);
+ __ mtc1(a1, f13);
+ __ mtc1(a2, f14);
+ __ mtc1(a3, f15);
+ }
+ __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4);
+ __ pop(ra); // Because this function returns int, result is in v0.
+ __ Ret();
+ } else {
+ CpuFeatures::Scope scope(FPU);
+ Label equal, less_than;
+ __ c(EQ, D, f12, f14);
+ __ bc1t(&equal);
+ __ nop();
+
+ __ c(OLT, D, f12, f14);
+ __ bc1t(&less_than);
+ __ nop();
+
+ // Not equal, not less, not NaN, must be greater.
+ __ li(v0, Operand(GREATER));
+ __ Ret();
+
+ __ bind(&equal);
+ __ li(v0, Operand(EQUAL));
+ __ Ret();
+
+ __ bind(&less_than);
+ __ li(v0, Operand(LESS));
+ __ Ret();
+ }
+}
+
+
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
+ Register lhs,
+ Register rhs) {
+ // If either operand is a JSObject or an oddball value, then they are
+ // not equal since their pointers are different.
+ // There is no test for undetectability in strict equality.
+ STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+ Label first_non_object;
+ // Get the type of the first operand into a2 and compare it with
+ // FIRST_JS_OBJECT_TYPE.
+ __ GetObjectType(lhs, a2, a2);
+ __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_OBJECT_TYPE));
+
+ // Return non-zero.
+ Label return_not_equal;
+ __ bind(&return_not_equal);
+ __ li(v0, Operand(1));
+ __ Ret();
+
+ __ bind(&first_non_object);
+ // Check for oddballs: true, false, null, undefined.
+ __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
+
+ __ GetObjectType(rhs, a3, a3);
+ __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_OBJECT_TYPE));
+
+ // Check for oddballs: true, false, null, undefined.
+ __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
+
+ // Now that we have the types we might as well check for symbol-symbol.
+ // Ensure that no non-strings have the symbol bit set.
+ STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
+ STATIC_ASSERT(kSymbolTag != 0);
+ __ And(t2, a2, Operand(a3));
+ __ And(t0, t2, Operand(kIsSymbolMask));
+ __ Branch(&return_not_equal, ne, t0, Operand(zero_reg));
+}
+
+
+static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* both_loaded_as_doubles,
+ Label* not_heap_numbers,
+ Label* slow) {
+ __ GetObjectType(lhs, a3, a2);
+ __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
+ __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
+ // If first was a heap number & second wasn't, go to slow case.
+ __ Branch(slow, ne, a3, Operand(a2));
+
+ // Both are heap numbers. Load them up then jump to the code we have
+ // for that.
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+ __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ } else {
+ __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+ __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
+ if (rhs.is(a0)) {
+ __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
+ __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ } else {
+ __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
+ }
+ }
+ __ jmp(both_loaded_as_doubles);
+}
+
+
+// Fast negative check for symbol-to-symbol equality.
+static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
+ Register lhs,
+ Register rhs,
+ Label* possible_strings,
+ Label* not_both_strings) {
+ ASSERT((lhs.is(a0) && rhs.is(a1)) ||
+ (lhs.is(a1) && rhs.is(a0)));
+
+ // a2 is object type of lhs.
+ // Ensure that no non-strings have the symbol bit set.
+ Label object_test;
+ STATIC_ASSERT(kSymbolTag != 0);
+ __ And(at, a2, Operand(kIsNotStringMask));
+ __ Branch(&object_test, ne, at, Operand(zero_reg));
+ __ And(at, a2, Operand(kIsSymbolMask));
+ __ Branch(possible_strings, eq, at, Operand(zero_reg));
+ __ GetObjectType(rhs, a3, a3);
+ __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
+ __ And(at, a3, Operand(kIsSymbolMask));
+ __ Branch(possible_strings, eq, at, Operand(zero_reg));
+
+ // Both are symbols. We already checked they weren't the same pointer
+ // so they are not equal.
+ __ li(v0, Operand(1)); // Non-zero indicates not equal.
+ __ Ret();
+
+ __ bind(&object_test);
+ __ Branch(not_both_strings, lt, a2, Operand(FIRST_JS_OBJECT_TYPE));
+ __ GetObjectType(rhs, a2, a3);
+ __ Branch(not_both_strings, lt, a3, Operand(FIRST_JS_OBJECT_TYPE));
+
+ // If both objects are undetectable, they are equal. Otherwise, they
+ // are not equal, since they are different objects and an object is not
+ // equal to undefined.
+ __ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
+ __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
+ __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
+ __ and_(a0, a2, a3);
+ __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
+ __ Xor(v0, a0, Operand(1 << Map::kIsUndetectable));
+ __ Ret();
}
@@ -235,12 +1443,109 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
Register scratch3,
bool object_is_smi,
Label* not_found) {
- UNIMPLEMENTED_MIPS();
+ // Use of registers. Register result is used as a temporary.
+ Register number_string_cache = result;
+ Register mask = scratch3;
+
+ // Load the number string cache.
+ __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
+
+ // Make the hash mask from the length of the number string cache. It
+ // contains two elements (number and string) for each cache entry.
+ __ lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
+ // Divide length by two (length is a smi).
+ __ sra(mask, mask, kSmiTagSize + 1);
+ __ Addu(mask, mask, -1); // Make mask.
+
+ // Calculate the entry in the number string cache. The hash value in the
+ // number string cache for smis is just the smi value, and the hash for
+ // doubles is the xor of the upper and lower words. See
+ // Heap::GetNumberStringCache.
+ Isolate* isolate = masm->isolate();
+ Label is_smi;
+ Label load_result_from_cache;
+ if (!object_is_smi) {
+ __ JumpIfSmi(object, &is_smi);
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ __ CheckMap(object,
+ scratch1,
+ Heap::kHeapNumberMapRootIndex,
+ not_found,
+ true);
+
+ STATIC_ASSERT(8 == kDoubleSize);
+ __ Addu(scratch1,
+ object,
+ Operand(HeapNumber::kValueOffset - kHeapObjectTag));
+ __ lw(scratch2, MemOperand(scratch1, kPointerSize));
+ __ lw(scratch1, MemOperand(scratch1, 0));
+ __ Xor(scratch1, scratch1, Operand(scratch2));
+ __ And(scratch1, scratch1, Operand(mask));
+
+ // Calculate address of entry in string cache: each entry consists
+ // of two pointer sized fields.
+ __ sll(scratch1, scratch1, kPointerSizeLog2 + 1);
+ __ Addu(scratch1, number_string_cache, scratch1);
+
+ Register probe = mask;
+ __ lw(probe,
+ FieldMemOperand(scratch1, FixedArray::kHeaderSize));
+ __ JumpIfSmi(probe, not_found);
+ __ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
+ __ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
+ __ c(EQ, D, f12, f14);
+ __ bc1t(&load_result_from_cache);
+ __ nop(); // bc1t() requires explicit fill of branch delay slot.
+ __ Branch(not_found);
+ } else {
+ // Note that there is no cache check for non-FPU case, even though
+ // it seems there could be. May be a tiny opimization for non-FPU
+ // cores.
+ __ Branch(not_found);
+ }
+ }
+
+ __ bind(&is_smi);
+ Register scratch = scratch1;
+ __ sra(scratch, object, 1); // Shift away the tag.
+ __ And(scratch, mask, Operand(scratch));
+
+ // Calculate address of entry in string cache: each entry consists
+ // of two pointer sized fields.
+ __ sll(scratch, scratch, kPointerSizeLog2 + 1);
+ __ Addu(scratch, number_string_cache, scratch);
+
+ // Check if the entry is the smi we are looking for.
+ Register probe = mask;
+ __ lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
+ __ Branch(not_found, ne, object, Operand(probe));
+
+ // Get the result from the cache.
+ __ bind(&load_result_from_cache);
+ __ lw(result,
+ FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
+
+ __ IncrementCounter(isolate->counters()->number_to_string_native(),
+ 1,
+ scratch1,
+ scratch2);
}
void NumberToStringStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label runtime;
+
+ __ lw(a1, MemOperand(sp, 0));
+
+ // Generate code to lookup number in the number string cache.
+ GenerateLookupNumberStringCache(masm, a1, v0, a2, a3, t0, false, &runtime);
+ __ Addu(sp, sp, Operand(1 * kPointerSize));
+ __ Ret();
+
+ __ bind(&runtime);
+ // Handle number to string in the runtime system if not found in the cache.
+ __ TailCallRuntime(Runtime::kNumberToString, 1, 1);
}
@@ -248,14 +1553,254 @@ void NumberToStringStub::Generate(MacroAssembler* masm) {
// On exit, v0 is 0, positive, or negative (smi) to indicate the result
// of the comparison.
void CompareStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label slow; // Call builtin.
+ Label not_smis, both_loaded_as_doubles;
+
+
+ if (include_smi_compare_) {
+ Label not_two_smis, smi_done;
+ __ Or(a2, a1, a0);
+ __ JumpIfNotSmi(a2, &not_two_smis);
+ __ sra(a1, a1, 1);
+ __ sra(a0, a0, 1);
+ __ Subu(v0, a1, a0);
+ __ Ret();
+ __ bind(&not_two_smis);
+ } else if (FLAG_debug_code) {
+ __ Or(a2, a1, a0);
+ __ And(a2, a2, kSmiTagMask);
+ __ Assert(ne, "CompareStub: unexpected smi operands.",
+ a2, Operand(zero_reg));
+ }
+
+
+ // NOTICE! This code is only reached after a smi-fast-case check, so
+ // it is certain that at least one operand isn't a smi.
+
+ // Handle the case where the objects are identical. Either returns the answer
+ // or goes to slow. Only falls through if the objects were not identical.
+ EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
+
+ // If either is a Smi (we know that not both are), then they can only
+ // be strictly equal if the other is a HeapNumber.
+ STATIC_ASSERT(kSmiTag == 0);
+ ASSERT_EQ(0, Smi::FromInt(0));
+ __ And(t2, lhs_, Operand(rhs_));
+ __ JumpIfNotSmi(t2, &not_smis, t0);
+ // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
+ // 1) Return the answer.
+ // 2) Go to slow.
+ // 3) Fall through to both_loaded_as_doubles.
+ // 4) Jump to rhs_not_nan.
+ // In cases 3 and 4 we have found out we were dealing with a number-number
+ // comparison and the numbers have been loaded into f12 and f14 as doubles,
+ // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
+ EmitSmiNonsmiComparison(masm, lhs_, rhs_,
+ &both_loaded_as_doubles, &slow, strict_);
+
+ __ bind(&both_loaded_as_doubles);
+ // f12, f14 are the double representations of the left hand side
+ // and the right hand side if we have FPU. Otherwise a2, a3 represent
+ // left hand side and a0, a1 represent right hand side.
+
+ Isolate* isolate = masm->isolate();
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+ Label nan;
+ __ li(t0, Operand(LESS));
+ __ li(t1, Operand(GREATER));
+ __ li(t2, Operand(EQUAL));
+
+ // Check if either rhs or lhs is NaN.
+ __ c(UN, D, f12, f14);
+ __ bc1t(&nan);
+ __ nop();
+
+ // Check if LESS condition is satisfied. If true, move conditionally
+ // result to v0.
+ __ c(OLT, D, f12, f14);
+ __ movt(v0, t0);
+ // Use previous check to store conditionally to v0 oposite condition
+ // (GREATER). If rhs is equal to lhs, this will be corrected in next
+ // check.
+ __ movf(v0, t1);
+ // Check if EQUAL condition is satisfied. If true, move conditionally
+ // result to v0.
+ __ c(EQ, D, f12, f14);
+ __ movt(v0, t2);
+
+ __ Ret();
+
+ __ bind(&nan);
+ // NaN comparisons always fail.
+ // Load whatever we need in v0 to make the comparison fail.
+ if (cc_ == lt || cc_ == le) {
+ __ li(v0, Operand(GREATER));
+ } else {
+ __ li(v0, Operand(LESS));
+ }
+ __ Ret();
+ } else {
+ // Checks for NaN in the doubles we have loaded. Can return the answer or
+ // fall through if neither is a NaN. Also binds rhs_not_nan.
+ EmitNanCheck(masm, cc_);
+
+ // Compares two doubles that are not NaNs. Returns the answer.
+ // Never falls through.
+ EmitTwoNonNanDoubleComparison(masm, cc_);
+ }
+
+ __ bind(&not_smis);
+ // At this point we know we are dealing with two different objects,
+ // and neither of them is a Smi. The objects are in lhs_ and rhs_.
+ if (strict_) {
+ // This returns non-equal for some object types, or falls through if it
+ // was not lucky.
+ EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
+ }
+
+ Label check_for_symbols;
+ Label flat_string_check;
+ // Check for heap-number-heap-number comparison. Can jump to slow case,
+ // or load both doubles and jump to the code that handles
+ // that case. If the inputs are not doubles then jumps to check_for_symbols.
+ // In this case a2 will contain the type of lhs_.
+ EmitCheckForTwoHeapNumbers(masm,
+ lhs_,
+ rhs_,
+ &both_loaded_as_doubles,
+ &check_for_symbols,
+ &flat_string_check);
+
+ __ bind(&check_for_symbols);
+ if (cc_ == eq && !strict_) {
+ // Returns an answer for two symbols or two detectable objects.
+ // Otherwise jumps to string case or not both strings case.
+ // Assumes that a2 is the type of lhs_ on entry.
+ EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
+ }
+
+ // Check for both being sequential ASCII strings, and inline if that is the
+ // case.
+ __ bind(&flat_string_check);
+
+ __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow);
+
+ __ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3);
+ if (cc_ == eq) {
+ StringCompareStub::GenerateFlatAsciiStringEquals(masm,
+ lhs_,
+ rhs_,
+ a2,
+ a3,
+ t0);
+ } else {
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
+ lhs_,
+ rhs_,
+ a2,
+ a3,
+ t0,
+ t1);
+ }
+ // Never falls through to here.
+
+ __ bind(&slow);
+ // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
+ // a1 (rhs) second.
+ __ Push(lhs_, rhs_);
+ // Figure out which native to call and setup the arguments.
+ Builtins::JavaScript native;
+ if (cc_ == eq) {
+ native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
+ } else {
+ native = Builtins::COMPARE;
+ int ncr; // NaN compare result.
+ if (cc_ == lt || cc_ == le) {
+ ncr = GREATER;
+ } else {
+ ASSERT(cc_ == gt || cc_ == ge); // Remaining cases.
+ ncr = LESS;
+ }
+ __ li(a0, Operand(Smi::FromInt(ncr)));
+ __ push(a0);
+ }
+
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+ // tagged as a small integer.
+ __ InvokeBuiltin(native, JUMP_FUNCTION);
}
// This stub does not handle the inlined cases (Smis, Booleans, undefined).
// The stub returns zero for false, and a non-zero value for true.
void ToBooleanStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // This stub uses FPU instructions.
+ ASSERT(CpuFeatures::IsEnabled(FPU));
+
+ Label false_result;
+ Label not_heap_number;
+ Register scratch0 = t5.is(tos_) ? t3 : t5;
+
+ __ LoadRoot(scratch0, Heap::kNullValueRootIndex);
+ __ Branch(&false_result, eq, tos_, Operand(scratch0));
+
+ // HeapNumber => false if +0, -0, or NaN.
+ __ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
+ __ Branch(&not_heap_number, ne, scratch0, Operand(at));
+
+ __ Subu(at, tos_, Operand(kHeapObjectTag));
+ __ ldc1(f12, MemOperand(at, HeapNumber::kValueOffset));
+ __ fcmp(f12, 0.0, UEQ);
+
+ // "tos_" is a register, and contains a non zero value by default.
+ // Hence we only need to overwrite "tos_" with zero to return false for
+ // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
+ __ movt(tos_, zero_reg);
+ __ Ret();
+
+ __ bind(&not_heap_number);
+
+ // Check if the value is 'null'.
+ // 'null' => false.
+ __ LoadRoot(at, Heap::kNullValueRootIndex);
+ __ Branch(&false_result, eq, tos_, Operand(at));
+
+ // It can be an undetectable object.
+ // Undetectable => false.
+ __ lw(at, FieldMemOperand(tos_, HeapObject::kMapOffset));
+ __ lbu(scratch0, FieldMemOperand(at, Map::kBitFieldOffset));
+ __ And(scratch0, scratch0, Operand(1 << Map::kIsUndetectable));
+ __ Branch(&false_result, eq, scratch0, Operand(1 << Map::kIsUndetectable));
+
+ // JavaScript object => true.
+ __ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
+ __ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
+
+ // "tos_" is a register and contains a non-zero value.
+ // Hence we implicitly return true if the greater than
+ // condition is satisfied.
+ __ Ret(gt, scratch0, Operand(FIRST_JS_OBJECT_TYPE));
+
+ // Check for string.
+ __ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
+ __ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
+ // "tos_" is a register and contains a non-zero value.
+ // Hence we implicitly return true if the greater than
+ // condition is satisfied.
+ __ Ret(gt, scratch0, Operand(FIRST_NONSTRING_TYPE));
+
+ // String value => false iff empty, i.e., length is zero.
+ __ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset));
+ // If length is zero, "tos_" contains zero ==> false.
+ // If length is not zero, "tos_" contains a non-zero value ==> true.
+ __ Ret();
+
+ // Return 0 in "tos_" for false.
+ __ bind(&false_result);
+ __ mov(tos_, zero_reg);
+ __ Ret();
}
@@ -267,99 +1812,288 @@ Handle<Code> GetTypeRecordingUnaryOpStub(int key,
const char* TypeRecordingUnaryOpStub::GetName() {
- UNIMPLEMENTED_MIPS();
- return NULL;
+ if (name_ != NULL) return name_;
+ const int kMaxNameLength = 100;
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
+ kMaxNameLength);
+ if (name_ == NULL) return "OOM";
+ const char* op_name = Token::Name(op_);
+ const char* overwrite_name = NULL; // Make g++ happy.
+ switch (mode_) {
+ case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
+ case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
+ }
+
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+ "TypeRecordingUnaryOpStub_%s_%s_%s",
+ op_name,
+ overwrite_name,
+ TRUnaryOpIC::GetName(operand_type_));
+ return name_;
}
// TODO(svenpanne): Use virtual functions instead of switch.
void TypeRecordingUnaryOpStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ switch (operand_type_) {
+ case TRUnaryOpIC::UNINITIALIZED:
+ GenerateTypeTransition(masm);
+ break;
+ case TRUnaryOpIC::SMI:
+ GenerateSmiStub(masm);
+ break;
+ case TRUnaryOpIC::HEAP_NUMBER:
+ GenerateHeapNumberStub(masm);
+ break;
+ case TRUnaryOpIC::GENERIC:
+ GenerateGenericStub(masm);
+ break;
+ }
}
void TypeRecordingUnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Argument is in a0 and v0 at this point, so we can overwrite a0.
+ // Push this stub's key. Although the operation and the type info are
+ // encoded into the key, the encoding is opaque, so push them too.
+ __ li(a2, Operand(Smi::FromInt(MinorKey())));
+ __ li(a1, Operand(Smi::FromInt(op_)));
+ __ li(a0, Operand(Smi::FromInt(operand_type_)));
+
+ __ Push(v0, a2, a1, a0);
+
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kTypeRecordingUnaryOp_Patch),
+ masm->isolate()),
+ 4,
+ 1);
}
// TODO(svenpanne): Use virtual functions instead of switch.
void TypeRecordingUnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ switch (op_) {
+ case Token::SUB:
+ GenerateSmiStubSub(masm);
+ break;
+ case Token::BIT_NOT:
+ GenerateSmiStubBitNot(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
}
void TypeRecordingUnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label non_smi, slow;
+ GenerateSmiCodeSub(masm, &non_smi, &slow);
+ __ bind(&non_smi);
+ __ bind(&slow);
+ GenerateTypeTransition(masm);
}
void TypeRecordingUnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label non_smi;
+ GenerateSmiCodeBitNot(masm, &non_smi);
+ __ bind(&non_smi);
+ GenerateTypeTransition(masm);
}
void TypeRecordingUnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
Label* non_smi,
Label* slow) {
- UNIMPLEMENTED_MIPS();
+ __ JumpIfNotSmi(a0, non_smi);
+
+ // The result of negating zero or the smallest negative smi is not a smi.
+ __ And(t0, a0, ~0x80000000);
+ __ Branch(slow, eq, t0, Operand(zero_reg));
+
+ // Return '0 - value'.
+ __ Subu(v0, zero_reg, a0);
+ __ Ret();
}
void TypeRecordingUnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
Label* non_smi) {
- UNIMPLEMENTED_MIPS();
+ __ JumpIfNotSmi(a0, non_smi);
+
+ // Flip bits and revert inverted smi-tag.
+ __ Neg(v0, a0);
+ __ And(v0, v0, ~kSmiTagMask);
+ __ Ret();
}
// TODO(svenpanne): Use virtual functions instead of switch.
void TypeRecordingUnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ switch (op_) {
+ case Token::SUB:
+ GenerateHeapNumberStubSub(masm);
+ break;
+ case Token::BIT_NOT:
+ GenerateHeapNumberStubBitNot(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
}
void TypeRecordingUnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label non_smi, slow;
+ GenerateSmiCodeSub(masm, &non_smi, &slow);
+ __ bind(&non_smi);
+ GenerateHeapNumberCodeSub(masm, &slow);
+ __ bind(&slow);
+ GenerateTypeTransition(masm);
}
void TypeRecordingUnaryOpStub::GenerateHeapNumberStubBitNot(
MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label non_smi, slow;
+ GenerateSmiCodeBitNot(masm, &non_smi);
+ __ bind(&non_smi);
+ GenerateHeapNumberCodeBitNot(masm, &slow);
+ __ bind(&slow);
+ GenerateTypeTransition(masm);
}
-
void TypeRecordingUnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
Label* slow) {
- UNIMPLEMENTED_MIPS();
+ EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
+ // a0 is a heap number. Get a new heap number in a1.
+ if (mode_ == UNARY_OVERWRITE) {
+ __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
+ __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign.
+ __ sw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
+ } else {
+ Label slow_allocate_heapnumber, heapnumber_allocated;
+ __ AllocateHeapNumber(a1, a2, a3, t2, &slow_allocate_heapnumber);
+ __ jmp(&heapnumber_allocated);
+
+ __ bind(&slow_allocate_heapnumber);
+ __ EnterInternalFrame();
+ __ push(a0);
+ __ CallRuntime(Runtime::kNumberAlloc, 0);
+ __ mov(a1, v0);
+ __ pop(a0);
+ __ LeaveInternalFrame();
+
+ __ bind(&heapnumber_allocated);
+ __ lw(a3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
+ __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
+ __ sw(a3, FieldMemOperand(a1, HeapNumber::kMantissaOffset));
+ __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign.
+ __ sw(a2, FieldMemOperand(a1, HeapNumber::kExponentOffset));
+ __ mov(v0, a1);
+ }
+ __ Ret();
}
void TypeRecordingUnaryOpStub::GenerateHeapNumberCodeBitNot(
MacroAssembler* masm, Label* slow) {
- UNIMPLEMENTED_MIPS();
+ EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
+ // Convert the heap number in a0 to an untagged integer in a1.
+ __ ConvertToInt32(a0, a1, a2, a3, f0, slow);
+
+ // Do the bitwise operation and check if the result fits in a smi.
+ Label try_float;
+ __ Neg(a1, a1);
+ __ Addu(a2, a1, Operand(0x40000000));
+ __ Branch(&try_float, lt, a2, Operand(zero_reg));
+
+ // Tag the result as a smi and we're done.
+ __ SmiTag(v0, a1);
+ __ Ret();
+
+ // Try to store the result in a heap number.
+ __ bind(&try_float);
+ if (mode_ == UNARY_NO_OVERWRITE) {
+ Label slow_allocate_heapnumber, heapnumber_allocated;
+ __ AllocateHeapNumber(v0, a2, a3, t2, &slow_allocate_heapnumber);
+ __ jmp(&heapnumber_allocated);
+
+ __ bind(&slow_allocate_heapnumber);
+ __ EnterInternalFrame();
+ __ push(a1);
+ __ CallRuntime(Runtime::kNumberAlloc, 0);
+ __ pop(a1);
+ __ LeaveInternalFrame();
+
+ __ bind(&heapnumber_allocated);
+ }
+
+ if (CpuFeatures::IsSupported(FPU)) {
+ // Convert the int32 in a1 to the heap number in v0. a2 is corrupted.
+ CpuFeatures::Scope scope(FPU);
+ __ mtc1(a1, f0);
+ __ cvt_d_w(f0, f0);
+ __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
+ __ Ret();
+ } else {
+ // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
+ // have to set up a frame.
+ WriteInt32ToHeapNumberStub stub(a1, v0, a2, a3);
+ __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
+ }
}
// TODO(svenpanne): Use virtual functions instead of switch.
void TypeRecordingUnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ switch (op_) {
+ case Token::SUB:
+ GenerateGenericStubSub(masm);
+ break;
+ case Token::BIT_NOT:
+ GenerateGenericStubBitNot(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
}
void TypeRecordingUnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label non_smi, slow;
+ GenerateSmiCodeSub(masm, &non_smi, &slow);
+ __ bind(&non_smi);
+ GenerateHeapNumberCodeSub(masm, &slow);
+ __ bind(&slow);
+ GenerateGenericCodeFallback(masm);
}
void TypeRecordingUnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label non_smi, slow;
+ GenerateSmiCodeBitNot(masm, &non_smi);
+ __ bind(&non_smi);
+ GenerateHeapNumberCodeBitNot(masm, &slow);
+ __ bind(&slow);
+ GenerateGenericCodeFallback(masm);
}
void TypeRecordingUnaryOpStub::GenerateGenericCodeFallback(
MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Handle the slow case by jumping to the JavaScript builtin.
+ __ push(a0);
+ switch (op_) {
+ case Token::SUB:
+ __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
+ break;
+ case Token::BIT_NOT:
+ __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
+ break;
+ default:
+ UNREACHABLE();
+ }
}
@@ -372,7 +2106,20 @@ Handle<Code> GetTypeRecordingBinaryOpStub(int key,
void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label get_result;
+
+ __ Push(a1, a0);
+
+ __ li(a2, Operand(Smi::FromInt(MinorKey())));
+ __ li(a1, Operand(Smi::FromInt(op_)));
+ __ li(a0, Operand(Smi::FromInt(operands_type_)));
+ __ Push(a2, a1, a0);
+
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch),
+ masm->isolate()),
+ 5,
+ 1);
}
@@ -383,12 +2130,57 @@ void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs(
void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ switch (operands_type_) {
+ case TRBinaryOpIC::UNINITIALIZED:
+ GenerateTypeTransition(masm);
+ break;
+ case TRBinaryOpIC::SMI:
+ GenerateSmiStub(masm);
+ break;
+ case TRBinaryOpIC::INT32:
+ GenerateInt32Stub(masm);
+ break;
+ case TRBinaryOpIC::HEAP_NUMBER:
+ GenerateHeapNumberStub(masm);
+ break;
+ case TRBinaryOpIC::ODDBALL:
+ GenerateOddballStub(masm);
+ break;
+ case TRBinaryOpIC::BOTH_STRING:
+ GenerateBothStringStub(masm);
+ break;
+ case TRBinaryOpIC::STRING:
+ GenerateStringStub(masm);
+ break;
+ case TRBinaryOpIC::GENERIC:
+ GenerateGeneric(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
}
const char* TypeRecordingBinaryOpStub::GetName() {
- UNIMPLEMENTED_MIPS();
+ if (name_ != NULL) return name_;
+ const int kMaxNameLength = 100;
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
+ kMaxNameLength);
+ if (name_ == NULL) return "OOM";
+ const char* op_name = Token::Name(op_);
+ const char* overwrite_name;
+ switch (mode_) {
+ case NO_OVERWRITE: overwrite_name = "Alloc"; break;
+ case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
+ case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
+ default: overwrite_name = "UnknownOverwrite"; break;
+ }
+
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+ "TypeRecordingBinaryOpStub_%s_%s_%s",
+ op_name,
+ overwrite_name,
+ TRBinaryOpIC::GetName(operands_type_));
return name_;
}
@@ -396,7 +2188,156 @@ const char* TypeRecordingBinaryOpStub::GetName() {
void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation(
MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Register left = a1;
+ Register right = a0;
+
+ Register scratch1 = t0;
+ Register scratch2 = t1;
+
+ ASSERT(right.is(a0));
+ STATIC_ASSERT(kSmiTag == 0);
+
+ Label not_smi_result;
+ switch (op_) {
+ case Token::ADD:
+ __ AdduAndCheckForOverflow(v0, left, right, scratch1);
+ __ RetOnNoOverflow(scratch1);
+ // No need to revert anything - right and left are intact.
+ break;
+ case Token::SUB:
+ __ SubuAndCheckForOverflow(v0, left, right, scratch1);
+ __ RetOnNoOverflow(scratch1);
+ // No need to revert anything - right and left are intact.
+ break;
+ case Token::MUL: {
+ // Remove tag from one of the operands. This way the multiplication result
+ // will be a smi if it fits the smi range.
+ __ SmiUntag(scratch1, right);
+ // Do multiplication.
+ // lo = lower 32 bits of scratch1 * left.
+ // hi = higher 32 bits of scratch1 * left.
+ __ Mult(left, scratch1);
+ // Check for overflowing the smi range - no overflow if higher 33 bits of
+ // the result are identical.
+ __ mflo(scratch1);
+ __ mfhi(scratch2);
+ __ sra(scratch1, scratch1, 31);
+ __ Branch(&not_smi_result, ne, scratch1, Operand(scratch2));
+ // Go slow on zero result to handle -0.
+ __ mflo(v0);
+ __ Ret(ne, v0, Operand(zero_reg));
+ // We need -0 if we were multiplying a negative number with 0 to get 0.
+ // We know one of them was zero.
+ __ Addu(scratch2, right, left);
+ Label skip;
+ // ARM uses the 'pl' condition, which is 'ge'.
+ // Negating it results in 'lt'.
+ __ Branch(&skip, lt, scratch2, Operand(zero_reg));
+ ASSERT(Smi::FromInt(0) == 0);
+ __ mov(v0, zero_reg);
+ __ Ret(); // Return smi 0 if the non-zero one was positive.
+ __ bind(&skip);
+ // We fall through here if we multiplied a negative number with 0, because
+ // that would mean we should produce -0.
+ }
+ break;
+ case Token::DIV: {
+ Label done;
+ __ SmiUntag(scratch2, right);
+ __ SmiUntag(scratch1, left);
+ __ Div(scratch1, scratch2);
+ // A minor optimization: div may be calculated asynchronously, so we check
+ // for division by zero before getting the result.
+ __ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
+ // If the result is 0, we need to make sure the dividsor (right) is
+ // positive, otherwise it is a -0 case.
+ // Quotient is in 'lo', remainder is in 'hi'.
+ // Check for no remainder first.
+ __ mfhi(scratch1);
+ __ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
+ __ mflo(scratch1);
+ __ Branch(&done, ne, scratch1, Operand(zero_reg));
+ __ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
+ __ bind(&done);
+ // Check that the signed result fits in a Smi.
+ __ Addu(scratch2, scratch1, Operand(0x40000000));
+ __ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
+ __ SmiTag(v0, scratch1);
+ __ Ret();
+ }
+ break;
+ case Token::MOD: {
+ Label done;
+ __ SmiUntag(scratch2, right);
+ __ SmiUntag(scratch1, left);
+ __ Div(scratch1, scratch2);
+ // A minor optimization: div may be calculated asynchronously, so we check
+ // for division by 0 before calling mfhi.
+ // Check for zero on the right hand side.
+ __ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
+ // If the result is 0, we need to make sure the dividend (left) is
+ // positive (or 0), otherwise it is a -0 case.
+ // Remainder is in 'hi'.
+ __ mfhi(scratch2);
+ __ Branch(&done, ne, scratch2, Operand(zero_reg));
+ __ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
+ __ bind(&done);
+ // Check that the signed result fits in a Smi.
+ __ Addu(scratch1, scratch2, Operand(0x40000000));
+ __ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
+ __ SmiTag(v0, scratch2);
+ __ Ret();
+ }
+ break;
+ case Token::BIT_OR:
+ __ Or(v0, left, Operand(right));
+ __ Ret();
+ break;
+ case Token::BIT_AND:
+ __ And(v0, left, Operand(right));
+ __ Ret();
+ break;
+ case Token::BIT_XOR:
+ __ Xor(v0, left, Operand(right));
+ __ Ret();
+ break;
+ case Token::SAR:
+ // Remove tags from right operand.
+ __ GetLeastBitsFromSmi(scratch1, right, 5);
+ __ srav(scratch1, left, scratch1);
+ // Smi tag result.
+ __ And(v0, scratch1, Operand(~kSmiTagMask));
+ __ Ret();
+ break;
+ case Token::SHR:
+ // Remove tags from operands. We can't do this on a 31 bit number
+ // because then the 0s get shifted into bit 30 instead of bit 31.
+ __ SmiUntag(scratch1, left);
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+ __ srlv(v0, scratch1, scratch2);
+ // Unsigned shift is not allowed to produce a negative number, so
+ // check the sign bit and the sign bit after Smi tagging.
+ __ And(scratch1, v0, Operand(0xc0000000));
+ __ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
+ // Smi tag result.
+ __ SmiTag(v0);
+ __ Ret();
+ break;
+ case Token::SHL:
+ // Remove tags from operands.
+ __ SmiUntag(scratch1, left);
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+ __ sllv(scratch1, scratch1, scratch2);
+ // Check that the signed result fits in a Smi.
+ __ Addu(scratch2, scratch1, Operand(0x40000000));
+ __ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
+ __ SmiTag(v0, scratch1);
+ __ Ret();
+ break;
+ default:
+ UNREACHABLE();
+ }
+ __ bind(&not_smi_result);
}
@@ -404,7 +2345,211 @@ void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
bool smi_operands,
Label* not_numbers,
Label* gc_required) {
- UNIMPLEMENTED_MIPS();
+ Register left = a1;
+ Register right = a0;
+ Register scratch1 = t3;
+ Register scratch2 = t5;
+ Register scratch3 = t0;
+
+ ASSERT(smi_operands || (not_numbers != NULL));
+ if (smi_operands && FLAG_debug_code) {
+ __ AbortIfNotSmi(left);
+ __ AbortIfNotSmi(right);
+ }
+
+ Register heap_number_map = t2;
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD: {
+ // Load left and right operands into f12 and f14 or a0/a1 and a2/a3
+ // depending on whether FPU is available or not.
+ FloatingPointHelper::Destination destination =
+ CpuFeatures::IsSupported(FPU) &&
+ op_ != Token::MOD ?
+ FloatingPointHelper::kFPURegisters :
+ FloatingPointHelper::kCoreRegisters;
+
+ // Allocate new heap number for result.
+ Register result = s0;
+ GenerateHeapResultAllocation(
+ masm, result, heap_number_map, scratch1, scratch2, gc_required);
+
+ // Load the operands.
+ if (smi_operands) {
+ FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
+ } else {
+ FloatingPointHelper::LoadOperands(masm,
+ destination,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ not_numbers);
+ }
+
+ // Calculate the result.
+ if (destination == FloatingPointHelper::kFPURegisters) {
+ // Using FPU registers:
+ // f12: Left value.
+ // f14: Right value.
+ CpuFeatures::Scope scope(FPU);
+ switch (op_) {
+ case Token::ADD:
+ __ add_d(f10, f12, f14);
+ break;
+ case Token::SUB:
+ __ sub_d(f10, f12, f14);
+ break;
+ case Token::MUL:
+ __ mul_d(f10, f12, f14);
+ break;
+ case Token::DIV:
+ __ div_d(f10, f12, f14);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ // ARM uses a workaround here because of the unaligned HeapNumber
+ // kValueOffset. On MIPS this workaround is built into sdc1 so
+ // there's no point in generating even more instructions.
+ __ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset));
+ __ mov(v0, result);
+ __ Ret();
+ } else {
+ // Call the C function to handle the double operation.
+ FloatingPointHelper::CallCCodeForDoubleOperation(masm,
+ op_,
+ result,
+ scratch1);
+ if (FLAG_debug_code) {
+ __ stop("Unreachable code.");
+ }
+ }
+ break;
+ }
+ case Token::BIT_OR:
+ case Token::BIT_XOR:
+ case Token::BIT_AND:
+ case Token::SAR:
+ case Token::SHR:
+ case Token::SHL: {
+ if (smi_operands) {
+ __ SmiUntag(a3, left);
+ __ SmiUntag(a2, right);
+ } else {
+ // Convert operands to 32-bit integers. Right in a2 and left in a3.
+ FloatingPointHelper::ConvertNumberToInt32(masm,
+ left,
+ a3,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ scratch3,
+ f0,
+ not_numbers);
+ FloatingPointHelper::ConvertNumberToInt32(masm,
+ right,
+ a2,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ scratch3,
+ f0,
+ not_numbers);
+ }
+ Label result_not_a_smi;
+ switch (op_) {
+ case Token::BIT_OR:
+ __ Or(a2, a3, Operand(a2));
+ break;
+ case Token::BIT_XOR:
+ __ Xor(a2, a3, Operand(a2));
+ break;
+ case Token::BIT_AND:
+ __ And(a2, a3, Operand(a2));
+ break;
+ case Token::SAR:
+ // Use only the 5 least significant bits of the shift count.
+ __ GetLeastBitsFromInt32(a2, a2, 5);
+ __ srav(a2, a3, a2);
+ break;
+ case Token::SHR:
+ // Use only the 5 least significant bits of the shift count.
+ __ GetLeastBitsFromInt32(a2, a2, 5);
+ __ srlv(a2, a3, a2);
+ // SHR is special because it is required to produce a positive answer.
+ // The code below for writing into heap numbers isn't capable of
+ // writing the register as an unsigned int so we go to slow case if we
+ // hit this case.
+ if (CpuFeatures::IsSupported(FPU)) {
+ __ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg));
+ } else {
+ __ Branch(not_numbers, lt, a2, Operand(zero_reg));
+ }
+ break;
+ case Token::SHL:
+ // Use only the 5 least significant bits of the shift count.
+ __ GetLeastBitsFromInt32(a2, a2, 5);
+ __ sllv(a2, a3, a2);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ // Check that the *signed* result fits in a smi.
+ __ Addu(a3, a2, Operand(0x40000000));
+ __ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg));
+ __ SmiTag(v0, a2);
+ __ Ret();
+
+ // Allocate new heap number for result.
+ __ bind(&result_not_a_smi);
+ Register result = t1;
+ if (smi_operands) {
+ __ AllocateHeapNumber(
+ result, scratch1, scratch2, heap_number_map, gc_required);
+ } else {
+ GenerateHeapResultAllocation(
+ masm, result, heap_number_map, scratch1, scratch2, gc_required);
+ }
+
+ // a2: Answer as signed int32.
+ // t1: Heap number to write answer into.
+
+ // Nothing can go wrong now, so move the heap number to v0, which is the
+ // result.
+ __ mov(v0, t1);
+
+ if (CpuFeatures::IsSupported(FPU)) {
+ // Convert the int32 in a2 to the heap number in a0. As
+ // mentioned above SHR needs to always produce a positive result.
+ CpuFeatures::Scope scope(FPU);
+ __ mtc1(a2, f0);
+ if (op_ == Token::SHR) {
+ __ Cvt_d_uw(f0, f0);
+ } else {
+ __ cvt_d_w(f0, f0);
+ }
+ // ARM uses a workaround here because of the unaligned HeapNumber
+ // kValueOffset. On MIPS this workaround is built into sdc1 so
+ // there's no point in generating even more instructions.
+ __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
+ __ Ret();
+ } else {
+ // Tail call that writes the int32 in a2 to the heap number in v0, using
+ // a3 and a0 as scratch. v0 is preserved and returned.
+ WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
+ __ TailCallStub(&stub);
+ }
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
}
@@ -416,42 +2561,549 @@ void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm,
Label* use_runtime,
Label* gc_required,
SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
- UNIMPLEMENTED_MIPS();
+ Label not_smis;
+
+ Register left = a1;
+ Register right = a0;
+ Register scratch1 = t3;
+ Register scratch2 = t5;
+
+ // Perform combined smi check on both operands.
+ __ Or(scratch1, left, Operand(right));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ JumpIfNotSmi(scratch1, &not_smis);
+
+ // If the smi-smi operation results in a smi return is generated.
+ GenerateSmiSmiOperation(masm);
+
+ // If heap number results are possible generate the result in an allocated
+ // heap number.
+ if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
+ GenerateFPOperation(masm, true, use_runtime, gc_required);
+ }
+ __ bind(&not_smis);
}
void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label not_smis, call_runtime;
+
+ if (result_type_ == TRBinaryOpIC::UNINITIALIZED ||
+ result_type_ == TRBinaryOpIC::SMI) {
+ // Only allow smi results.
+ GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
+ } else {
+ // Allow heap number result and don't make a transition if a heap number
+ // cannot be allocated.
+ GenerateSmiCode(masm,
+ &call_runtime,
+ &call_runtime,
+ ALLOW_HEAPNUMBER_RESULTS);
+ }
+
+ // Code falls through if the result is not returned as either a smi or heap
+ // number.
+ GenerateTypeTransition(masm);
+
+ __ bind(&call_runtime);
+ GenerateCallRuntime(masm);
}
void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(operands_type_ == TRBinaryOpIC::STRING);
+ // Try to add arguments as strings, otherwise, transition to the generic
+ // TRBinaryOpIC type.
+ GenerateAddStrings(masm);
+ GenerateTypeTransition(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
+ Label call_runtime;
+ ASSERT(operands_type_ == TRBinaryOpIC::BOTH_STRING);
+ ASSERT(op_ == Token::ADD);
+ // If both arguments are strings, call the string add stub.
+ // Otherwise, do a transition.
+
+ // Registers containing left and right operands respectively.
+ Register left = a1;
+ Register right = a0;
+
+ // Test if left operand is a string.
+ __ JumpIfSmi(left, &call_runtime);
+ __ GetObjectType(left, a2, a2);
+ __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
+
+ // Test if right operand is a string.
+ __ JumpIfSmi(right, &call_runtime);
+ __ GetObjectType(right, a2, a2);
+ __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
+
+ StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_stub);
+
+ __ bind(&call_runtime);
+ GenerateTypeTransition(masm);
}
void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(operands_type_ == TRBinaryOpIC::INT32);
+
+ Register left = a1;
+ Register right = a0;
+ Register scratch1 = t3;
+ Register scratch2 = t5;
+ FPURegister double_scratch = f0;
+ FPURegister single_scratch = f6;
+
+ Register heap_number_result = no_reg;
+ Register heap_number_map = t2;
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+
+ Label call_runtime;
+ // Labels for type transition, used for wrong input or output types.
+ // Both label are currently actually bound to the same position. We use two
+ // different label to differentiate the cause leading to type transition.
+ Label transition;
+
+ // Smi-smi fast case.
+ Label skip;
+ __ Or(scratch1, left, right);
+ __ JumpIfNotSmi(scratch1, &skip);
+ GenerateSmiSmiOperation(masm);
+ // Fall through if the result is not a smi.
+ __ bind(&skip);
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD: {
+ // Load both operands and check that they are 32-bit integer.
+ // Jump to type transition if they are not. The registers a0 and a1 (right
+ // and left) are preserved for the runtime call.
+ FloatingPointHelper::Destination destination =
+ CpuFeatures::IsSupported(FPU) &&
+ op_ != Token::MOD ?
+ FloatingPointHelper::kFPURegisters :
+ FloatingPointHelper::kCoreRegisters;
+
+ FloatingPointHelper::LoadNumberAsInt32Double(masm,
+ right,
+ destination,
+ f14,
+ a2,
+ a3,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ f2,
+ &transition);
+ FloatingPointHelper::LoadNumberAsInt32Double(masm,
+ left,
+ destination,
+ f12,
+ t0,
+ t1,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ f2,
+ &transition);
+
+ if (destination == FloatingPointHelper::kFPURegisters) {
+ CpuFeatures::Scope scope(FPU);
+ Label return_heap_number;
+ switch (op_) {
+ case Token::ADD:
+ __ add_d(f10, f12, f14);
+ break;
+ case Token::SUB:
+ __ sub_d(f10, f12, f14);
+ break;
+ case Token::MUL:
+ __ mul_d(f10, f12, f14);
+ break;
+ case Token::DIV:
+ __ div_d(f10, f12, f14);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ if (op_ != Token::DIV) {
+ // These operations produce an integer result.
+ // Try to return a smi if we can.
+ // Otherwise return a heap number if allowed, or jump to type
+ // transition.
+
+ // NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate).
+ // On MIPS a lot of things cannot be implemented the same way so right
+ // now it makes a lot more sense to just do things manually.
+
+ // Save FCSR.
+ __ cfc1(scratch1, FCSR);
+ // Disable FPU exceptions.
+ __ ctc1(zero_reg, FCSR);
+ __ trunc_w_d(single_scratch, f10);
+ // Retrieve FCSR.
+ __ cfc1(scratch2, FCSR);
+ // Restore FCSR.
+ __ ctc1(scratch1, FCSR);
+
+ // Check for inexact conversion.
+ __ srl(scratch2, scratch2, kFCSRFlagShift);
+ __ And(scratch2, scratch2, kFCSRFlagMask);
+
+ if (result_type_ <= TRBinaryOpIC::INT32) {
+ // If scratch2 != 0, result does not fit in a 32-bit integer.
+ __ Branch(&transition, ne, scratch2, Operand(zero_reg));
+ }
+
+ // Check if the result fits in a smi.
+ __ mfc1(scratch1, single_scratch);
+ __ Addu(scratch2, scratch1, Operand(0x40000000));
+ // If not try to return a heap number.
+ __ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg));
+ // Check for minus zero. Return heap number for minus zero.
+ Label not_zero;
+ __ Branch(&not_zero, ne, scratch1, Operand(zero_reg));
+ __ mfc1(scratch2, f11);
+ __ And(scratch2, scratch2, HeapNumber::kSignMask);
+ __ Branch(&return_heap_number, ne, scratch2, Operand(zero_reg));
+ __ bind(&not_zero);
+
+ // Tag the result and return.
+ __ SmiTag(v0, scratch1);
+ __ Ret();
+ } else {
+ // DIV just falls through to allocating a heap number.
+ }
+
+ if (result_type_ >= (op_ == Token::DIV) ? TRBinaryOpIC::HEAP_NUMBER
+ : TRBinaryOpIC::INT32) {
+ __ bind(&return_heap_number);
+ // We are using FPU registers so s0 is available.
+ heap_number_result = s0;
+ GenerateHeapResultAllocation(masm,
+ heap_number_result,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ &call_runtime);
+ __ mov(v0, heap_number_result);
+ __ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset));
+ __ Ret();
+ }
+
+ // A DIV operation expecting an integer result falls through
+ // to type transition.
+
+ } else {
+ // We preserved a0 and a1 to be able to call runtime.
+ // Save the left value on the stack.
+ __ Push(t1, t0);
+
+ Label pop_and_call_runtime;
+
+ // Allocate a heap number to store the result.
+ heap_number_result = s0;
+ GenerateHeapResultAllocation(masm,
+ heap_number_result,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ &pop_and_call_runtime);
+
+ // Load the left value from the value saved on the stack.
+ __ Pop(a1, a0);
+
+ // Call the C function to handle the double operation.
+ FloatingPointHelper::CallCCodeForDoubleOperation(
+ masm, op_, heap_number_result, scratch1);
+ if (FLAG_debug_code) {
+ __ stop("Unreachable code.");
+ }
+
+ __ bind(&pop_and_call_runtime);
+ __ Drop(2);
+ __ Branch(&call_runtime);
+ }
+
+ break;
+ }
+
+ case Token::BIT_OR:
+ case Token::BIT_XOR:
+ case Token::BIT_AND:
+ case Token::SAR:
+ case Token::SHR:
+ case Token::SHL: {
+ Label return_heap_number;
+ Register scratch3 = t1;
+ // Convert operands to 32-bit integers. Right in a2 and left in a3. The
+ // registers a0 and a1 (right and left) are preserved for the runtime
+ // call.
+ FloatingPointHelper::LoadNumberAsInt32(masm,
+ left,
+ a3,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ scratch3,
+ f0,
+ &transition);
+ FloatingPointHelper::LoadNumberAsInt32(masm,
+ right,
+ a2,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ scratch3,
+ f0,
+ &transition);
+
+ // The ECMA-262 standard specifies that, for shift operations, only the
+ // 5 least significant bits of the shift value should be used.
+ switch (op_) {
+ case Token::BIT_OR:
+ __ Or(a2, a3, Operand(a2));
+ break;
+ case Token::BIT_XOR:
+ __ Xor(a2, a3, Operand(a2));
+ break;
+ case Token::BIT_AND:
+ __ And(a2, a3, Operand(a2));
+ break;
+ case Token::SAR:
+ __ And(a2, a2, Operand(0x1f));
+ __ srav(a2, a3, a2);
+ break;
+ case Token::SHR:
+ __ And(a2, a2, Operand(0x1f));
+ __ srlv(a2, a3, a2);
+ // SHR is special because it is required to produce a positive answer.
+ // We only get a negative result if the shift value (a2) is 0.
+ // This result cannot be respresented as a signed 32-bit integer, try
+ // to return a heap number if we can.
+ // The non FPU code does not support this special case, so jump to
+ // runtime if we don't support it.
+ if (CpuFeatures::IsSupported(FPU)) {
+ __ Branch((result_type_ <= TRBinaryOpIC::INT32)
+ ? &transition
+ : &return_heap_number,
+ lt,
+ a2,
+ Operand(zero_reg));
+ } else {
+ __ Branch((result_type_ <= TRBinaryOpIC::INT32)
+ ? &transition
+ : &call_runtime,
+ lt,
+ a2,
+ Operand(zero_reg));
+ }
+ break;
+ case Token::SHL:
+ __ And(a2, a2, Operand(0x1f));
+ __ sllv(a2, a3, a2);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ // Check if the result fits in a smi.
+ __ Addu(scratch1, a2, Operand(0x40000000));
+ // If not try to return a heap number. (We know the result is an int32.)
+ __ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg));
+ // Tag the result and return.
+ __ SmiTag(v0, a2);
+ __ Ret();
+
+ __ bind(&return_heap_number);
+ heap_number_result = t1;
+ GenerateHeapResultAllocation(masm,
+ heap_number_result,
+ heap_number_map,
+ scratch1,
+ scratch2,
+ &call_runtime);
+
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+
+ if (op_ != Token::SHR) {
+ // Convert the result to a floating point value.
+ __ mtc1(a2, double_scratch);
+ __ cvt_d_w(double_scratch, double_scratch);
+ } else {
+ // The result must be interpreted as an unsigned 32-bit integer.
+ __ mtc1(a2, double_scratch);
+ __ Cvt_d_uw(double_scratch, double_scratch);
+ }
+
+ // Store the result.
+ __ mov(v0, heap_number_result);
+ __ sdc1(double_scratch, FieldMemOperand(v0, HeapNumber::kValueOffset));
+ __ Ret();
+ } else {
+ // Tail call that writes the int32 in a2 to the heap number in v0, using
+ // a3 and a1 as scratch. v0 is preserved and returned.
+ __ mov(a0, t1);
+ WriteInt32ToHeapNumberStub stub(a2, v0, a3, a1);
+ __ TailCallStub(&stub);
+ }
+
+ break;
+ }
+
+ default:
+ UNREACHABLE();
+ }
+
+ if (transition.is_linked()) {
+ __ bind(&transition);
+ GenerateTypeTransition(masm);
+ }
+
+ __ bind(&call_runtime);
+ GenerateCallRuntime(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
+ Label call_runtime;
+
+ if (op_ == Token::ADD) {
+ // Handle string addition here, because it is the only operation
+ // that does not do a ToNumber conversion on the operands.
+ GenerateAddStrings(masm);
+ }
+
+ // Convert oddball arguments to numbers.
+ Label check, done;
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
+ __ Branch(&check, ne, a1, Operand(t0));
+ if (Token::IsBitOp(op_)) {
+ __ li(a1, Operand(Smi::FromInt(0)));
+ } else {
+ __ LoadRoot(a1, Heap::kNanValueRootIndex);
+ }
+ __ jmp(&done);
+ __ bind(&check);
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
+ __ Branch(&done, ne, a0, Operand(t0));
+ if (Token::IsBitOp(op_)) {
+ __ li(a0, Operand(Smi::FromInt(0)));
+ } else {
+ __ LoadRoot(a0, Heap::kNanValueRootIndex);
+ }
+ __ bind(&done);
+
+ GenerateHeapNumberStub(masm);
}
void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label call_runtime;
+ GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
+
+ __ bind(&call_runtime);
+ GenerateCallRuntime(masm);
}
void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label call_runtime, call_string_add_or_runtime;
+
+ GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
+
+ GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
+
+ __ bind(&call_string_add_or_runtime);
+ if (op_ == Token::ADD) {
+ GenerateAddStrings(masm);
+ }
+
+ __ bind(&call_runtime);
+ GenerateCallRuntime(masm);
}
void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(op_ == Token::ADD);
+ Label left_not_string, call_runtime;
+
+ Register left = a1;
+ Register right = a0;
+
+ // Check if left argument is a string.
+ __ JumpIfSmi(left, &left_not_string);
+ __ GetObjectType(left, a2, a2);
+ __ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE));
+
+ StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_left_stub);
+
+ // Left operand is not a string, test right.
+ __ bind(&left_not_string);
+ __ JumpIfSmi(right, &call_runtime);
+ __ GetObjectType(right, a2, a2);
+ __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
+
+ StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_right_stub);
+
+ // At least one argument is not a string.
+ __ bind(&call_runtime);
}
void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ GenerateRegisterArgsPush(masm);
+ switch (op_) {
+ case Token::ADD:
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
+ break;
+ case Token::SUB:
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
+ break;
+ case Token::MUL:
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
+ break;
+ case Token::DIV:
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
+ break;
+ case Token::MOD:
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
+ break;
+ case Token::BIT_OR:
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
+ break;
+ case Token::BIT_AND:
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
+ break;
+ case Token::BIT_XOR:
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
+ break;
+ case Token::SAR:
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
+ break;
+ case Token::SHR:
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
+ break;
+ case Token::SHL:
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
+ break;
+ default:
+ UNREACHABLE();
+ }
}
@@ -462,34 +3114,382 @@ void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation(
Register scratch1,
Register scratch2,
Label* gc_required) {
- UNIMPLEMENTED_MIPS();
+
+ // Code below will scratch result if allocation fails. To keep both arguments
+ // intact for the runtime call result cannot be one of these.
+ ASSERT(!result.is(a0) && !result.is(a1));
+
+ if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
+ Label skip_allocation, allocated;
+ Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0;
+ // If the overwritable operand is already an object, we skip the
+ // allocation of a heap number.
+ __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
+ // Allocate a heap number for the result.
+ __ AllocateHeapNumber(
+ result, scratch1, scratch2, heap_number_map, gc_required);
+ __ Branch(&allocated);
+ __ bind(&skip_allocation);
+ // Use object holding the overwritable operand for result.
+ __ mov(result, overwritable_operand);
+ __ bind(&allocated);
+ } else {
+ ASSERT(mode_ == NO_OVERWRITE);
+ __ AllocateHeapNumber(
+ result, scratch1, scratch2, heap_number_map, gc_required);
+ }
}
void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ __ Push(a1, a0);
}
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Untagged case: double input in f4, double result goes
+ // into f4.
+ // Tagged case: tagged input on top of stack and in a0,
+ // tagged result (heap number) goes into v0.
+
+ Label input_not_smi;
+ Label loaded;
+ Label calculate;
+ Label invalid_cache;
+ const Register scratch0 = t5;
+ const Register scratch1 = t3;
+ const Register cache_entry = a0;
+ const bool tagged = (argument_type_ == TAGGED);
+
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+
+ if (tagged) {
+ // Argument is a number and is on stack and in a0.
+ // Load argument and check if it is a smi.
+ __ JumpIfNotSmi(a0, &input_not_smi);
+
+ // Input is a smi. Convert to double and load the low and high words
+ // of the double into a2, a3.
+ __ sra(t0, a0, kSmiTagSize);
+ __ mtc1(t0, f4);
+ __ cvt_d_w(f4, f4);
+ __ mfc1(a2, f4);
+ __ mfc1(a3, f5);
+ __ Branch(&loaded);
+
+ __ bind(&input_not_smi);
+ // Check if input is a HeapNumber.
+ __ CheckMap(a0,
+ a1,
+ Heap::kHeapNumberMapRootIndex,
+ &calculate,
+ true);
+ // Input is a HeapNumber. Store the
+ // low and high words into a2, a3.
+ __ lw(a2, FieldMemOperand(a0, HeapNumber::kValueOffset));
+ __ lw(a3, FieldMemOperand(a0, HeapNumber::kValueOffset + 4));
+ } else {
+ // Input is untagged double in f4. Output goes to f4.
+ __ mfc1(a2, f4);
+ __ mfc1(a3, f5);
+ }
+ __ bind(&loaded);
+ // a2 = low 32 bits of double value.
+ // a3 = high 32 bits of double value.
+ // Compute hash (the shifts are arithmetic):
+ // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
+ __ Xor(a1, a2, a3);
+ __ sra(t0, a1, 16);
+ __ Xor(a1, a1, t0);
+ __ sra(t0, a1, 8);
+ __ Xor(a1, a1, t0);
+ ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
+ __ And(a1, a1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
+
+ // a2 = low 32 bits of double value.
+ // a3 = high 32 bits of double value.
+ // a1 = TranscendentalCache::hash(double value).
+ __ li(cache_entry, Operand(
+ ExternalReference::transcendental_cache_array_address(
+ masm->isolate())));
+ // a0 points to cache array.
+ __ lw(cache_entry, MemOperand(cache_entry, type_ * sizeof(
+ Isolate::Current()->transcendental_cache()->caches_[0])));
+ // a0 points to the cache for the type type_.
+ // If NULL, the cache hasn't been initialized yet, so go through runtime.
+ __ Branch(&invalid_cache, eq, cache_entry, Operand(zero_reg));
+
+#ifdef DEBUG
+ // Check that the layout of cache elements match expectations.
+ { TranscendentalCache::SubCache::Element test_elem[2];
+ char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
+ char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
+ char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
+ char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
+ char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
+ CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
+ CHECK_EQ(0, elem_in0 - elem_start);
+ CHECK_EQ(kIntSize, elem_in1 - elem_start);
+ CHECK_EQ(2 * kIntSize, elem_out - elem_start);
+ }
+#endif
+
+ // Find the address of the a1'st entry in the cache, i.e., &a0[a1*12].
+ __ sll(t0, a1, 1);
+ __ Addu(a1, a1, t0);
+ __ sll(t0, a1, 2);
+ __ Addu(cache_entry, cache_entry, t0);
+
+ // Check if cache matches: Double value is stored in uint32_t[2] array.
+ __ lw(t0, MemOperand(cache_entry, 0));
+ __ lw(t1, MemOperand(cache_entry, 4));
+ __ lw(t2, MemOperand(cache_entry, 8));
+ __ Addu(cache_entry, cache_entry, 12);
+ __ Branch(&calculate, ne, a2, Operand(t0));
+ __ Branch(&calculate, ne, a3, Operand(t1));
+ // Cache hit. Load result, cleanup and return.
+ if (tagged) {
+ // Pop input value from stack and load result into v0.
+ __ Drop(1);
+ __ mov(v0, t2);
+ } else {
+ // Load result into f4.
+ __ ldc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
+ }
+ __ Ret();
+ } // if (CpuFeatures::IsSupported(FPU))
+
+ __ bind(&calculate);
+ if (tagged) {
+ __ bind(&invalid_cache);
+ __ TailCallExternalReference(ExternalReference(RuntimeFunction(),
+ masm->isolate()),
+ 1,
+ 1);
+ } else {
+ if (!CpuFeatures::IsSupported(FPU)) UNREACHABLE();
+ CpuFeatures::Scope scope(FPU);
+
+ Label no_update;
+ Label skip_cache;
+ const Register heap_number_map = t2;
+
+ // Call C function to calculate the result and update the cache.
+ // Register a0 holds precalculated cache entry address; preserve
+ // it on the stack and pop it into register cache_entry after the
+ // call.
+ __ push(cache_entry);
+ GenerateCallCFunction(masm, scratch0);
+ __ GetCFunctionDoubleResult(f4);
+
+ // Try to update the cache. If we cannot allocate a
+ // heap number, we return the result without updating.
+ __ pop(cache_entry);
+ __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update);
+ __ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
+
+ __ sw(a2, MemOperand(cache_entry, 0 * kPointerSize));
+ __ sw(a3, MemOperand(cache_entry, 1 * kPointerSize));
+ __ sw(t2, MemOperand(cache_entry, 2 * kPointerSize));
+
+ __ mov(v0, cache_entry);
+ __ Ret();
+
+ __ bind(&invalid_cache);
+ // The cache is invalid. Call runtime which will recreate the
+ // cache.
+ __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(a0, scratch0, scratch1, t1, &skip_cache);
+ __ sdc1(f4, FieldMemOperand(a0, HeapNumber::kValueOffset));
+ __ EnterInternalFrame();
+ __ push(a0);
+ __ CallRuntime(RuntimeFunction(), 1);
+ __ LeaveInternalFrame();
+ __ ldc1(f4, FieldMemOperand(v0, HeapNumber::kValueOffset));
+ __ Ret();
+
+ __ bind(&skip_cache);
+ // Call C function to calculate the result and answer directly
+ // without updating the cache.
+ GenerateCallCFunction(masm, scratch0);
+ __ GetCFunctionDoubleResult(f4);
+ __ bind(&no_update);
+
+ // We return the value in f4 without adding it to the cache, but
+ // we cause a scavenging GC so that future allocations will succeed.
+ __ EnterInternalFrame();
+
+ // Allocate an aligned object larger than a HeapNumber.
+ ASSERT(4 * kPointerSize >= HeapNumber::kSize);
+ __ li(scratch0, Operand(4 * kPointerSize));
+ __ push(scratch0);
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
+ __ LeaveInternalFrame();
+ __ Ret();
+ }
+}
+
+
+void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
+ Register scratch) {
+ __ push(ra);
+ __ PrepareCallCFunction(2, scratch);
+ __ mfc1(v0, f4);
+ __ mfc1(v1, f5);
+ switch (type_) {
+ case TranscendentalCache::SIN:
+ __ CallCFunction(
+ ExternalReference::math_sin_double_function(masm->isolate()), 2);
+ break;
+ case TranscendentalCache::COS:
+ __ CallCFunction(
+ ExternalReference::math_cos_double_function(masm->isolate()), 2);
+ break;
+ case TranscendentalCache::LOG:
+ __ CallCFunction(
+ ExternalReference::math_log_double_function(masm->isolate()), 2);
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ __ pop(ra);
}
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
- UNIMPLEMENTED_MIPS();
- return Runtime::kAbort;
+ switch (type_) {
+ // Add more cases when necessary.
+ case TranscendentalCache::SIN: return Runtime::kMath_sin;
+ case TranscendentalCache::COS: return Runtime::kMath_cos;
+ case TranscendentalCache::LOG: return Runtime::kMath_log;
+ default:
+ UNIMPLEMENTED();
+ return Runtime::kAbort;
+ }
}
void StackCheckStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
void MathPowStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label call_runtime;
+
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+
+ Label base_not_smi;
+ Label exponent_not_smi;
+ Label convert_exponent;
+
+ const Register base = a0;
+ const Register exponent = a2;
+ const Register heapnumbermap = t1;
+ const Register heapnumber = s0; // Callee-saved register.
+ const Register scratch = t2;
+ const Register scratch2 = t3;
+
+ // Alocate FP values in the ABI-parameter-passing regs.
+ const DoubleRegister double_base = f12;
+ const DoubleRegister double_exponent = f14;
+ const DoubleRegister double_result = f0;
+ const DoubleRegister double_scratch = f2;
+
+ __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
+ __ lw(base, MemOperand(sp, 1 * kPointerSize));
+ __ lw(exponent, MemOperand(sp, 0 * kPointerSize));
+
+ // Convert base to double value and store it in f0.
+ __ JumpIfNotSmi(base, &base_not_smi);
+ // Base is a Smi. Untag and convert it.
+ __ SmiUntag(base);
+ __ mtc1(base, double_scratch);
+ __ cvt_d_w(double_base, double_scratch);
+ __ Branch(&convert_exponent);
+
+ __ bind(&base_not_smi);
+ __ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset));
+ __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
+ // Base is a heapnumber. Load it into double register.
+ __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
+
+ __ bind(&convert_exponent);
+ __ JumpIfNotSmi(exponent, &exponent_not_smi);
+ __ SmiUntag(exponent);
+
+ // The base is in a double register and the exponent is
+ // an untagged smi. Allocate a heap number and call a
+ // C function for integer exponents. The register containing
+ // the heap number is callee-saved.
+ __ AllocateHeapNumber(heapnumber,
+ scratch,
+ scratch2,
+ heapnumbermap,
+ &call_runtime);
+ __ push(ra);
+ __ PrepareCallCFunction(3, scratch);
+ // ABI (o32) for func(double d, int x): d in f12, x in a2.
+ ASSERT(double_base.is(f12));
+ ASSERT(exponent.is(a2));
+ if (IsMipsSoftFloatABI) {
+ // Simulator case, supports FPU, but with soft-float passing.
+ __ mfc1(a0, double_base);
+ __ mfc1(a1, FPURegister::from_code(double_base.code() + 1));
+ }
+ __ CallCFunction(
+ ExternalReference::power_double_int_function(masm->isolate()), 3);
+ __ pop(ra);
+ __ GetCFunctionDoubleResult(double_result);
+ __ sdc1(double_result,
+ FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
+ __ mov(v0, heapnumber);
+ __ DropAndRet(2 * kPointerSize);
+
+ __ bind(&exponent_not_smi);
+ __ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
+ __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
+ // Exponent is a heapnumber. Load it into double register.
+ __ ldc1(double_exponent,
+ FieldMemOperand(exponent, HeapNumber::kValueOffset));
+
+ // The base and the exponent are in double registers.
+ // Allocate a heap number and call a C function for
+ // double exponents. The register containing
+ // the heap number is callee-saved.
+ __ AllocateHeapNumber(heapnumber,
+ scratch,
+ scratch2,
+ heapnumbermap,
+ &call_runtime);
+ __ push(ra);
+ __ PrepareCallCFunction(4, scratch);
+ // ABI (o32) for func(double a, double b): a in f12, b in f14.
+ ASSERT(double_base.is(f12));
+ ASSERT(double_exponent.is(f14));
+ if (IsMipsSoftFloatABI) {
+ __ mfc1(a0, double_base);
+ __ mfc1(a1, FPURegister::from_code(double_base.code() + 1));
+ __ mfc1(a2, double_exponent);
+ __ mfc1(a3, FPURegister::from_code(double_exponent.code() + 1));
+ }
+ __ CallCFunction(
+ ExternalReference::power_double_double_function(masm->isolate()), 4);
+ __ pop(ra);
+ __ GetCFunctionDoubleResult(double_result);
+ __ sdc1(double_result,
+ FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
+ __ mov(v0, heapnumber);
+ __ DropAndRet(2 * kPointerSize);
+ }
+
+ __ bind(&call_runtime);
+ __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
}
@@ -499,13 +3499,13 @@ bool CEntryStub::NeedsImmovableCode() {
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ __ Throw(v0);
}
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type) {
- UNIMPLEMENTED_MIPS();
+ __ ThrowUncatchable(type, v0);
}
@@ -515,17 +3515,369 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_out_of_memory_exception,
bool do_gc,
bool always_allocate) {
- UNIMPLEMENTED_MIPS();
+ // v0: result parameter for PerformGC, if any
+ // s0: number of arguments including receiver (C callee-saved)
+ // s1: pointer to the first argument (C callee-saved)
+ // s2: pointer to builtin function (C callee-saved)
+
+ if (do_gc) {
+ // Move result passed in v0 into a0 to call PerformGC.
+ __ mov(a0, v0);
+ __ PrepareCallCFunction(1, a1);
+ __ CallCFunction(
+ ExternalReference::perform_gc_function(masm->isolate()), 1);
+ }
+
+ ExternalReference scope_depth =
+ ExternalReference::heap_always_allocate_scope_depth(masm->isolate());
+ if (always_allocate) {
+ __ li(a0, Operand(scope_depth));
+ __ lw(a1, MemOperand(a0));
+ __ Addu(a1, a1, Operand(1));
+ __ sw(a1, MemOperand(a0));
+ }
+
+ // Prepare arguments for C routine: a0 = argc, a1 = argv
+ __ mov(a0, s0);
+ __ mov(a1, s1);
+
+ // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
+ // also need to reserve the 4 argument slots on the stack.
+
+ __ AssertStackIsAligned();
+
+ __ li(a2, Operand(ExternalReference::isolate_address()));
+
+ // From arm version of this function:
+ // TODO(1242173): To let the GC traverse the return address of the exit
+ // frames, we need to know where the return address is. Right now,
+ // we push it on the stack to be able to find it again, but we never
+ // restore from it in case of changes, which makes it impossible to
+ // support moving the C entry code stub. This should be fixed, but currently
+ // this is OK because the CEntryStub gets generated so early in the V8 boot
+ // sequence that it is not moving ever.
+
+ { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
+ // This branch-and-link sequence is needed to find the current PC on mips,
+ // saved to the ra register.
+ // Use masm-> here instead of the double-underscore macro since extra
+ // coverage code can interfere with the proper calculation of ra.
+ Label find_ra;
+ masm->bal(&find_ra); // bal exposes branch delay slot.
+ masm->nop(); // Branch delay slot nop.
+ masm->bind(&find_ra);
+
+ // Adjust the value in ra to point to the correct return location, 2nd
+ // instruction past the real call into C code (the jalr(t9)), and push it.
+ // This is the return address of the exit frame.
+ const int kNumInstructionsToJump = 6;
+ masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize);
+ masm->sw(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame.
+ masm->Subu(sp, sp, StandardFrameConstants::kCArgsSlotsSize);
+ // Stack is still aligned.
+
+ // Call the C routine.
+ masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
+ masm->jalr(t9);
+ masm->nop(); // Branch delay slot nop.
+ // Make sure the stored 'ra' points to this position.
+ ASSERT_EQ(kNumInstructionsToJump,
+ masm->InstructionsGeneratedSince(&find_ra));
+ }
+
+ // Restore stack (remove arg slots).
+ __ Addu(sp, sp, StandardFrameConstants::kCArgsSlotsSize);
+
+ if (always_allocate) {
+ // It's okay to clobber a2 and a3 here. v0 & v1 contain result.
+ __ li(a2, Operand(scope_depth));
+ __ lw(a3, MemOperand(a2));
+ __ Subu(a3, a3, Operand(1));
+ __ sw(a3, MemOperand(a2));
+ }
+
+ // Check for failure result.
+ Label failure_returned;
+ STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
+ __ addiu(a2, v0, 1);
+ __ andi(t0, a2, kFailureTagMask);
+ __ Branch(&failure_returned, eq, t0, Operand(zero_reg));
+
+ // Exit C frame and return.
+ // v0:v1: result
+ // sp: stack pointer
+ // fp: frame pointer
+ __ LeaveExitFrame(save_doubles_, s0);
+ __ Ret();
+
+ // Check if we should retry or throw exception.
+ Label retry;
+ __ bind(&failure_returned);
+ STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
+ __ andi(t0, v0, ((1 << kFailureTypeTagSize) - 1) << kFailureTagSize);
+ __ Branch(&retry, eq, t0, Operand(zero_reg));
+
+ // Special handling of out of memory exceptions.
+ Failure* out_of_memory = Failure::OutOfMemoryException();
+ __ Branch(throw_out_of_memory_exception, eq,
+ v0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
+
+ // Retrieve the pending exception and clear the variable.
+ __ li(t0,
+ Operand(ExternalReference::the_hole_value_location(masm->isolate())));
+ __ lw(a3, MemOperand(t0));
+ __ li(t0, Operand(ExternalReference(Isolate::k_pending_exception_address,
+ masm->isolate())));
+ __ lw(v0, MemOperand(t0));
+ __ sw(a3, MemOperand(t0));
+
+ // Special handling of termination exceptions which are uncatchable
+ // by javascript code.
+ __ Branch(throw_termination_exception, eq,
+ v0, Operand(masm->isolate()->factory()->termination_exception()));
+
+ // Handle normal exception.
+ __ jmp(throw_normal_exception);
+
+ __ bind(&retry);
+ // Last failure (v0) will be moved to (a0) for parameter when retrying.
}
void CEntryStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Called from JavaScript; parameters are on stack as if calling JS function
+ // a0: number of arguments including receiver
+ // a1: pointer to builtin function
+ // fp: frame pointer (restored after C call)
+ // sp: stack pointer (restored as callee's sp after C call)
+ // cp: current context (C callee-saved)
+
+ // NOTE: Invocations of builtins may return failure objects
+ // instead of a proper result. The builtin entry handles
+ // this by performing a garbage collection and retrying the
+ // builtin once.
+
+ // Compute the argv pointer in a callee-saved register.
+ __ sll(s1, a0, kPointerSizeLog2);
+ __ Addu(s1, sp, s1);
+ __ Subu(s1, s1, Operand(kPointerSize));
+
+ // Enter the exit frame that transitions from JavaScript to C++.
+ __ EnterExitFrame(save_doubles_);
+
+ // Setup argc and the builtin function in callee-saved registers.
+ __ mov(s0, a0);
+ __ mov(s2, a1);
+
+ // s0: number of arguments (C callee-saved)
+ // s1: pointer to first argument (C callee-saved)
+ // s2: pointer to builtin function (C callee-saved)
+
+ Label throw_normal_exception;
+ Label throw_termination_exception;
+ Label throw_out_of_memory_exception;
+
+ // Call into the runtime system.
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_termination_exception,
+ &throw_out_of_memory_exception,
+ false,
+ false);
+
+ // Do space-specific GC and retry runtime call.
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_termination_exception,
+ &throw_out_of_memory_exception,
+ true,
+ false);
+
+ // Do full GC and retry runtime call one final time.
+ Failure* failure = Failure::InternalError();
+ __ li(v0, Operand(reinterpret_cast<int32_t>(failure)));
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_termination_exception,
+ &throw_out_of_memory_exception,
+ true,
+ true);
+
+ __ bind(&throw_out_of_memory_exception);
+ GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
+
+ __ bind(&throw_termination_exception);
+ GenerateThrowUncatchable(masm, TERMINATION);
+
+ __ bind(&throw_normal_exception);
+ GenerateThrowTOS(masm);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
- UNIMPLEMENTED_MIPS();
+ Label invoke, exit;
+
+ // Registers:
+ // a0: entry address
+ // a1: function
+ // a2: reveiver
+ // a3: argc
+ //
+ // Stack:
+ // 4 args slots
+ // args
+
+ // Save callee saved registers on the stack.
+ __ MultiPush((kCalleeSaved | ra.bit()) & ~sp.bit());
+
+ // Load argv in s0 register.
+ __ lw(s0, MemOperand(sp, kNumCalleeSaved * kPointerSize +
+ StandardFrameConstants::kCArgsSlotsSize));
+
+ // We build an EntryFrame.
+ __ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used.
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
+ __ li(t2, Operand(Smi::FromInt(marker)));
+ __ li(t1, Operand(Smi::FromInt(marker)));
+ __ li(t0, Operand(ExternalReference(Isolate::k_c_entry_fp_address,
+ masm->isolate())));
+ __ lw(t0, MemOperand(t0));
+ __ Push(t3, t2, t1, t0);
+ // Setup frame pointer for the frame to be pushed.
+ __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
+
+ // Registers:
+ // a0: entry_address
+ // a1: function
+ // a2: reveiver_pointer
+ // a3: argc
+ // s0: argv
+ //
+ // Stack:
+ // caller fp |
+ // function slot | entry frame
+ // context slot |
+ // bad fp (0xff...f) |
+ // callee saved registers + ra
+ // 4 args slots
+ // args
+
+ #ifdef ENABLE_LOGGING_AND_PROFILING
+ // If this is the outermost JS call, set js_entry_sp value.
+ ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address,
+ masm->isolate());
+ __ li(t1, Operand(ExternalReference(js_entry_sp)));
+ __ lw(t2, MemOperand(t1));
+ {
+ Label skip;
+ __ Branch(&skip, ne, t2, Operand(zero_reg));
+ __ sw(fp, MemOperand(t1));
+ __ bind(&skip);
+ }
+ #endif
+
+ // Call a faked try-block that does the invoke.
+ __ bal(&invoke); // bal exposes branch delay slot.
+ __ nop(); // Branch delay slot nop.
+
+ // Caught exception: Store result (exception) in the pending
+ // exception field in the JSEnv and return a failure sentinel.
+ // Coming in here the fp will be invalid because the PushTryHandler below
+ // sets it to 0 to signal the existence of the JSEntry frame.
+ __ li(t0, Operand(ExternalReference(Isolate::k_pending_exception_address,
+ masm->isolate())));
+ __ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0.
+ __ li(v0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
+ __ b(&exit); // b exposes branch delay slot.
+ __ nop(); // Branch delay slot nop.
+
+ // Invoke: Link this frame into the handler chain.
+ __ bind(&invoke);
+ __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
+ // If an exception not caught by another handler occurs, this handler
+ // returns control to the code after the bal(&invoke) above, which
+ // restores all kCalleeSaved registers (including cp and fp) to their
+ // saved values before returning a failure to C.
+
+ // Clear any pending exceptions.
+ __ li(t0,
+ Operand(ExternalReference::the_hole_value_location(masm->isolate())));
+ __ lw(t1, MemOperand(t0));
+ __ li(t0, Operand(ExternalReference(Isolate::k_pending_exception_address,
+ masm->isolate())));
+ __ sw(t1, MemOperand(t0));
+
+ // Invoke the function by calling through JS entry trampoline builtin.
+ // Notice that we cannot store a reference to the trampoline code directly in
+ // this stub, because runtime stubs are not traversed when doing GC.
+
+ // Registers:
+ // a0: entry_address
+ // a1: function
+ // a2: reveiver_pointer
+ // a3: argc
+ // s0: argv
+ //
+ // Stack:
+ // handler frame
+ // entry frame
+ // callee saved registers + ra
+ // 4 args slots
+ // args
+
+ if (is_construct) {
+ ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
+ masm->isolate());
+ __ li(t0, Operand(construct_entry));
+ } else {
+ ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
+ __ li(t0, Operand(entry));
+ }
+ __ lw(t9, MemOperand(t0)); // Deref address.
+
+ // Call JSEntryTrampoline.
+ __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
+ __ Call(t9);
+
+ // Unlink this frame from the handler chain. When reading the
+ // address of the next handler, there is no need to use the address
+ // displacement since the current stack pointer (sp) points directly
+ // to the stack handler.
+ __ lw(t1, MemOperand(sp, StackHandlerConstants::kNextOffset));
+ __ li(t0, Operand(ExternalReference(Isolate::k_handler_address,
+ masm->isolate())));
+ __ sw(t1, MemOperand(t0));
+
+ // This restores sp to its position before PushTryHandler.
+ __ addiu(sp, sp, StackHandlerConstants::kSize);
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ // If current FP value is the same as js_entry_sp value, it means that
+ // the current function is the outermost.
+ __ li(t1, Operand(ExternalReference(js_entry_sp)));
+ __ lw(t2, MemOperand(t1));
+ {
+ Label skip;
+ __ Branch(&skip, ne, fp, Operand(t2));
+ __ sw(zero_reg, MemOperand(t1));
+ __ bind(&skip);
+ }
+#endif
+
+ __ bind(&exit); // v0 holds result.
+ // Restore the top frame descriptors from the stack.
+ __ pop(t1);
+ __ li(t0, Operand(ExternalReference(Isolate::k_c_entry_fp_address,
+ masm->isolate())));
+ __ sw(t1, MemOperand(t0));
+
+ // Reset the stack to the callee saved registers.
+ __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
+
+ // Restore callee saved registers from the stack.
+ __ MultiPop((kCalleeSaved | ra.bit()) & ~sp.bit());
+ // Return.
+ __ Jump(ra);
}
@@ -534,58 +3886,1008 @@ void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
// a1 (or at sp), depending on whether or not
// args_in_registers() is true.
void InstanceofStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Fixed register usage throughout the stub:
+ const Register object = a0; // Object (lhs).
+ const Register map = a3; // Map of the object.
+ const Register function = a1; // Function (rhs).
+ const Register prototype = t0; // Prototype of the function.
+ const Register scratch = a2;
+ Label slow, loop, is_instance, is_not_instance, not_js_object;
+ if (!HasArgsInRegisters()) {
+ __ lw(object, MemOperand(sp, 1 * kPointerSize));
+ __ lw(function, MemOperand(sp, 0));
+ }
+
+ // Check that the left hand is a JS object and load map.
+ __ JumpIfSmi(object, &not_js_object);
+ __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
+
+ // Look up the function and the map in the instanceof cache.
+ Label miss;
+ __ LoadRoot(t1, Heap::kInstanceofCacheFunctionRootIndex);
+ __ Branch(&miss, ne, function, Operand(t1));
+ __ LoadRoot(t1, Heap::kInstanceofCacheMapRootIndex);
+ __ Branch(&miss, ne, map, Operand(t1));
+ __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&miss);
+ __ TryGetFunctionPrototype(function, prototype, scratch, &slow);
+
+ // Check that the function prototype is a JS object.
+ __ JumpIfSmi(prototype, &slow);
+ __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
+
+ __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
+ __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
+
+ // Register mapping: a3 is object map and t0 is function prototype.
+ // Get prototype of object into a2.
+ __ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
+
+ // Loop through the prototype chain looking for the function prototype.
+ __ bind(&loop);
+ __ Branch(&is_instance, eq, scratch, Operand(prototype));
+ __ LoadRoot(t1, Heap::kNullValueRootIndex);
+ __ Branch(&is_not_instance, eq, scratch, Operand(t1));
+ __ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
+ __ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
+ __ Branch(&loop);
+
+ __ bind(&is_instance);
+ ASSERT(Smi::FromInt(0) == 0);
+ __ mov(v0, zero_reg);
+ __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&is_not_instance);
+ __ li(v0, Operand(Smi::FromInt(1)));
+ __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ Label object_not_null, object_not_null_or_smi;
+ __ bind(&not_js_object);
+ // Before null, smi and string value checks, check that the rhs is a function
+ // as for a non-function rhs an exception needs to be thrown.
+ __ JumpIfSmi(function, &slow);
+ __ GetObjectType(function, map, scratch);
+ __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
+
+ // Null is not instance of anything.
+ __ Branch(&object_not_null, ne, scratch,
+ Operand(masm->isolate()->factory()->null_value()));
+ __ li(v0, Operand(Smi::FromInt(1)));
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&object_not_null);
+ // Smi values are not instances of anything.
+ __ JumpIfNotSmi(object, &object_not_null_or_smi);
+ __ li(v0, Operand(Smi::FromInt(1)));
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ __ bind(&object_not_null_or_smi);
+ // String values are not instances of anything.
+ __ IsObjectJSStringType(object, scratch, &slow);
+ __ li(v0, Operand(Smi::FromInt(1)));
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
+
+ // Slow-case. Tail call builtin.
+ __ bind(&slow);
+ if (HasArgsInRegisters()) {
+ __ Push(a0, a1);
+ }
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // The displacement is the offset of the last parameter (if any)
+ // relative to the frame pointer.
+ static const int kDisplacement =
+ StandardFrameConstants::kCallerSPOffset - kPointerSize;
+
+ // Check that the key is a smiGenerateReadElement.
+ Label slow;
+ __ JumpIfNotSmi(a1, &slow);
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor;
+ __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
+ __ Branch(&adaptor,
+ eq,
+ a3,
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // Check index (a1) against formal parameters count limit passed in
+ // through register a0. Use unsigned comparison to get negative
+ // check for free.
+ __ Branch(&slow, hs, a1, Operand(a0));
+
+ // Read the argument from the stack and return it.
+ __ subu(a3, a0, a1);
+ __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(a3, fp, Operand(t3));
+ __ lw(v0, MemOperand(a3, kDisplacement));
+ __ Ret();
+
+ // Arguments adaptor case: Check index (a1) against actual arguments
+ // limit found in the arguments adaptor frame. Use unsigned
+ // comparison to get negative check for free.
+ __ bind(&adaptor);
+ __ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
+
+ // Read the argument from the adaptor frame and return it.
+ __ subu(a3, a0, a1);
+ __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(a3, a2, Operand(t3));
+ __ lw(v0, MemOperand(a3, kDisplacement));
+ __ Ret();
+
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments
+ // by calling the runtime system.
+ __ bind(&slow);
+ __ push(a1);
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // sp[0] : number of parameters
+ // sp[4] : receiver displacement
+ // sp[8] : function
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor_frame, try_allocate, runtime;
+ __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
+ __ Branch(&adaptor_frame,
+ eq,
+ a3,
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+
+ // Get the length from the frame.
+ __ lw(a1, MemOperand(sp, 0));
+ __ Branch(&try_allocate);
+
+ // Patch the arguments.length and the parameters pointer.
+ __ bind(&adaptor_frame);
+ __ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ sw(a1, MemOperand(sp, 0));
+ __ sll(at, a1, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(a3, a2, Operand(at));
+
+ __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
+ __ sw(a3, MemOperand(sp, 1 * kPointerSize));
+
+ // Try the new space allocation. Start out with computing the size
+ // of the arguments object and the elements array in words.
+ Label add_arguments_object;
+ __ bind(&try_allocate);
+ __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
+ __ srl(a1, a1, kSmiTagSize);
+
+ __ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
+ __ bind(&add_arguments_object);
+ __ Addu(a1, a1, Operand(GetArgumentsObjectSize() / kPointerSize));
+
+ // Do the allocation of both objects in one go.
+ __ AllocateInNewSpace(
+ a1,
+ v0,
+ a2,
+ a3,
+ &runtime,
+ static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
+
+ // Get the arguments boilerplate from the current (global) context.
+ __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
+ __ lw(t0, MemOperand(t0,
+ Context::SlotOffset(GetArgumentsBoilerplateIndex())));
+
+ // Copy the JS object part.
+ __ CopyFields(v0, t0, a3.bit(), JSObject::kHeaderSize / kPointerSize);
+
+ if (type_ == NEW_NON_STRICT) {
+ // Setup the callee in-object property.
+ STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
+ __ lw(a3, MemOperand(sp, 2 * kPointerSize));
+ const int kCalleeOffset = JSObject::kHeaderSize +
+ Heap::kArgumentsCalleeIndex * kPointerSize;
+ __ sw(a3, FieldMemOperand(v0, kCalleeOffset));
+ }
+
+ // Get the length (smi tagged) and set that as an in-object property too.
+ STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
+ __ lw(a1, MemOperand(sp, 0 * kPointerSize));
+ __ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
+ Heap::kArgumentsLengthIndex * kPointerSize));
+
+ Label done;
+ __ Branch(&done, eq, a1, Operand(zero_reg));
+
+ // Get the parameters pointer from the stack.
+ __ lw(a2, MemOperand(sp, 1 * kPointerSize));
+
+ // Setup the elements pointer in the allocated arguments object and
+ // initialize the header in the elements fixed array.
+ __ Addu(t0, v0, Operand(GetArgumentsObjectSize()));
+ __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
+ __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
+ __ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset));
+ __ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset));
+ __ srl(a1, a1, kSmiTagSize); // Untag the length for the loop.
+
+ // Copy the fixed array slots.
+ Label loop;
+ // Setup t0 to point to the first array slot.
+ __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ bind(&loop);
+ // Pre-decrement a2 with kPointerSize on each iteration.
+ // Pre-decrement in order to skip receiver.
+ __ Addu(a2, a2, Operand(-kPointerSize));
+ __ lw(a3, MemOperand(a2));
+ // Post-increment t0 with kPointerSize on each iteration.
+ __ sw(a3, MemOperand(t0));
+ __ Addu(t0, t0, Operand(kPointerSize));
+ __ Subu(a1, a1, Operand(1));
+ __ Branch(&loop, ne, a1, Operand(zero_reg));
+
+ // Return and remove the on-stack parameters.
+ __ bind(&done);
+ __ Addu(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ // Do the runtime call to allocate the arguments object.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Just jump directly to runtime if native RegExp is not selected at compile
+ // time or if regexp entry in generated code is turned off runtime switch or
+ // at compilation.
+#ifdef V8_INTERPRETED_REGEXP
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+#else // V8_INTERPRETED_REGEXP
+ if (!FLAG_regexp_entry_native) {
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+ return;
+ }
+
+ // Stack frame on entry.
+ // sp[0]: last_match_info (expected JSArray)
+ // sp[4]: previous index
+ // sp[8]: subject string
+ // sp[12]: JSRegExp object
+
+ static const int kLastMatchInfoOffset = 0 * kPointerSize;
+ static const int kPreviousIndexOffset = 1 * kPointerSize;
+ static const int kSubjectOffset = 2 * kPointerSize;
+ static const int kJSRegExpOffset = 3 * kPointerSize;
+
+ Label runtime, invoke_regexp;
+
+ // Allocation of registers for this function. These are in callee save
+ // registers and will be preserved by the call to the native RegExp code, as
+ // this code is called using the normal C calling convention. When calling
+ // directly from generated code the native RegExp code will not do a GC and
+ // therefore the content of these registers are safe to use after the call.
+ // MIPS - using s0..s2, since we are not using CEntry Stub.
+ Register subject = s0;
+ Register regexp_data = s1;
+ Register last_match_info_elements = s2;
+
+ // Ensure that a RegExp stack is allocated.
+ ExternalReference address_of_regexp_stack_memory_address =
+ ExternalReference::address_of_regexp_stack_memory_address(
+ masm->isolate());
+ ExternalReference address_of_regexp_stack_memory_size =
+ ExternalReference::address_of_regexp_stack_memory_size(masm->isolate());
+ __ li(a0, Operand(address_of_regexp_stack_memory_size));
+ __ lw(a0, MemOperand(a0, 0));
+ __ Branch(&runtime, eq, a0, Operand(zero_reg));
+
+ // Check that the first argument is a JSRegExp object.
+ __ lw(a0, MemOperand(sp, kJSRegExpOffset));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ JumpIfSmi(a0, &runtime);
+ __ GetObjectType(a0, a1, a1);
+ __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
+
+ // Check that the RegExp has been compiled (data contains a fixed array).
+ __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
+ if (FLAG_debug_code) {
+ __ And(t0, regexp_data, Operand(kSmiTagMask));
+ __ Check(nz,
+ "Unexpected type for RegExp data, FixedArray expected",
+ t0,
+ Operand(zero_reg));
+ __ GetObjectType(regexp_data, a0, a0);
+ __ Check(eq,
+ "Unexpected type for RegExp data, FixedArray expected",
+ a0,
+ Operand(FIXED_ARRAY_TYPE));
+ }
+
+ // regexp_data: RegExp data (FixedArray)
+ // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
+ __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
+ __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
+
+ // regexp_data: RegExp data (FixedArray)
+ // Check that the number of captures fit in the static offsets vector buffer.
+ __ lw(a2,
+ FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+ // Calculate number of capture registers (number_of_captures + 1) * 2. This
+ // uses the asumption that smis are 2 * their untagged value.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+ __ Addu(a2, a2, Operand(2)); // a2 was a smi.
+ // Check that the static offsets vector buffer is large enough.
+ __ Branch(&runtime, hi, a2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
+
+ // a2: Number of capture registers
+ // regexp_data: RegExp data (FixedArray)
+ // Check that the second argument is a string.
+ __ lw(subject, MemOperand(sp, kSubjectOffset));
+ __ JumpIfSmi(subject, &runtime);
+ __ GetObjectType(subject, a0, a0);
+ __ And(a0, a0, Operand(kIsNotStringMask));
+ STATIC_ASSERT(kStringTag == 0);
+ __ Branch(&runtime, ne, a0, Operand(zero_reg));
+
+ // Get the length of the string to r3.
+ __ lw(a3, FieldMemOperand(subject, String::kLengthOffset));
+
+ // a2: Number of capture registers
+ // a3: Length of subject string as a smi
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Check that the third argument is a positive smi less than the subject
+ // string length. A negative value will be greater (unsigned comparison).
+ __ lw(a0, MemOperand(sp, kPreviousIndexOffset));
+ __ And(at, a0, Operand(kSmiTagMask));
+ __ Branch(&runtime, ne, at, Operand(zero_reg));
+ __ Branch(&runtime, ls, a3, Operand(a0));
+
+ // a2: Number of capture registers
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Check that the fourth object is a JSArray object.
+ __ lw(a0, MemOperand(sp, kLastMatchInfoOffset));
+ __ JumpIfSmi(a0, &runtime);
+ __ GetObjectType(a0, a1, a1);
+ __ Branch(&runtime, ne, a1, Operand(JS_ARRAY_TYPE));
+ // Check that the JSArray is in fast case.
+ __ lw(last_match_info_elements,
+ FieldMemOperand(a0, JSArray::kElementsOffset));
+ __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
+ __ Branch(&runtime, ne, a0, Operand(
+ masm->isolate()->factory()->fixed_array_map()));
+ // Check that the last match info has space for the capture registers and the
+ // additional information.
+ __ lw(a0,
+ FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
+ __ Addu(a2, a2, Operand(RegExpImpl::kLastMatchOverhead));
+ __ sra(at, a0, kSmiTagSize); // Untag length for comparison.
+ __ Branch(&runtime, gt, a2, Operand(at));
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Check the representation and encoding of the subject string.
+ Label seq_string;
+ __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
+ // First check for flat string.
+ __ And(at, a0, Operand(kIsNotStringMask | kStringRepresentationMask));
+ STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
+ __ Branch(&seq_string, eq, at, Operand(zero_reg));
+
+ // subject: Subject string
+ // a0: instance type if Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Check for flat cons string.
+ // A flat cons string is a cons string where the second part is the empty
+ // string. In that case the subject string is just the first part of the cons
+ // string. Also in this case the first part of the cons string is known to be
+ // a sequential string or an external string.
+ STATIC_ASSERT(kExternalStringTag != 0);
+ STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
+ __ And(at, a0, Operand(kIsNotStringMask | kExternalStringTag));
+ __ Branch(&runtime, ne, at, Operand(zero_reg));
+ __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
+ __ LoadRoot(a1, Heap::kEmptyStringRootIndex);
+ __ Branch(&runtime, ne, a0, Operand(a1));
+ __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
+ __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
+ // Is first part a flat string?
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ And(at, a0, Operand(kStringRepresentationMask));
+ __ Branch(&runtime, ne, at, Operand(zero_reg));
+
+ __ bind(&seq_string);
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // a0: Instance type of subject string
+ STATIC_ASSERT(kStringEncodingMask == 4);
+ STATIC_ASSERT(kAsciiStringTag == 4);
+ STATIC_ASSERT(kTwoByteStringTag == 0);
+ // Find the code object based on the assumptions above.
+ __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for ascii.
+ __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset));
+ __ sra(a3, a0, 2); // a3 is 1 for ascii, 0 for UC16 (usyed below).
+ __ lw(t0, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
+ __ movz(t9, t0, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
+
+ // Check that the irregexp code has been generated for the actual string
+ // encoding. If it has, the field contains a code object otherwise it
+ // contains the hole.
+ __ GetObjectType(t9, a0, a0);
+ __ Branch(&runtime, ne, a0, Operand(CODE_TYPE));
+
+ // a3: encoding of subject string (1 if ASCII, 0 if two_byte);
+ // t9: code
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // Load used arguments before starting to push arguments for call to native
+ // RegExp code to avoid handling changing stack height.
+ __ lw(a1, MemOperand(sp, kPreviousIndexOffset));
+ __ sra(a1, a1, kSmiTagSize); // Untag the Smi.
+
+ // a1: previous index
+ // a3: encoding of subject string (1 if ASCII, 0 if two_byte);
+ // t9: code
+ // subject: Subject string
+ // regexp_data: RegExp data (FixedArray)
+ // All checks done. Now push arguments for native regexp code.
+ __ IncrementCounter(masm->isolate()->counters()->regexp_entry_native(),
+ 1, a0, a2);
+
+ // Isolates: note we add an additional parameter here (isolate pointer).
+ static const int kRegExpExecuteArguments = 8;
+ static const int kParameterRegisters = 4;
+ __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
+
+ // Stack pointer now points to cell where return address is to be written.
+ // Arguments are before that on the stack or in registers, meaning we
+ // treat the return address as argument 5. Thus every argument after that
+ // needs to be shifted back by 1. Since DirectCEntryStub will handle
+ // allocating space for the c argument slots, we don't need to calculate
+ // that into the argument positions on the stack. This is how the stack will
+ // look (sp meaning the value of sp at this moment):
+ // [sp + 4] - Argument 8
+ // [sp + 3] - Argument 7
+ // [sp + 2] - Argument 6
+ // [sp + 1] - Argument 5
+ // [sp + 0] - saved ra
+
+ // Argument 8: Pass current isolate address.
+ // CFunctionArgumentOperand handles MIPS stack argument slots.
+ __ li(a0, Operand(ExternalReference::isolate_address()));
+ __ sw(a0, MemOperand(sp, 4 * kPointerSize));
+
+ // Argument 7: Indicate that this is a direct call from JavaScript.
+ __ li(a0, Operand(1));
+ __ sw(a0, MemOperand(sp, 3 * kPointerSize));
+
+ // Argument 6: Start (high end) of backtracking stack memory area.
+ __ li(a0, Operand(address_of_regexp_stack_memory_address));
+ __ lw(a0, MemOperand(a0, 0));
+ __ li(a2, Operand(address_of_regexp_stack_memory_size));
+ __ lw(a2, MemOperand(a2, 0));
+ __ addu(a0, a0, a2);
+ __ sw(a0, MemOperand(sp, 2 * kPointerSize));
+
+ // Argument 5: static offsets vector buffer.
+ __ li(a0, Operand(
+ ExternalReference::address_of_static_offsets_vector(masm->isolate())));
+ __ sw(a0, MemOperand(sp, 1 * kPointerSize));
+
+ // For arguments 4 and 3 get string length, calculate start of string data
+ // and calculate the shift of the index (0 for ASCII and 1 for two byte).
+ __ lw(a0, FieldMemOperand(subject, String::kLengthOffset));
+ __ sra(a0, a0, kSmiTagSize);
+ STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
+ __ Addu(t0, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
+ // Argument 4 (a3): End of string data
+ // Argument 3 (a2): Start of string data
+ __ sllv(t1, a1, a3);
+ __ addu(a2, t0, t1);
+ __ sllv(t1, a0, a3);
+ __ addu(a3, t0, t1);
+
+ // Argument 2 (a1): Previous index.
+ // Already there
+
+ // Argument 1 (a0): Subject string.
+ __ mov(a0, subject);
+
+ // Locate the code entry and call it.
+ __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
+ DirectCEntryStub stub;
+ stub.GenerateCall(masm, t9);
+
+ __ LeaveExitFrame(false, no_reg);
+
+ // v0: result
+ // subject: subject string (callee saved)
+ // regexp_data: RegExp data (callee saved)
+ // last_match_info_elements: Last match info elements (callee saved)
+
+ // Check the result.
+
+ Label success;
+ __ Branch(&success, eq, v0, Operand(NativeRegExpMacroAssembler::SUCCESS));
+ Label failure;
+ __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
+ // If not exception it can only be retry. Handle that in the runtime system.
+ __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
+ // Result must now be exception. If there is no pending exception already a
+ // stack overflow (on the backtrack stack) was detected in RegExp code but
+ // haven't created the exception yet. Handle that in the runtime system.
+ // TODO(592): Rerunning the RegExp to get the stack overflow exception.
+ __ li(a1, Operand(
+ ExternalReference::the_hole_value_location(masm->isolate())));
+ __ lw(a1, MemOperand(a1, 0));
+ __ li(a2, Operand(ExternalReference(Isolate::k_pending_exception_address,
+ masm->isolate())));
+ __ lw(v0, MemOperand(a2, 0));
+ __ Branch(&runtime, eq, v0, Operand(a1));
+
+ __ sw(a1, MemOperand(a2, 0)); // Clear pending exception.
+
+ // Check if the exception is a termination. If so, throw as uncatchable.
+ __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
+ Label termination_exception;
+ __ Branch(&termination_exception, eq, v0, Operand(a0));
+
+ __ Throw(a0); // Expects thrown value in v0.
+
+ __ bind(&termination_exception);
+ __ ThrowUncatchable(TERMINATION, v0); // Expects thrown value in v0.
+
+ __ bind(&failure);
+ // For failure and exception return null.
+ __ li(v0, Operand(masm->isolate()->factory()->null_value()));
+ __ Addu(sp, sp, Operand(4 * kPointerSize));
+ __ Ret();
+
+ // Process the result from the native regexp code.
+ __ bind(&success);
+ __ lw(a1,
+ FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+ // Calculate number of capture registers (number_of_captures + 1) * 2.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+ __ Addu(a1, a1, Operand(2)); // a1 was a smi.
+
+ // a1: number of capture registers
+ // subject: subject string
+ // Store the capture count.
+ __ sll(a2, a1, kSmiTagSize + kSmiShiftSize); // To smi.
+ __ sw(a2, FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastCaptureCountOffset));
+ // Store last subject and last input.
+ __ mov(a3, last_match_info_elements); // Moved up to reduce latency.
+ __ sw(subject,
+ FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastSubjectOffset));
+ __ RecordWrite(a3, Operand(RegExpImpl::kLastSubjectOffset), a2, t0);
+ __ sw(subject,
+ FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastInputOffset));
+ __ mov(a3, last_match_info_elements);
+ __ RecordWrite(a3, Operand(RegExpImpl::kLastInputOffset), a2, t0);
+
+ // Get the static offsets vector filled by the native regexp code.
+ ExternalReference address_of_static_offsets_vector =
+ ExternalReference::address_of_static_offsets_vector(masm->isolate());
+ __ li(a2, Operand(address_of_static_offsets_vector));
+
+ // a1: number of capture registers
+ // a2: offsets vector
+ Label next_capture, done;
+ // Capture register counter starts from number of capture registers and
+ // counts down until wrapping after zero.
+ __ Addu(a0,
+ last_match_info_elements,
+ Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
+ __ bind(&next_capture);
+ __ Subu(a1, a1, Operand(1));
+ __ Branch(&done, lt, a1, Operand(zero_reg));
+ // Read the value from the static offsets vector buffer.
+ __ lw(a3, MemOperand(a2, 0));
+ __ addiu(a2, a2, kPointerSize);
+ // Store the smi value in the last match info.
+ __ sll(a3, a3, kSmiTagSize); // Convert to Smi.
+ __ sw(a3, MemOperand(a0, 0));
+ __ Branch(&next_capture, USE_DELAY_SLOT);
+ __ addiu(a0, a0, kPointerSize); // In branch delay slot.
+
+ __ bind(&done);
+
+ // Return last match info.
+ __ lw(v0, MemOperand(sp, kLastMatchInfoOffset));
+ __ Addu(sp, sp, Operand(4 * kPointerSize));
+ __ Ret();
+
+ // Do the runtime call to execute the regexp.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+#endif // V8_INTERPRETED_REGEXP
}
void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ const int kMaxInlineLength = 100;
+ Label slowcase;
+ Label done;
+ __ lw(a1, MemOperand(sp, kPointerSize * 2));
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ __ JumpIfNotSmi(a1, &slowcase);
+ __ Branch(&slowcase, hi, a1, Operand(Smi::FromInt(kMaxInlineLength)));
+ // Smi-tagging is equivalent to multiplying by 2.
+ // Allocate RegExpResult followed by FixedArray with size in ebx.
+ // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
+ // Elements: [Map][Length][..elements..]
+ // Size of JSArray with two in-object properties and the header of a
+ // FixedArray.
+ int objects_size =
+ (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
+ __ srl(t1, a1, kSmiTagSize + kSmiShiftSize);
+ __ Addu(a2, t1, Operand(objects_size));
+ __ AllocateInNewSpace(
+ a2, // In: Size, in words.
+ v0, // Out: Start of allocation (tagged).
+ a3, // Scratch register.
+ t0, // Scratch register.
+ &slowcase,
+ static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
+ // v0: Start of allocated area, object-tagged.
+ // a1: Number of elements in array, as smi.
+ // t1: Number of elements, untagged.
+
+ // Set JSArray map to global.regexp_result_map().
+ // Set empty properties FixedArray.
+ // Set elements to point to FixedArray allocated right after the JSArray.
+ // Interleave operations for better latency.
+ __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX));
+ __ Addu(a3, v0, Operand(JSRegExpResult::kSize));
+ __ li(t0, Operand(masm->isolate()->factory()->empty_fixed_array()));
+ __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
+ __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
+ __ lw(a2, ContextOperand(a2, Context::REGEXP_RESULT_MAP_INDEX));
+ __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset));
+ __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
+
+ // Set input, index and length fields from arguments.
+ __ lw(a1, MemOperand(sp, kPointerSize * 0));
+ __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kInputOffset));
+ __ lw(a1, MemOperand(sp, kPointerSize * 1));
+ __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kIndexOffset));
+ __ lw(a1, MemOperand(sp, kPointerSize * 2));
+ __ sw(a1, FieldMemOperand(v0, JSArray::kLengthOffset));
+
+ // Fill out the elements FixedArray.
+ // v0: JSArray, tagged.
+ // a3: FixedArray, tagged.
+ // t1: Number of elements in array, untagged.
+
+ // Set map.
+ __ li(a2, Operand(masm->isolate()->factory()->fixed_array_map()));
+ __ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset));
+ // Set FixedArray length.
+ __ sll(t2, t1, kSmiTagSize);
+ __ sw(t2, FieldMemOperand(a3, FixedArray::kLengthOffset));
+ // Fill contents of fixed-array with the-hole.
+ __ li(a2, Operand(masm->isolate()->factory()->the_hole_value()));
+ __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ // Fill fixed array elements with hole.
+ // v0: JSArray, tagged.
+ // a2: the hole.
+ // a3: Start of elements in FixedArray.
+ // t1: Number of elements to fill.
+ Label loop;
+ __ sll(t1, t1, kPointerSizeLog2); // Convert num elements to num bytes.
+ __ addu(t1, t1, a3); // Point past last element to store.
+ __ bind(&loop);
+ __ Branch(&done, ge, a3, Operand(t1)); // Break when a3 past end of elem.
+ __ sw(a2, MemOperand(a3));
+ __ Branch(&loop, USE_DELAY_SLOT);
+ __ addiu(a3, a3, kPointerSize); // In branch delay slot.
+
+ __ bind(&done);
+ __ Addu(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ __ bind(&slowcase);
+ __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label slow;
+
+ // If the receiver might be a value (string, number or boolean) check
+ // for this and box it if it is.
+ if (ReceiverMightBeValue()) {
+ // Get the receiver from the stack.
+ // function, receiver [, arguments]
+ Label receiver_is_value, receiver_is_js_object;
+ __ lw(a1, MemOperand(sp, argc_ * kPointerSize));
+
+ // Check if receiver is a smi (which is a number value).
+ __ JumpIfSmi(a1, &receiver_is_value);
+
+ // Check if the receiver is a valid JS object.
+ __ GetObjectType(a1, a2, a2);
+ __ Branch(&receiver_is_js_object,
+ ge,
+ a2,
+ Operand(FIRST_JS_OBJECT_TYPE));
+
+ // Call the runtime to box the value.
+ __ bind(&receiver_is_value);
+ // We need natives to execute this.
+ __ EnterInternalFrame();
+ __ push(a1);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+ __ LeaveInternalFrame();
+ __ sw(v0, MemOperand(sp, argc_ * kPointerSize));
+
+ __ bind(&receiver_is_js_object);
+ }
+
+ // Get the function to call from the stack.
+ // function, receiver [, arguments]
+ __ lw(a1, MemOperand(sp, (argc_ + 1) * kPointerSize));
+
+ // Check that the function is really a JavaScript function.
+ // a1: pushed function (to be verified)
+ __ JumpIfSmi(a1, &slow);
+ // Get the map of the function object.
+ __ GetObjectType(a1, a2, a2);
+ __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
+
+ // Fast-case: Invoke the function now.
+ // a1: pushed function
+ ParameterCount actual(argc_);
+ __ InvokeFunction(a1, actual, JUMP_FUNCTION);
+
+ // Slow-case: Non-function called.
+ __ bind(&slow);
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
+ // of the original receiver from the call site).
+ __ sw(a1, MemOperand(sp, argc_ * kPointerSize));
+ __ li(a0, Operand(argc_)); // Setup the number of arguments.
+ __ mov(a2, zero_reg);
+ __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION);
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
+ RelocInfo::CODE_TARGET);
}
// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
const char* CompareStub::GetName() {
- UNIMPLEMENTED_MIPS();
+ ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
+ (lhs_.is(a1) && rhs_.is(a0)));
+
+ if (name_ != NULL) return name_;
+ const int kMaxNameLength = 100;
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
+ kMaxNameLength);
+ if (name_ == NULL) return "OOM";
+
+ const char* cc_name;
+ switch (cc_) {
+ case lt: cc_name = "LT"; break;
+ case gt: cc_name = "GT"; break;
+ case le: cc_name = "LE"; break;
+ case ge: cc_name = "GE"; break;
+ case eq: cc_name = "EQ"; break;
+ case ne: cc_name = "NE"; break;
+ default: cc_name = "UnknownCondition"; break;
+ }
+
+ const char* lhs_name = lhs_.is(a0) ? "_a0" : "_a1";
+ const char* rhs_name = rhs_.is(a0) ? "_a0" : "_a1";
+
+ const char* strict_name = "";
+ if (strict_ && (cc_ == eq || cc_ == ne)) {
+ strict_name = "_STRICT";
+ }
+
+ const char* never_nan_nan_name = "";
+ if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) {
+ never_nan_nan_name = "_NO_NAN";
+ }
+
+ const char* include_number_compare_name = "";
+ if (!include_number_compare_) {
+ include_number_compare_name = "_NO_NUMBER";
+ }
+
+ const char* include_smi_compare_name = "";
+ if (!include_smi_compare_) {
+ include_smi_compare_name = "_NO_SMI";
+ }
+
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+ "CompareStub_%s%s%s%s%s%s",
+ cc_name,
+ lhs_name,
+ rhs_name,
+ strict_name,
+ never_nan_nan_name,
+ include_number_compare_name,
+ include_smi_compare_name);
return name_;
}
int CompareStub::MinorKey() {
- UNIMPLEMENTED_MIPS();
- return 0;
+ // Encode the two parameters in a unique 16 bit value.
+ ASSERT(static_cast<unsigned>(cc_) < (1 << 14));
+ ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
+ (lhs_.is(a1) && rhs_.is(a0)));
+ return ConditionField::encode(static_cast<unsigned>(cc_))
+ | RegisterField::encode(lhs_.is(a0))
+ | StrictField::encode(strict_)
+ | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
+ | IncludeSmiCompareField::encode(include_smi_compare_);
}
// StringCharCodeAtGenerator.
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label flat_string;
+ Label ascii_string;
+ Label got_char_code;
+
+ ASSERT(!t0.is(scratch_));
+ ASSERT(!t0.is(index_));
+ ASSERT(!t0.is(result_));
+ ASSERT(!t0.is(object_));
+
+ // If the receiver is a smi trigger the non-string case.
+ __ JumpIfSmi(object_, receiver_not_string_);
+
+ // Fetch the instance type of the receiver into result register.
+ __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ // If the receiver is not a string trigger the non-string case.
+ __ And(t0, result_, Operand(kIsNotStringMask));
+ __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));
+
+ // If the index is non-smi trigger the non-smi case.
+ __ JumpIfNotSmi(index_, &index_not_smi_);
+
+ // Put smi-tagged index into scratch register.
+ __ mov(scratch_, index_);
+ __ bind(&got_smi_index_);
+
+ // Check for index out of range.
+ __ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
+ __ Branch(index_out_of_range_, ls, t0, Operand(scratch_));
+
+ // We need special handling for non-flat strings.
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ And(t0, result_, Operand(kStringRepresentationMask));
+ __ Branch(&flat_string, eq, t0, Operand(zero_reg));
+
+ // Handle non-flat strings.
+ __ And(t0, result_, Operand(kIsConsStringMask));
+ __ Branch(&call_runtime_, eq, t0, Operand(zero_reg));
+
+ // ConsString.
+ // Check whether the right hand side is the empty string (i.e. if
+ // this is really a flat string in a cons string). If that is not
+ // the case we would rather go to the runtime system now to flatten
+ // the string.
+ __ lw(result_, FieldMemOperand(object_, ConsString::kSecondOffset));
+ __ LoadRoot(t0, Heap::kEmptyStringRootIndex);
+ __ Branch(&call_runtime_, ne, result_, Operand(t0));
+
+ // Get the first of the two strings and load its instance type.
+ __ lw(object_, FieldMemOperand(object_, ConsString::kFirstOffset));
+ __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ // If the first cons component is also non-flat, then go to runtime.
+ STATIC_ASSERT(kSeqStringTag == 0);
+
+ __ And(t0, result_, Operand(kStringRepresentationMask));
+ __ Branch(&call_runtime_, ne, t0, Operand(zero_reg));
+
+ // Check for 1-byte or 2-byte string.
+ __ bind(&flat_string);
+ STATIC_ASSERT(kAsciiStringTag != 0);
+ __ And(t0, result_, Operand(kStringEncodingMask));
+ __ Branch(&ascii_string, ne, t0, Operand(zero_reg));
+
+ // 2-byte string.
+ // Load the 2-byte character code into the result register. We can
+ // add without shifting since the smi tag size is the log2 of the
+ // number of bytes in a two-byte character.
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
+ __ Addu(scratch_, object_, Operand(scratch_));
+ __ lhu(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
+ __ Branch(&got_char_code);
+
+ // ASCII string.
+ // Load the byte into the result register.
+ __ bind(&ascii_string);
+
+ __ srl(t0, scratch_, kSmiTagSize);
+ __ Addu(scratch_, object_, t0);
+
+ __ lbu(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize));
+
+ __ bind(&got_char_code);
+ __ sll(result_, result_, kSmiTagSize);
+ __ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
- UNIMPLEMENTED_MIPS();
+ __ Abort("Unexpected fallthrough to CharCodeAt slow case");
+
+ // Index is not a smi.
+ __ bind(&index_not_smi_);
+ // If index is a heap number, try converting it to an integer.
+ __ CheckMap(index_,
+ scratch_,
+ Heap::kHeapNumberMapRootIndex,
+ index_not_number_,
+ true);
+ call_helper.BeforeCall(masm);
+ // Consumed by runtime conversion function:
+ __ Push(object_, index_, index_);
+ if (index_flags_ == STRING_INDEX_IS_NUMBER) {
+ __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
+ } else {
+ ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
+ // NumberToSmi discards numbers that are not exact integers.
+ __ CallRuntime(Runtime::kNumberToSmi, 1);
+ }
+
+ // Save the conversion result before the pop instructions below
+ // have a chance to overwrite it.
+
+ __ Move(scratch_, v0);
+
+ __ pop(index_);
+ __ pop(object_);
+ // Reload the instance type.
+ __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ call_helper.AfterCall(masm);
+ // If index is still not a smi, it must be out of range.
+ __ JumpIfNotSmi(scratch_, index_out_of_range_);
+ // Otherwise, return to the fast path.
+ __ Branch(&got_smi_index_);
+
+ // Call runtime. We get here when the receiver is a string and the
+ // index is a number, but the code of getting the actual character
+ // is too complex (e.g., when the string needs to be flattened).
+ __ bind(&call_runtime_);
+ call_helper.BeforeCall(masm);
+ __ Push(object_, index_);
+ __ CallRuntime(Runtime::kStringCharCodeAt, 2);
+
+ __ Move(result_, v0);
+
+ call_helper.AfterCall(masm);
+ __ jmp(&exit_);
+
+ __ Abort("Unexpected fallthrough from CharCodeAt slow case");
}
@@ -593,13 +4895,46 @@ void StringCharCodeAtGenerator::GenerateSlow(
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Fast case of Heap::LookupSingleCharacterStringFromCode.
+
+ ASSERT(!t0.is(result_));
+ ASSERT(!t0.is(code_));
+
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiShiftSize == 0);
+ ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
+ __ And(t0,
+ code_,
+ Operand(kSmiTagMask |
+ ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
+ __ Branch(&slow_case_, ne, t0, Operand(zero_reg));
+
+ __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
+ // At this point code register contains smi tagged ASCII char code.
+ STATIC_ASSERT(kSmiTag == 0);
+ __ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(result_, result_, t0);
+ __ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
+ __ Branch(&slow_case_, eq, result_, Operand(t0));
+ __ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
- UNIMPLEMENTED_MIPS();
+ __ Abort("Unexpected fallthrough to CharFromCode slow case");
+
+ __ bind(&slow_case_);
+ call_helper.BeforeCall(masm);
+ __ push(code_);
+ __ CallRuntime(Runtime::kCharFromCode, 1);
+ __ Move(result_, v0);
+
+ call_helper.AfterCall(masm);
+ __ Branch(&exit_);
+
+ __ Abort("Unexpected fallthrough from CharFromCode slow case");
}
@@ -607,13 +4942,15 @@ void StringCharFromCodeGenerator::GenerateSlow(
// StringCharAtGenerator
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ char_code_at_generator_.GenerateFast(masm);
+ char_from_code_generator_.GenerateFast(masm);
}
void StringCharAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
- UNIMPLEMENTED_MIPS();
+ char_code_at_generator_.GenerateSlow(masm, call_helper);
+ char_from_code_generator_.GenerateSlow(masm, call_helper);
}
@@ -687,7 +5024,24 @@ void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register count,
Register scratch,
bool ascii) {
- UNIMPLEMENTED_MIPS();
+ Label loop;
+ Label done;
+ // This loop just copies one character at a time, as it is only used for
+ // very short strings.
+ if (!ascii) {
+ __ addu(count, count, count);
+ }
+ __ Branch(&done, eq, count, Operand(zero_reg));
+ __ addu(count, dest, count); // Count now points to the last dest byte.
+
+ __ bind(&loop);
+ __ lbu(scratch, MemOperand(src));
+ __ addiu(src, src, 1);
+ __ sb(scratch, MemOperand(dest));
+ __ addiu(dest, dest, 1);
+ __ Branch(&loop, lt, dest, Operand(count));
+
+ __ bind(&done);
}
@@ -707,7 +5061,105 @@ void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
Register scratch4,
Register scratch5,
int flags) {
- UNIMPLEMENTED_MIPS();
+ bool ascii = (flags & COPY_ASCII) != 0;
+ bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
+
+ if (dest_always_aligned && FLAG_debug_code) {
+ // Check that destination is actually word aligned if the flag says
+ // that it is.
+ __ And(scratch4, dest, Operand(kPointerAlignmentMask));
+ __ Check(eq,
+ "Destination of copy not aligned.",
+ scratch4,
+ Operand(zero_reg));
+ }
+
+ const int kReadAlignment = 4;
+ const int kReadAlignmentMask = kReadAlignment - 1;
+ // Ensure that reading an entire aligned word containing the last character
+ // of a string will not read outside the allocated area (because we pad up
+ // to kObjectAlignment).
+ STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
+ // Assumes word reads and writes are little endian.
+ // Nothing to do for zero characters.
+ Label done;
+
+ if (!ascii) {
+ __ addu(count, count, count);
+ }
+ __ Branch(&done, eq, count, Operand(zero_reg));
+
+ Label byte_loop;
+ // Must copy at least eight bytes, otherwise just do it one byte at a time.
+ __ Subu(scratch1, count, Operand(8));
+ __ Addu(count, dest, Operand(count));
+ Register limit = count; // Read until src equals this.
+ __ Branch(&byte_loop, lt, scratch1, Operand(zero_reg));
+
+ if (!dest_always_aligned) {
+ // Align dest by byte copying. Copies between zero and three bytes.
+ __ And(scratch4, dest, Operand(kReadAlignmentMask));
+ Label dest_aligned;
+ __ Branch(&dest_aligned, eq, scratch4, Operand(zero_reg));
+ Label aligned_loop;
+ __ bind(&aligned_loop);
+ __ lbu(scratch1, MemOperand(src));
+ __ addiu(src, src, 1);
+ __ sb(scratch1, MemOperand(dest));
+ __ addiu(dest, dest, 1);
+ __ addiu(scratch4, scratch4, 1);
+ __ Branch(&aligned_loop, le, scratch4, Operand(kReadAlignmentMask));
+ __ bind(&dest_aligned);
+ }
+
+ Label simple_loop;
+
+ __ And(scratch4, src, Operand(kReadAlignmentMask));
+ __ Branch(&simple_loop, eq, scratch4, Operand(zero_reg));
+
+ // Loop for src/dst that are not aligned the same way.
+ // This loop uses lwl and lwr instructions. These instructions
+ // depend on the endianness, and the implementation assumes little-endian.
+ {
+ Label loop;
+ __ bind(&loop);
+ __ lwr(scratch1, MemOperand(src));
+ __ Addu(src, src, Operand(kReadAlignment));
+ __ lwl(scratch1, MemOperand(src, -1));
+ __ sw(scratch1, MemOperand(dest));
+ __ Addu(dest, dest, Operand(kReadAlignment));
+ __ Subu(scratch2, limit, dest);
+ __ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
+ }
+
+ __ Branch(&byte_loop);
+
+ // Simple loop.
+ // Copy words from src to dest, until less than four bytes left.
+ // Both src and dest are word aligned.
+ __ bind(&simple_loop);
+ {
+ Label loop;
+ __ bind(&loop);
+ __ lw(scratch1, MemOperand(src));
+ __ Addu(src, src, Operand(kReadAlignment));
+ __ sw(scratch1, MemOperand(dest));
+ __ Addu(dest, dest, Operand(kReadAlignment));
+ __ Subu(scratch2, limit, dest);
+ __ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
+ }
+
+ // Copy bytes from src to dest until dest hits limit.
+ __ bind(&byte_loop);
+ // Test if dest has already reached the limit.
+ __ Branch(&done, ge, dest, Operand(limit));
+ __ lbu(scratch1, MemOperand(src));
+ __ addiu(src, src, 1);
+ __ sb(scratch1, MemOperand(dest));
+ __ addiu(dest, dest, 1);
+ __ Branch(&byte_loop);
+
+ __ bind(&done);
}
@@ -720,32 +5172,434 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register scratch4,
Register scratch5,
Label* not_found) {
- UNIMPLEMENTED_MIPS();
+ // Register scratch3 is the general scratch register in this function.
+ Register scratch = scratch3;
+
+ // Make sure that both characters are not digits as such strings has a
+ // different hash algorithm. Don't try to look for these in the symbol table.
+ Label not_array_index;
+ __ Subu(scratch, c1, Operand(static_cast<int>('0')));
+ __ Branch(&not_array_index,
+ Ugreater,
+ scratch,
+ Operand(static_cast<int>('9' - '0')));
+ __ Subu(scratch, c2, Operand(static_cast<int>('0')));
+
+ // If check failed combine both characters into single halfword.
+ // This is required by the contract of the method: code at the
+ // not_found branch expects this combination in c1 register.
+ Label tmp;
+ __ sll(scratch1, c2, kBitsPerByte);
+ __ Branch(&tmp, Ugreater, scratch, Operand(static_cast<int>('9' - '0')));
+ __ Or(c1, c1, scratch1);
+ __ bind(&tmp);
+ __ Branch(not_found,
+ Uless_equal,
+ scratch,
+ Operand(static_cast<int>('9' - '0')));
+
+ __ bind(&not_array_index);
+ // Calculate the two character string hash.
+ Register hash = scratch1;
+ StringHelper::GenerateHashInit(masm, hash, c1);
+ StringHelper::GenerateHashAddCharacter(masm, hash, c2);
+ StringHelper::GenerateHashGetHash(masm, hash);
+
+ // Collect the two characters in a register.
+ Register chars = c1;
+ __ sll(scratch, c2, kBitsPerByte);
+ __ Or(chars, chars, scratch);
+
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
+ // hash: hash of two character string.
+
+ // Load symbol table.
+ // Load address of first element of the symbol table.
+ Register symbol_table = c2;
+ __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
+
+ Register undefined = scratch4;
+ __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
+
+ // Calculate capacity mask from the symbol table capacity.
+ Register mask = scratch2;
+ __ lw(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
+ __ sra(mask, mask, 1);
+ __ Addu(mask, mask, -1);
+
+ // Calculate untagged address of the first element of the symbol table.
+ Register first_symbol_table_element = symbol_table;
+ __ Addu(first_symbol_table_element, symbol_table,
+ Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
+
+ // Registers.
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
+ // hash: hash of two character string
+ // mask: capacity mask
+ // first_symbol_table_element: address of the first element of
+ // the symbol table
+ // undefined: the undefined object
+ // scratch: -
+
+ // Perform a number of probes in the symbol table.
+ static const int kProbes = 4;
+ Label found_in_symbol_table;
+ Label next_probe[kProbes];
+ Register candidate = scratch5; // Scratch register contains candidate.
+ for (int i = 0; i < kProbes; i++) {
+ // Calculate entry in symbol table.
+ if (i > 0) {
+ __ Addu(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
+ } else {
+ __ mov(candidate, hash);
+ }
+
+ __ And(candidate, candidate, Operand(mask));
+
+ // Load the entry from the symble table.
+ STATIC_ASSERT(SymbolTable::kEntrySize == 1);
+ __ sll(scratch, candidate, kPointerSizeLog2);
+ __ Addu(scratch, scratch, first_symbol_table_element);
+ __ lw(candidate, MemOperand(scratch));
+
+ // If entry is undefined no string with this hash can be found.
+ Label is_string;
+ __ GetObjectType(candidate, scratch, scratch);
+ __ Branch(&is_string, ne, scratch, Operand(ODDBALL_TYPE));
+
+ __ Branch(not_found, eq, undefined, Operand(candidate));
+ // Must be null (deleted entry).
+ if (FLAG_debug_code) {
+ __ LoadRoot(scratch, Heap::kNullValueRootIndex);
+ __ Assert(eq, "oddball in symbol table is not undefined or null",
+ scratch, Operand(candidate));
+ }
+ __ jmp(&next_probe[i]);
+
+ __ bind(&is_string);
+
+ // Check that the candidate is a non-external ASCII string. The instance
+ // type is still in the scratch register from the CompareObjectType
+ // operation.
+ __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
+
+ // If length is not 2 the string is not a candidate.
+ __ lw(scratch, FieldMemOperand(candidate, String::kLengthOffset));
+ __ Branch(&next_probe[i], ne, scratch, Operand(Smi::FromInt(2)));
+
+ // Check if the two characters match.
+ // Assumes that word load is little endian.
+ __ lhu(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
+ __ Branch(&found_in_symbol_table, eq, chars, Operand(scratch));
+ __ bind(&next_probe[i]);
+ }
+
+ // No matching 2 character string found by probing.
+ __ jmp(not_found);
+
+ // Scratch register contains result when we fall through to here.
+ Register result = candidate;
+ __ bind(&found_in_symbol_table);
+ __ mov(v0, result);
}
void StringHelper::GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character) {
- UNIMPLEMENTED_MIPS();
+ // hash = character + (character << 10);
+ __ sll(hash, character, 10);
+ __ addu(hash, hash, character);
+ // hash ^= hash >> 6;
+ __ sra(at, hash, 6);
+ __ xor_(hash, hash, at);
}
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character) {
- UNIMPLEMENTED_MIPS();
+ // hash += character;
+ __ addu(hash, hash, character);
+ // hash += hash << 10;
+ __ sll(at, hash, 10);
+ __ addu(hash, hash, at);
+ // hash ^= hash >> 6;
+ __ sra(at, hash, 6);
+ __ xor_(hash, hash, at);
}
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
Register hash) {
- UNIMPLEMENTED_MIPS();
+ // hash += hash << 3;
+ __ sll(at, hash, 3);
+ __ addu(hash, hash, at);
+ // hash ^= hash >> 11;
+ __ sra(at, hash, 11);
+ __ xor_(hash, hash, at);
+ // hash += hash << 15;
+ __ sll(at, hash, 15);
+ __ addu(hash, hash, at);
+
+ // if (hash == 0) hash = 27;
+ __ ori(at, zero_reg, 27);
+ __ movz(hash, at, hash);
}
void SubStringStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label sub_string_runtime;
+ // Stack frame on entry.
+ // ra: return address
+ // sp[0]: to
+ // sp[4]: from
+ // sp[8]: string
+
+ // This stub is called from the native-call %_SubString(...), so
+ // nothing can be assumed about the arguments. It is tested that:
+ // "string" is a sequential string,
+ // both "from" and "to" are smis, and
+ // 0 <= from <= to <= string.length.
+ // If any of these assumptions fail, we call the runtime system.
+
+ static const int kToOffset = 0 * kPointerSize;
+ static const int kFromOffset = 1 * kPointerSize;
+ static const int kStringOffset = 2 * kPointerSize;
+
+ Register to = t2;
+ Register from = t3;
+
+ // Check bounds and smi-ness.
+ __ lw(to, MemOperand(sp, kToOffset));
+ __ lw(from, MemOperand(sp, kFromOffset));
+ STATIC_ASSERT(kFromOffset == kToOffset + 4);
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+
+ __ JumpIfNotSmi(from, &sub_string_runtime);
+ __ JumpIfNotSmi(to, &sub_string_runtime);
+
+ __ sra(a3, from, kSmiTagSize); // Remove smi tag.
+ __ sra(t5, to, kSmiTagSize); // Remove smi tag.
+
+ // a3: from index (untagged smi)
+ // t5: to index (untagged smi)
+
+ __ Branch(&sub_string_runtime, lt, a3, Operand(zero_reg)); // From < 0.
+
+ __ subu(a2, t5, a3);
+ __ Branch(&sub_string_runtime, gt, a3, Operand(t5)); // Fail if from > to.
+
+ // Special handling of sub-strings of length 1 and 2. One character strings
+ // are handled in the runtime system (looked up in the single character
+ // cache). Two character strings are looked for in the symbol cache.
+ __ Branch(&sub_string_runtime, lt, a2, Operand(2));
+
+ // Both to and from are smis.
+
+ // a2: result string length
+ // a3: from index (untagged smi)
+ // t2: (a.k.a. to): to (smi)
+ // t3: (a.k.a. from): from offset (smi)
+ // t5: to index (untagged smi)
+
+ // Make sure first argument is a sequential (or flat) string.
+ __ lw(t1, MemOperand(sp, kStringOffset));
+ __ Branch(&sub_string_runtime, eq, t1, Operand(kSmiTagMask));
+
+ __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
+ __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
+ __ And(t4, a1, Operand(kIsNotStringMask));
+
+ __ Branch(&sub_string_runtime, ne, t4, Operand(zero_reg));
+
+ // a1: instance type
+ // a2: result string length
+ // a3: from index (untagged smi)
+ // t1: string
+ // t2: (a.k.a. to): to (smi)
+ // t3: (a.k.a. from): from offset (smi)
+ // t5: to index (untagged smi)
+
+ Label seq_string;
+ __ And(t0, a1, Operand(kStringRepresentationMask));
+ STATIC_ASSERT(kSeqStringTag < kConsStringTag);
+ STATIC_ASSERT(kConsStringTag < kExternalStringTag);
+
+ // External strings go to runtime.
+ __ Branch(&sub_string_runtime, gt, t0, Operand(kConsStringTag));
+
+ // Sequential strings are handled directly.
+ __ Branch(&seq_string, lt, t0, Operand(kConsStringTag));
+
+ // Cons string. Try to recurse (once) on the first substring.
+ // (This adds a little more generality than necessary to handle flattened
+ // cons strings, but not much).
+ __ lw(t1, FieldMemOperand(t1, ConsString::kFirstOffset));
+ __ lw(t0, FieldMemOperand(t1, HeapObject::kMapOffset));
+ __ lbu(a1, FieldMemOperand(t0, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kSeqStringTag == 0);
+ // Cons and External strings go to runtime.
+ __ Branch(&sub_string_runtime, ne, a1, Operand(kStringRepresentationMask));
+
+ // Definitly a sequential string.
+ __ bind(&seq_string);
+
+ // a1: instance type
+ // a2: result string length
+ // a3: from index (untagged smi)
+ // t1: string
+ // t2: (a.k.a. to): to (smi)
+ // t3: (a.k.a. from): from offset (smi)
+ // t5: to index (untagged smi)
+
+ __ lw(t0, FieldMemOperand(t1, String::kLengthOffset));
+ __ Branch(&sub_string_runtime, lt, t0, Operand(to)); // Fail if to > length.
+ to = no_reg;
+
+ // a1: instance type
+ // a2: result string length
+ // a3: from index (untagged smi)
+ // t1: string
+ // t3: (a.k.a. from): from offset (smi)
+ // t5: to index (untagged smi)
+
+ // Check for flat ASCII string.
+ Label non_ascii_flat;
+ STATIC_ASSERT(kTwoByteStringTag == 0);
+
+ __ And(t4, a1, Operand(kStringEncodingMask));
+ __ Branch(&non_ascii_flat, eq, t4, Operand(zero_reg));
+
+ Label result_longer_than_two;
+ __ Branch(&result_longer_than_two, gt, a2, Operand(2));
+
+ // Sub string of length 2 requested.
+ // Get the two characters forming the sub string.
+ __ Addu(t1, t1, Operand(a3));
+ __ lbu(a3, FieldMemOperand(t1, SeqAsciiString::kHeaderSize));
+ __ lbu(t0, FieldMemOperand(t1, SeqAsciiString::kHeaderSize + 1));
+
+ // Try to lookup two character string in symbol table.
+ Label make_two_character_string;
+ StringHelper::GenerateTwoCharacterSymbolTableProbe(
+ masm, a3, t0, a1, t1, t2, t3, t4, &make_two_character_string);
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
+ __ Addu(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+
+ // a2: result string length.
+ // a3: two characters combined into halfword in little endian byte order.
+ __ bind(&make_two_character_string);
+ __ AllocateAsciiString(v0, a2, t0, t1, t4, &sub_string_runtime);
+ __ sh(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
+ __ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
+ __ Addu(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ __ bind(&result_longer_than_two);
+
+ // Allocate the result.
+ __ AllocateAsciiString(v0, a2, t4, t0, a1, &sub_string_runtime);
+
+ // v0: result string.
+ // a2: result string length.
+ // a3: from index (untagged smi)
+ // t1: string.
+ // t3: (a.k.a. from): from offset (smi)
+ // Locate first character of result.
+ __ Addu(a1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // Locate 'from' character of string.
+ __ Addu(t1, t1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ Addu(t1, t1, Operand(a3));
+
+ // v0: result string.
+ // a1: first character of result string.
+ // a2: result string length.
+ // t1: first character of sub string to copy.
+ STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
+ StringHelper::GenerateCopyCharactersLong(
+ masm, a1, t1, a2, a3, t0, t2, t3, t4, COPY_ASCII | DEST_ALWAYS_ALIGNED);
+ __ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
+ __ Addu(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ __ bind(&non_ascii_flat);
+ // a2: result string length.
+ // t1: string.
+ // t3: (a.k.a. from): from offset (smi)
+ // Check for flat two byte string.
+
+ // Allocate the result.
+ __ AllocateTwoByteString(v0, a2, a1, a3, t0, &sub_string_runtime);
+
+ // v0: result string.
+ // a2: result string length.
+ // t1: string.
+ // Locate first character of result.
+ __ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ // Locate 'from' character of string.
+ __ Addu(t1, t1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ // As "from" is a smi it is 2 times the value which matches the size of a two
+ // byte character.
+ __ Addu(t1, t1, Operand(from));
+ from = no_reg;
+
+ // v0: result string.
+ // a1: first character of result.
+ // a2: result length.
+ // t1: first character of string to copy.
+ STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ StringHelper::GenerateCopyCharactersLong(
+ masm, a1, t1, a2, a3, t0, t2, t3, t4, DEST_ALWAYS_ALIGNED);
+ __ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
+ __ Addu(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+
+ // Just jump to runtime to create the sub string.
+ __ bind(&sub_string_runtime);
+ __ TailCallRuntime(Runtime::kSubString, 3, 1);
+}
+
+
+void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
+ Register left,
+ Register right,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3) {
+ Register length = scratch1;
+
+ // Compare lengths.
+ Label strings_not_equal, check_zero_length;
+ __ lw(length, FieldMemOperand(left, String::kLengthOffset));
+ __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
+ __ Branch(&check_zero_length, eq, length, Operand(scratch2));
+ __ bind(&strings_not_equal);
+ __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
+ __ Ret();
+
+ // Check if the length is zero.
+ Label compare_chars;
+ __ bind(&check_zero_length);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Branch(&compare_chars, ne, length, Operand(zero_reg));
+ __ li(v0, Operand(Smi::FromInt(EQUAL)));
+ __ Ret();
+
+ // Compare characters.
+ __ bind(&compare_chars);
+
+ GenerateAsciiCharsCompareLoop(masm,
+ left, right, length, scratch2, scratch3, v0,
+ &strings_not_equal);
+
+ // Characters are equal.
+ __ li(v0, Operand(Smi::FromInt(EQUAL)));
+ __ Ret();
}
@@ -756,50 +5610,844 @@ void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register scratch2,
Register scratch3,
Register scratch4) {
- UNIMPLEMENTED_MIPS();
+ Label result_not_equal, compare_lengths;
+ // Find minimum length and length difference.
+ __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
+ __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
+ __ Subu(scratch3, scratch1, Operand(scratch2));
+ Register length_delta = scratch3;
+ __ slt(scratch4, scratch2, scratch1);
+ __ movn(scratch1, scratch2, scratch4);
+ Register min_length = scratch1;
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
+
+ // Compare loop.
+ GenerateAsciiCharsCompareLoop(masm,
+ left, right, min_length, scratch2, scratch4, v0,
+ &result_not_equal);
+
+ // Compare lengths - strings up to min-length are equal.
+ __ bind(&compare_lengths);
+ ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
+ // Use length_delta as result if it's zero.
+ __ mov(scratch2, length_delta);
+ __ mov(scratch4, zero_reg);
+ __ mov(v0, zero_reg);
+
+ __ bind(&result_not_equal);
+ // Conditionally update the result based either on length_delta or
+ // the last comparion performed in the loop above.
+ Label ret;
+ __ Branch(&ret, eq, scratch2, Operand(scratch4));
+ __ li(v0, Operand(Smi::FromInt(GREATER)));
+ __ Branch(&ret, gt, scratch2, Operand(scratch4));
+ __ li(v0, Operand(Smi::FromInt(LESS)));
+ __ bind(&ret);
+ __ Ret();
+}
+
+
+void StringCompareStub::GenerateAsciiCharsCompareLoop(
+ MacroAssembler* masm,
+ Register left,
+ Register right,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* chars_not_equal) {
+ // Change index to run from -length to -1 by adding length to string
+ // start. This means that loop ends when index reaches zero, which
+ // doesn't need an additional compare.
+ __ SmiUntag(length);
+ __ Addu(scratch1, length,
+ Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ Addu(left, left, Operand(scratch1));
+ __ Addu(right, right, Operand(scratch1));
+ __ Subu(length, zero_reg, length);
+ Register index = length; // index = -length;
+
+
+ // Compare loop.
+ Label loop;
+ __ bind(&loop);
+ __ Addu(scratch3, left, index);
+ __ lbu(scratch1, MemOperand(scratch3));
+ __ Addu(scratch3, right, index);
+ __ lbu(scratch2, MemOperand(scratch3));
+ __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
+ __ Addu(index, index, 1);
+ __ Branch(&loop, ne, index, Operand(zero_reg));
}
void StringCompareStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label runtime;
+
+ Counters* counters = masm->isolate()->counters();
+
+ // Stack frame on entry.
+ // sp[0]: right string
+ // sp[4]: left string
+ __ lw(a1, MemOperand(sp, 1 * kPointerSize)); // Left.
+ __ lw(a0, MemOperand(sp, 0 * kPointerSize)); // Right.
+
+ Label not_same;
+ __ Branch(&not_same, ne, a0, Operand(a1));
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ li(v0, Operand(Smi::FromInt(EQUAL)));
+ __ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
+ __ Addu(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&not_same);
+
+ // Check that both objects are sequential ASCII strings.
+ __ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime);
+
+ // Compare flat ASCII strings natively. Remove arguments from stack first.
+ __ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
+ __ Addu(sp, sp, Operand(2 * kPointerSize));
+ GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, t0, t1);
+
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
void StringAddStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Label string_add_runtime, call_builtin;
+ Builtins::JavaScript builtin_id = Builtins::ADD;
+
+ Counters* counters = masm->isolate()->counters();
+
+ // Stack on entry:
+ // sp[0]: second argument (right).
+ // sp[4]: first argument (left).
+
+ // Load the two arguments.
+ __ lw(a0, MemOperand(sp, 1 * kPointerSize)); // First argument.
+ __ lw(a1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
+
+ // Make sure that both arguments are strings if not known in advance.
+ if (flags_ == NO_STRING_ADD_FLAGS) {
+ __ JumpIfEitherSmi(a0, a1, &string_add_runtime);
+ // Load instance types.
+ __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
+ __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
+ __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
+ __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kStringTag == 0);
+ // If either is not a string, go to runtime.
+ __ Or(t4, t0, Operand(t1));
+ __ And(t4, t4, Operand(kIsNotStringMask));
+ __ Branch(&string_add_runtime, ne, t4, Operand(zero_reg));
+ } else {
+ // Here at least one of the arguments is definitely a string.
+ // We convert the one that is not known to be a string.
+ if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
+ ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
+ GenerateConvertArgument(
+ masm, 1 * kPointerSize, a0, a2, a3, t0, t1, &call_builtin);
+ builtin_id = Builtins::STRING_ADD_RIGHT;
+ } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
+ ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
+ GenerateConvertArgument(
+ masm, 0 * kPointerSize, a1, a2, a3, t0, t1, &call_builtin);
+ builtin_id = Builtins::STRING_ADD_LEFT;
+ }
+ }
+
+ // Both arguments are strings.
+ // a0: first string
+ // a1: second string
+ // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ {
+ Label strings_not_empty;
+ // Check if either of the strings are empty. In that case return the other.
+ // These tests use zero-length check on string-length whch is an Smi.
+ // Assert that Smi::FromInt(0) is really 0.
+ STATIC_ASSERT(kSmiTag == 0);
+ ASSERT(Smi::FromInt(0) == 0);
+ __ lw(a2, FieldMemOperand(a0, String::kLengthOffset));
+ __ lw(a3, FieldMemOperand(a1, String::kLengthOffset));
+ __ mov(v0, a0); // Assume we'll return first string (from a0).
+ __ movz(v0, a1, a2); // If first is empty, return second (from a1).
+ __ slt(t4, zero_reg, a2); // if (a2 > 0) t4 = 1.
+ __ slt(t5, zero_reg, a3); // if (a3 > 0) t5 = 1.
+ __ and_(t4, t4, t5); // Branch if both strings were non-empty.
+ __ Branch(&strings_not_empty, ne, t4, Operand(zero_reg));
+
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
+ __ Addu(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&strings_not_empty);
+ }
+
+ // Untag both string-lengths.
+ __ sra(a2, a2, kSmiTagSize);
+ __ sra(a3, a3, kSmiTagSize);
+
+ // Both strings are non-empty.
+ // a0: first string
+ // a1: second string
+ // a2: length of first string
+ // a3: length of second string
+ // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // Look at the length of the result of adding the two strings.
+ Label string_add_flat_result, longer_than_two;
+ // Adding two lengths can't overflow.
+ STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
+ __ Addu(t2, a2, Operand(a3));
+ // Use the symbol table when adding two one character strings, as it
+ // helps later optimizations to return a symbol here.
+ __ Branch(&longer_than_two, ne, t2, Operand(2));
+
+ // Check that both strings are non-external ASCII strings.
+ if (flags_ != NO_STRING_ADD_FLAGS) {
+ __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
+ __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
+ __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
+ __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
+ }
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii(t0, t1, t2, t3,
+ &string_add_runtime);
+
+ // Get the two characters forming the sub string.
+ __ lbu(a2, FieldMemOperand(a0, SeqAsciiString::kHeaderSize));
+ __ lbu(a3, FieldMemOperand(a1, SeqAsciiString::kHeaderSize));
+
+ // Try to lookup two character string in symbol table. If it is not found
+ // just allocate a new one.
+ Label make_two_character_string;
+ StringHelper::GenerateTwoCharacterSymbolTableProbe(
+ masm, a2, a3, t2, t3, t0, t1, t4, &make_two_character_string);
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
+ __ Addu(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&make_two_character_string);
+ // Resulting string has length 2 and first chars of two strings
+ // are combined into single halfword in a2 register.
+ // So we can fill resulting string without two loops by a single
+ // halfword store instruction (which assumes that processor is
+ // in a little endian mode).
+ __ li(t2, Operand(2));
+ __ AllocateAsciiString(v0, t2, t0, t1, t4, &string_add_runtime);
+ __ sh(a2, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
+ __ Addu(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&longer_than_two);
+ // Check if resulting string will be flat.
+ __ Branch(&string_add_flat_result, lt, t2,
+ Operand(String::kMinNonFlatLength));
+ // Handle exceptionally long strings in the runtime system.
+ STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
+ ASSERT(IsPowerOf2(String::kMaxLength + 1));
+ // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
+ __ Branch(&string_add_runtime, hs, t2, Operand(String::kMaxLength + 1));
+
+ // If result is not supposed to be flat, allocate a cons string object.
+ // If both strings are ASCII the result is an ASCII cons string.
+ if (flags_ != NO_STRING_ADD_FLAGS) {
+ __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
+ __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
+ __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
+ __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
+ }
+ Label non_ascii, allocated, ascii_data;
+ STATIC_ASSERT(kTwoByteStringTag == 0);
+ // Branch to non_ascii if either string-encoding field is zero (non-ascii).
+ __ And(t4, t0, Operand(t1));
+ __ And(t4, t4, Operand(kStringEncodingMask));
+ __ Branch(&non_ascii, eq, t4, Operand(zero_reg));
+
+ // Allocate an ASCII cons string.
+ __ bind(&ascii_data);
+ __ AllocateAsciiConsString(t3, t2, t0, t1, &string_add_runtime);
+ __ bind(&allocated);
+ // Fill the fields of the cons string.
+ __ sw(a0, FieldMemOperand(t3, ConsString::kFirstOffset));
+ __ sw(a1, FieldMemOperand(t3, ConsString::kSecondOffset));
+ __ mov(v0, t3);
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
+ __ Addu(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&non_ascii);
+ // At least one of the strings is two-byte. Check whether it happens
+ // to contain only ASCII characters.
+ // t0: first instance type.
+ // t1: second instance type.
+ // Branch to if _both_ instances have kAsciiDataHintMask set.
+ __ And(at, t0, Operand(kAsciiDataHintMask));
+ __ and_(at, at, t1);
+ __ Branch(&ascii_data, ne, at, Operand(zero_reg));
+
+ __ xor_(t0, t0, t1);
+ STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
+ __ And(t0, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
+ __ Branch(&ascii_data, eq, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
+
+ // Allocate a two byte cons string.
+ __ AllocateTwoByteConsString(t3, t2, t0, t1, &string_add_runtime);
+ __ Branch(&allocated);
+
+ // Handle creating a flat result. First check that both strings are
+ // sequential and that they have the same encoding.
+ // a0: first string
+ // a1: second string
+ // a2: length of first string
+ // a3: length of second string
+ // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
+ // t2: sum of lengths.
+ __ bind(&string_add_flat_result);
+ if (flags_ != NO_STRING_ADD_FLAGS) {
+ __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
+ __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
+ __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
+ __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
+ }
+ // Check that both strings are sequential, meaning that we
+ // branch to runtime if either string tag is non-zero.
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ Or(t4, t0, Operand(t1));
+ __ And(t4, t4, Operand(kStringRepresentationMask));
+ __ Branch(&string_add_runtime, ne, t4, Operand(zero_reg));
+
+ // Now check if both strings have the same encoding (ASCII/Two-byte).
+ // a0: first string
+ // a1: second string
+ // a2: length of first string
+ // a3: length of second string
+ // t0: first string instance type
+ // t1: second string instance type
+ // t2: sum of lengths.
+ Label non_ascii_string_add_flat_result;
+ ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test.
+ __ xor_(t3, t1, t0);
+ __ And(t3, t3, Operand(kStringEncodingMask));
+ __ Branch(&string_add_runtime, ne, t3, Operand(zero_reg));
+ // And see if it's ASCII (0) or two-byte (1).
+ __ And(t3, t0, Operand(kStringEncodingMask));
+ __ Branch(&non_ascii_string_add_flat_result, eq, t3, Operand(zero_reg));
+
+ // Both strings are sequential ASCII strings. We also know that they are
+ // short (since the sum of the lengths is less than kMinNonFlatLength).
+ // t2: length of resulting flat string
+ __ AllocateAsciiString(t3, t2, t0, t1, t4, &string_add_runtime);
+ // Locate first character of result.
+ __ Addu(t2, t3, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // Locate first character of first argument.
+ __ Addu(a0, a0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // a0: first character of first string.
+ // a1: second string.
+ // a2: length of first string.
+ // a3: length of second string.
+ // t2: first character of result.
+ // t3: result string.
+ StringHelper::GenerateCopyCharacters(masm, t2, a0, a2, t0, true);
+
+ // Load second argument and locate first character.
+ __ Addu(a1, a1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // a1: first character of second string.
+ // a3: length of second string.
+ // t2: next character of result.
+ // t3: result string.
+ StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, true);
+ __ mov(v0, t3);
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
+ __ Addu(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ __ bind(&non_ascii_string_add_flat_result);
+ // Both strings are sequential two byte strings.
+ // a0: first string.
+ // a1: second string.
+ // a2: length of first string.
+ // a3: length of second string.
+ // t2: sum of length of strings.
+ __ AllocateTwoByteString(t3, t2, t0, t1, t4, &string_add_runtime);
+ // a0: first string.
+ // a1: second string.
+ // a2: length of first string.
+ // a3: length of second string.
+ // t3: result string.
+
+ // Locate first character of result.
+ __ Addu(t2, t3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ // Locate first character of first argument.
+ __ Addu(a0, a0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+
+ // a0: first character of first string.
+ // a1: second string.
+ // a2: length of first string.
+ // a3: length of second string.
+ // t2: first character of result.
+ // t3: result string.
+ StringHelper::GenerateCopyCharacters(masm, t2, a0, a2, t0, false);
+
+ // Locate first character of second argument.
+ __ Addu(a1, a1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+
+ // a1: first character of second string.
+ // a3: length of second string.
+ // t2: next character of result (after copy of first string).
+ // t3: result string.
+ StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, false);
+
+ __ mov(v0, t3);
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
+ __ Addu(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ // Just jump to runtime to add the two strings.
+ __ bind(&string_add_runtime);
+ __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
+
+ if (call_builtin.is_linked()) {
+ __ bind(&call_builtin);
+ __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
+ }
+}
+
+
+void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
+ int stack_offset,
+ Register arg,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Register scratch4,
+ Label* slow) {
+ // First check if the argument is already a string.
+ Label not_string, done;
+ __ JumpIfSmi(arg, &not_string);
+ __ GetObjectType(arg, scratch1, scratch1);
+ __ Branch(&done, lt, scratch1, Operand(FIRST_NONSTRING_TYPE));
+
+ // Check the number to string cache.
+ Label not_cached;
+ __ bind(&not_string);
+ // Puts the cached result into scratch1.
+ NumberToStringStub::GenerateLookupNumberStringCache(masm,
+ arg,
+ scratch1,
+ scratch2,
+ scratch3,
+ scratch4,
+ false,
+ &not_cached);
+ __ mov(arg, scratch1);
+ __ sw(arg, MemOperand(sp, stack_offset));
+ __ jmp(&done);
+
+ // Check if the argument is a safe string wrapper.
+ __ bind(&not_cached);
+ __ JumpIfSmi(arg, slow);
+ __ GetObjectType(arg, scratch1, scratch2); // map -> scratch1.
+ __ Branch(slow, ne, scratch2, Operand(JS_VALUE_TYPE));
+ __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
+ __ li(scratch4, 1 << Map::kStringWrapperSafeForDefaultValueOf);
+ __ And(scratch2, scratch2, scratch4);
+ __ Branch(slow, ne, scratch2, Operand(scratch4));
+ __ lw(arg, FieldMemOperand(arg, JSValue::kValueOffset));
+ __ sw(arg, MemOperand(sp, stack_offset));
+
+ __ bind(&done);
}
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(state_ == CompareIC::SMIS);
+ Label miss;
+ __ Or(a2, a1, a0);
+ __ JumpIfNotSmi(a2, &miss);
+
+ if (GetCondition() == eq) {
+ // For equality we do not care about the sign of the result.
+ __ Subu(v0, a0, a1);
+ } else {
+ // Untag before subtracting to avoid handling overflow.
+ __ SmiUntag(a1);
+ __ SmiUntag(a0);
+ __ Subu(v0, a1, a0);
+ }
+ __ Ret();
+
+ __ bind(&miss);
+ GenerateMiss(masm);
}
void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(state_ == CompareIC::HEAP_NUMBERS);
+
+ Label generic_stub;
+ Label unordered;
+ Label miss;
+ __ And(a2, a1, Operand(a0));
+ __ JumpIfSmi(a2, &generic_stub);
+
+ __ GetObjectType(a0, a2, a2);
+ __ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE));
+ __ GetObjectType(a1, a2, a2);
+ __ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE));
+
+ // Inlining the double comparison and falling back to the general compare
+ // stub if NaN is involved or FPU is unsupported.
+ if (CpuFeatures::IsSupported(FPU)) {
+ CpuFeatures::Scope scope(FPU);
+
+ // Load left and right operand.
+ __ Subu(a2, a1, Operand(kHeapObjectTag));
+ __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
+ __ Subu(a2, a0, Operand(kHeapObjectTag));
+ __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
+
+ Label fpu_eq, fpu_lt, fpu_gt;
+ // Compare operands (test if unordered).
+ __ c(UN, D, f0, f2);
+ // Don't base result on status bits when a NaN is involved.
+ __ bc1t(&unordered);
+ __ nop();
+
+ // Test if equal.
+ __ c(EQ, D, f0, f2);
+ __ bc1t(&fpu_eq);
+ __ nop();
+
+ // Test if unordered or less (unordered case is already handled).
+ __ c(ULT, D, f0, f2);
+ __ bc1t(&fpu_lt);
+ __ nop();
+
+ // Otherwise it's greater.
+ __ bc1f(&fpu_gt);
+ __ nop();
+
+ // Return a result of -1, 0, or 1.
+ __ bind(&fpu_eq);
+ __ li(v0, Operand(EQUAL));
+ __ Ret();
+
+ __ bind(&fpu_lt);
+ __ li(v0, Operand(LESS));
+ __ Ret();
+
+ __ bind(&fpu_gt);
+ __ li(v0, Operand(GREATER));
+ __ Ret();
+
+ __ bind(&unordered);
+ }
+
+ CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0);
+ __ bind(&generic_stub);
+ __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
}
void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
- }
+ ASSERT(state_ == CompareIC::SYMBOLS);
+ Label miss;
+
+ // Registers containing left and right operands respectively.
+ Register left = a1;
+ Register right = a0;
+ Register tmp1 = a2;
+ Register tmp2 = a3;
+
+ // Check that both operands are heap objects.
+ __ JumpIfEitherSmi(left, right, &miss);
+
+ // Check that both operands are symbols.
+ __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+ __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kSymbolTag != 0);
+ __ And(tmp1, tmp1, Operand(tmp2));
+ __ And(tmp1, tmp1, kIsSymbolMask);
+ __ Branch(&miss, eq, tmp1, Operand(zero_reg));
+ // Make sure a0 is non-zero. At this point input operands are
+ // guaranteed to be non-zero.
+ ASSERT(right.is(a0));
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ mov(v0, right);
+ // Symbols are compared by identity.
+ __ Ret(ne, left, Operand(right));
+ __ li(v0, Operand(Smi::FromInt(EQUAL)));
+ __ Ret();
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(state_ == CompareIC::STRINGS);
+ Label miss;
+
+ // Registers containing left and right operands respectively.
+ Register left = a1;
+ Register right = a0;
+ Register tmp1 = a2;
+ Register tmp2 = a3;
+ Register tmp3 = t0;
+ Register tmp4 = t1;
+ Register tmp5 = t2;
+
+ // Check that both operands are heap objects.
+ __ JumpIfEitherSmi(left, right, &miss);
+
+ // Check that both operands are strings. This leaves the instance
+ // types loaded in tmp1 and tmp2.
+ __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+ __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+ STATIC_ASSERT(kNotStringTag != 0);
+ __ Or(tmp3, tmp1, tmp2);
+ __ And(tmp5, tmp3, Operand(kIsNotStringMask));
+ __ Branch(&miss, ne, tmp5, Operand(zero_reg));
+
+ // Fast check for identical strings.
+ Label left_ne_right;
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Branch(&left_ne_right, ne, left, Operand(right), USE_DELAY_SLOT);
+ __ mov(v0, zero_reg); // In the delay slot.
+ __ Ret();
+ __ bind(&left_ne_right);
+
+ // Handle not identical strings.
+
+ // Check that both strings are symbols. If they are, we're done
+ // because we already know they are not identical.
+ ASSERT(GetCondition() == eq);
+ STATIC_ASSERT(kSymbolTag != 0);
+ __ And(tmp3, tmp1, Operand(tmp2));
+ __ And(tmp5, tmp3, Operand(kIsSymbolMask));
+ Label is_symbol;
+ __ Branch(&is_symbol, eq, tmp5, Operand(zero_reg), USE_DELAY_SLOT);
+ __ mov(v0, a0); // In the delay slot.
+ // Make sure a0 is non-zero. At this point input operands are
+ // guaranteed to be non-zero.
+ ASSERT(right.is(a0));
+ __ Ret();
+ __ bind(&is_symbol);
+
+ // Check that both strings are sequential ASCII.
+ Label runtime;
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii(tmp1, tmp2, tmp3, tmp4,
+ &runtime);
+
+ // Compare flat ASCII strings. Returns when done.
+ StringCompareStub::GenerateFlatAsciiStringEquals(
+ masm, left, right, tmp1, tmp2, tmp3);
+
+ // Handle more complex cases in runtime.
+ __ bind(&runtime);
+ __ Push(left, right);
+ __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
}
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ ASSERT(state_ == CompareIC::OBJECTS);
+ Label miss;
+ __ And(a2, a1, Operand(a0));
+ __ JumpIfSmi(a2, &miss);
+
+ __ GetObjectType(a0, a2, a2);
+ __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
+ __ GetObjectType(a1, a2, a2);
+ __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
+
+ ASSERT(GetCondition() == eq);
+ __ Subu(v0, a0, Operand(a1));
+ __ Ret();
+
+ __ bind(&miss);
+ GenerateMiss(masm);
}
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ __ Push(a1, a0);
+ __ push(ra);
+
+ // Call the runtime system in a fresh internal frame.
+ ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
+ masm->isolate());
+ __ EnterInternalFrame();
+ __ Push(a1, a0);
+ __ li(t0, Operand(Smi::FromInt(op_)));
+ __ push(t0);
+ __ CallExternalReference(miss, 3);
+ __ LeaveInternalFrame();
+ // Compute the entry point of the rewritten stub.
+ __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
+ // Restore registers.
+ __ pop(ra);
+ __ pop(a0);
+ __ pop(a1);
+ __ Jump(a2);
+}
+
+void DirectCEntryStub::Generate(MacroAssembler* masm) {
+ // No need to pop or drop anything, LeaveExitFrame will restore the old
+ // stack, thus dropping the allocated space for the return value.
+ // The saved ra is after the reserved stack space for the 4 args.
+ __ lw(t9, MemOperand(sp, kCArgsSlotsSize));
+
+ if (FLAG_debug_code && EnableSlowAsserts()) {
+ // In case of an error the return address may point to a memory area
+ // filled with kZapValue by the GC.
+ // Dereference the address and check for this.
+ __ lw(t0, MemOperand(t9));
+ __ Assert(ne, "Received invalid return address.", t0,
+ Operand(reinterpret_cast<uint32_t>(kZapValue)));
+ }
+ __ Jump(t9);
}
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
+ ExternalReference function) {
+ __ li(t9, Operand(function));
+ this->GenerateCall(masm, t9);
+}
+
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
+ Register target) {
+ __ Move(t9, target);
+ __ AssertStackIsAligned();
+ // Allocate space for arg slots.
+ __ Subu(sp, sp, kCArgsSlotsSize);
+
+ // Block the trampoline pool through the whole function to make sure the
+ // number of generated instructions is constant.
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
+
+ // We need to get the current 'pc' value, which is not available on MIPS.
+ Label find_ra;
+ masm->bal(&find_ra); // ra = pc + 8.
+ masm->nop(); // Branch delay slot nop.
+ masm->bind(&find_ra);
+
+ const int kNumInstructionsToJump = 6;
+ masm->addiu(ra, ra, kNumInstructionsToJump * kPointerSize);
+ // Push return address (accessible to GC through exit frame pc).
+ // This spot for ra was reserved in EnterExitFrame.
+ masm->sw(ra, MemOperand(sp, kCArgsSlotsSize));
+ masm->li(ra, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
+ RelocInfo::CODE_TARGET), true);
+ // Call the function.
+ masm->Jump(t9);
+ // Make sure the stored 'ra' points to this position.
+ ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra));
+}
+
+
+MaybeObject* StringDictionaryLookupStub::GenerateNegativeLookup(
+ MacroAssembler* masm,
+ Label* miss,
+ Label* done,
+ Register receiver,
+ Register properties,
+ String* name,
+ Register scratch0) {
+// If names of slots in range from 1 to kProbes - 1 for the hash value are
+ // not equal to the name and kProbes-th slot is not used (its name is the
+ // undefined value), it guarantees the hash table doesn't contain the
+ // property. It's true even if some slots represent deleted properties
+ // (their names are the null value).
+ for (int i = 0; i < kInlinedProbes; i++) {
+ // scratch0 points to properties hash.
+ // Compute the masked index: (hash + i + i * i) & mask.
+ Register index = scratch0;
+ // Capacity is smi 2^n.
+ __ lw(index, FieldMemOperand(properties, kCapacityOffset));
+ __ Subu(index, index, Operand(1));
+ __ And(index, index, Operand(
+ Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
+
+ // Scale the index by multiplying by the entry size.
+ ASSERT(StringDictionary::kEntrySize == 3);
+ // index *= 3.
+ __ mov(at, index);
+ __ sll(index, index, 1);
+ __ Addu(index, index, at);
+
+ Register entity_name = scratch0;
+ // Having undefined at this place means the name is not contained.
+ ASSERT_EQ(kSmiTagSize, 1);
+ Register tmp = properties;
+
+ __ sll(scratch0, index, 1);
+ __ Addu(tmp, properties, scratch0);
+ __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
+
+ ASSERT(!tmp.is(entity_name));
+ __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
+ __ Branch(done, eq, entity_name, Operand(tmp));
+
+ if (i != kInlinedProbes - 1) {
+ // Stop if found the property.
+ __ Branch(miss, eq, entity_name, Operand(Handle<String>(name)));
+
+ // Check if the entry name is not a symbol.
+ __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
+ __ lbu(entity_name,
+ FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
+ __ And(scratch0, entity_name, Operand(kIsSymbolMask));
+ __ Branch(miss, eq, scratch0, Operand(zero_reg));
+
+ // Restore the properties.
+ __ lw(properties,
+ FieldMemOperand(receiver, JSObject::kPropertiesOffset));
+ }
+ }
+
+ const int spill_mask =
+ (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() |
+ a2.bit() | a1.bit() | a0.bit());
+
+ __ MultiPush(spill_mask);
+ __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
+ __ li(a1, Operand(Handle<String>(name)));
+ StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
+ MaybeObject* result = masm->TryCallStub(&stub);
+ if (result->IsFailure()) return result;
+ __ MultiPop(spill_mask);
+
+ __ Branch(done, eq, v0, Operand(zero_reg));
+ __ Branch(miss, ne, v0, Operand(zero_reg));
+ return result;
+}
+
+
+// Probe the string dictionary in the |elements| register. Jump to the
+// |done| label if a property with the given name is found. Jump to
+// the |miss| label otherwise.
+// If lookup was successful |scratch2| will be equal to elements + 4 * index.
void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
Label* miss,
Label* done,
@@ -807,12 +6455,156 @@ void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
Register name,
Register scratch1,
Register scratch2) {
- UNIMPLEMENTED_MIPS();
+ // Assert that name contains a string.
+ if (FLAG_debug_code) __ AbortIfNotString(name);
+
+ // Compute the capacity mask.
+ __ lw(scratch1, FieldMemOperand(elements, kCapacityOffset));
+ __ sra(scratch1, scratch1, kSmiTagSize); // convert smi to int
+ __ Subu(scratch1, scratch1, Operand(1));
+
+ // Generate an unrolled loop that performs a few probes before
+ // giving up. Measurements done on Gmail indicate that 2 probes
+ // cover ~93% of loads from dictionaries.
+ for (int i = 0; i < kInlinedProbes; i++) {
+ // Compute the masked index: (hash + i + i * i) & mask.
+ __ lw(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
+ if (i > 0) {
+ // Add the probe offset (i + i * i) left shifted to avoid right shifting
+ // the hash in a separate instruction. The value hash + i + i * i is right
+ // shifted in the following and instruction.
+ ASSERT(StringDictionary::GetProbeOffset(i) <
+ 1 << (32 - String::kHashFieldOffset));
+ __ Addu(scratch2, scratch2, Operand(
+ StringDictionary::GetProbeOffset(i) << String::kHashShift));
+ }
+ __ srl(scratch2, scratch2, String::kHashShift);
+ __ And(scratch2, scratch1, scratch2);
+
+ // Scale the index by multiplying by the element size.
+ ASSERT(StringDictionary::kEntrySize == 3);
+ // scratch2 = scratch2 * 3.
+
+ __ mov(at, scratch2);
+ __ sll(scratch2, scratch2, 1);
+ __ Addu(scratch2, scratch2, at);
+
+ // Check if the key is identical to the name.
+ __ sll(at, scratch2, 2);
+ __ Addu(scratch2, elements, at);
+ __ lw(at, FieldMemOperand(scratch2, kElementsStartOffset));
+ __ Branch(done, eq, name, Operand(at));
+ }
+
+ const int spill_mask =
+ (ra.bit() | t2.bit() | t1.bit() | t0.bit() |
+ a3.bit() | a2.bit() | a1.bit() | a0.bit()) &
+ ~(scratch1.bit() | scratch2.bit());
+
+ __ MultiPush(spill_mask);
+ __ Move(a0, elements);
+ __ Move(a1, name);
+ StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
+ __ CallStub(&stub);
+ __ mov(scratch2, a2);
+ __ MultiPop(spill_mask);
+
+ __ Branch(done, ne, v0, Operand(zero_reg));
+ __ Branch(miss, eq, v0, Operand(zero_reg));
}
void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // Registers:
+ // result: StringDictionary to probe
+ // a1: key
+ // : StringDictionary to probe.
+ // index_: will hold an index of entry if lookup is successful.
+ // might alias with result_.
+ // Returns:
+ // result_ is zero if lookup failed, non zero otherwise.
+
+ Register result = v0;
+ Register dictionary = a0;
+ Register key = a1;
+ Register index = a2;
+ Register mask = a3;
+ Register hash = t0;
+ Register undefined = t1;
+ Register entry_key = t2;
+
+ Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
+
+ __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset));
+ __ sra(mask, mask, kSmiTagSize);
+ __ Subu(mask, mask, Operand(1));
+
+ __ lw(hash, FieldMemOperand(key, String::kHashFieldOffset));
+
+ __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
+
+ for (int i = kInlinedProbes; i < kTotalProbes; i++) {
+ // Compute the masked index: (hash + i + i * i) & mask.
+ // Capacity is smi 2^n.
+ if (i > 0) {
+ // Add the probe offset (i + i * i) left shifted to avoid right shifting
+ // the hash in a separate instruction. The value hash + i + i * i is right
+ // shifted in the following and instruction.
+ ASSERT(StringDictionary::GetProbeOffset(i) <
+ 1 << (32 - String::kHashFieldOffset));
+ __ Addu(index, hash, Operand(
+ StringDictionary::GetProbeOffset(i) << String::kHashShift));
+ } else {
+ __ mov(index, hash);
+ }
+ __ srl(index, index, String::kHashShift);
+ __ And(index, mask, index);
+
+ // Scale the index by multiplying by the entry size.
+ ASSERT(StringDictionary::kEntrySize == 3);
+ // index *= 3.
+ __ mov(at, index);
+ __ sll(index, index, 1);
+ __ Addu(index, index, at);
+
+
+ ASSERT_EQ(kSmiTagSize, 1);
+ __ sll(index, index, 2);
+ __ Addu(index, index, dictionary);
+ __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset));
+
+ // Having undefined at this place means the name is not contained.
+ __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
+
+ // Stop if found the property.
+ __ Branch(&in_dictionary, eq, entry_key, Operand(key));
+
+ if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
+ // Check if the entry name is not a symbol.
+ __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
+ __ lbu(entry_key,
+ FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
+ __ And(result, entry_key, Operand(kIsSymbolMask));
+ __ Branch(&maybe_in_dictionary, eq, result, Operand(zero_reg));
+ }
+ }
+
+ __ bind(&maybe_in_dictionary);
+ // If we are doing negative lookup then probing failure should be
+ // treated as a lookup success. For positive lookup probing failure
+ // should be treated as lookup failure.
+ if (mode_ == POSITIVE_LOOKUP) {
+ __ mov(result, zero_reg);
+ __ Ret();
+ }
+
+ __ bind(&in_dictionary);
+ __ li(result, 1);
+ __ Ret();
+
+ __ bind(&not_in_dictionary);
+ __ mov(result, zero_reg);
+ __ Ret();
}
« no previous file with comments | « src/mips/code-stubs-mips.h ('k') | src/mips/frames-mips.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698