Index: src/mips/code-stubs-mips.cc |
diff --git a/src/mips/code-stubs-mips.cc b/src/mips/code-stubs-mips.cc |
index d99f7241a6aa1e78bf0187700104d218b80ffba5..89981fdb193f3abaa76be880be78c463b7b0f2f2 100644 |
--- a/src/mips/code-stubs-mips.cc |
+++ b/src/mips/code-stubs-mips.cc |
@@ -40,24 +40,233 @@ namespace internal { |
#define __ ACCESS_MASM(masm) |
+static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
+ Label* slow, |
+ Condition cc, |
+ bool never_nan_nan); |
+static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
+ Register lhs, |
+ Register rhs, |
+ Label* rhs_not_nan, |
+ Label* slow, |
+ bool strict); |
+static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc); |
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
+ Register lhs, |
+ Register rhs); |
+ |
+ |
+// Check if the operand is a heap number. |
+static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand, |
+ Register scratch1, Register scratch2, |
+ Label* not_a_heap_number) { |
+ __ lw(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset)); |
+ __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex); |
+ __ Branch(not_a_heap_number, ne, scratch1, Operand(scratch2)); |
+} |
+ |
void ToNumberStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // The ToNumber stub takes one argument in a0. |
+ Label check_heap_number, call_builtin; |
+ __ JumpIfNotSmi(a0, &check_heap_number); |
+ __ mov(v0, a0); |
+ __ Ret(); |
+ |
+ __ bind(&check_heap_number); |
+ EmitCheckForHeapNumber(masm, a0, a1, t0, &call_builtin); |
+ __ mov(v0, a0); |
+ __ Ret(); |
+ |
+ __ bind(&call_builtin); |
+ __ push(a0); |
+ __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); |
} |
void FastNewClosureStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Create a new closure from the given function info in new |
+ // space. Set the context to the current context in cp. |
+ Label gc; |
+ |
+ // Pop the function info from the stack. |
+ __ pop(a3); |
+ |
+ // Attempt to allocate new JSFunction in new space. |
+ __ AllocateInNewSpace(JSFunction::kSize, |
+ v0, |
+ a1, |
+ a2, |
+ &gc, |
+ TAG_OBJECT); |
+ |
+ int map_index = strict_mode_ == kStrictMode |
+ ? Context::STRICT_MODE_FUNCTION_MAP_INDEX |
+ : Context::FUNCTION_MAP_INDEX; |
+ |
+ // Compute the function map in the current global context and set that |
+ // as the map of the allocated object. |
+ __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset)); |
+ __ lw(a2, MemOperand(a2, Context::SlotOffset(map_index))); |
+ __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); |
+ |
+ // Initialize the rest of the function. We don't have to update the |
+ // write barrier because the allocated object is in new space. |
+ __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex); |
+ __ LoadRoot(a2, Heap::kTheHoleValueRootIndex); |
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
+ __ sw(a1, FieldMemOperand(v0, JSObject::kPropertiesOffset)); |
+ __ sw(a1, FieldMemOperand(v0, JSObject::kElementsOffset)); |
+ __ sw(a2, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset)); |
+ __ sw(a3, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset)); |
+ __ sw(cp, FieldMemOperand(v0, JSFunction::kContextOffset)); |
+ __ sw(a1, FieldMemOperand(v0, JSFunction::kLiteralsOffset)); |
+ __ sw(t0, FieldMemOperand(v0, JSFunction::kNextFunctionLinkOffset)); |
+ |
+ // Initialize the code pointer in the function to be the one |
+ // found in the shared function info object. |
+ __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset)); |
+ __ Addu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag)); |
+ __ sw(a3, FieldMemOperand(v0, JSFunction::kCodeEntryOffset)); |
+ |
+ // Return result. The argument function info has been popped already. |
+ __ Ret(); |
+ |
+ // Create a new closure through the slower runtime call. |
+ __ bind(&gc); |
+ __ LoadRoot(t0, Heap::kFalseValueRootIndex); |
+ __ Push(cp, a3, t0); |
+ __ TailCallRuntime(Runtime::kNewClosure, 3, 1); |
} |
void FastNewContextStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Try to allocate the context in new space. |
+ Label gc; |
+ int length = slots_ + Context::MIN_CONTEXT_SLOTS; |
+ |
+ // Attempt to allocate the context in new space. |
+ __ AllocateInNewSpace(FixedArray::SizeFor(length), |
+ v0, |
+ a1, |
+ a2, |
+ &gc, |
+ TAG_OBJECT); |
+ |
+ // Load the function from the stack. |
+ __ lw(a3, MemOperand(sp, 0)); |
+ |
+ // Setup the object header. |
+ __ LoadRoot(a2, Heap::kContextMapRootIndex); |
+ __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); |
+ __ li(a2, Operand(Smi::FromInt(length))); |
+ __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset)); |
+ |
+ // Setup the fixed slots. |
+ __ li(a1, Operand(Smi::FromInt(0))); |
+ __ sw(a3, MemOperand(v0, Context::SlotOffset(Context::CLOSURE_INDEX))); |
+ __ sw(v0, MemOperand(v0, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
+ __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
+ __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::EXTENSION_INDEX))); |
+ |
+ // Copy the global object from the surrounding context. |
+ __ lw(a1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ |
+ // Initialize the rest of the slots to undefined. |
+ __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); |
+ for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { |
+ __ sw(a1, MemOperand(v0, Context::SlotOffset(i))); |
+ } |
+ |
+ // Remove the on-stack argument and return. |
+ __ mov(cp, v0); |
+ __ Pop(); |
+ __ Ret(); |
+ |
+ // Need to collect. Call into runtime system. |
+ __ bind(&gc); |
+ __ TailCallRuntime(Runtime::kNewContext, 1, 1); |
} |
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Stack layout on entry: |
+ // [sp]: constant elements. |
+ // [sp + kPointerSize]: literal index. |
+ // [sp + (2 * kPointerSize)]: literals array. |
+ |
+ // All sizes here are multiples of kPointerSize. |
+ int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; |
+ int size = JSArray::kSize + elements_size; |
+ |
+ // Load boilerplate object into r3 and check if we need to create a |
+ // boilerplate. |
+ Label slow_case; |
+ __ lw(a3, MemOperand(sp, 2 * kPointerSize)); |
+ __ lw(a0, MemOperand(sp, 1 * kPointerSize)); |
+ __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
+ __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); |
+ __ Addu(t0, a3, t0); |
+ __ lw(a3, MemOperand(t0)); |
+ __ LoadRoot(t1, Heap::kUndefinedValueRootIndex); |
+ __ Branch(&slow_case, eq, a3, Operand(t1)); |
+ |
+ if (FLAG_debug_code) { |
+ const char* message; |
+ Heap::RootListIndex expected_map_index; |
+ if (mode_ == CLONE_ELEMENTS) { |
+ message = "Expected (writable) fixed array"; |
+ expected_map_index = Heap::kFixedArrayMapRootIndex; |
+ } else { |
+ ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS); |
+ message = "Expected copy-on-write fixed array"; |
+ expected_map_index = Heap::kFixedCOWArrayMapRootIndex; |
+ } |
+ __ push(a3); |
+ __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset)); |
+ __ lw(a3, FieldMemOperand(a3, HeapObject::kMapOffset)); |
+ __ LoadRoot(at, expected_map_index); |
+ __ Assert(eq, message, a3, Operand(at)); |
+ __ pop(a3); |
+ } |
+ |
+ // Allocate both the JS array and the elements array in one big |
+ // allocation. This avoids multiple limit checks. |
+ // Return new object in v0. |
+ __ AllocateInNewSpace(size, |
+ v0, |
+ a1, |
+ a2, |
+ &slow_case, |
+ TAG_OBJECT); |
+ |
+ // Copy the JS array part. |
+ for (int i = 0; i < JSArray::kSize; i += kPointerSize) { |
+ if ((i != JSArray::kElementsOffset) || (length_ == 0)) { |
+ __ lw(a1, FieldMemOperand(a3, i)); |
+ __ sw(a1, FieldMemOperand(v0, i)); |
+ } |
+ } |
+ |
+ if (length_ > 0) { |
+ // Get hold of the elements array of the boilerplate and setup the |
+ // elements pointer in the resulting object. |
+ __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset)); |
+ __ Addu(a2, v0, Operand(JSArray::kSize)); |
+ __ sw(a2, FieldMemOperand(v0, JSArray::kElementsOffset)); |
+ |
+ // Copy the elements array. |
+ __ CopyFields(a2, a3, a1.bit(), elements_size / kPointerSize); |
+ } |
+ |
+ // Return and remove the on-stack parameters. |
+ __ Addu(sp, sp, Operand(3 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&slow_case); |
+ __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); |
} |
@@ -107,7 +316,62 @@ class ConvertToDoubleStub : public CodeStub { |
void ConvertToDoubleStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+#ifndef BIG_ENDIAN_FLOATING_POINT |
+ Register exponent = result1_; |
+ Register mantissa = result2_; |
+#else |
+ Register exponent = result2_; |
+ Register mantissa = result1_; |
+#endif |
+ Label not_special; |
+ // Convert from Smi to integer. |
+ __ sra(source_, source_, kSmiTagSize); |
+ // Move sign bit from source to destination. This works because the sign bit |
+ // in the exponent word of the double has the same position and polarity as |
+ // the 2's complement sign bit in a Smi. |
+ STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
+ __ And(exponent, source_, Operand(HeapNumber::kSignMask)); |
+ // Subtract from 0 if source was negative. |
+ __ subu(at, zero_reg, source_); |
+ __ movn(source_, at, exponent); |
+ |
+ // We have -1, 0 or 1, which we treat specially. Register source_ contains |
+ // absolute value: it is either equal to 1 (special case of -1 and 1), |
+ // greater than 1 (not a special case) or less than 1 (special case of 0). |
+ __ Branch(¬_special, gt, source_, Operand(1)); |
+ |
+ // For 1 or -1 we need to or in the 0 exponent (biased to 1023). |
+ static const uint32_t exponent_word_for_1 = |
+ HeapNumber::kExponentBias << HeapNumber::kExponentShift; |
+ // Safe to use 'at' as dest reg here. |
+ __ Or(at, exponent, Operand(exponent_word_for_1)); |
+ __ movn(exponent, at, source_); // Write exp when source not 0. |
+ // 1, 0 and -1 all have 0 for the second word. |
+ __ mov(mantissa, zero_reg); |
+ __ Ret(); |
+ |
+ __ bind(¬_special); |
+ // Count leading zeros. |
+ // Gets the wrong answer for 0, but we already checked for that case above. |
+ __ clz(zeros_, source_); |
+ // Compute exponent and or it into the exponent register. |
+ // We use mantissa as a scratch register here. |
+ __ li(mantissa, Operand(31 + HeapNumber::kExponentBias)); |
+ __ subu(mantissa, mantissa, zeros_); |
+ __ sll(mantissa, mantissa, HeapNumber::kExponentShift); |
+ __ Or(exponent, exponent, mantissa); |
+ |
+ // Shift up the source chopping the top bit off. |
+ __ Addu(zeros_, zeros_, Operand(1)); |
+ // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. |
+ __ sllv(source_, source_, zeros_); |
+ // Compute lower part of fraction (last 12 bits). |
+ __ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord); |
+ // And the top (top 20 bits). |
+ __ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord); |
+ __ or_(exponent, exponent, source_); |
+ |
+ __ Ret(); |
} |
@@ -115,7 +379,34 @@ void FloatingPointHelper::LoadSmis(MacroAssembler* masm, |
FloatingPointHelper::Destination destination, |
Register scratch1, |
Register scratch2) { |
- UNIMPLEMENTED_MIPS(); |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ __ sra(scratch1, a0, kSmiTagSize); |
+ __ mtc1(scratch1, f14); |
+ __ cvt_d_w(f14, f14); |
+ __ sra(scratch1, a1, kSmiTagSize); |
+ __ mtc1(scratch1, f12); |
+ __ cvt_d_w(f12, f12); |
+ if (destination == kCoreRegisters) { |
+ __ mfc1(a2, f14); |
+ __ mfc1(a3, f15); |
+ |
+ __ mfc1(a0, f12); |
+ __ mfc1(a1, f13); |
+ } |
+ } else { |
+ ASSERT(destination == kCoreRegisters); |
+ // Write Smi from a0 to a3 and a2 in double format. |
+ __ mov(scratch1, a0); |
+ ConvertToDoubleStub stub1(a3, a2, scratch1, scratch2); |
+ __ push(ra); |
+ __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
+ // Write Smi from a1 to a1 and a0 in double format. |
+ __ mov(scratch1, a1); |
+ ConvertToDoubleStub stub2(a1, a0, scratch1, scratch2); |
+ __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
+ __ pop(ra); |
+ } |
} |
@@ -126,7 +417,14 @@ void FloatingPointHelper::LoadOperands( |
Register scratch1, |
Register scratch2, |
Label* slow) { |
- UNIMPLEMENTED_MIPS(); |
+ |
+ // Load right operand (a0) to f12 or a2/a3. |
+ LoadNumber(masm, destination, |
+ a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow); |
+ |
+ // Load left operand (a1) to f14 or a0/a1. |
+ LoadNumber(masm, destination, |
+ a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow); |
} |
@@ -140,7 +438,60 @@ void FloatingPointHelper::LoadNumber(MacroAssembler* masm, |
Register scratch1, |
Register scratch2, |
Label* not_number) { |
- UNIMPLEMENTED_MIPS(); |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotRootValue(heap_number_map, |
+ Heap::kHeapNumberMapRootIndex, |
+ "HeapNumberMap register clobbered."); |
+ } |
+ |
+ Label is_smi, done; |
+ |
+ __ JumpIfSmi(object, &is_smi); |
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); |
+ |
+ // Handle loading a double from a heap number. |
+ if (CpuFeatures::IsSupported(FPU) && |
+ destination == kFPURegisters) { |
+ CpuFeatures::Scope scope(FPU); |
+ // Load the double from tagged HeapNumber to double register. |
+ |
+ // ARM uses a workaround here because of the unaligned HeapNumber |
+ // kValueOffset. On MIPS this workaround is built into ldc1 so there's no |
+ // point in generating even more instructions. |
+ __ ldc1(dst, FieldMemOperand(object, HeapNumber::kValueOffset)); |
+ } else { |
+ ASSERT(destination == kCoreRegisters); |
+ // Load the double from heap number to dst1 and dst2 in double format. |
+ __ lw(dst1, FieldMemOperand(object, HeapNumber::kValueOffset)); |
+ __ lw(dst2, FieldMemOperand(object, |
+ HeapNumber::kValueOffset + kPointerSize)); |
+ } |
+ __ Branch(&done); |
+ |
+ // Handle loading a double from a smi. |
+ __ bind(&is_smi); |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ // Convert smi to double using FPU instructions. |
+ __ SmiUntag(scratch1, object); |
+ __ mtc1(scratch1, dst); |
+ __ cvt_d_w(dst, dst); |
+ if (destination == kCoreRegisters) { |
+ // Load the converted smi to dst1 and dst2 in double format. |
+ __ mfc1(dst1, dst); |
+ __ mfc1(dst2, FPURegister::from_code(dst.code() + 1)); |
+ } |
+ } else { |
+ ASSERT(destination == kCoreRegisters); |
+ // Write smi to dst1 and dst2 double format. |
+ __ mov(scratch1, object); |
+ ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2); |
+ __ push(ra); |
+ __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); |
+ __ pop(ra); |
+ } |
+ |
+ __ bind(&done); |
} |
@@ -153,7 +504,40 @@ void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm, |
Register scratch3, |
FPURegister double_scratch, |
Label* not_number) { |
- UNIMPLEMENTED_MIPS(); |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotRootValue(heap_number_map, |
+ Heap::kHeapNumberMapRootIndex, |
+ "HeapNumberMap register clobbered."); |
+ } |
+ Label is_smi; |
+ Label done; |
+ Label not_in_int32_range; |
+ |
+ __ JumpIfSmi(object, &is_smi); |
+ __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset)); |
+ __ Branch(not_number, ne, scratch1, Operand(heap_number_map)); |
+ __ ConvertToInt32(object, |
+ dst, |
+ scratch1, |
+ scratch2, |
+ double_scratch, |
+ ¬_in_int32_range); |
+ __ jmp(&done); |
+ |
+ __ bind(¬_in_int32_range); |
+ __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
+ __ lw(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
+ |
+ __ EmitOutOfInt32RangeTruncate(dst, |
+ scratch1, |
+ scratch2, |
+ scratch3); |
+ |
+ __ jmp(&done); |
+ |
+ __ bind(&is_smi); |
+ __ SmiUntag(dst, object); |
+ __ bind(&done); |
} |
@@ -165,7 +549,76 @@ void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm, |
Register dst2, |
Register scratch2, |
FPURegister single_scratch) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(!int_scratch.is(scratch2)); |
+ |
+ Label done; |
+ |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ __ mtc1(int_scratch, single_scratch); |
+ __ cvt_d_w(double_dst, single_scratch); |
+ if (destination == kCoreRegisters) { |
+ __ mfc1(dst1, double_dst); |
+ __ mfc1(dst2, FPURegister::from_code(double_dst.code() + 1)); |
+ } |
+ } else { |
+ Label fewer_than_20_useful_bits; |
+ // Expected output: |
+ // | dst2 | dst1 | |
+ // | s | exp | mantissa | |
+ |
+ // Check for zero. |
+ __ mov(dst2, int_scratch); |
+ __ mov(dst1, int_scratch); |
+ __ Branch(&done, eq, int_scratch, Operand(zero_reg)); |
+ |
+ // Preload the sign of the value. |
+ __ And(dst2, int_scratch, Operand(HeapNumber::kSignMask)); |
+ // Get the absolute value of the object (as an unsigned integer). |
+ Label skip_sub; |
+ __ Branch(&skip_sub, ge, dst2, Operand(zero_reg)); |
+ __ Subu(int_scratch, zero_reg, int_scratch); |
+ __ bind(&skip_sub); |
+ |
+ // Get mantisssa[51:20]. |
+ |
+ // Get the position of the first set bit. |
+ __ clz(dst1, int_scratch); |
+ __ li(scratch2, 31); |
+ __ Subu(dst1, scratch2, dst1); |
+ |
+ // Set the exponent. |
+ __ Addu(scratch2, dst1, Operand(HeapNumber::kExponentBias)); |
+ __ Ins(dst2, scratch2, |
+ HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
+ |
+ // Clear the first non null bit. |
+ __ li(scratch2, Operand(1)); |
+ __ sllv(scratch2, scratch2, dst1); |
+ __ li(at, -1); |
+ __ Xor(scratch2, scratch2, at); |
+ __ And(int_scratch, int_scratch, scratch2); |
+ |
+ // Get the number of bits to set in the lower part of the mantissa. |
+ __ Subu(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord)); |
+ __ Branch(&fewer_than_20_useful_bits, lt, scratch2, Operand(zero_reg)); |
+ // Set the higher 20 bits of the mantissa. |
+ __ srlv(at, int_scratch, scratch2); |
+ __ or_(dst2, dst2, at); |
+ __ li(at, 32); |
+ __ subu(scratch2, at, scratch2); |
+ __ sllv(dst1, int_scratch, scratch2); |
+ __ Branch(&done); |
+ |
+ __ bind(&fewer_than_20_useful_bits); |
+ __ li(at, HeapNumber::kMantissaBitsInTopWord); |
+ __ subu(scratch2, at, dst1); |
+ __ sllv(scratch2, int_scratch, scratch2); |
+ __ Or(dst2, dst2, scratch2); |
+ // Set dst1 to 0. |
+ __ mov(dst1, zero_reg); |
+ } |
+ __ bind(&done); |
} |
@@ -180,7 +633,81 @@ void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm, |
Register scratch2, |
FPURegister single_scratch, |
Label* not_int32) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(!scratch1.is(object) && !scratch2.is(object)); |
+ ASSERT(!scratch1.is(scratch2)); |
+ ASSERT(!heap_number_map.is(object) && |
+ !heap_number_map.is(scratch1) && |
+ !heap_number_map.is(scratch2)); |
+ |
+ Label done, obj_is_not_smi; |
+ |
+ __ JumpIfNotSmi(object, &obj_is_not_smi); |
+ __ SmiUntag(scratch1, object); |
+ ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2, |
+ scratch2, single_scratch); |
+ __ Branch(&done); |
+ |
+ __ bind(&obj_is_not_smi); |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotRootValue(heap_number_map, |
+ Heap::kHeapNumberMapRootIndex, |
+ "HeapNumberMap register clobbered."); |
+ } |
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); |
+ |
+ // Load the number. |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ // Load the double value. |
+ __ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset)); |
+ |
+ // NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate). |
+ // On MIPS a lot of things cannot be implemented the same way so right |
+ // now it makes a lot more sense to just do things manually. |
+ |
+ // Save FCSR. |
+ __ cfc1(scratch1, FCSR); |
+ // Disable FPU exceptions. |
+ __ ctc1(zero_reg, FCSR); |
+ __ trunc_w_d(single_scratch, double_dst); |
+ // Retrieve FCSR. |
+ __ cfc1(scratch2, FCSR); |
+ // Restore FCSR. |
+ __ ctc1(scratch1, FCSR); |
+ |
+ // Check for inexact conversion. |
+ __ srl(scratch2, scratch2, kFCSRFlagShift); |
+ __ And(scratch2, scratch2, (kFCSRFlagMask | kFCSRInexactFlagBit)); |
+ |
+ // Jump to not_int32 if the operation did not succeed. |
+ __ Branch(not_int32, ne, scratch2, Operand(zero_reg)); |
+ |
+ if (destination == kCoreRegisters) { |
+ __ mfc1(dst1, double_dst); |
+ __ mfc1(dst2, FPURegister::from_code(double_dst.code() + 1)); |
+ } |
+ |
+ } else { |
+ ASSERT(!scratch1.is(object) && !scratch2.is(object)); |
+ // Load the double value in the destination registers. |
+ __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
+ __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
+ |
+ // Check for 0 and -0. |
+ __ And(scratch1, dst1, Operand(~HeapNumber::kSignMask)); |
+ __ Or(scratch1, scratch1, Operand(dst2)); |
+ __ Branch(&done, eq, scratch1, Operand(zero_reg)); |
+ |
+ // Check that the value can be exactly represented by a 32-bit integer. |
+ // Jump to not_int32 if that's not the case. |
+ DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32); |
+ |
+ // dst1 and dst2 were trashed. Reload the double value. |
+ __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
+ __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
+ } |
+ |
+ __ bind(&done); |
} |
@@ -193,7 +720,89 @@ void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm, |
Register scratch3, |
FPURegister double_scratch, |
Label* not_int32) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(!dst.is(object)); |
+ ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object)); |
+ ASSERT(!scratch1.is(scratch2) && |
+ !scratch1.is(scratch3) && |
+ !scratch2.is(scratch3)); |
+ |
+ Label done; |
+ |
+ // Untag the object into the destination register. |
+ __ SmiUntag(dst, object); |
+ // Just return if the object is a smi. |
+ __ JumpIfSmi(object, &done); |
+ |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotRootValue(heap_number_map, |
+ Heap::kHeapNumberMapRootIndex, |
+ "HeapNumberMap register clobbered."); |
+ } |
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); |
+ |
+ // Object is a heap number. |
+ // Convert the floating point value to a 32-bit integer. |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ // Load the double value. |
+ __ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset)); |
+ |
+ // NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate). |
+ // On MIPS a lot of things cannot be implemented the same way so right |
+ // now it makes a lot more sense to just do things manually. |
+ |
+ // Save FCSR. |
+ __ cfc1(scratch1, FCSR); |
+ // Disable FPU exceptions. |
+ __ ctc1(zero_reg, FCSR); |
+ __ trunc_w_d(double_scratch, double_scratch); |
+ // Retrieve FCSR. |
+ __ cfc1(scratch2, FCSR); |
+ // Restore FCSR. |
+ __ ctc1(scratch1, FCSR); |
+ |
+ // Check for inexact conversion. |
+ __ srl(scratch2, scratch2, kFCSRFlagShift); |
+ __ And(scratch2, scratch2, (kFCSRFlagMask | kFCSRInexactFlagBit)); |
+ |
+ // Jump to not_int32 if the operation did not succeed. |
+ __ Branch(not_int32, ne, scratch2, Operand(zero_reg)); |
+ // Get the result in the destination register. |
+ __ mfc1(dst, double_scratch); |
+ |
+ } else { |
+ // Load the double value in the destination registers. |
+ __ lw(scratch2, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
+ __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMantissaOffset)); |
+ |
+ // Check for 0 and -0. |
+ __ And(dst, scratch1, Operand(~HeapNumber::kSignMask)); |
+ __ Or(dst, scratch2, Operand(dst)); |
+ __ Branch(&done, eq, dst, Operand(zero_reg)); |
+ |
+ DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32); |
+ |
+ // Registers state after DoubleIs32BitInteger. |
+ // dst: mantissa[51:20]. |
+ // scratch2: 1 |
+ |
+ // Shift back the higher bits of the mantissa. |
+ __ srlv(dst, dst, scratch3); |
+ // Set the implicit first bit. |
+ __ li(at, 32); |
+ __ subu(scratch3, at, scratch3); |
+ __ sllv(scratch2, scratch2, scratch3); |
+ __ Or(dst, dst, scratch2); |
+ // Set the sign. |
+ __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
+ __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); |
+ Label skip_sub; |
+ __ Branch(&skip_sub, ge, scratch1, Operand(zero_reg)); |
+ __ Subu(dst, zero_reg, dst); |
+ __ bind(&skip_sub); |
+ } |
+ |
+ __ bind(&done); |
} |
@@ -203,7 +812,57 @@ void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm, |
Register dst, |
Register scratch, |
Label* not_int32) { |
- UNIMPLEMENTED_MIPS(); |
+ // Get exponent alone in scratch. |
+ __ Ext(scratch, |
+ src1, |
+ HeapNumber::kExponentShift, |
+ HeapNumber::kExponentBits); |
+ |
+ // Substract the bias from the exponent. |
+ __ Subu(scratch, scratch, Operand(HeapNumber::kExponentBias)); |
+ |
+ // src1: higher (exponent) part of the double value. |
+ // src2: lower (mantissa) part of the double value. |
+ // scratch: unbiased exponent. |
+ |
+ // Fast cases. Check for obvious non 32-bit integer values. |
+ // Negative exponent cannot yield 32-bit integers. |
+ __ Branch(not_int32, lt, scratch, Operand(zero_reg)); |
+ // Exponent greater than 31 cannot yield 32-bit integers. |
+ // Also, a positive value with an exponent equal to 31 is outside of the |
+ // signed 32-bit integer range. |
+ // Another way to put it is that if (exponent - signbit) > 30 then the |
+ // number cannot be represented as an int32. |
+ Register tmp = dst; |
+ __ srl(at, src1, 31); |
+ __ subu(tmp, scratch, at); |
+ __ Branch(not_int32, gt, tmp, Operand(30)); |
+ // - Bits [21:0] in the mantissa are not null. |
+ __ And(tmp, src2, 0x3fffff); |
+ __ Branch(not_int32, ne, tmp, Operand(zero_reg)); |
+ |
+ // Otherwise the exponent needs to be big enough to shift left all the |
+ // non zero bits left. So we need the (30 - exponent) last bits of the |
+ // 31 higher bits of the mantissa to be null. |
+ // Because bits [21:0] are null, we can check instead that the |
+ // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null. |
+ |
+ // Get the 32 higher bits of the mantissa in dst. |
+ __ Ext(dst, |
+ src2, |
+ HeapNumber::kMantissaBitsInTopWord, |
+ 32 - HeapNumber::kMantissaBitsInTopWord); |
+ __ sll(at, src1, HeapNumber::kNonMantissaBitsInTopWord); |
+ __ or_(dst, dst, at); |
+ |
+ // Create the mask and test the lower bits (of the higher bits). |
+ __ li(at, 32); |
+ __ subu(scratch, at, scratch); |
+ __ li(src2, 1); |
+ __ sllv(src1, src2, scratch); |
+ __ Subu(src1, src1, Operand(1)); |
+ __ And(src1, dst, src1); |
+ __ Branch(not_int32, ne, src1, Operand(zero_reg)); |
} |
@@ -212,18 +871,567 @@ void FloatingPointHelper::CallCCodeForDoubleOperation( |
Token::Value op, |
Register heap_number_result, |
Register scratch) { |
- UNIMPLEMENTED_MIPS(); |
+ // Using core registers: |
+ // a0: Left value (least significant part of mantissa). |
+ // a1: Left value (sign, exponent, top of mantissa). |
+ // a2: Right value (least significant part of mantissa). |
+ // a3: Right value (sign, exponent, top of mantissa). |
+ |
+ // Assert that heap_number_result is saved. |
+ // We currently always use s0 to pass it. |
+ ASSERT(heap_number_result.is(s0)); |
+ |
+ // Push the current return address before the C call. |
+ __ push(ra); |
+ __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments. |
+ if (!IsMipsSoftFloatABI) { |
+ CpuFeatures::Scope scope(FPU); |
+ // We are not using MIPS FPU instructions, and parameters for the runtime |
+ // function call are prepaired in a0-a3 registers, but function we are |
+ // calling is compiled with hard-float flag and expecting hard float ABI |
+ // (parameters in f12/f14 registers). We need to copy parameters from |
+ // a0-a3 registers to f12/f14 register pairs. |
+ __ mtc1(a0, f12); |
+ __ mtc1(a1, f13); |
+ __ mtc1(a2, f14); |
+ __ mtc1(a3, f15); |
+ } |
+ // Call C routine that may not cause GC or other trouble. |
+ __ CallCFunction(ExternalReference::double_fp_operation(op, masm->isolate()), |
+ 4); |
+ // Store answer in the overwritable heap number. |
+ if (!IsMipsSoftFloatABI) { |
+ CpuFeatures::Scope scope(FPU); |
+ // Double returned in register f0. |
+ __ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset)); |
+ } else { |
+ // Double returned in registers v0 and v1. |
+ __ sw(v1, FieldMemOperand(heap_number_result, HeapNumber::kExponentOffset)); |
+ __ sw(v0, FieldMemOperand(heap_number_result, HeapNumber::kMantissaOffset)); |
+ } |
+ // Place heap_number_result in v0 and return to the pushed return address. |
+ __ mov(v0, heap_number_result); |
+ __ pop(ra); |
+ __ Ret(); |
} |
// See comment for class, this does NOT work for int32's that are in Smi range. |
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label max_negative_int; |
+ // the_int_ has the answer which is a signed int32 but not a Smi. |
+ // We test for the special value that has a different exponent. |
+ STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); |
+ // Test sign, and save for later conditionals. |
+ __ And(sign_, the_int_, Operand(0x80000000u)); |
+ __ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u)); |
+ |
+ // Set up the correct exponent in scratch_. All non-Smi int32s have the same. |
+ // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). |
+ uint32_t non_smi_exponent = |
+ (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
+ __ li(scratch_, Operand(non_smi_exponent)); |
+ // Set the sign bit in scratch_ if the value was negative. |
+ __ or_(scratch_, scratch_, sign_); |
+ // Subtract from 0 if the value was negative. |
+ __ subu(at, zero_reg, the_int_); |
+ __ movn(the_int_, at, sign_); |
+ // We should be masking the implict first digit of the mantissa away here, |
+ // but it just ends up combining harmlessly with the last digit of the |
+ // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get |
+ // the most significant 1 to hit the last bit of the 12 bit sign and exponent. |
+ ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); |
+ const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
+ __ srl(at, the_int_, shift_distance); |
+ __ or_(scratch_, scratch_, at); |
+ __ sw(scratch_, FieldMemOperand(the_heap_number_, |
+ HeapNumber::kExponentOffset)); |
+ __ sll(scratch_, the_int_, 32 - shift_distance); |
+ __ sw(scratch_, FieldMemOperand(the_heap_number_, |
+ HeapNumber::kMantissaOffset)); |
+ __ Ret(); |
+ |
+ __ bind(&max_negative_int); |
+ // The max negative int32 is stored as a positive number in the mantissa of |
+ // a double because it uses a sign bit instead of using two's complement. |
+ // The actual mantissa bits stored are all 0 because the implicit most |
+ // significant 1 bit is not stored. |
+ non_smi_exponent += 1 << HeapNumber::kExponentShift; |
+ __ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent)); |
+ __ sw(scratch_, |
+ FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); |
+ __ mov(scratch_, zero_reg); |
+ __ sw(scratch_, |
+ FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); |
+ __ Ret(); |
+} |
+ |
+ |
+// Handle the case where the lhs and rhs are the same object. |
+// Equality is almost reflexive (everything but NaN), so this is a test |
+// for "identity and not NaN". |
+static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
+ Label* slow, |
+ Condition cc, |
+ bool never_nan_nan) { |
+ Label not_identical; |
+ Label heap_number, return_equal; |
+ Register exp_mask_reg = t5; |
+ |
+ __ Branch(¬_identical, ne, a0, Operand(a1)); |
+ |
+ // The two objects are identical. If we know that one of them isn't NaN then |
+ // we now know they test equal. |
+ if (cc != eq || !never_nan_nan) { |
+ __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
+ |
+ // Test for NaN. Sadly, we can't just compare to factory->nan_value(), |
+ // so we do the second best thing - test it ourselves. |
+ // They are both equal and they are not both Smis so both of them are not |
+ // Smis. If it's not a heap number, then return equal. |
+ if (cc == less || cc == greater) { |
+ __ GetObjectType(a0, t4, t4); |
+ __ Branch(slow, greater, t4, Operand(FIRST_JS_OBJECT_TYPE)); |
+ } else { |
+ __ GetObjectType(a0, t4, t4); |
+ __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE)); |
+ // Comparing JS objects with <=, >= is complicated. |
+ if (cc != eq) { |
+ __ Branch(slow, greater, t4, Operand(FIRST_JS_OBJECT_TYPE)); |
+ // Normally here we fall through to return_equal, but undefined is |
+ // special: (undefined == undefined) == true, but |
+ // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
+ if (cc == less_equal || cc == greater_equal) { |
+ __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE)); |
+ __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); |
+ __ Branch(&return_equal, ne, a0, Operand(t2)); |
+ if (cc == le) { |
+ // undefined <= undefined should fail. |
+ __ li(v0, Operand(GREATER)); |
+ } else { |
+ // undefined >= undefined should fail. |
+ __ li(v0, Operand(LESS)); |
+ } |
+ __ Ret(); |
+ } |
+ } |
+ } |
+ } |
+ |
+ __ bind(&return_equal); |
+ if (cc == less) { |
+ __ li(v0, Operand(GREATER)); // Things aren't less than themselves. |
+ } else if (cc == greater) { |
+ __ li(v0, Operand(LESS)); // Things aren't greater than themselves. |
+ } else { |
+ __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves. |
+ } |
+ __ Ret(); |
+ |
+ if (cc != eq || !never_nan_nan) { |
+ // For less and greater we don't have to check for NaN since the result of |
+ // x < x is false regardless. For the others here is some code to check |
+ // for NaN. |
+ if (cc != lt && cc != gt) { |
+ __ bind(&heap_number); |
+ // It is a heap number, so return non-equal if it's NaN and equal if it's |
+ // not NaN. |
+ |
+ // The representation of NaN values has all exponent bits (52..62) set, |
+ // and not all mantissa bits (0..51) clear. |
+ // Read top bits of double representation (second word of value). |
+ __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
+ // Test that exponent bits are all set. |
+ __ And(t3, t2, Operand(exp_mask_reg)); |
+ // If all bits not set (ne cond), then not a NaN, objects are equal. |
+ __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg)); |
+ |
+ // Shift out flag and all exponent bits, retaining only mantissa. |
+ __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord); |
+ // Or with all low-bits of mantissa. |
+ __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); |
+ __ Or(v0, t3, Operand(t2)); |
+ // For equal we already have the right value in v0: Return zero (equal) |
+ // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
+ // not (it's a NaN). For <= and >= we need to load v0 with the failing |
+ // value if it's a NaN. |
+ if (cc != eq) { |
+ // All-zero means Infinity means equal. |
+ __ Ret(eq, v0, Operand(zero_reg)); |
+ if (cc == le) { |
+ __ li(v0, Operand(GREATER)); // NaN <= NaN should fail. |
+ } else { |
+ __ li(v0, Operand(LESS)); // NaN >= NaN should fail. |
+ } |
+ } |
+ __ Ret(); |
+ } |
+ // No fall through here. |
+ } |
+ |
+ __ bind(¬_identical); |
+} |
+ |
+ |
+static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
+ Register lhs, |
+ Register rhs, |
+ Label* both_loaded_as_doubles, |
+ Label* slow, |
+ bool strict) { |
+ ASSERT((lhs.is(a0) && rhs.is(a1)) || |
+ (lhs.is(a1) && rhs.is(a0))); |
+ |
+ Label lhs_is_smi; |
+ __ And(t0, lhs, Operand(kSmiTagMask)); |
+ __ Branch(&lhs_is_smi, eq, t0, Operand(zero_reg)); |
+ // Rhs is a Smi. |
+ // Check whether the non-smi is a heap number. |
+ __ GetObjectType(lhs, t4, t4); |
+ if (strict) { |
+ // If lhs was not a number and rhs was a Smi then strict equality cannot |
+ // succeed. Return non-equal (lhs is already not zero). |
+ __ mov(v0, lhs); |
+ __ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE)); |
+ } else { |
+ // Smi compared non-strictly with a non-Smi non-heap-number. Call |
+ // the runtime. |
+ __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE)); |
+ } |
+ |
+ // Rhs is a smi, lhs is a number. |
+ // Convert smi rhs to double. |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ __ sra(at, rhs, kSmiTagSize); |
+ __ mtc1(at, f14); |
+ __ cvt_d_w(f14, f14); |
+ __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
+ } else { |
+ // Load lhs to a double in a2, a3. |
+ __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4)); |
+ __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
+ |
+ // Write Smi from rhs to a1 and a0 in double format. t5 is scratch. |
+ __ mov(t6, rhs); |
+ ConvertToDoubleStub stub1(a1, a0, t6, t5); |
+ __ push(ra); |
+ __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET); |
+ |
+ __ pop(ra); |
+ } |
+ |
+ // We now have both loaded as doubles. |
+ __ jmp(both_loaded_as_doubles); |
+ |
+ __ bind(&lhs_is_smi); |
+ // Lhs is a Smi. Check whether the non-smi is a heap number. |
+ __ GetObjectType(rhs, t4, t4); |
+ if (strict) { |
+ // If lhs was not a number and rhs was a Smi then strict equality cannot |
+ // succeed. Return non-equal. |
+ __ li(v0, Operand(1)); |
+ __ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE)); |
+ } else { |
+ // Smi compared non-strictly with a non-Smi non-heap-number. Call |
+ // the runtime. |
+ __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE)); |
+ } |
+ |
+ // Lhs is a smi, rhs is a number. |
+ // Convert smi lhs to double. |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ __ sra(at, lhs, kSmiTagSize); |
+ __ mtc1(at, f12); |
+ __ cvt_d_w(f12, f12); |
+ __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
+ } else { |
+ // Convert lhs to a double format. t5 is scratch. |
+ __ mov(t6, lhs); |
+ ConvertToDoubleStub stub2(a3, a2, t6, t5); |
+ __ push(ra); |
+ __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET); |
+ __ pop(ra); |
+ // Load rhs to a double in a1, a0. |
+ if (rhs.is(a0)) { |
+ __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); |
+ __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
+ } else { |
+ __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
+ __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); |
+ } |
+ } |
+ // Fall through to both_loaded_as_doubles. |
} |
void EmitNanCheck(MacroAssembler* masm, Condition cc) { |
- UNIMPLEMENTED_MIPS(); |
+ bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ // Lhs and rhs are already loaded to f12 and f14 register pairs. |
+ __ mfc1(t0, f14); // f14 has LS 32 bits of rhs. |
+ __ mfc1(t1, f15); // f15 has MS 32 bits of rhs. |
+ __ mfc1(t2, f12); // f12 has LS 32 bits of lhs. |
+ __ mfc1(t3, f13); // f13 has MS 32 bits of lhs. |
+ } else { |
+ // Lhs and rhs are already loaded to GP registers. |
+ __ mov(t0, a0); // a0 has LS 32 bits of rhs. |
+ __ mov(t1, a1); // a1 has MS 32 bits of rhs. |
+ __ mov(t2, a2); // a2 has LS 32 bits of lhs. |
+ __ mov(t3, a3); // a3 has MS 32 bits of lhs. |
+ } |
+ Register rhs_exponent = exp_first ? t0 : t1; |
+ Register lhs_exponent = exp_first ? t2 : t3; |
+ Register rhs_mantissa = exp_first ? t1 : t0; |
+ Register lhs_mantissa = exp_first ? t3 : t2; |
+ Label one_is_nan, neither_is_nan; |
+ Label lhs_not_nan_exp_mask_is_loaded; |
+ |
+ Register exp_mask_reg = t4; |
+ __ li(exp_mask_reg, HeapNumber::kExponentMask); |
+ __ and_(t5, lhs_exponent, exp_mask_reg); |
+ __ Branch(&lhs_not_nan_exp_mask_is_loaded, ne, t5, Operand(exp_mask_reg)); |
+ |
+ __ sll(t5, lhs_exponent, HeapNumber::kNonMantissaBitsInTopWord); |
+ __ Branch(&one_is_nan, ne, t5, Operand(zero_reg)); |
+ |
+ __ Branch(&one_is_nan, ne, lhs_mantissa, Operand(zero_reg)); |
+ |
+ __ li(exp_mask_reg, HeapNumber::kExponentMask); |
+ __ bind(&lhs_not_nan_exp_mask_is_loaded); |
+ __ and_(t5, rhs_exponent, exp_mask_reg); |
+ |
+ __ Branch(&neither_is_nan, ne, t5, Operand(exp_mask_reg)); |
+ |
+ __ sll(t5, rhs_exponent, HeapNumber::kNonMantissaBitsInTopWord); |
+ __ Branch(&one_is_nan, ne, t5, Operand(zero_reg)); |
+ |
+ __ Branch(&neither_is_nan, eq, rhs_mantissa, Operand(zero_reg)); |
+ |
+ __ bind(&one_is_nan); |
+ // NaN comparisons always fail. |
+ // Load whatever we need in v0 to make the comparison fail. |
+ if (cc == lt || cc == le) { |
+ __ li(v0, Operand(GREATER)); |
+ } else { |
+ __ li(v0, Operand(LESS)); |
+ } |
+ __ Ret(); // Return. |
+ |
+ __ bind(&neither_is_nan); |
+} |
+ |
+ |
+static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) { |
+ // f12 and f14 have the two doubles. Neither is a NaN. |
+ // Call a native function to do a comparison between two non-NaNs. |
+ // Call C routine that may not cause GC or other trouble. |
+ // We use a call_was and return manually because we need arguments slots to |
+ // be freed. |
+ |
+ Label return_result_not_equal, return_result_equal; |
+ if (cc == eq) { |
+ // Doubles are not equal unless they have the same bit pattern. |
+ // Exception: 0 and -0. |
+ bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ // Lhs and rhs are already loaded to f12 and f14 register pairs. |
+ __ mfc1(t0, f14); // f14 has LS 32 bits of rhs. |
+ __ mfc1(t1, f15); // f15 has MS 32 bits of rhs. |
+ __ mfc1(t2, f12); // f12 has LS 32 bits of lhs. |
+ __ mfc1(t3, f13); // f13 has MS 32 bits of lhs. |
+ } else { |
+ // Lhs and rhs are already loaded to GP registers. |
+ __ mov(t0, a0); // a0 has LS 32 bits of rhs. |
+ __ mov(t1, a1); // a1 has MS 32 bits of rhs. |
+ __ mov(t2, a2); // a2 has LS 32 bits of lhs. |
+ __ mov(t3, a3); // a3 has MS 32 bits of lhs. |
+ } |
+ Register rhs_exponent = exp_first ? t0 : t1; |
+ Register lhs_exponent = exp_first ? t2 : t3; |
+ Register rhs_mantissa = exp_first ? t1 : t0; |
+ Register lhs_mantissa = exp_first ? t3 : t2; |
+ |
+ __ xor_(v0, rhs_mantissa, lhs_mantissa); |
+ __ Branch(&return_result_not_equal, ne, v0, Operand(zero_reg)); |
+ |
+ __ subu(v0, rhs_exponent, lhs_exponent); |
+ __ Branch(&return_result_equal, eq, v0, Operand(zero_reg)); |
+ // 0, -0 case. |
+ __ sll(rhs_exponent, rhs_exponent, kSmiTagSize); |
+ __ sll(lhs_exponent, lhs_exponent, kSmiTagSize); |
+ __ or_(t4, rhs_exponent, lhs_exponent); |
+ __ or_(t4, t4, rhs_mantissa); |
+ |
+ __ Branch(&return_result_not_equal, ne, t4, Operand(zero_reg)); |
+ |
+ __ bind(&return_result_equal); |
+ __ li(v0, Operand(EQUAL)); |
+ __ Ret(); |
+ } |
+ |
+ __ bind(&return_result_not_equal); |
+ |
+ if (!CpuFeatures::IsSupported(FPU)) { |
+ __ push(ra); |
+ __ PrepareCallCFunction(4, t4); // Two doubles count as 4 arguments. |
+ if (!IsMipsSoftFloatABI) { |
+ // We are not using MIPS FPU instructions, and parameters for the runtime |
+ // function call are prepaired in a0-a3 registers, but function we are |
+ // calling is compiled with hard-float flag and expecting hard float ABI |
+ // (parameters in f12/f14 registers). We need to copy parameters from |
+ // a0-a3 registers to f12/f14 register pairs. |
+ __ mtc1(a0, f12); |
+ __ mtc1(a1, f13); |
+ __ mtc1(a2, f14); |
+ __ mtc1(a3, f15); |
+ } |
+ __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4); |
+ __ pop(ra); // Because this function returns int, result is in v0. |
+ __ Ret(); |
+ } else { |
+ CpuFeatures::Scope scope(FPU); |
+ Label equal, less_than; |
+ __ c(EQ, D, f12, f14); |
+ __ bc1t(&equal); |
+ __ nop(); |
+ |
+ __ c(OLT, D, f12, f14); |
+ __ bc1t(&less_than); |
+ __ nop(); |
+ |
+ // Not equal, not less, not NaN, must be greater. |
+ __ li(v0, Operand(GREATER)); |
+ __ Ret(); |
+ |
+ __ bind(&equal); |
+ __ li(v0, Operand(EQUAL)); |
+ __ Ret(); |
+ |
+ __ bind(&less_than); |
+ __ li(v0, Operand(LESS)); |
+ __ Ret(); |
+ } |
+} |
+ |
+ |
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
+ Register lhs, |
+ Register rhs) { |
+ // If either operand is a JSObject or an oddball value, then they are |
+ // not equal since their pointers are different. |
+ // There is no test for undetectability in strict equality. |
+ STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
+ Label first_non_object; |
+ // Get the type of the first operand into a2 and compare it with |
+ // FIRST_JS_OBJECT_TYPE. |
+ __ GetObjectType(lhs, a2, a2); |
+ __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_OBJECT_TYPE)); |
+ |
+ // Return non-zero. |
+ Label return_not_equal; |
+ __ bind(&return_not_equal); |
+ __ li(v0, Operand(1)); |
+ __ Ret(); |
+ |
+ __ bind(&first_non_object); |
+ // Check for oddballs: true, false, null, undefined. |
+ __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE)); |
+ |
+ __ GetObjectType(rhs, a3, a3); |
+ __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_OBJECT_TYPE)); |
+ |
+ // Check for oddballs: true, false, null, undefined. |
+ __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE)); |
+ |
+ // Now that we have the types we might as well check for symbol-symbol. |
+ // Ensure that no non-strings have the symbol bit set. |
+ STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); |
+ STATIC_ASSERT(kSymbolTag != 0); |
+ __ And(t2, a2, Operand(a3)); |
+ __ And(t0, t2, Operand(kIsSymbolMask)); |
+ __ Branch(&return_not_equal, ne, t0, Operand(zero_reg)); |
+} |
+ |
+ |
+static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, |
+ Register lhs, |
+ Register rhs, |
+ Label* both_loaded_as_doubles, |
+ Label* not_heap_numbers, |
+ Label* slow) { |
+ __ GetObjectType(lhs, a3, a2); |
+ __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE)); |
+ __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
+ // If first was a heap number & second wasn't, go to slow case. |
+ __ Branch(slow, ne, a3, Operand(a2)); |
+ |
+ // Both are heap numbers. Load them up then jump to the code we have |
+ // for that. |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
+ __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
+ } else { |
+ __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
+ __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4)); |
+ if (rhs.is(a0)) { |
+ __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); |
+ __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
+ } else { |
+ __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
+ __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); |
+ } |
+ } |
+ __ jmp(both_loaded_as_doubles); |
+} |
+ |
+ |
+// Fast negative check for symbol-to-symbol equality. |
+static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm, |
+ Register lhs, |
+ Register rhs, |
+ Label* possible_strings, |
+ Label* not_both_strings) { |
+ ASSERT((lhs.is(a0) && rhs.is(a1)) || |
+ (lhs.is(a1) && rhs.is(a0))); |
+ |
+ // a2 is object type of lhs. |
+ // Ensure that no non-strings have the symbol bit set. |
+ Label object_test; |
+ STATIC_ASSERT(kSymbolTag != 0); |
+ __ And(at, a2, Operand(kIsNotStringMask)); |
+ __ Branch(&object_test, ne, at, Operand(zero_reg)); |
+ __ And(at, a2, Operand(kIsSymbolMask)); |
+ __ Branch(possible_strings, eq, at, Operand(zero_reg)); |
+ __ GetObjectType(rhs, a3, a3); |
+ __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE)); |
+ __ And(at, a3, Operand(kIsSymbolMask)); |
+ __ Branch(possible_strings, eq, at, Operand(zero_reg)); |
+ |
+ // Both are symbols. We already checked they weren't the same pointer |
+ // so they are not equal. |
+ __ li(v0, Operand(1)); // Non-zero indicates not equal. |
+ __ Ret(); |
+ |
+ __ bind(&object_test); |
+ __ Branch(not_both_strings, lt, a2, Operand(FIRST_JS_OBJECT_TYPE)); |
+ __ GetObjectType(rhs, a2, a3); |
+ __ Branch(not_both_strings, lt, a3, Operand(FIRST_JS_OBJECT_TYPE)); |
+ |
+ // If both objects are undetectable, they are equal. Otherwise, they |
+ // are not equal, since they are different objects and an object is not |
+ // equal to undefined. |
+ __ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
+ __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset)); |
+ __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset)); |
+ __ and_(a0, a2, a3); |
+ __ And(a0, a0, Operand(1 << Map::kIsUndetectable)); |
+ __ Xor(v0, a0, Operand(1 << Map::kIsUndetectable)); |
+ __ Ret(); |
} |
@@ -235,12 +1443,109 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
Register scratch3, |
bool object_is_smi, |
Label* not_found) { |
- UNIMPLEMENTED_MIPS(); |
+ // Use of registers. Register result is used as a temporary. |
+ Register number_string_cache = result; |
+ Register mask = scratch3; |
+ |
+ // Load the number string cache. |
+ __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); |
+ |
+ // Make the hash mask from the length of the number string cache. It |
+ // contains two elements (number and string) for each cache entry. |
+ __ lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); |
+ // Divide length by two (length is a smi). |
+ __ sra(mask, mask, kSmiTagSize + 1); |
+ __ Addu(mask, mask, -1); // Make mask. |
+ |
+ // Calculate the entry in the number string cache. The hash value in the |
+ // number string cache for smis is just the smi value, and the hash for |
+ // doubles is the xor of the upper and lower words. See |
+ // Heap::GetNumberStringCache. |
+ Isolate* isolate = masm->isolate(); |
+ Label is_smi; |
+ Label load_result_from_cache; |
+ if (!object_is_smi) { |
+ __ JumpIfSmi(object, &is_smi); |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ __ CheckMap(object, |
+ scratch1, |
+ Heap::kHeapNumberMapRootIndex, |
+ not_found, |
+ true); |
+ |
+ STATIC_ASSERT(8 == kDoubleSize); |
+ __ Addu(scratch1, |
+ object, |
+ Operand(HeapNumber::kValueOffset - kHeapObjectTag)); |
+ __ lw(scratch2, MemOperand(scratch1, kPointerSize)); |
+ __ lw(scratch1, MemOperand(scratch1, 0)); |
+ __ Xor(scratch1, scratch1, Operand(scratch2)); |
+ __ And(scratch1, scratch1, Operand(mask)); |
+ |
+ // Calculate address of entry in string cache: each entry consists |
+ // of two pointer sized fields. |
+ __ sll(scratch1, scratch1, kPointerSizeLog2 + 1); |
+ __ Addu(scratch1, number_string_cache, scratch1); |
+ |
+ Register probe = mask; |
+ __ lw(probe, |
+ FieldMemOperand(scratch1, FixedArray::kHeaderSize)); |
+ __ JumpIfSmi(probe, not_found); |
+ __ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset)); |
+ __ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset)); |
+ __ c(EQ, D, f12, f14); |
+ __ bc1t(&load_result_from_cache); |
+ __ nop(); // bc1t() requires explicit fill of branch delay slot. |
+ __ Branch(not_found); |
+ } else { |
+ // Note that there is no cache check for non-FPU case, even though |
+ // it seems there could be. May be a tiny opimization for non-FPU |
+ // cores. |
+ __ Branch(not_found); |
+ } |
+ } |
+ |
+ __ bind(&is_smi); |
+ Register scratch = scratch1; |
+ __ sra(scratch, object, 1); // Shift away the tag. |
+ __ And(scratch, mask, Operand(scratch)); |
+ |
+ // Calculate address of entry in string cache: each entry consists |
+ // of two pointer sized fields. |
+ __ sll(scratch, scratch, kPointerSizeLog2 + 1); |
+ __ Addu(scratch, number_string_cache, scratch); |
+ |
+ // Check if the entry is the smi we are looking for. |
+ Register probe = mask; |
+ __ lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
+ __ Branch(not_found, ne, object, Operand(probe)); |
+ |
+ // Get the result from the cache. |
+ __ bind(&load_result_from_cache); |
+ __ lw(result, |
+ FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); |
+ |
+ __ IncrementCounter(isolate->counters()->number_to_string_native(), |
+ 1, |
+ scratch1, |
+ scratch2); |
} |
void NumberToStringStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label runtime; |
+ |
+ __ lw(a1, MemOperand(sp, 0)); |
+ |
+ // Generate code to lookup number in the number string cache. |
+ GenerateLookupNumberStringCache(masm, a1, v0, a2, a3, t0, false, &runtime); |
+ __ Addu(sp, sp, Operand(1 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&runtime); |
+ // Handle number to string in the runtime system if not found in the cache. |
+ __ TailCallRuntime(Runtime::kNumberToString, 1, 1); |
} |
@@ -248,14 +1553,254 @@ void NumberToStringStub::Generate(MacroAssembler* masm) { |
// On exit, v0 is 0, positive, or negative (smi) to indicate the result |
// of the comparison. |
void CompareStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label slow; // Call builtin. |
+ Label not_smis, both_loaded_as_doubles; |
+ |
+ |
+ if (include_smi_compare_) { |
+ Label not_two_smis, smi_done; |
+ __ Or(a2, a1, a0); |
+ __ JumpIfNotSmi(a2, ¬_two_smis); |
+ __ sra(a1, a1, 1); |
+ __ sra(a0, a0, 1); |
+ __ Subu(v0, a1, a0); |
+ __ Ret(); |
+ __ bind(¬_two_smis); |
+ } else if (FLAG_debug_code) { |
+ __ Or(a2, a1, a0); |
+ __ And(a2, a2, kSmiTagMask); |
+ __ Assert(ne, "CompareStub: unexpected smi operands.", |
+ a2, Operand(zero_reg)); |
+ } |
+ |
+ |
+ // NOTICE! This code is only reached after a smi-fast-case check, so |
+ // it is certain that at least one operand isn't a smi. |
+ |
+ // Handle the case where the objects are identical. Either returns the answer |
+ // or goes to slow. Only falls through if the objects were not identical. |
+ EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); |
+ |
+ // If either is a Smi (we know that not both are), then they can only |
+ // be strictly equal if the other is a HeapNumber. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ ASSERT_EQ(0, Smi::FromInt(0)); |
+ __ And(t2, lhs_, Operand(rhs_)); |
+ __ JumpIfNotSmi(t2, ¬_smis, t0); |
+ // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
+ // 1) Return the answer. |
+ // 2) Go to slow. |
+ // 3) Fall through to both_loaded_as_doubles. |
+ // 4) Jump to rhs_not_nan. |
+ // In cases 3 and 4 we have found out we were dealing with a number-number |
+ // comparison and the numbers have been loaded into f12 and f14 as doubles, |
+ // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU. |
+ EmitSmiNonsmiComparison(masm, lhs_, rhs_, |
+ &both_loaded_as_doubles, &slow, strict_); |
+ |
+ __ bind(&both_loaded_as_doubles); |
+ // f12, f14 are the double representations of the left hand side |
+ // and the right hand side if we have FPU. Otherwise a2, a3 represent |
+ // left hand side and a0, a1 represent right hand side. |
+ |
+ Isolate* isolate = masm->isolate(); |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ Label nan; |
+ __ li(t0, Operand(LESS)); |
+ __ li(t1, Operand(GREATER)); |
+ __ li(t2, Operand(EQUAL)); |
+ |
+ // Check if either rhs or lhs is NaN. |
+ __ c(UN, D, f12, f14); |
+ __ bc1t(&nan); |
+ __ nop(); |
+ |
+ // Check if LESS condition is satisfied. If true, move conditionally |
+ // result to v0. |
+ __ c(OLT, D, f12, f14); |
+ __ movt(v0, t0); |
+ // Use previous check to store conditionally to v0 oposite condition |
+ // (GREATER). If rhs is equal to lhs, this will be corrected in next |
+ // check. |
+ __ movf(v0, t1); |
+ // Check if EQUAL condition is satisfied. If true, move conditionally |
+ // result to v0. |
+ __ c(EQ, D, f12, f14); |
+ __ movt(v0, t2); |
+ |
+ __ Ret(); |
+ |
+ __ bind(&nan); |
+ // NaN comparisons always fail. |
+ // Load whatever we need in v0 to make the comparison fail. |
+ if (cc_ == lt || cc_ == le) { |
+ __ li(v0, Operand(GREATER)); |
+ } else { |
+ __ li(v0, Operand(LESS)); |
+ } |
+ __ Ret(); |
+ } else { |
+ // Checks for NaN in the doubles we have loaded. Can return the answer or |
+ // fall through if neither is a NaN. Also binds rhs_not_nan. |
+ EmitNanCheck(masm, cc_); |
+ |
+ // Compares two doubles that are not NaNs. Returns the answer. |
+ // Never falls through. |
+ EmitTwoNonNanDoubleComparison(masm, cc_); |
+ } |
+ |
+ __ bind(¬_smis); |
+ // At this point we know we are dealing with two different objects, |
+ // and neither of them is a Smi. The objects are in lhs_ and rhs_. |
+ if (strict_) { |
+ // This returns non-equal for some object types, or falls through if it |
+ // was not lucky. |
+ EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_); |
+ } |
+ |
+ Label check_for_symbols; |
+ Label flat_string_check; |
+ // Check for heap-number-heap-number comparison. Can jump to slow case, |
+ // or load both doubles and jump to the code that handles |
+ // that case. If the inputs are not doubles then jumps to check_for_symbols. |
+ // In this case a2 will contain the type of lhs_. |
+ EmitCheckForTwoHeapNumbers(masm, |
+ lhs_, |
+ rhs_, |
+ &both_loaded_as_doubles, |
+ &check_for_symbols, |
+ &flat_string_check); |
+ |
+ __ bind(&check_for_symbols); |
+ if (cc_ == eq && !strict_) { |
+ // Returns an answer for two symbols or two detectable objects. |
+ // Otherwise jumps to string case or not both strings case. |
+ // Assumes that a2 is the type of lhs_ on entry. |
+ EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow); |
+ } |
+ |
+ // Check for both being sequential ASCII strings, and inline if that is the |
+ // case. |
+ __ bind(&flat_string_check); |
+ |
+ __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow); |
+ |
+ __ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3); |
+ if (cc_ == eq) { |
+ StringCompareStub::GenerateFlatAsciiStringEquals(masm, |
+ lhs_, |
+ rhs_, |
+ a2, |
+ a3, |
+ t0); |
+ } else { |
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
+ lhs_, |
+ rhs_, |
+ a2, |
+ a3, |
+ t0, |
+ t1); |
+ } |
+ // Never falls through to here. |
+ |
+ __ bind(&slow); |
+ // Prepare for call to builtin. Push object pointers, a0 (lhs) first, |
+ // a1 (rhs) second. |
+ __ Push(lhs_, rhs_); |
+ // Figure out which native to call and setup the arguments. |
+ Builtins::JavaScript native; |
+ if (cc_ == eq) { |
+ native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
+ } else { |
+ native = Builtins::COMPARE; |
+ int ncr; // NaN compare result. |
+ if (cc_ == lt || cc_ == le) { |
+ ncr = GREATER; |
+ } else { |
+ ASSERT(cc_ == gt || cc_ == ge); // Remaining cases. |
+ ncr = LESS; |
+ } |
+ __ li(a0, Operand(Smi::FromInt(ncr))); |
+ __ push(a0); |
+ } |
+ |
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
+ // tagged as a small integer. |
+ __ InvokeBuiltin(native, JUMP_FUNCTION); |
} |
// This stub does not handle the inlined cases (Smis, Booleans, undefined). |
// The stub returns zero for false, and a non-zero value for true. |
void ToBooleanStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // This stub uses FPU instructions. |
+ ASSERT(CpuFeatures::IsEnabled(FPU)); |
+ |
+ Label false_result; |
+ Label not_heap_number; |
+ Register scratch0 = t5.is(tos_) ? t3 : t5; |
+ |
+ __ LoadRoot(scratch0, Heap::kNullValueRootIndex); |
+ __ Branch(&false_result, eq, tos_, Operand(scratch0)); |
+ |
+ // HeapNumber => false if +0, -0, or NaN. |
+ __ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
+ __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); |
+ __ Branch(¬_heap_number, ne, scratch0, Operand(at)); |
+ |
+ __ Subu(at, tos_, Operand(kHeapObjectTag)); |
+ __ ldc1(f12, MemOperand(at, HeapNumber::kValueOffset)); |
+ __ fcmp(f12, 0.0, UEQ); |
+ |
+ // "tos_" is a register, and contains a non zero value by default. |
+ // Hence we only need to overwrite "tos_" with zero to return false for |
+ // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true. |
+ __ movt(tos_, zero_reg); |
+ __ Ret(); |
+ |
+ __ bind(¬_heap_number); |
+ |
+ // Check if the value is 'null'. |
+ // 'null' => false. |
+ __ LoadRoot(at, Heap::kNullValueRootIndex); |
+ __ Branch(&false_result, eq, tos_, Operand(at)); |
+ |
+ // It can be an undetectable object. |
+ // Undetectable => false. |
+ __ lw(at, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
+ __ lbu(scratch0, FieldMemOperand(at, Map::kBitFieldOffset)); |
+ __ And(scratch0, scratch0, Operand(1 << Map::kIsUndetectable)); |
+ __ Branch(&false_result, eq, scratch0, Operand(1 << Map::kIsUndetectable)); |
+ |
+ // JavaScript object => true. |
+ __ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
+ __ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset)); |
+ |
+ // "tos_" is a register and contains a non-zero value. |
+ // Hence we implicitly return true if the greater than |
+ // condition is satisfied. |
+ __ Ret(gt, scratch0, Operand(FIRST_JS_OBJECT_TYPE)); |
+ |
+ // Check for string. |
+ __ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset)); |
+ __ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset)); |
+ // "tos_" is a register and contains a non-zero value. |
+ // Hence we implicitly return true if the greater than |
+ // condition is satisfied. |
+ __ Ret(gt, scratch0, Operand(FIRST_NONSTRING_TYPE)); |
+ |
+ // String value => false iff empty, i.e., length is zero. |
+ __ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset)); |
+ // If length is zero, "tos_" contains zero ==> false. |
+ // If length is not zero, "tos_" contains a non-zero value ==> true. |
+ __ Ret(); |
+ |
+ // Return 0 in "tos_" for false. |
+ __ bind(&false_result); |
+ __ mov(tos_, zero_reg); |
+ __ Ret(); |
} |
@@ -267,99 +1812,288 @@ Handle<Code> GetTypeRecordingUnaryOpStub(int key, |
const char* TypeRecordingUnaryOpStub::GetName() { |
- UNIMPLEMENTED_MIPS(); |
- return NULL; |
+ if (name_ != NULL) return name_; |
+ const int kMaxNameLength = 100; |
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( |
+ kMaxNameLength); |
+ if (name_ == NULL) return "OOM"; |
+ const char* op_name = Token::Name(op_); |
+ const char* overwrite_name = NULL; // Make g++ happy. |
+ switch (mode_) { |
+ case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break; |
+ case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break; |
+ } |
+ |
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
+ "TypeRecordingUnaryOpStub_%s_%s_%s", |
+ op_name, |
+ overwrite_name, |
+ TRUnaryOpIC::GetName(operand_type_)); |
+ return name_; |
} |
// TODO(svenpanne): Use virtual functions instead of switch. |
void TypeRecordingUnaryOpStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ switch (operand_type_) { |
+ case TRUnaryOpIC::UNINITIALIZED: |
+ GenerateTypeTransition(masm); |
+ break; |
+ case TRUnaryOpIC::SMI: |
+ GenerateSmiStub(masm); |
+ break; |
+ case TRUnaryOpIC::HEAP_NUMBER: |
+ GenerateHeapNumberStub(masm); |
+ break; |
+ case TRUnaryOpIC::GENERIC: |
+ GenerateGenericStub(masm); |
+ break; |
+ } |
} |
void TypeRecordingUnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Argument is in a0 and v0 at this point, so we can overwrite a0. |
+ // Push this stub's key. Although the operation and the type info are |
+ // encoded into the key, the encoding is opaque, so push them too. |
+ __ li(a2, Operand(Smi::FromInt(MinorKey()))); |
+ __ li(a1, Operand(Smi::FromInt(op_))); |
+ __ li(a0, Operand(Smi::FromInt(operand_type_))); |
+ |
+ __ Push(v0, a2, a1, a0); |
+ |
+ __ TailCallExternalReference( |
+ ExternalReference(IC_Utility(IC::kTypeRecordingUnaryOp_Patch), |
+ masm->isolate()), |
+ 4, |
+ 1); |
} |
// TODO(svenpanne): Use virtual functions instead of switch. |
void TypeRecordingUnaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ switch (op_) { |
+ case Token::SUB: |
+ GenerateSmiStubSub(masm); |
+ break; |
+ case Token::BIT_NOT: |
+ GenerateSmiStubBitNot(masm); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
} |
void TypeRecordingUnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label non_smi, slow; |
+ GenerateSmiCodeSub(masm, &non_smi, &slow); |
+ __ bind(&non_smi); |
+ __ bind(&slow); |
+ GenerateTypeTransition(masm); |
} |
void TypeRecordingUnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label non_smi; |
+ GenerateSmiCodeBitNot(masm, &non_smi); |
+ __ bind(&non_smi); |
+ GenerateTypeTransition(masm); |
} |
void TypeRecordingUnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm, |
Label* non_smi, |
Label* slow) { |
- UNIMPLEMENTED_MIPS(); |
+ __ JumpIfNotSmi(a0, non_smi); |
+ |
+ // The result of negating zero or the smallest negative smi is not a smi. |
+ __ And(t0, a0, ~0x80000000); |
+ __ Branch(slow, eq, t0, Operand(zero_reg)); |
+ |
+ // Return '0 - value'. |
+ __ Subu(v0, zero_reg, a0); |
+ __ Ret(); |
} |
void TypeRecordingUnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm, |
Label* non_smi) { |
- UNIMPLEMENTED_MIPS(); |
+ __ JumpIfNotSmi(a0, non_smi); |
+ |
+ // Flip bits and revert inverted smi-tag. |
+ __ Neg(v0, a0); |
+ __ And(v0, v0, ~kSmiTagMask); |
+ __ Ret(); |
} |
// TODO(svenpanne): Use virtual functions instead of switch. |
void TypeRecordingUnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ switch (op_) { |
+ case Token::SUB: |
+ GenerateHeapNumberStubSub(masm); |
+ break; |
+ case Token::BIT_NOT: |
+ GenerateHeapNumberStubBitNot(masm); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
} |
void TypeRecordingUnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label non_smi, slow; |
+ GenerateSmiCodeSub(masm, &non_smi, &slow); |
+ __ bind(&non_smi); |
+ GenerateHeapNumberCodeSub(masm, &slow); |
+ __ bind(&slow); |
+ GenerateTypeTransition(masm); |
} |
void TypeRecordingUnaryOpStub::GenerateHeapNumberStubBitNot( |
MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label non_smi, slow; |
+ GenerateSmiCodeBitNot(masm, &non_smi); |
+ __ bind(&non_smi); |
+ GenerateHeapNumberCodeBitNot(masm, &slow); |
+ __ bind(&slow); |
+ GenerateTypeTransition(masm); |
} |
- |
void TypeRecordingUnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm, |
Label* slow) { |
- UNIMPLEMENTED_MIPS(); |
+ EmitCheckForHeapNumber(masm, a0, a1, t2, slow); |
+ // a0 is a heap number. Get a new heap number in a1. |
+ if (mode_ == UNARY_OVERWRITE) { |
+ __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
+ __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign. |
+ __ sw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
+ } else { |
+ Label slow_allocate_heapnumber, heapnumber_allocated; |
+ __ AllocateHeapNumber(a1, a2, a3, t2, &slow_allocate_heapnumber); |
+ __ jmp(&heapnumber_allocated); |
+ |
+ __ bind(&slow_allocate_heapnumber); |
+ __ EnterInternalFrame(); |
+ __ push(a0); |
+ __ CallRuntime(Runtime::kNumberAlloc, 0); |
+ __ mov(a1, v0); |
+ __ pop(a0); |
+ __ LeaveInternalFrame(); |
+ |
+ __ bind(&heapnumber_allocated); |
+ __ lw(a3, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); |
+ __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
+ __ sw(a3, FieldMemOperand(a1, HeapNumber::kMantissaOffset)); |
+ __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign. |
+ __ sw(a2, FieldMemOperand(a1, HeapNumber::kExponentOffset)); |
+ __ mov(v0, a1); |
+ } |
+ __ Ret(); |
} |
void TypeRecordingUnaryOpStub::GenerateHeapNumberCodeBitNot( |
MacroAssembler* masm, Label* slow) { |
- UNIMPLEMENTED_MIPS(); |
+ EmitCheckForHeapNumber(masm, a0, a1, t2, slow); |
+ // Convert the heap number in a0 to an untagged integer in a1. |
+ __ ConvertToInt32(a0, a1, a2, a3, f0, slow); |
+ |
+ // Do the bitwise operation and check if the result fits in a smi. |
+ Label try_float; |
+ __ Neg(a1, a1); |
+ __ Addu(a2, a1, Operand(0x40000000)); |
+ __ Branch(&try_float, lt, a2, Operand(zero_reg)); |
+ |
+ // Tag the result as a smi and we're done. |
+ __ SmiTag(v0, a1); |
+ __ Ret(); |
+ |
+ // Try to store the result in a heap number. |
+ __ bind(&try_float); |
+ if (mode_ == UNARY_NO_OVERWRITE) { |
+ Label slow_allocate_heapnumber, heapnumber_allocated; |
+ __ AllocateHeapNumber(v0, a2, a3, t2, &slow_allocate_heapnumber); |
+ __ jmp(&heapnumber_allocated); |
+ |
+ __ bind(&slow_allocate_heapnumber); |
+ __ EnterInternalFrame(); |
+ __ push(a1); |
+ __ CallRuntime(Runtime::kNumberAlloc, 0); |
+ __ pop(a1); |
+ __ LeaveInternalFrame(); |
+ |
+ __ bind(&heapnumber_allocated); |
+ } |
+ |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ // Convert the int32 in a1 to the heap number in v0. a2 is corrupted. |
+ CpuFeatures::Scope scope(FPU); |
+ __ mtc1(a1, f0); |
+ __ cvt_d_w(f0, f0); |
+ __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
+ __ Ret(); |
+ } else { |
+ // WriteInt32ToHeapNumberStub does not trigger GC, so we do not |
+ // have to set up a frame. |
+ WriteInt32ToHeapNumberStub stub(a1, v0, a2, a3); |
+ __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
+ } |
} |
// TODO(svenpanne): Use virtual functions instead of switch. |
void TypeRecordingUnaryOpStub::GenerateGenericStub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ switch (op_) { |
+ case Token::SUB: |
+ GenerateGenericStubSub(masm); |
+ break; |
+ case Token::BIT_NOT: |
+ GenerateGenericStubBitNot(masm); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
} |
void TypeRecordingUnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label non_smi, slow; |
+ GenerateSmiCodeSub(masm, &non_smi, &slow); |
+ __ bind(&non_smi); |
+ GenerateHeapNumberCodeSub(masm, &slow); |
+ __ bind(&slow); |
+ GenerateGenericCodeFallback(masm); |
} |
void TypeRecordingUnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label non_smi, slow; |
+ GenerateSmiCodeBitNot(masm, &non_smi); |
+ __ bind(&non_smi); |
+ GenerateHeapNumberCodeBitNot(masm, &slow); |
+ __ bind(&slow); |
+ GenerateGenericCodeFallback(masm); |
} |
void TypeRecordingUnaryOpStub::GenerateGenericCodeFallback( |
MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Handle the slow case by jumping to the JavaScript builtin. |
+ __ push(a0); |
+ switch (op_) { |
+ case Token::SUB: |
+ __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_NOT: |
+ __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
} |
@@ -372,7 +2106,20 @@ Handle<Code> GetTypeRecordingBinaryOpStub(int key, |
void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label get_result; |
+ |
+ __ Push(a1, a0); |
+ |
+ __ li(a2, Operand(Smi::FromInt(MinorKey()))); |
+ __ li(a1, Operand(Smi::FromInt(op_))); |
+ __ li(a0, Operand(Smi::FromInt(operands_type_))); |
+ __ Push(a2, a1, a0); |
+ |
+ __ TailCallExternalReference( |
+ ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch), |
+ masm->isolate()), |
+ 5, |
+ 1); |
} |
@@ -383,12 +2130,57 @@ void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs( |
void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ switch (operands_type_) { |
+ case TRBinaryOpIC::UNINITIALIZED: |
+ GenerateTypeTransition(masm); |
+ break; |
+ case TRBinaryOpIC::SMI: |
+ GenerateSmiStub(masm); |
+ break; |
+ case TRBinaryOpIC::INT32: |
+ GenerateInt32Stub(masm); |
+ break; |
+ case TRBinaryOpIC::HEAP_NUMBER: |
+ GenerateHeapNumberStub(masm); |
+ break; |
+ case TRBinaryOpIC::ODDBALL: |
+ GenerateOddballStub(masm); |
+ break; |
+ case TRBinaryOpIC::BOTH_STRING: |
+ GenerateBothStringStub(masm); |
+ break; |
+ case TRBinaryOpIC::STRING: |
+ GenerateStringStub(masm); |
+ break; |
+ case TRBinaryOpIC::GENERIC: |
+ GenerateGeneric(masm); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
} |
const char* TypeRecordingBinaryOpStub::GetName() { |
- UNIMPLEMENTED_MIPS(); |
+ if (name_ != NULL) return name_; |
+ const int kMaxNameLength = 100; |
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( |
+ kMaxNameLength); |
+ if (name_ == NULL) return "OOM"; |
+ const char* op_name = Token::Name(op_); |
+ const char* overwrite_name; |
+ switch (mode_) { |
+ case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
+ case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
+ case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
+ default: overwrite_name = "UnknownOverwrite"; break; |
+ } |
+ |
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
+ "TypeRecordingBinaryOpStub_%s_%s_%s", |
+ op_name, |
+ overwrite_name, |
+ TRBinaryOpIC::GetName(operands_type_)); |
return name_; |
} |
@@ -396,7 +2188,156 @@ const char* TypeRecordingBinaryOpStub::GetName() { |
void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation( |
MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Register left = a1; |
+ Register right = a0; |
+ |
+ Register scratch1 = t0; |
+ Register scratch2 = t1; |
+ |
+ ASSERT(right.is(a0)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ |
+ Label not_smi_result; |
+ switch (op_) { |
+ case Token::ADD: |
+ __ AdduAndCheckForOverflow(v0, left, right, scratch1); |
+ __ RetOnNoOverflow(scratch1); |
+ // No need to revert anything - right and left are intact. |
+ break; |
+ case Token::SUB: |
+ __ SubuAndCheckForOverflow(v0, left, right, scratch1); |
+ __ RetOnNoOverflow(scratch1); |
+ // No need to revert anything - right and left are intact. |
+ break; |
+ case Token::MUL: { |
+ // Remove tag from one of the operands. This way the multiplication result |
+ // will be a smi if it fits the smi range. |
+ __ SmiUntag(scratch1, right); |
+ // Do multiplication. |
+ // lo = lower 32 bits of scratch1 * left. |
+ // hi = higher 32 bits of scratch1 * left. |
+ __ Mult(left, scratch1); |
+ // Check for overflowing the smi range - no overflow if higher 33 bits of |
+ // the result are identical. |
+ __ mflo(scratch1); |
+ __ mfhi(scratch2); |
+ __ sra(scratch1, scratch1, 31); |
+ __ Branch(¬_smi_result, ne, scratch1, Operand(scratch2)); |
+ // Go slow on zero result to handle -0. |
+ __ mflo(v0); |
+ __ Ret(ne, v0, Operand(zero_reg)); |
+ // We need -0 if we were multiplying a negative number with 0 to get 0. |
+ // We know one of them was zero. |
+ __ Addu(scratch2, right, left); |
+ Label skip; |
+ // ARM uses the 'pl' condition, which is 'ge'. |
+ // Negating it results in 'lt'. |
+ __ Branch(&skip, lt, scratch2, Operand(zero_reg)); |
+ ASSERT(Smi::FromInt(0) == 0); |
+ __ mov(v0, zero_reg); |
+ __ Ret(); // Return smi 0 if the non-zero one was positive. |
+ __ bind(&skip); |
+ // We fall through here if we multiplied a negative number with 0, because |
+ // that would mean we should produce -0. |
+ } |
+ break; |
+ case Token::DIV: { |
+ Label done; |
+ __ SmiUntag(scratch2, right); |
+ __ SmiUntag(scratch1, left); |
+ __ Div(scratch1, scratch2); |
+ // A minor optimization: div may be calculated asynchronously, so we check |
+ // for division by zero before getting the result. |
+ __ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg)); |
+ // If the result is 0, we need to make sure the dividsor (right) is |
+ // positive, otherwise it is a -0 case. |
+ // Quotient is in 'lo', remainder is in 'hi'. |
+ // Check for no remainder first. |
+ __ mfhi(scratch1); |
+ __ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg)); |
+ __ mflo(scratch1); |
+ __ Branch(&done, ne, scratch1, Operand(zero_reg)); |
+ __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg)); |
+ __ bind(&done); |
+ // Check that the signed result fits in a Smi. |
+ __ Addu(scratch2, scratch1, Operand(0x40000000)); |
+ __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg)); |
+ __ SmiTag(v0, scratch1); |
+ __ Ret(); |
+ } |
+ break; |
+ case Token::MOD: { |
+ Label done; |
+ __ SmiUntag(scratch2, right); |
+ __ SmiUntag(scratch1, left); |
+ __ Div(scratch1, scratch2); |
+ // A minor optimization: div may be calculated asynchronously, so we check |
+ // for division by 0 before calling mfhi. |
+ // Check for zero on the right hand side. |
+ __ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg)); |
+ // If the result is 0, we need to make sure the dividend (left) is |
+ // positive (or 0), otherwise it is a -0 case. |
+ // Remainder is in 'hi'. |
+ __ mfhi(scratch2); |
+ __ Branch(&done, ne, scratch2, Operand(zero_reg)); |
+ __ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg)); |
+ __ bind(&done); |
+ // Check that the signed result fits in a Smi. |
+ __ Addu(scratch1, scratch2, Operand(0x40000000)); |
+ __ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg)); |
+ __ SmiTag(v0, scratch2); |
+ __ Ret(); |
+ } |
+ break; |
+ case Token::BIT_OR: |
+ __ Or(v0, left, Operand(right)); |
+ __ Ret(); |
+ break; |
+ case Token::BIT_AND: |
+ __ And(v0, left, Operand(right)); |
+ __ Ret(); |
+ break; |
+ case Token::BIT_XOR: |
+ __ Xor(v0, left, Operand(right)); |
+ __ Ret(); |
+ break; |
+ case Token::SAR: |
+ // Remove tags from right operand. |
+ __ GetLeastBitsFromSmi(scratch1, right, 5); |
+ __ srav(scratch1, left, scratch1); |
+ // Smi tag result. |
+ __ And(v0, scratch1, Operand(~kSmiTagMask)); |
+ __ Ret(); |
+ break; |
+ case Token::SHR: |
+ // Remove tags from operands. We can't do this on a 31 bit number |
+ // because then the 0s get shifted into bit 30 instead of bit 31. |
+ __ SmiUntag(scratch1, left); |
+ __ GetLeastBitsFromSmi(scratch2, right, 5); |
+ __ srlv(v0, scratch1, scratch2); |
+ // Unsigned shift is not allowed to produce a negative number, so |
+ // check the sign bit and the sign bit after Smi tagging. |
+ __ And(scratch1, v0, Operand(0xc0000000)); |
+ __ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg)); |
+ // Smi tag result. |
+ __ SmiTag(v0); |
+ __ Ret(); |
+ break; |
+ case Token::SHL: |
+ // Remove tags from operands. |
+ __ SmiUntag(scratch1, left); |
+ __ GetLeastBitsFromSmi(scratch2, right, 5); |
+ __ sllv(scratch1, scratch1, scratch2); |
+ // Check that the signed result fits in a Smi. |
+ __ Addu(scratch2, scratch1, Operand(0x40000000)); |
+ __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg)); |
+ __ SmiTag(v0, scratch1); |
+ __ Ret(); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ __ bind(¬_smi_result); |
} |
@@ -404,7 +2345,211 @@ void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
bool smi_operands, |
Label* not_numbers, |
Label* gc_required) { |
- UNIMPLEMENTED_MIPS(); |
+ Register left = a1; |
+ Register right = a0; |
+ Register scratch1 = t3; |
+ Register scratch2 = t5; |
+ Register scratch3 = t0; |
+ |
+ ASSERT(smi_operands || (not_numbers != NULL)); |
+ if (smi_operands && FLAG_debug_code) { |
+ __ AbortIfNotSmi(left); |
+ __ AbortIfNotSmi(right); |
+ } |
+ |
+ Register heap_number_map = t2; |
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
+ |
+ switch (op_) { |
+ case Token::ADD: |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: |
+ case Token::MOD: { |
+ // Load left and right operands into f12 and f14 or a0/a1 and a2/a3 |
+ // depending on whether FPU is available or not. |
+ FloatingPointHelper::Destination destination = |
+ CpuFeatures::IsSupported(FPU) && |
+ op_ != Token::MOD ? |
+ FloatingPointHelper::kFPURegisters : |
+ FloatingPointHelper::kCoreRegisters; |
+ |
+ // Allocate new heap number for result. |
+ Register result = s0; |
+ GenerateHeapResultAllocation( |
+ masm, result, heap_number_map, scratch1, scratch2, gc_required); |
+ |
+ // Load the operands. |
+ if (smi_operands) { |
+ FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2); |
+ } else { |
+ FloatingPointHelper::LoadOperands(masm, |
+ destination, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ not_numbers); |
+ } |
+ |
+ // Calculate the result. |
+ if (destination == FloatingPointHelper::kFPURegisters) { |
+ // Using FPU registers: |
+ // f12: Left value. |
+ // f14: Right value. |
+ CpuFeatures::Scope scope(FPU); |
+ switch (op_) { |
+ case Token::ADD: |
+ __ add_d(f10, f12, f14); |
+ break; |
+ case Token::SUB: |
+ __ sub_d(f10, f12, f14); |
+ break; |
+ case Token::MUL: |
+ __ mul_d(f10, f12, f14); |
+ break; |
+ case Token::DIV: |
+ __ div_d(f10, f12, f14); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ |
+ // ARM uses a workaround here because of the unaligned HeapNumber |
+ // kValueOffset. On MIPS this workaround is built into sdc1 so |
+ // there's no point in generating even more instructions. |
+ __ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset)); |
+ __ mov(v0, result); |
+ __ Ret(); |
+ } else { |
+ // Call the C function to handle the double operation. |
+ FloatingPointHelper::CallCCodeForDoubleOperation(masm, |
+ op_, |
+ result, |
+ scratch1); |
+ if (FLAG_debug_code) { |
+ __ stop("Unreachable code."); |
+ } |
+ } |
+ break; |
+ } |
+ case Token::BIT_OR: |
+ case Token::BIT_XOR: |
+ case Token::BIT_AND: |
+ case Token::SAR: |
+ case Token::SHR: |
+ case Token::SHL: { |
+ if (smi_operands) { |
+ __ SmiUntag(a3, left); |
+ __ SmiUntag(a2, right); |
+ } else { |
+ // Convert operands to 32-bit integers. Right in a2 and left in a3. |
+ FloatingPointHelper::ConvertNumberToInt32(masm, |
+ left, |
+ a3, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ scratch3, |
+ f0, |
+ not_numbers); |
+ FloatingPointHelper::ConvertNumberToInt32(masm, |
+ right, |
+ a2, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ scratch3, |
+ f0, |
+ not_numbers); |
+ } |
+ Label result_not_a_smi; |
+ switch (op_) { |
+ case Token::BIT_OR: |
+ __ Or(a2, a3, Operand(a2)); |
+ break; |
+ case Token::BIT_XOR: |
+ __ Xor(a2, a3, Operand(a2)); |
+ break; |
+ case Token::BIT_AND: |
+ __ And(a2, a3, Operand(a2)); |
+ break; |
+ case Token::SAR: |
+ // Use only the 5 least significant bits of the shift count. |
+ __ GetLeastBitsFromInt32(a2, a2, 5); |
+ __ srav(a2, a3, a2); |
+ break; |
+ case Token::SHR: |
+ // Use only the 5 least significant bits of the shift count. |
+ __ GetLeastBitsFromInt32(a2, a2, 5); |
+ __ srlv(a2, a3, a2); |
+ // SHR is special because it is required to produce a positive answer. |
+ // The code below for writing into heap numbers isn't capable of |
+ // writing the register as an unsigned int so we go to slow case if we |
+ // hit this case. |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ __ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg)); |
+ } else { |
+ __ Branch(not_numbers, lt, a2, Operand(zero_reg)); |
+ } |
+ break; |
+ case Token::SHL: |
+ // Use only the 5 least significant bits of the shift count. |
+ __ GetLeastBitsFromInt32(a2, a2, 5); |
+ __ sllv(a2, a3, a2); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ // Check that the *signed* result fits in a smi. |
+ __ Addu(a3, a2, Operand(0x40000000)); |
+ __ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg)); |
+ __ SmiTag(v0, a2); |
+ __ Ret(); |
+ |
+ // Allocate new heap number for result. |
+ __ bind(&result_not_a_smi); |
+ Register result = t1; |
+ if (smi_operands) { |
+ __ AllocateHeapNumber( |
+ result, scratch1, scratch2, heap_number_map, gc_required); |
+ } else { |
+ GenerateHeapResultAllocation( |
+ masm, result, heap_number_map, scratch1, scratch2, gc_required); |
+ } |
+ |
+ // a2: Answer as signed int32. |
+ // t1: Heap number to write answer into. |
+ |
+ // Nothing can go wrong now, so move the heap number to v0, which is the |
+ // result. |
+ __ mov(v0, t1); |
+ |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ // Convert the int32 in a2 to the heap number in a0. As |
+ // mentioned above SHR needs to always produce a positive result. |
+ CpuFeatures::Scope scope(FPU); |
+ __ mtc1(a2, f0); |
+ if (op_ == Token::SHR) { |
+ __ Cvt_d_uw(f0, f0); |
+ } else { |
+ __ cvt_d_w(f0, f0); |
+ } |
+ // ARM uses a workaround here because of the unaligned HeapNumber |
+ // kValueOffset. On MIPS this workaround is built into sdc1 so |
+ // there's no point in generating even more instructions. |
+ __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
+ __ Ret(); |
+ } else { |
+ // Tail call that writes the int32 in a2 to the heap number in v0, using |
+ // a3 and a0 as scratch. v0 is preserved and returned. |
+ WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0); |
+ __ TailCallStub(&stub); |
+ } |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ } |
} |
@@ -416,42 +2561,549 @@ void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, |
Label* use_runtime, |
Label* gc_required, |
SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { |
- UNIMPLEMENTED_MIPS(); |
+ Label not_smis; |
+ |
+ Register left = a1; |
+ Register right = a0; |
+ Register scratch1 = t3; |
+ Register scratch2 = t5; |
+ |
+ // Perform combined smi check on both operands. |
+ __ Or(scratch1, left, Operand(right)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ JumpIfNotSmi(scratch1, ¬_smis); |
+ |
+ // If the smi-smi operation results in a smi return is generated. |
+ GenerateSmiSmiOperation(masm); |
+ |
+ // If heap number results are possible generate the result in an allocated |
+ // heap number. |
+ if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) { |
+ GenerateFPOperation(masm, true, use_runtime, gc_required); |
+ } |
+ __ bind(¬_smis); |
} |
void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label not_smis, call_runtime; |
+ |
+ if (result_type_ == TRBinaryOpIC::UNINITIALIZED || |
+ result_type_ == TRBinaryOpIC::SMI) { |
+ // Only allow smi results. |
+ GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS); |
+ } else { |
+ // Allow heap number result and don't make a transition if a heap number |
+ // cannot be allocated. |
+ GenerateSmiCode(masm, |
+ &call_runtime, |
+ &call_runtime, |
+ ALLOW_HEAPNUMBER_RESULTS); |
+ } |
+ |
+ // Code falls through if the result is not returned as either a smi or heap |
+ // number. |
+ GenerateTypeTransition(masm); |
+ |
+ __ bind(&call_runtime); |
+ GenerateCallRuntime(masm); |
} |
void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(operands_type_ == TRBinaryOpIC::STRING); |
+ // Try to add arguments as strings, otherwise, transition to the generic |
+ // TRBinaryOpIC type. |
+ GenerateAddStrings(masm); |
+ GenerateTypeTransition(masm); |
+} |
+ |
+ |
+void TypeRecordingBinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) { |
+ Label call_runtime; |
+ ASSERT(operands_type_ == TRBinaryOpIC::BOTH_STRING); |
+ ASSERT(op_ == Token::ADD); |
+ // If both arguments are strings, call the string add stub. |
+ // Otherwise, do a transition. |
+ |
+ // Registers containing left and right operands respectively. |
+ Register left = a1; |
+ Register right = a0; |
+ |
+ // Test if left operand is a string. |
+ __ JumpIfSmi(left, &call_runtime); |
+ __ GetObjectType(left, a2, a2); |
+ __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE)); |
+ |
+ // Test if right operand is a string. |
+ __ JumpIfSmi(right, &call_runtime); |
+ __ GetObjectType(right, a2, a2); |
+ __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE)); |
+ |
+ StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
+ GenerateRegisterArgsPush(masm); |
+ __ TailCallStub(&string_add_stub); |
+ |
+ __ bind(&call_runtime); |
+ GenerateTypeTransition(masm); |
} |
void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(operands_type_ == TRBinaryOpIC::INT32); |
+ |
+ Register left = a1; |
+ Register right = a0; |
+ Register scratch1 = t3; |
+ Register scratch2 = t5; |
+ FPURegister double_scratch = f0; |
+ FPURegister single_scratch = f6; |
+ |
+ Register heap_number_result = no_reg; |
+ Register heap_number_map = t2; |
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
+ |
+ Label call_runtime; |
+ // Labels for type transition, used for wrong input or output types. |
+ // Both label are currently actually bound to the same position. We use two |
+ // different label to differentiate the cause leading to type transition. |
+ Label transition; |
+ |
+ // Smi-smi fast case. |
+ Label skip; |
+ __ Or(scratch1, left, right); |
+ __ JumpIfNotSmi(scratch1, &skip); |
+ GenerateSmiSmiOperation(masm); |
+ // Fall through if the result is not a smi. |
+ __ bind(&skip); |
+ |
+ switch (op_) { |
+ case Token::ADD: |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: |
+ case Token::MOD: { |
+ // Load both operands and check that they are 32-bit integer. |
+ // Jump to type transition if they are not. The registers a0 and a1 (right |
+ // and left) are preserved for the runtime call. |
+ FloatingPointHelper::Destination destination = |
+ CpuFeatures::IsSupported(FPU) && |
+ op_ != Token::MOD ? |
+ FloatingPointHelper::kFPURegisters : |
+ FloatingPointHelper::kCoreRegisters; |
+ |
+ FloatingPointHelper::LoadNumberAsInt32Double(masm, |
+ right, |
+ destination, |
+ f14, |
+ a2, |
+ a3, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ f2, |
+ &transition); |
+ FloatingPointHelper::LoadNumberAsInt32Double(masm, |
+ left, |
+ destination, |
+ f12, |
+ t0, |
+ t1, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ f2, |
+ &transition); |
+ |
+ if (destination == FloatingPointHelper::kFPURegisters) { |
+ CpuFeatures::Scope scope(FPU); |
+ Label return_heap_number; |
+ switch (op_) { |
+ case Token::ADD: |
+ __ add_d(f10, f12, f14); |
+ break; |
+ case Token::SUB: |
+ __ sub_d(f10, f12, f14); |
+ break; |
+ case Token::MUL: |
+ __ mul_d(f10, f12, f14); |
+ break; |
+ case Token::DIV: |
+ __ div_d(f10, f12, f14); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ |
+ if (op_ != Token::DIV) { |
+ // These operations produce an integer result. |
+ // Try to return a smi if we can. |
+ // Otherwise return a heap number if allowed, or jump to type |
+ // transition. |
+ |
+ // NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate). |
+ // On MIPS a lot of things cannot be implemented the same way so right |
+ // now it makes a lot more sense to just do things manually. |
+ |
+ // Save FCSR. |
+ __ cfc1(scratch1, FCSR); |
+ // Disable FPU exceptions. |
+ __ ctc1(zero_reg, FCSR); |
+ __ trunc_w_d(single_scratch, f10); |
+ // Retrieve FCSR. |
+ __ cfc1(scratch2, FCSR); |
+ // Restore FCSR. |
+ __ ctc1(scratch1, FCSR); |
+ |
+ // Check for inexact conversion. |
+ __ srl(scratch2, scratch2, kFCSRFlagShift); |
+ __ And(scratch2, scratch2, kFCSRFlagMask); |
+ |
+ if (result_type_ <= TRBinaryOpIC::INT32) { |
+ // If scratch2 != 0, result does not fit in a 32-bit integer. |
+ __ Branch(&transition, ne, scratch2, Operand(zero_reg)); |
+ } |
+ |
+ // Check if the result fits in a smi. |
+ __ mfc1(scratch1, single_scratch); |
+ __ Addu(scratch2, scratch1, Operand(0x40000000)); |
+ // If not try to return a heap number. |
+ __ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg)); |
+ // Check for minus zero. Return heap number for minus zero. |
+ Label not_zero; |
+ __ Branch(¬_zero, ne, scratch1, Operand(zero_reg)); |
+ __ mfc1(scratch2, f11); |
+ __ And(scratch2, scratch2, HeapNumber::kSignMask); |
+ __ Branch(&return_heap_number, ne, scratch2, Operand(zero_reg)); |
+ __ bind(¬_zero); |
+ |
+ // Tag the result and return. |
+ __ SmiTag(v0, scratch1); |
+ __ Ret(); |
+ } else { |
+ // DIV just falls through to allocating a heap number. |
+ } |
+ |
+ if (result_type_ >= (op_ == Token::DIV) ? TRBinaryOpIC::HEAP_NUMBER |
+ : TRBinaryOpIC::INT32) { |
+ __ bind(&return_heap_number); |
+ // We are using FPU registers so s0 is available. |
+ heap_number_result = s0; |
+ GenerateHeapResultAllocation(masm, |
+ heap_number_result, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ &call_runtime); |
+ __ mov(v0, heap_number_result); |
+ __ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
+ __ Ret(); |
+ } |
+ |
+ // A DIV operation expecting an integer result falls through |
+ // to type transition. |
+ |
+ } else { |
+ // We preserved a0 and a1 to be able to call runtime. |
+ // Save the left value on the stack. |
+ __ Push(t1, t0); |
+ |
+ Label pop_and_call_runtime; |
+ |
+ // Allocate a heap number to store the result. |
+ heap_number_result = s0; |
+ GenerateHeapResultAllocation(masm, |
+ heap_number_result, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ &pop_and_call_runtime); |
+ |
+ // Load the left value from the value saved on the stack. |
+ __ Pop(a1, a0); |
+ |
+ // Call the C function to handle the double operation. |
+ FloatingPointHelper::CallCCodeForDoubleOperation( |
+ masm, op_, heap_number_result, scratch1); |
+ if (FLAG_debug_code) { |
+ __ stop("Unreachable code."); |
+ } |
+ |
+ __ bind(&pop_and_call_runtime); |
+ __ Drop(2); |
+ __ Branch(&call_runtime); |
+ } |
+ |
+ break; |
+ } |
+ |
+ case Token::BIT_OR: |
+ case Token::BIT_XOR: |
+ case Token::BIT_AND: |
+ case Token::SAR: |
+ case Token::SHR: |
+ case Token::SHL: { |
+ Label return_heap_number; |
+ Register scratch3 = t1; |
+ // Convert operands to 32-bit integers. Right in a2 and left in a3. The |
+ // registers a0 and a1 (right and left) are preserved for the runtime |
+ // call. |
+ FloatingPointHelper::LoadNumberAsInt32(masm, |
+ left, |
+ a3, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ scratch3, |
+ f0, |
+ &transition); |
+ FloatingPointHelper::LoadNumberAsInt32(masm, |
+ right, |
+ a2, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ scratch3, |
+ f0, |
+ &transition); |
+ |
+ // The ECMA-262 standard specifies that, for shift operations, only the |
+ // 5 least significant bits of the shift value should be used. |
+ switch (op_) { |
+ case Token::BIT_OR: |
+ __ Or(a2, a3, Operand(a2)); |
+ break; |
+ case Token::BIT_XOR: |
+ __ Xor(a2, a3, Operand(a2)); |
+ break; |
+ case Token::BIT_AND: |
+ __ And(a2, a3, Operand(a2)); |
+ break; |
+ case Token::SAR: |
+ __ And(a2, a2, Operand(0x1f)); |
+ __ srav(a2, a3, a2); |
+ break; |
+ case Token::SHR: |
+ __ And(a2, a2, Operand(0x1f)); |
+ __ srlv(a2, a3, a2); |
+ // SHR is special because it is required to produce a positive answer. |
+ // We only get a negative result if the shift value (a2) is 0. |
+ // This result cannot be respresented as a signed 32-bit integer, try |
+ // to return a heap number if we can. |
+ // The non FPU code does not support this special case, so jump to |
+ // runtime if we don't support it. |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ __ Branch((result_type_ <= TRBinaryOpIC::INT32) |
+ ? &transition |
+ : &return_heap_number, |
+ lt, |
+ a2, |
+ Operand(zero_reg)); |
+ } else { |
+ __ Branch((result_type_ <= TRBinaryOpIC::INT32) |
+ ? &transition |
+ : &call_runtime, |
+ lt, |
+ a2, |
+ Operand(zero_reg)); |
+ } |
+ break; |
+ case Token::SHL: |
+ __ And(a2, a2, Operand(0x1f)); |
+ __ sllv(a2, a3, a2); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ |
+ // Check if the result fits in a smi. |
+ __ Addu(scratch1, a2, Operand(0x40000000)); |
+ // If not try to return a heap number. (We know the result is an int32.) |
+ __ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg)); |
+ // Tag the result and return. |
+ __ SmiTag(v0, a2); |
+ __ Ret(); |
+ |
+ __ bind(&return_heap_number); |
+ heap_number_result = t1; |
+ GenerateHeapResultAllocation(masm, |
+ heap_number_result, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ &call_runtime); |
+ |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ |
+ if (op_ != Token::SHR) { |
+ // Convert the result to a floating point value. |
+ __ mtc1(a2, double_scratch); |
+ __ cvt_d_w(double_scratch, double_scratch); |
+ } else { |
+ // The result must be interpreted as an unsigned 32-bit integer. |
+ __ mtc1(a2, double_scratch); |
+ __ Cvt_d_uw(double_scratch, double_scratch); |
+ } |
+ |
+ // Store the result. |
+ __ mov(v0, heap_number_result); |
+ __ sdc1(double_scratch, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
+ __ Ret(); |
+ } else { |
+ // Tail call that writes the int32 in a2 to the heap number in v0, using |
+ // a3 and a1 as scratch. v0 is preserved and returned. |
+ __ mov(a0, t1); |
+ WriteInt32ToHeapNumberStub stub(a2, v0, a3, a1); |
+ __ TailCallStub(&stub); |
+ } |
+ |
+ break; |
+ } |
+ |
+ default: |
+ UNREACHABLE(); |
+ } |
+ |
+ if (transition.is_linked()) { |
+ __ bind(&transition); |
+ GenerateTypeTransition(masm); |
+ } |
+ |
+ __ bind(&call_runtime); |
+ GenerateCallRuntime(masm); |
+} |
+ |
+ |
+void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { |
+ Label call_runtime; |
+ |
+ if (op_ == Token::ADD) { |
+ // Handle string addition here, because it is the only operation |
+ // that does not do a ToNumber conversion on the operands. |
+ GenerateAddStrings(masm); |
+ } |
+ |
+ // Convert oddball arguments to numbers. |
+ Label check, done; |
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
+ __ Branch(&check, ne, a1, Operand(t0)); |
+ if (Token::IsBitOp(op_)) { |
+ __ li(a1, Operand(Smi::FromInt(0))); |
+ } else { |
+ __ LoadRoot(a1, Heap::kNanValueRootIndex); |
+ } |
+ __ jmp(&done); |
+ __ bind(&check); |
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
+ __ Branch(&done, ne, a0, Operand(t0)); |
+ if (Token::IsBitOp(op_)) { |
+ __ li(a0, Operand(Smi::FromInt(0))); |
+ } else { |
+ __ LoadRoot(a0, Heap::kNanValueRootIndex); |
+ } |
+ __ bind(&done); |
+ |
+ GenerateHeapNumberStub(masm); |
} |
void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label call_runtime; |
+ GenerateFPOperation(masm, false, &call_runtime, &call_runtime); |
+ |
+ __ bind(&call_runtime); |
+ GenerateCallRuntime(masm); |
} |
void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label call_runtime, call_string_add_or_runtime; |
+ |
+ GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); |
+ |
+ GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime); |
+ |
+ __ bind(&call_string_add_or_runtime); |
+ if (op_ == Token::ADD) { |
+ GenerateAddStrings(masm); |
+ } |
+ |
+ __ bind(&call_runtime); |
+ GenerateCallRuntime(masm); |
} |
void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(op_ == Token::ADD); |
+ Label left_not_string, call_runtime; |
+ |
+ Register left = a1; |
+ Register right = a0; |
+ |
+ // Check if left argument is a string. |
+ __ JumpIfSmi(left, &left_not_string); |
+ __ GetObjectType(left, a2, a2); |
+ __ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE)); |
+ |
+ StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); |
+ GenerateRegisterArgsPush(masm); |
+ __ TailCallStub(&string_add_left_stub); |
+ |
+ // Left operand is not a string, test right. |
+ __ bind(&left_not_string); |
+ __ JumpIfSmi(right, &call_runtime); |
+ __ GetObjectType(right, a2, a2); |
+ __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE)); |
+ |
+ StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); |
+ GenerateRegisterArgsPush(masm); |
+ __ TailCallStub(&string_add_right_stub); |
+ |
+ // At least one argument is not a string. |
+ __ bind(&call_runtime); |
} |
void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ GenerateRegisterArgsPush(masm); |
+ switch (op_) { |
+ case Token::ADD: |
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
+ break; |
+ case Token::SUB: |
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
+ break; |
+ case Token::MUL: |
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
+ break; |
+ case Token::DIV: |
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
+ break; |
+ case Token::MOD: |
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_OR: |
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_AND: |
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_XOR: |
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
+ break; |
+ case Token::SAR: |
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
+ break; |
+ case Token::SHR: |
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
+ break; |
+ case Token::SHL: |
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
} |
@@ -462,34 +3114,382 @@ void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation( |
Register scratch1, |
Register scratch2, |
Label* gc_required) { |
- UNIMPLEMENTED_MIPS(); |
+ |
+ // Code below will scratch result if allocation fails. To keep both arguments |
+ // intact for the runtime call result cannot be one of these. |
+ ASSERT(!result.is(a0) && !result.is(a1)); |
+ |
+ if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) { |
+ Label skip_allocation, allocated; |
+ Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0; |
+ // If the overwritable operand is already an object, we skip the |
+ // allocation of a heap number. |
+ __ JumpIfNotSmi(overwritable_operand, &skip_allocation); |
+ // Allocate a heap number for the result. |
+ __ AllocateHeapNumber( |
+ result, scratch1, scratch2, heap_number_map, gc_required); |
+ __ Branch(&allocated); |
+ __ bind(&skip_allocation); |
+ // Use object holding the overwritable operand for result. |
+ __ mov(result, overwritable_operand); |
+ __ bind(&allocated); |
+ } else { |
+ ASSERT(mode_ == NO_OVERWRITE); |
+ __ AllocateHeapNumber( |
+ result, scratch1, scratch2, heap_number_map, gc_required); |
+ } |
} |
void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ __ Push(a1, a0); |
} |
void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Untagged case: double input in f4, double result goes |
+ // into f4. |
+ // Tagged case: tagged input on top of stack and in a0, |
+ // tagged result (heap number) goes into v0. |
+ |
+ Label input_not_smi; |
+ Label loaded; |
+ Label calculate; |
+ Label invalid_cache; |
+ const Register scratch0 = t5; |
+ const Register scratch1 = t3; |
+ const Register cache_entry = a0; |
+ const bool tagged = (argument_type_ == TAGGED); |
+ |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ |
+ if (tagged) { |
+ // Argument is a number and is on stack and in a0. |
+ // Load argument and check if it is a smi. |
+ __ JumpIfNotSmi(a0, &input_not_smi); |
+ |
+ // Input is a smi. Convert to double and load the low and high words |
+ // of the double into a2, a3. |
+ __ sra(t0, a0, kSmiTagSize); |
+ __ mtc1(t0, f4); |
+ __ cvt_d_w(f4, f4); |
+ __ mfc1(a2, f4); |
+ __ mfc1(a3, f5); |
+ __ Branch(&loaded); |
+ |
+ __ bind(&input_not_smi); |
+ // Check if input is a HeapNumber. |
+ __ CheckMap(a0, |
+ a1, |
+ Heap::kHeapNumberMapRootIndex, |
+ &calculate, |
+ true); |
+ // Input is a HeapNumber. Store the |
+ // low and high words into a2, a3. |
+ __ lw(a2, FieldMemOperand(a0, HeapNumber::kValueOffset)); |
+ __ lw(a3, FieldMemOperand(a0, HeapNumber::kValueOffset + 4)); |
+ } else { |
+ // Input is untagged double in f4. Output goes to f4. |
+ __ mfc1(a2, f4); |
+ __ mfc1(a3, f5); |
+ } |
+ __ bind(&loaded); |
+ // a2 = low 32 bits of double value. |
+ // a3 = high 32 bits of double value. |
+ // Compute hash (the shifts are arithmetic): |
+ // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); |
+ __ Xor(a1, a2, a3); |
+ __ sra(t0, a1, 16); |
+ __ Xor(a1, a1, t0); |
+ __ sra(t0, a1, 8); |
+ __ Xor(a1, a1, t0); |
+ ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); |
+ __ And(a1, a1, Operand(TranscendentalCache::SubCache::kCacheSize - 1)); |
+ |
+ // a2 = low 32 bits of double value. |
+ // a3 = high 32 bits of double value. |
+ // a1 = TranscendentalCache::hash(double value). |
+ __ li(cache_entry, Operand( |
+ ExternalReference::transcendental_cache_array_address( |
+ masm->isolate()))); |
+ // a0 points to cache array. |
+ __ lw(cache_entry, MemOperand(cache_entry, type_ * sizeof( |
+ Isolate::Current()->transcendental_cache()->caches_[0]))); |
+ // a0 points to the cache for the type type_. |
+ // If NULL, the cache hasn't been initialized yet, so go through runtime. |
+ __ Branch(&invalid_cache, eq, cache_entry, Operand(zero_reg)); |
+ |
+#ifdef DEBUG |
+ // Check that the layout of cache elements match expectations. |
+ { TranscendentalCache::SubCache::Element test_elem[2]; |
+ char* elem_start = reinterpret_cast<char*>(&test_elem[0]); |
+ char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); |
+ char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); |
+ char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); |
+ char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); |
+ CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. |
+ CHECK_EQ(0, elem_in0 - elem_start); |
+ CHECK_EQ(kIntSize, elem_in1 - elem_start); |
+ CHECK_EQ(2 * kIntSize, elem_out - elem_start); |
+ } |
+#endif |
+ |
+ // Find the address of the a1'st entry in the cache, i.e., &a0[a1*12]. |
+ __ sll(t0, a1, 1); |
+ __ Addu(a1, a1, t0); |
+ __ sll(t0, a1, 2); |
+ __ Addu(cache_entry, cache_entry, t0); |
+ |
+ // Check if cache matches: Double value is stored in uint32_t[2] array. |
+ __ lw(t0, MemOperand(cache_entry, 0)); |
+ __ lw(t1, MemOperand(cache_entry, 4)); |
+ __ lw(t2, MemOperand(cache_entry, 8)); |
+ __ Addu(cache_entry, cache_entry, 12); |
+ __ Branch(&calculate, ne, a2, Operand(t0)); |
+ __ Branch(&calculate, ne, a3, Operand(t1)); |
+ // Cache hit. Load result, cleanup and return. |
+ if (tagged) { |
+ // Pop input value from stack and load result into v0. |
+ __ Drop(1); |
+ __ mov(v0, t2); |
+ } else { |
+ // Load result into f4. |
+ __ ldc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset)); |
+ } |
+ __ Ret(); |
+ } // if (CpuFeatures::IsSupported(FPU)) |
+ |
+ __ bind(&calculate); |
+ if (tagged) { |
+ __ bind(&invalid_cache); |
+ __ TailCallExternalReference(ExternalReference(RuntimeFunction(), |
+ masm->isolate()), |
+ 1, |
+ 1); |
+ } else { |
+ if (!CpuFeatures::IsSupported(FPU)) UNREACHABLE(); |
+ CpuFeatures::Scope scope(FPU); |
+ |
+ Label no_update; |
+ Label skip_cache; |
+ const Register heap_number_map = t2; |
+ |
+ // Call C function to calculate the result and update the cache. |
+ // Register a0 holds precalculated cache entry address; preserve |
+ // it on the stack and pop it into register cache_entry after the |
+ // call. |
+ __ push(cache_entry); |
+ GenerateCallCFunction(masm, scratch0); |
+ __ GetCFunctionDoubleResult(f4); |
+ |
+ // Try to update the cache. If we cannot allocate a |
+ // heap number, we return the result without updating. |
+ __ pop(cache_entry); |
+ __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update); |
+ __ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset)); |
+ |
+ __ sw(a2, MemOperand(cache_entry, 0 * kPointerSize)); |
+ __ sw(a3, MemOperand(cache_entry, 1 * kPointerSize)); |
+ __ sw(t2, MemOperand(cache_entry, 2 * kPointerSize)); |
+ |
+ __ mov(v0, cache_entry); |
+ __ Ret(); |
+ |
+ __ bind(&invalid_cache); |
+ // The cache is invalid. Call runtime which will recreate the |
+ // cache. |
+ __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex); |
+ __ AllocateHeapNumber(a0, scratch0, scratch1, t1, &skip_cache); |
+ __ sdc1(f4, FieldMemOperand(a0, HeapNumber::kValueOffset)); |
+ __ EnterInternalFrame(); |
+ __ push(a0); |
+ __ CallRuntime(RuntimeFunction(), 1); |
+ __ LeaveInternalFrame(); |
+ __ ldc1(f4, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
+ __ Ret(); |
+ |
+ __ bind(&skip_cache); |
+ // Call C function to calculate the result and answer directly |
+ // without updating the cache. |
+ GenerateCallCFunction(masm, scratch0); |
+ __ GetCFunctionDoubleResult(f4); |
+ __ bind(&no_update); |
+ |
+ // We return the value in f4 without adding it to the cache, but |
+ // we cause a scavenging GC so that future allocations will succeed. |
+ __ EnterInternalFrame(); |
+ |
+ // Allocate an aligned object larger than a HeapNumber. |
+ ASSERT(4 * kPointerSize >= HeapNumber::kSize); |
+ __ li(scratch0, Operand(4 * kPointerSize)); |
+ __ push(scratch0); |
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); |
+ __ LeaveInternalFrame(); |
+ __ Ret(); |
+ } |
+} |
+ |
+ |
+void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm, |
+ Register scratch) { |
+ __ push(ra); |
+ __ PrepareCallCFunction(2, scratch); |
+ __ mfc1(v0, f4); |
+ __ mfc1(v1, f5); |
+ switch (type_) { |
+ case TranscendentalCache::SIN: |
+ __ CallCFunction( |
+ ExternalReference::math_sin_double_function(masm->isolate()), 2); |
+ break; |
+ case TranscendentalCache::COS: |
+ __ CallCFunction( |
+ ExternalReference::math_cos_double_function(masm->isolate()), 2); |
+ break; |
+ case TranscendentalCache::LOG: |
+ __ CallCFunction( |
+ ExternalReference::math_log_double_function(masm->isolate()), 2); |
+ break; |
+ default: |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ __ pop(ra); |
} |
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { |
- UNIMPLEMENTED_MIPS(); |
- return Runtime::kAbort; |
+ switch (type_) { |
+ // Add more cases when necessary. |
+ case TranscendentalCache::SIN: return Runtime::kMath_sin; |
+ case TranscendentalCache::COS: return Runtime::kMath_cos; |
+ case TranscendentalCache::LOG: return Runtime::kMath_log; |
+ default: |
+ UNIMPLEMENTED(); |
+ return Runtime::kAbort; |
+ } |
} |
void StackCheckStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ __ TailCallRuntime(Runtime::kStackGuard, 0, 1); |
} |
void MathPowStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label call_runtime; |
+ |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ |
+ Label base_not_smi; |
+ Label exponent_not_smi; |
+ Label convert_exponent; |
+ |
+ const Register base = a0; |
+ const Register exponent = a2; |
+ const Register heapnumbermap = t1; |
+ const Register heapnumber = s0; // Callee-saved register. |
+ const Register scratch = t2; |
+ const Register scratch2 = t3; |
+ |
+ // Alocate FP values in the ABI-parameter-passing regs. |
+ const DoubleRegister double_base = f12; |
+ const DoubleRegister double_exponent = f14; |
+ const DoubleRegister double_result = f0; |
+ const DoubleRegister double_scratch = f2; |
+ |
+ __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); |
+ __ lw(base, MemOperand(sp, 1 * kPointerSize)); |
+ __ lw(exponent, MemOperand(sp, 0 * kPointerSize)); |
+ |
+ // Convert base to double value and store it in f0. |
+ __ JumpIfNotSmi(base, &base_not_smi); |
+ // Base is a Smi. Untag and convert it. |
+ __ SmiUntag(base); |
+ __ mtc1(base, double_scratch); |
+ __ cvt_d_w(double_base, double_scratch); |
+ __ Branch(&convert_exponent); |
+ |
+ __ bind(&base_not_smi); |
+ __ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset)); |
+ __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap)); |
+ // Base is a heapnumber. Load it into double register. |
+ __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); |
+ |
+ __ bind(&convert_exponent); |
+ __ JumpIfNotSmi(exponent, &exponent_not_smi); |
+ __ SmiUntag(exponent); |
+ |
+ // The base is in a double register and the exponent is |
+ // an untagged smi. Allocate a heap number and call a |
+ // C function for integer exponents. The register containing |
+ // the heap number is callee-saved. |
+ __ AllocateHeapNumber(heapnumber, |
+ scratch, |
+ scratch2, |
+ heapnumbermap, |
+ &call_runtime); |
+ __ push(ra); |
+ __ PrepareCallCFunction(3, scratch); |
+ // ABI (o32) for func(double d, int x): d in f12, x in a2. |
+ ASSERT(double_base.is(f12)); |
+ ASSERT(exponent.is(a2)); |
+ if (IsMipsSoftFloatABI) { |
+ // Simulator case, supports FPU, but with soft-float passing. |
+ __ mfc1(a0, double_base); |
+ __ mfc1(a1, FPURegister::from_code(double_base.code() + 1)); |
+ } |
+ __ CallCFunction( |
+ ExternalReference::power_double_int_function(masm->isolate()), 3); |
+ __ pop(ra); |
+ __ GetCFunctionDoubleResult(double_result); |
+ __ sdc1(double_result, |
+ FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); |
+ __ mov(v0, heapnumber); |
+ __ DropAndRet(2 * kPointerSize); |
+ |
+ __ bind(&exponent_not_smi); |
+ __ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); |
+ __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap)); |
+ // Exponent is a heapnumber. Load it into double register. |
+ __ ldc1(double_exponent, |
+ FieldMemOperand(exponent, HeapNumber::kValueOffset)); |
+ |
+ // The base and the exponent are in double registers. |
+ // Allocate a heap number and call a C function for |
+ // double exponents. The register containing |
+ // the heap number is callee-saved. |
+ __ AllocateHeapNumber(heapnumber, |
+ scratch, |
+ scratch2, |
+ heapnumbermap, |
+ &call_runtime); |
+ __ push(ra); |
+ __ PrepareCallCFunction(4, scratch); |
+ // ABI (o32) for func(double a, double b): a in f12, b in f14. |
+ ASSERT(double_base.is(f12)); |
+ ASSERT(double_exponent.is(f14)); |
+ if (IsMipsSoftFloatABI) { |
+ __ mfc1(a0, double_base); |
+ __ mfc1(a1, FPURegister::from_code(double_base.code() + 1)); |
+ __ mfc1(a2, double_exponent); |
+ __ mfc1(a3, FPURegister::from_code(double_exponent.code() + 1)); |
+ } |
+ __ CallCFunction( |
+ ExternalReference::power_double_double_function(masm->isolate()), 4); |
+ __ pop(ra); |
+ __ GetCFunctionDoubleResult(double_result); |
+ __ sdc1(double_result, |
+ FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); |
+ __ mov(v0, heapnumber); |
+ __ DropAndRet(2 * kPointerSize); |
+ } |
+ |
+ __ bind(&call_runtime); |
+ __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); |
} |
@@ -499,13 +3499,13 @@ bool CEntryStub::NeedsImmovableCode() { |
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ __ Throw(v0); |
} |
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, |
UncatchableExceptionType type) { |
- UNIMPLEMENTED_MIPS(); |
+ __ ThrowUncatchable(type, v0); |
} |
@@ -515,17 +3515,369 @@ void CEntryStub::GenerateCore(MacroAssembler* masm, |
Label* throw_out_of_memory_exception, |
bool do_gc, |
bool always_allocate) { |
- UNIMPLEMENTED_MIPS(); |
+ // v0: result parameter for PerformGC, if any |
+ // s0: number of arguments including receiver (C callee-saved) |
+ // s1: pointer to the first argument (C callee-saved) |
+ // s2: pointer to builtin function (C callee-saved) |
+ |
+ if (do_gc) { |
+ // Move result passed in v0 into a0 to call PerformGC. |
+ __ mov(a0, v0); |
+ __ PrepareCallCFunction(1, a1); |
+ __ CallCFunction( |
+ ExternalReference::perform_gc_function(masm->isolate()), 1); |
+ } |
+ |
+ ExternalReference scope_depth = |
+ ExternalReference::heap_always_allocate_scope_depth(masm->isolate()); |
+ if (always_allocate) { |
+ __ li(a0, Operand(scope_depth)); |
+ __ lw(a1, MemOperand(a0)); |
+ __ Addu(a1, a1, Operand(1)); |
+ __ sw(a1, MemOperand(a0)); |
+ } |
+ |
+ // Prepare arguments for C routine: a0 = argc, a1 = argv |
+ __ mov(a0, s0); |
+ __ mov(a1, s1); |
+ |
+ // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We |
+ // also need to reserve the 4 argument slots on the stack. |
+ |
+ __ AssertStackIsAligned(); |
+ |
+ __ li(a2, Operand(ExternalReference::isolate_address())); |
+ |
+ // From arm version of this function: |
+ // TODO(1242173): To let the GC traverse the return address of the exit |
+ // frames, we need to know where the return address is. Right now, |
+ // we push it on the stack to be able to find it again, but we never |
+ // restore from it in case of changes, which makes it impossible to |
+ // support moving the C entry code stub. This should be fixed, but currently |
+ // this is OK because the CEntryStub gets generated so early in the V8 boot |
+ // sequence that it is not moving ever. |
+ |
+ { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); |
+ // This branch-and-link sequence is needed to find the current PC on mips, |
+ // saved to the ra register. |
+ // Use masm-> here instead of the double-underscore macro since extra |
+ // coverage code can interfere with the proper calculation of ra. |
+ Label find_ra; |
+ masm->bal(&find_ra); // bal exposes branch delay slot. |
+ masm->nop(); // Branch delay slot nop. |
+ masm->bind(&find_ra); |
+ |
+ // Adjust the value in ra to point to the correct return location, 2nd |
+ // instruction past the real call into C code (the jalr(t9)), and push it. |
+ // This is the return address of the exit frame. |
+ const int kNumInstructionsToJump = 6; |
+ masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize); |
+ masm->sw(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame. |
+ masm->Subu(sp, sp, StandardFrameConstants::kCArgsSlotsSize); |
+ // Stack is still aligned. |
+ |
+ // Call the C routine. |
+ masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC. |
+ masm->jalr(t9); |
+ masm->nop(); // Branch delay slot nop. |
+ // Make sure the stored 'ra' points to this position. |
+ ASSERT_EQ(kNumInstructionsToJump, |
+ masm->InstructionsGeneratedSince(&find_ra)); |
+ } |
+ |
+ // Restore stack (remove arg slots). |
+ __ Addu(sp, sp, StandardFrameConstants::kCArgsSlotsSize); |
+ |
+ if (always_allocate) { |
+ // It's okay to clobber a2 and a3 here. v0 & v1 contain result. |
+ __ li(a2, Operand(scope_depth)); |
+ __ lw(a3, MemOperand(a2)); |
+ __ Subu(a3, a3, Operand(1)); |
+ __ sw(a3, MemOperand(a2)); |
+ } |
+ |
+ // Check for failure result. |
+ Label failure_returned; |
+ STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); |
+ __ addiu(a2, v0, 1); |
+ __ andi(t0, a2, kFailureTagMask); |
+ __ Branch(&failure_returned, eq, t0, Operand(zero_reg)); |
+ |
+ // Exit C frame and return. |
+ // v0:v1: result |
+ // sp: stack pointer |
+ // fp: frame pointer |
+ __ LeaveExitFrame(save_doubles_, s0); |
+ __ Ret(); |
+ |
+ // Check if we should retry or throw exception. |
+ Label retry; |
+ __ bind(&failure_returned); |
+ STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); |
+ __ andi(t0, v0, ((1 << kFailureTypeTagSize) - 1) << kFailureTagSize); |
+ __ Branch(&retry, eq, t0, Operand(zero_reg)); |
+ |
+ // Special handling of out of memory exceptions. |
+ Failure* out_of_memory = Failure::OutOfMemoryException(); |
+ __ Branch(throw_out_of_memory_exception, eq, |
+ v0, Operand(reinterpret_cast<int32_t>(out_of_memory))); |
+ |
+ // Retrieve the pending exception and clear the variable. |
+ __ li(t0, |
+ Operand(ExternalReference::the_hole_value_location(masm->isolate()))); |
+ __ lw(a3, MemOperand(t0)); |
+ __ li(t0, Operand(ExternalReference(Isolate::k_pending_exception_address, |
+ masm->isolate()))); |
+ __ lw(v0, MemOperand(t0)); |
+ __ sw(a3, MemOperand(t0)); |
+ |
+ // Special handling of termination exceptions which are uncatchable |
+ // by javascript code. |
+ __ Branch(throw_termination_exception, eq, |
+ v0, Operand(masm->isolate()->factory()->termination_exception())); |
+ |
+ // Handle normal exception. |
+ __ jmp(throw_normal_exception); |
+ |
+ __ bind(&retry); |
+ // Last failure (v0) will be moved to (a0) for parameter when retrying. |
} |
void CEntryStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Called from JavaScript; parameters are on stack as if calling JS function |
+ // a0: number of arguments including receiver |
+ // a1: pointer to builtin function |
+ // fp: frame pointer (restored after C call) |
+ // sp: stack pointer (restored as callee's sp after C call) |
+ // cp: current context (C callee-saved) |
+ |
+ // NOTE: Invocations of builtins may return failure objects |
+ // instead of a proper result. The builtin entry handles |
+ // this by performing a garbage collection and retrying the |
+ // builtin once. |
+ |
+ // Compute the argv pointer in a callee-saved register. |
+ __ sll(s1, a0, kPointerSizeLog2); |
+ __ Addu(s1, sp, s1); |
+ __ Subu(s1, s1, Operand(kPointerSize)); |
+ |
+ // Enter the exit frame that transitions from JavaScript to C++. |
+ __ EnterExitFrame(save_doubles_); |
+ |
+ // Setup argc and the builtin function in callee-saved registers. |
+ __ mov(s0, a0); |
+ __ mov(s2, a1); |
+ |
+ // s0: number of arguments (C callee-saved) |
+ // s1: pointer to first argument (C callee-saved) |
+ // s2: pointer to builtin function (C callee-saved) |
+ |
+ Label throw_normal_exception; |
+ Label throw_termination_exception; |
+ Label throw_out_of_memory_exception; |
+ |
+ // Call into the runtime system. |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_termination_exception, |
+ &throw_out_of_memory_exception, |
+ false, |
+ false); |
+ |
+ // Do space-specific GC and retry runtime call. |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_termination_exception, |
+ &throw_out_of_memory_exception, |
+ true, |
+ false); |
+ |
+ // Do full GC and retry runtime call one final time. |
+ Failure* failure = Failure::InternalError(); |
+ __ li(v0, Operand(reinterpret_cast<int32_t>(failure))); |
+ GenerateCore(masm, |
+ &throw_normal_exception, |
+ &throw_termination_exception, |
+ &throw_out_of_memory_exception, |
+ true, |
+ true); |
+ |
+ __ bind(&throw_out_of_memory_exception); |
+ GenerateThrowUncatchable(masm, OUT_OF_MEMORY); |
+ |
+ __ bind(&throw_termination_exception); |
+ GenerateThrowUncatchable(masm, TERMINATION); |
+ |
+ __ bind(&throw_normal_exception); |
+ GenerateThrowTOS(masm); |
} |
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
- UNIMPLEMENTED_MIPS(); |
+ Label invoke, exit; |
+ |
+ // Registers: |
+ // a0: entry address |
+ // a1: function |
+ // a2: reveiver |
+ // a3: argc |
+ // |
+ // Stack: |
+ // 4 args slots |
+ // args |
+ |
+ // Save callee saved registers on the stack. |
+ __ MultiPush((kCalleeSaved | ra.bit()) & ~sp.bit()); |
+ |
+ // Load argv in s0 register. |
+ __ lw(s0, MemOperand(sp, kNumCalleeSaved * kPointerSize + |
+ StandardFrameConstants::kCArgsSlotsSize)); |
+ |
+ // We build an EntryFrame. |
+ __ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
+ __ li(t2, Operand(Smi::FromInt(marker))); |
+ __ li(t1, Operand(Smi::FromInt(marker))); |
+ __ li(t0, Operand(ExternalReference(Isolate::k_c_entry_fp_address, |
+ masm->isolate()))); |
+ __ lw(t0, MemOperand(t0)); |
+ __ Push(t3, t2, t1, t0); |
+ // Setup frame pointer for the frame to be pushed. |
+ __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset); |
+ |
+ // Registers: |
+ // a0: entry_address |
+ // a1: function |
+ // a2: reveiver_pointer |
+ // a3: argc |
+ // s0: argv |
+ // |
+ // Stack: |
+ // caller fp | |
+ // function slot | entry frame |
+ // context slot | |
+ // bad fp (0xff...f) | |
+ // callee saved registers + ra |
+ // 4 args slots |
+ // args |
+ |
+ #ifdef ENABLE_LOGGING_AND_PROFILING |
+ // If this is the outermost JS call, set js_entry_sp value. |
+ ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address, |
+ masm->isolate()); |
+ __ li(t1, Operand(ExternalReference(js_entry_sp))); |
+ __ lw(t2, MemOperand(t1)); |
+ { |
+ Label skip; |
+ __ Branch(&skip, ne, t2, Operand(zero_reg)); |
+ __ sw(fp, MemOperand(t1)); |
+ __ bind(&skip); |
+ } |
+ #endif |
+ |
+ // Call a faked try-block that does the invoke. |
+ __ bal(&invoke); // bal exposes branch delay slot. |
+ __ nop(); // Branch delay slot nop. |
+ |
+ // Caught exception: Store result (exception) in the pending |
+ // exception field in the JSEnv and return a failure sentinel. |
+ // Coming in here the fp will be invalid because the PushTryHandler below |
+ // sets it to 0 to signal the existence of the JSEntry frame. |
+ __ li(t0, Operand(ExternalReference(Isolate::k_pending_exception_address, |
+ masm->isolate()))); |
+ __ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0. |
+ __ li(v0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); |
+ __ b(&exit); // b exposes branch delay slot. |
+ __ nop(); // Branch delay slot nop. |
+ |
+ // Invoke: Link this frame into the handler chain. |
+ __ bind(&invoke); |
+ __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); |
+ // If an exception not caught by another handler occurs, this handler |
+ // returns control to the code after the bal(&invoke) above, which |
+ // restores all kCalleeSaved registers (including cp and fp) to their |
+ // saved values before returning a failure to C. |
+ |
+ // Clear any pending exceptions. |
+ __ li(t0, |
+ Operand(ExternalReference::the_hole_value_location(masm->isolate()))); |
+ __ lw(t1, MemOperand(t0)); |
+ __ li(t0, Operand(ExternalReference(Isolate::k_pending_exception_address, |
+ masm->isolate()))); |
+ __ sw(t1, MemOperand(t0)); |
+ |
+ // Invoke the function by calling through JS entry trampoline builtin. |
+ // Notice that we cannot store a reference to the trampoline code directly in |
+ // this stub, because runtime stubs are not traversed when doing GC. |
+ |
+ // Registers: |
+ // a0: entry_address |
+ // a1: function |
+ // a2: reveiver_pointer |
+ // a3: argc |
+ // s0: argv |
+ // |
+ // Stack: |
+ // handler frame |
+ // entry frame |
+ // callee saved registers + ra |
+ // 4 args slots |
+ // args |
+ |
+ if (is_construct) { |
+ ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, |
+ masm->isolate()); |
+ __ li(t0, Operand(construct_entry)); |
+ } else { |
+ ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate()); |
+ __ li(t0, Operand(entry)); |
+ } |
+ __ lw(t9, MemOperand(t0)); // Deref address. |
+ |
+ // Call JSEntryTrampoline. |
+ __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag); |
+ __ Call(t9); |
+ |
+ // Unlink this frame from the handler chain. When reading the |
+ // address of the next handler, there is no need to use the address |
+ // displacement since the current stack pointer (sp) points directly |
+ // to the stack handler. |
+ __ lw(t1, MemOperand(sp, StackHandlerConstants::kNextOffset)); |
+ __ li(t0, Operand(ExternalReference(Isolate::k_handler_address, |
+ masm->isolate()))); |
+ __ sw(t1, MemOperand(t0)); |
+ |
+ // This restores sp to its position before PushTryHandler. |
+ __ addiu(sp, sp, StackHandlerConstants::kSize); |
+ |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ // If current FP value is the same as js_entry_sp value, it means that |
+ // the current function is the outermost. |
+ __ li(t1, Operand(ExternalReference(js_entry_sp))); |
+ __ lw(t2, MemOperand(t1)); |
+ { |
+ Label skip; |
+ __ Branch(&skip, ne, fp, Operand(t2)); |
+ __ sw(zero_reg, MemOperand(t1)); |
+ __ bind(&skip); |
+ } |
+#endif |
+ |
+ __ bind(&exit); // v0 holds result. |
+ // Restore the top frame descriptors from the stack. |
+ __ pop(t1); |
+ __ li(t0, Operand(ExternalReference(Isolate::k_c_entry_fp_address, |
+ masm->isolate()))); |
+ __ sw(t1, MemOperand(t0)); |
+ |
+ // Reset the stack to the callee saved registers. |
+ __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset); |
+ |
+ // Restore callee saved registers from the stack. |
+ __ MultiPop((kCalleeSaved | ra.bit()) & ~sp.bit()); |
+ // Return. |
+ __ Jump(ra); |
} |
@@ -534,58 +3886,1008 @@ void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
// a1 (or at sp), depending on whether or not |
// args_in_registers() is true. |
void InstanceofStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Fixed register usage throughout the stub: |
+ const Register object = a0; // Object (lhs). |
+ const Register map = a3; // Map of the object. |
+ const Register function = a1; // Function (rhs). |
+ const Register prototype = t0; // Prototype of the function. |
+ const Register scratch = a2; |
+ Label slow, loop, is_instance, is_not_instance, not_js_object; |
+ if (!HasArgsInRegisters()) { |
+ __ lw(object, MemOperand(sp, 1 * kPointerSize)); |
+ __ lw(function, MemOperand(sp, 0)); |
+ } |
+ |
+ // Check that the left hand is a JS object and load map. |
+ __ JumpIfSmi(object, ¬_js_object); |
+ __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); |
+ |
+ // Look up the function and the map in the instanceof cache. |
+ Label miss; |
+ __ LoadRoot(t1, Heap::kInstanceofCacheFunctionRootIndex); |
+ __ Branch(&miss, ne, function, Operand(t1)); |
+ __ LoadRoot(t1, Heap::kInstanceofCacheMapRootIndex); |
+ __ Branch(&miss, ne, map, Operand(t1)); |
+ __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
+ |
+ __ bind(&miss); |
+ __ TryGetFunctionPrototype(function, prototype, scratch, &slow); |
+ |
+ // Check that the function prototype is a JS object. |
+ __ JumpIfSmi(prototype, &slow); |
+ __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); |
+ |
+ __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
+ __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); |
+ |
+ // Register mapping: a3 is object map and t0 is function prototype. |
+ // Get prototype of object into a2. |
+ __ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); |
+ |
+ // Loop through the prototype chain looking for the function prototype. |
+ __ bind(&loop); |
+ __ Branch(&is_instance, eq, scratch, Operand(prototype)); |
+ __ LoadRoot(t1, Heap::kNullValueRootIndex); |
+ __ Branch(&is_not_instance, eq, scratch, Operand(t1)); |
+ __ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
+ __ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); |
+ __ Branch(&loop); |
+ |
+ __ bind(&is_instance); |
+ ASSERT(Smi::FromInt(0) == 0); |
+ __ mov(v0, zero_reg); |
+ __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
+ |
+ __ bind(&is_not_instance); |
+ __ li(v0, Operand(Smi::FromInt(1))); |
+ __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
+ |
+ Label object_not_null, object_not_null_or_smi; |
+ __ bind(¬_js_object); |
+ // Before null, smi and string value checks, check that the rhs is a function |
+ // as for a non-function rhs an exception needs to be thrown. |
+ __ JumpIfSmi(function, &slow); |
+ __ GetObjectType(function, map, scratch); |
+ __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE)); |
+ |
+ // Null is not instance of anything. |
+ __ Branch(&object_not_null, ne, scratch, |
+ Operand(masm->isolate()->factory()->null_value())); |
+ __ li(v0, Operand(Smi::FromInt(1))); |
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
+ |
+ __ bind(&object_not_null); |
+ // Smi values are not instances of anything. |
+ __ JumpIfNotSmi(object, &object_not_null_or_smi); |
+ __ li(v0, Operand(Smi::FromInt(1))); |
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
+ |
+ __ bind(&object_not_null_or_smi); |
+ // String values are not instances of anything. |
+ __ IsObjectJSStringType(object, scratch, &slow); |
+ __ li(v0, Operand(Smi::FromInt(1))); |
+ __ DropAndRet(HasArgsInRegisters() ? 0 : 2); |
+ |
+ // Slow-case. Tail call builtin. |
+ __ bind(&slow); |
+ if (HasArgsInRegisters()) { |
+ __ Push(a0, a1); |
+ } |
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
} |
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // The displacement is the offset of the last parameter (if any) |
+ // relative to the frame pointer. |
+ static const int kDisplacement = |
+ StandardFrameConstants::kCallerSPOffset - kPointerSize; |
+ |
+ // Check that the key is a smiGenerateReadElement. |
+ Label slow; |
+ __ JumpIfNotSmi(a1, &slow); |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor; |
+ __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); |
+ __ Branch(&adaptor, |
+ eq, |
+ a3, |
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ |
+ // Check index (a1) against formal parameters count limit passed in |
+ // through register a0. Use unsigned comparison to get negative |
+ // check for free. |
+ __ Branch(&slow, hs, a1, Operand(a0)); |
+ |
+ // Read the argument from the stack and return it. |
+ __ subu(a3, a0, a1); |
+ __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize); |
+ __ Addu(a3, fp, Operand(t3)); |
+ __ lw(v0, MemOperand(a3, kDisplacement)); |
+ __ Ret(); |
+ |
+ // Arguments adaptor case: Check index (a1) against actual arguments |
+ // limit found in the arguments adaptor frame. Use unsigned |
+ // comparison to get negative check for free. |
+ __ bind(&adaptor); |
+ __ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ Branch(&slow, Ugreater_equal, a1, Operand(a0)); |
+ |
+ // Read the argument from the adaptor frame and return it. |
+ __ subu(a3, a0, a1); |
+ __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize); |
+ __ Addu(a3, a2, Operand(t3)); |
+ __ lw(v0, MemOperand(a3, kDisplacement)); |
+ __ Ret(); |
+ |
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments |
+ // by calling the runtime system. |
+ __ bind(&slow); |
+ __ push(a1); |
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
} |
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // sp[0] : number of parameters |
+ // sp[4] : receiver displacement |
+ // sp[8] : function |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor_frame, try_allocate, runtime; |
+ __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
+ __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); |
+ __ Branch(&adaptor_frame, |
+ eq, |
+ a3, |
+ Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); |
+ |
+ // Get the length from the frame. |
+ __ lw(a1, MemOperand(sp, 0)); |
+ __ Branch(&try_allocate); |
+ |
+ // Patch the arguments.length and the parameters pointer. |
+ __ bind(&adaptor_frame); |
+ __ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ sw(a1, MemOperand(sp, 0)); |
+ __ sll(at, a1, kPointerSizeLog2 - kSmiTagSize); |
+ __ Addu(a3, a2, Operand(at)); |
+ |
+ __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset)); |
+ __ sw(a3, MemOperand(sp, 1 * kPointerSize)); |
+ |
+ // Try the new space allocation. Start out with computing the size |
+ // of the arguments object and the elements array in words. |
+ Label add_arguments_object; |
+ __ bind(&try_allocate); |
+ __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg)); |
+ __ srl(a1, a1, kSmiTagSize); |
+ |
+ __ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize)); |
+ __ bind(&add_arguments_object); |
+ __ Addu(a1, a1, Operand(GetArgumentsObjectSize() / kPointerSize)); |
+ |
+ // Do the allocation of both objects in one go. |
+ __ AllocateInNewSpace( |
+ a1, |
+ v0, |
+ a2, |
+ a3, |
+ &runtime, |
+ static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
+ |
+ // Get the arguments boilerplate from the current (global) context. |
+ __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset)); |
+ __ lw(t0, MemOperand(t0, |
+ Context::SlotOffset(GetArgumentsBoilerplateIndex()))); |
+ |
+ // Copy the JS object part. |
+ __ CopyFields(v0, t0, a3.bit(), JSObject::kHeaderSize / kPointerSize); |
+ |
+ if (type_ == NEW_NON_STRICT) { |
+ // Setup the callee in-object property. |
+ STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); |
+ __ lw(a3, MemOperand(sp, 2 * kPointerSize)); |
+ const int kCalleeOffset = JSObject::kHeaderSize + |
+ Heap::kArgumentsCalleeIndex * kPointerSize; |
+ __ sw(a3, FieldMemOperand(v0, kCalleeOffset)); |
+ } |
+ |
+ // Get the length (smi tagged) and set that as an in-object property too. |
+ STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
+ __ lw(a1, MemOperand(sp, 0 * kPointerSize)); |
+ __ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize + |
+ Heap::kArgumentsLengthIndex * kPointerSize)); |
+ |
+ Label done; |
+ __ Branch(&done, eq, a1, Operand(zero_reg)); |
+ |
+ // Get the parameters pointer from the stack. |
+ __ lw(a2, MemOperand(sp, 1 * kPointerSize)); |
+ |
+ // Setup the elements pointer in the allocated arguments object and |
+ // initialize the header in the elements fixed array. |
+ __ Addu(t0, v0, Operand(GetArgumentsObjectSize())); |
+ __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); |
+ __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex); |
+ __ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset)); |
+ __ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset)); |
+ __ srl(a1, a1, kSmiTagSize); // Untag the length for the loop. |
+ |
+ // Copy the fixed array slots. |
+ Label loop; |
+ // Setup t0 to point to the first array slot. |
+ __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
+ __ bind(&loop); |
+ // Pre-decrement a2 with kPointerSize on each iteration. |
+ // Pre-decrement in order to skip receiver. |
+ __ Addu(a2, a2, Operand(-kPointerSize)); |
+ __ lw(a3, MemOperand(a2)); |
+ // Post-increment t0 with kPointerSize on each iteration. |
+ __ sw(a3, MemOperand(t0)); |
+ __ Addu(t0, t0, Operand(kPointerSize)); |
+ __ Subu(a1, a1, Operand(1)); |
+ __ Branch(&loop, ne, a1, Operand(zero_reg)); |
+ |
+ // Return and remove the on-stack parameters. |
+ __ bind(&done); |
+ __ Addu(sp, sp, Operand(3 * kPointerSize)); |
+ __ Ret(); |
+ |
+ // Do the runtime call to allocate the arguments object. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
} |
void RegExpExecStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Just jump directly to runtime if native RegExp is not selected at compile |
+ // time or if regexp entry in generated code is turned off runtime switch or |
+ // at compilation. |
+#ifdef V8_INTERPRETED_REGEXP |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+#else // V8_INTERPRETED_REGEXP |
+ if (!FLAG_regexp_entry_native) { |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+ return; |
+ } |
+ |
+ // Stack frame on entry. |
+ // sp[0]: last_match_info (expected JSArray) |
+ // sp[4]: previous index |
+ // sp[8]: subject string |
+ // sp[12]: JSRegExp object |
+ |
+ static const int kLastMatchInfoOffset = 0 * kPointerSize; |
+ static const int kPreviousIndexOffset = 1 * kPointerSize; |
+ static const int kSubjectOffset = 2 * kPointerSize; |
+ static const int kJSRegExpOffset = 3 * kPointerSize; |
+ |
+ Label runtime, invoke_regexp; |
+ |
+ // Allocation of registers for this function. These are in callee save |
+ // registers and will be preserved by the call to the native RegExp code, as |
+ // this code is called using the normal C calling convention. When calling |
+ // directly from generated code the native RegExp code will not do a GC and |
+ // therefore the content of these registers are safe to use after the call. |
+ // MIPS - using s0..s2, since we are not using CEntry Stub. |
+ Register subject = s0; |
+ Register regexp_data = s1; |
+ Register last_match_info_elements = s2; |
+ |
+ // Ensure that a RegExp stack is allocated. |
+ ExternalReference address_of_regexp_stack_memory_address = |
+ ExternalReference::address_of_regexp_stack_memory_address( |
+ masm->isolate()); |
+ ExternalReference address_of_regexp_stack_memory_size = |
+ ExternalReference::address_of_regexp_stack_memory_size(masm->isolate()); |
+ __ li(a0, Operand(address_of_regexp_stack_memory_size)); |
+ __ lw(a0, MemOperand(a0, 0)); |
+ __ Branch(&runtime, eq, a0, Operand(zero_reg)); |
+ |
+ // Check that the first argument is a JSRegExp object. |
+ __ lw(a0, MemOperand(sp, kJSRegExpOffset)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ JumpIfSmi(a0, &runtime); |
+ __ GetObjectType(a0, a1, a1); |
+ __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE)); |
+ |
+ // Check that the RegExp has been compiled (data contains a fixed array). |
+ __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset)); |
+ if (FLAG_debug_code) { |
+ __ And(t0, regexp_data, Operand(kSmiTagMask)); |
+ __ Check(nz, |
+ "Unexpected type for RegExp data, FixedArray expected", |
+ t0, |
+ Operand(zero_reg)); |
+ __ GetObjectType(regexp_data, a0, a0); |
+ __ Check(eq, |
+ "Unexpected type for RegExp data, FixedArray expected", |
+ a0, |
+ Operand(FIXED_ARRAY_TYPE)); |
+ } |
+ |
+ // regexp_data: RegExp data (FixedArray) |
+ // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
+ __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
+ __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); |
+ |
+ // regexp_data: RegExp data (FixedArray) |
+ // Check that the number of captures fit in the static offsets vector buffer. |
+ __ lw(a2, |
+ FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
+ // Calculate number of capture registers (number_of_captures + 1) * 2. This |
+ // uses the asumption that smis are 2 * their untagged value. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
+ __ Addu(a2, a2, Operand(2)); // a2 was a smi. |
+ // Check that the static offsets vector buffer is large enough. |
+ __ Branch(&runtime, hi, a2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); |
+ |
+ // a2: Number of capture registers |
+ // regexp_data: RegExp data (FixedArray) |
+ // Check that the second argument is a string. |
+ __ lw(subject, MemOperand(sp, kSubjectOffset)); |
+ __ JumpIfSmi(subject, &runtime); |
+ __ GetObjectType(subject, a0, a0); |
+ __ And(a0, a0, Operand(kIsNotStringMask)); |
+ STATIC_ASSERT(kStringTag == 0); |
+ __ Branch(&runtime, ne, a0, Operand(zero_reg)); |
+ |
+ // Get the length of the string to r3. |
+ __ lw(a3, FieldMemOperand(subject, String::kLengthOffset)); |
+ |
+ // a2: Number of capture registers |
+ // a3: Length of subject string as a smi |
+ // subject: Subject string |
+ // regexp_data: RegExp data (FixedArray) |
+ // Check that the third argument is a positive smi less than the subject |
+ // string length. A negative value will be greater (unsigned comparison). |
+ __ lw(a0, MemOperand(sp, kPreviousIndexOffset)); |
+ __ And(at, a0, Operand(kSmiTagMask)); |
+ __ Branch(&runtime, ne, at, Operand(zero_reg)); |
+ __ Branch(&runtime, ls, a3, Operand(a0)); |
+ |
+ // a2: Number of capture registers |
+ // subject: Subject string |
+ // regexp_data: RegExp data (FixedArray) |
+ // Check that the fourth object is a JSArray object. |
+ __ lw(a0, MemOperand(sp, kLastMatchInfoOffset)); |
+ __ JumpIfSmi(a0, &runtime); |
+ __ GetObjectType(a0, a1, a1); |
+ __ Branch(&runtime, ne, a1, Operand(JS_ARRAY_TYPE)); |
+ // Check that the JSArray is in fast case. |
+ __ lw(last_match_info_elements, |
+ FieldMemOperand(a0, JSArray::kElementsOffset)); |
+ __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
+ __ Branch(&runtime, ne, a0, Operand( |
+ masm->isolate()->factory()->fixed_array_map())); |
+ // Check that the last match info has space for the capture registers and the |
+ // additional information. |
+ __ lw(a0, |
+ FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); |
+ __ Addu(a2, a2, Operand(RegExpImpl::kLastMatchOverhead)); |
+ __ sra(at, a0, kSmiTagSize); // Untag length for comparison. |
+ __ Branch(&runtime, gt, a2, Operand(at)); |
+ // subject: Subject string |
+ // regexp_data: RegExp data (FixedArray) |
+ // Check the representation and encoding of the subject string. |
+ Label seq_string; |
+ __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
+ __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); |
+ // First check for flat string. |
+ __ And(at, a0, Operand(kIsNotStringMask | kStringRepresentationMask)); |
+ STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
+ __ Branch(&seq_string, eq, at, Operand(zero_reg)); |
+ |
+ // subject: Subject string |
+ // a0: instance type if Subject string |
+ // regexp_data: RegExp data (FixedArray) |
+ // Check for flat cons string. |
+ // A flat cons string is a cons string where the second part is the empty |
+ // string. In that case the subject string is just the first part of the cons |
+ // string. Also in this case the first part of the cons string is known to be |
+ // a sequential string or an external string. |
+ STATIC_ASSERT(kExternalStringTag != 0); |
+ STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0); |
+ __ And(at, a0, Operand(kIsNotStringMask | kExternalStringTag)); |
+ __ Branch(&runtime, ne, at, Operand(zero_reg)); |
+ __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset)); |
+ __ LoadRoot(a1, Heap::kEmptyStringRootIndex); |
+ __ Branch(&runtime, ne, a0, Operand(a1)); |
+ __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
+ __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); |
+ __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); |
+ // Is first part a flat string? |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ __ And(at, a0, Operand(kStringRepresentationMask)); |
+ __ Branch(&runtime, ne, at, Operand(zero_reg)); |
+ |
+ __ bind(&seq_string); |
+ // subject: Subject string |
+ // regexp_data: RegExp data (FixedArray) |
+ // a0: Instance type of subject string |
+ STATIC_ASSERT(kStringEncodingMask == 4); |
+ STATIC_ASSERT(kAsciiStringTag == 4); |
+ STATIC_ASSERT(kTwoByteStringTag == 0); |
+ // Find the code object based on the assumptions above. |
+ __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for ascii. |
+ __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset)); |
+ __ sra(a3, a0, 2); // a3 is 1 for ascii, 0 for UC16 (usyed below). |
+ __ lw(t0, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset)); |
+ __ movz(t9, t0, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset. |
+ |
+ // Check that the irregexp code has been generated for the actual string |
+ // encoding. If it has, the field contains a code object otherwise it |
+ // contains the hole. |
+ __ GetObjectType(t9, a0, a0); |
+ __ Branch(&runtime, ne, a0, Operand(CODE_TYPE)); |
+ |
+ // a3: encoding of subject string (1 if ASCII, 0 if two_byte); |
+ // t9: code |
+ // subject: Subject string |
+ // regexp_data: RegExp data (FixedArray) |
+ // Load used arguments before starting to push arguments for call to native |
+ // RegExp code to avoid handling changing stack height. |
+ __ lw(a1, MemOperand(sp, kPreviousIndexOffset)); |
+ __ sra(a1, a1, kSmiTagSize); // Untag the Smi. |
+ |
+ // a1: previous index |
+ // a3: encoding of subject string (1 if ASCII, 0 if two_byte); |
+ // t9: code |
+ // subject: Subject string |
+ // regexp_data: RegExp data (FixedArray) |
+ // All checks done. Now push arguments for native regexp code. |
+ __ IncrementCounter(masm->isolate()->counters()->regexp_entry_native(), |
+ 1, a0, a2); |
+ |
+ // Isolates: note we add an additional parameter here (isolate pointer). |
+ static const int kRegExpExecuteArguments = 8; |
+ static const int kParameterRegisters = 4; |
+ __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); |
+ |
+ // Stack pointer now points to cell where return address is to be written. |
+ // Arguments are before that on the stack or in registers, meaning we |
+ // treat the return address as argument 5. Thus every argument after that |
+ // needs to be shifted back by 1. Since DirectCEntryStub will handle |
+ // allocating space for the c argument slots, we don't need to calculate |
+ // that into the argument positions on the stack. This is how the stack will |
+ // look (sp meaning the value of sp at this moment): |
+ // [sp + 4] - Argument 8 |
+ // [sp + 3] - Argument 7 |
+ // [sp + 2] - Argument 6 |
+ // [sp + 1] - Argument 5 |
+ // [sp + 0] - saved ra |
+ |
+ // Argument 8: Pass current isolate address. |
+ // CFunctionArgumentOperand handles MIPS stack argument slots. |
+ __ li(a0, Operand(ExternalReference::isolate_address())); |
+ __ sw(a0, MemOperand(sp, 4 * kPointerSize)); |
+ |
+ // Argument 7: Indicate that this is a direct call from JavaScript. |
+ __ li(a0, Operand(1)); |
+ __ sw(a0, MemOperand(sp, 3 * kPointerSize)); |
+ |
+ // Argument 6: Start (high end) of backtracking stack memory area. |
+ __ li(a0, Operand(address_of_regexp_stack_memory_address)); |
+ __ lw(a0, MemOperand(a0, 0)); |
+ __ li(a2, Operand(address_of_regexp_stack_memory_size)); |
+ __ lw(a2, MemOperand(a2, 0)); |
+ __ addu(a0, a0, a2); |
+ __ sw(a0, MemOperand(sp, 2 * kPointerSize)); |
+ |
+ // Argument 5: static offsets vector buffer. |
+ __ li(a0, Operand( |
+ ExternalReference::address_of_static_offsets_vector(masm->isolate()))); |
+ __ sw(a0, MemOperand(sp, 1 * kPointerSize)); |
+ |
+ // For arguments 4 and 3 get string length, calculate start of string data |
+ // and calculate the shift of the index (0 for ASCII and 1 for two byte). |
+ __ lw(a0, FieldMemOperand(subject, String::kLengthOffset)); |
+ __ sra(a0, a0, kSmiTagSize); |
+ STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); |
+ __ Addu(t0, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte. |
+ // Argument 4 (a3): End of string data |
+ // Argument 3 (a2): Start of string data |
+ __ sllv(t1, a1, a3); |
+ __ addu(a2, t0, t1); |
+ __ sllv(t1, a0, a3); |
+ __ addu(a3, t0, t1); |
+ |
+ // Argument 2 (a1): Previous index. |
+ // Already there |
+ |
+ // Argument 1 (a0): Subject string. |
+ __ mov(a0, subject); |
+ |
+ // Locate the code entry and call it. |
+ __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag)); |
+ DirectCEntryStub stub; |
+ stub.GenerateCall(masm, t9); |
+ |
+ __ LeaveExitFrame(false, no_reg); |
+ |
+ // v0: result |
+ // subject: subject string (callee saved) |
+ // regexp_data: RegExp data (callee saved) |
+ // last_match_info_elements: Last match info elements (callee saved) |
+ |
+ // Check the result. |
+ |
+ Label success; |
+ __ Branch(&success, eq, v0, Operand(NativeRegExpMacroAssembler::SUCCESS)); |
+ Label failure; |
+ __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE)); |
+ // If not exception it can only be retry. Handle that in the runtime system. |
+ __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); |
+ // Result must now be exception. If there is no pending exception already a |
+ // stack overflow (on the backtrack stack) was detected in RegExp code but |
+ // haven't created the exception yet. Handle that in the runtime system. |
+ // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
+ __ li(a1, Operand( |
+ ExternalReference::the_hole_value_location(masm->isolate()))); |
+ __ lw(a1, MemOperand(a1, 0)); |
+ __ li(a2, Operand(ExternalReference(Isolate::k_pending_exception_address, |
+ masm->isolate()))); |
+ __ lw(v0, MemOperand(a2, 0)); |
+ __ Branch(&runtime, eq, v0, Operand(a1)); |
+ |
+ __ sw(a1, MemOperand(a2, 0)); // Clear pending exception. |
+ |
+ // Check if the exception is a termination. If so, throw as uncatchable. |
+ __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex); |
+ Label termination_exception; |
+ __ Branch(&termination_exception, eq, v0, Operand(a0)); |
+ |
+ __ Throw(a0); // Expects thrown value in v0. |
+ |
+ __ bind(&termination_exception); |
+ __ ThrowUncatchable(TERMINATION, v0); // Expects thrown value in v0. |
+ |
+ __ bind(&failure); |
+ // For failure and exception return null. |
+ __ li(v0, Operand(masm->isolate()->factory()->null_value())); |
+ __ Addu(sp, sp, Operand(4 * kPointerSize)); |
+ __ Ret(); |
+ |
+ // Process the result from the native regexp code. |
+ __ bind(&success); |
+ __ lw(a1, |
+ FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
+ // Calculate number of capture registers (number_of_captures + 1) * 2. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
+ __ Addu(a1, a1, Operand(2)); // a1 was a smi. |
+ |
+ // a1: number of capture registers |
+ // subject: subject string |
+ // Store the capture count. |
+ __ sll(a2, a1, kSmiTagSize + kSmiShiftSize); // To smi. |
+ __ sw(a2, FieldMemOperand(last_match_info_elements, |
+ RegExpImpl::kLastCaptureCountOffset)); |
+ // Store last subject and last input. |
+ __ mov(a3, last_match_info_elements); // Moved up to reduce latency. |
+ __ sw(subject, |
+ FieldMemOperand(last_match_info_elements, |
+ RegExpImpl::kLastSubjectOffset)); |
+ __ RecordWrite(a3, Operand(RegExpImpl::kLastSubjectOffset), a2, t0); |
+ __ sw(subject, |
+ FieldMemOperand(last_match_info_elements, |
+ RegExpImpl::kLastInputOffset)); |
+ __ mov(a3, last_match_info_elements); |
+ __ RecordWrite(a3, Operand(RegExpImpl::kLastInputOffset), a2, t0); |
+ |
+ // Get the static offsets vector filled by the native regexp code. |
+ ExternalReference address_of_static_offsets_vector = |
+ ExternalReference::address_of_static_offsets_vector(masm->isolate()); |
+ __ li(a2, Operand(address_of_static_offsets_vector)); |
+ |
+ // a1: number of capture registers |
+ // a2: offsets vector |
+ Label next_capture, done; |
+ // Capture register counter starts from number of capture registers and |
+ // counts down until wrapping after zero. |
+ __ Addu(a0, |
+ last_match_info_elements, |
+ Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); |
+ __ bind(&next_capture); |
+ __ Subu(a1, a1, Operand(1)); |
+ __ Branch(&done, lt, a1, Operand(zero_reg)); |
+ // Read the value from the static offsets vector buffer. |
+ __ lw(a3, MemOperand(a2, 0)); |
+ __ addiu(a2, a2, kPointerSize); |
+ // Store the smi value in the last match info. |
+ __ sll(a3, a3, kSmiTagSize); // Convert to Smi. |
+ __ sw(a3, MemOperand(a0, 0)); |
+ __ Branch(&next_capture, USE_DELAY_SLOT); |
+ __ addiu(a0, a0, kPointerSize); // In branch delay slot. |
+ |
+ __ bind(&done); |
+ |
+ // Return last match info. |
+ __ lw(v0, MemOperand(sp, kLastMatchInfoOffset)); |
+ __ Addu(sp, sp, Operand(4 * kPointerSize)); |
+ __ Ret(); |
+ |
+ // Do the runtime call to execute the regexp. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); |
+#endif // V8_INTERPRETED_REGEXP |
} |
void RegExpConstructResultStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ const int kMaxInlineLength = 100; |
+ Label slowcase; |
+ Label done; |
+ __ lw(a1, MemOperand(sp, kPointerSize * 2)); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagSize == 1); |
+ __ JumpIfNotSmi(a1, &slowcase); |
+ __ Branch(&slowcase, hi, a1, Operand(Smi::FromInt(kMaxInlineLength))); |
+ // Smi-tagging is equivalent to multiplying by 2. |
+ // Allocate RegExpResult followed by FixedArray with size in ebx. |
+ // JSArray: [Map][empty properties][Elements][Length-smi][index][input] |
+ // Elements: [Map][Length][..elements..] |
+ // Size of JSArray with two in-object properties and the header of a |
+ // FixedArray. |
+ int objects_size = |
+ (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize; |
+ __ srl(t1, a1, kSmiTagSize + kSmiShiftSize); |
+ __ Addu(a2, t1, Operand(objects_size)); |
+ __ AllocateInNewSpace( |
+ a2, // In: Size, in words. |
+ v0, // Out: Start of allocation (tagged). |
+ a3, // Scratch register. |
+ t0, // Scratch register. |
+ &slowcase, |
+ static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
+ // v0: Start of allocated area, object-tagged. |
+ // a1: Number of elements in array, as smi. |
+ // t1: Number of elements, untagged. |
+ |
+ // Set JSArray map to global.regexp_result_map(). |
+ // Set empty properties FixedArray. |
+ // Set elements to point to FixedArray allocated right after the JSArray. |
+ // Interleave operations for better latency. |
+ __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX)); |
+ __ Addu(a3, v0, Operand(JSRegExpResult::kSize)); |
+ __ li(t0, Operand(masm->isolate()->factory()->empty_fixed_array())); |
+ __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset)); |
+ __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset)); |
+ __ lw(a2, ContextOperand(a2, Context::REGEXP_RESULT_MAP_INDEX)); |
+ __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset)); |
+ __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); |
+ |
+ // Set input, index and length fields from arguments. |
+ __ lw(a1, MemOperand(sp, kPointerSize * 0)); |
+ __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kInputOffset)); |
+ __ lw(a1, MemOperand(sp, kPointerSize * 1)); |
+ __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kIndexOffset)); |
+ __ lw(a1, MemOperand(sp, kPointerSize * 2)); |
+ __ sw(a1, FieldMemOperand(v0, JSArray::kLengthOffset)); |
+ |
+ // Fill out the elements FixedArray. |
+ // v0: JSArray, tagged. |
+ // a3: FixedArray, tagged. |
+ // t1: Number of elements in array, untagged. |
+ |
+ // Set map. |
+ __ li(a2, Operand(masm->isolate()->factory()->fixed_array_map())); |
+ __ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset)); |
+ // Set FixedArray length. |
+ __ sll(t2, t1, kSmiTagSize); |
+ __ sw(t2, FieldMemOperand(a3, FixedArray::kLengthOffset)); |
+ // Fill contents of fixed-array with the-hole. |
+ __ li(a2, Operand(masm->isolate()->factory()->the_hole_value())); |
+ __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
+ // Fill fixed array elements with hole. |
+ // v0: JSArray, tagged. |
+ // a2: the hole. |
+ // a3: Start of elements in FixedArray. |
+ // t1: Number of elements to fill. |
+ Label loop; |
+ __ sll(t1, t1, kPointerSizeLog2); // Convert num elements to num bytes. |
+ __ addu(t1, t1, a3); // Point past last element to store. |
+ __ bind(&loop); |
+ __ Branch(&done, ge, a3, Operand(t1)); // Break when a3 past end of elem. |
+ __ sw(a2, MemOperand(a3)); |
+ __ Branch(&loop, USE_DELAY_SLOT); |
+ __ addiu(a3, a3, kPointerSize); // In branch delay slot. |
+ |
+ __ bind(&done); |
+ __ Addu(sp, sp, Operand(3 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&slowcase); |
+ __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); |
} |
void CallFunctionStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label slow; |
+ |
+ // If the receiver might be a value (string, number or boolean) check |
+ // for this and box it if it is. |
+ if (ReceiverMightBeValue()) { |
+ // Get the receiver from the stack. |
+ // function, receiver [, arguments] |
+ Label receiver_is_value, receiver_is_js_object; |
+ __ lw(a1, MemOperand(sp, argc_ * kPointerSize)); |
+ |
+ // Check if receiver is a smi (which is a number value). |
+ __ JumpIfSmi(a1, &receiver_is_value); |
+ |
+ // Check if the receiver is a valid JS object. |
+ __ GetObjectType(a1, a2, a2); |
+ __ Branch(&receiver_is_js_object, |
+ ge, |
+ a2, |
+ Operand(FIRST_JS_OBJECT_TYPE)); |
+ |
+ // Call the runtime to box the value. |
+ __ bind(&receiver_is_value); |
+ // We need natives to execute this. |
+ __ EnterInternalFrame(); |
+ __ push(a1); |
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
+ __ LeaveInternalFrame(); |
+ __ sw(v0, MemOperand(sp, argc_ * kPointerSize)); |
+ |
+ __ bind(&receiver_is_js_object); |
+ } |
+ |
+ // Get the function to call from the stack. |
+ // function, receiver [, arguments] |
+ __ lw(a1, MemOperand(sp, (argc_ + 1) * kPointerSize)); |
+ |
+ // Check that the function is really a JavaScript function. |
+ // a1: pushed function (to be verified) |
+ __ JumpIfSmi(a1, &slow); |
+ // Get the map of the function object. |
+ __ GetObjectType(a1, a2, a2); |
+ __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE)); |
+ |
+ // Fast-case: Invoke the function now. |
+ // a1: pushed function |
+ ParameterCount actual(argc_); |
+ __ InvokeFunction(a1, actual, JUMP_FUNCTION); |
+ |
+ // Slow-case: Non-function called. |
+ __ bind(&slow); |
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
+ // of the original receiver from the call site). |
+ __ sw(a1, MemOperand(sp, argc_ * kPointerSize)); |
+ __ li(a0, Operand(argc_)); // Setup the number of arguments. |
+ __ mov(a2, zero_reg); |
+ __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION); |
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
+ RelocInfo::CODE_TARGET); |
} |
// Unfortunately you have to run without snapshots to see most of these |
// names in the profile since most compare stubs end up in the snapshot. |
const char* CompareStub::GetName() { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT((lhs_.is(a0) && rhs_.is(a1)) || |
+ (lhs_.is(a1) && rhs_.is(a0))); |
+ |
+ if (name_ != NULL) return name_; |
+ const int kMaxNameLength = 100; |
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray( |
+ kMaxNameLength); |
+ if (name_ == NULL) return "OOM"; |
+ |
+ const char* cc_name; |
+ switch (cc_) { |
+ case lt: cc_name = "LT"; break; |
+ case gt: cc_name = "GT"; break; |
+ case le: cc_name = "LE"; break; |
+ case ge: cc_name = "GE"; break; |
+ case eq: cc_name = "EQ"; break; |
+ case ne: cc_name = "NE"; break; |
+ default: cc_name = "UnknownCondition"; break; |
+ } |
+ |
+ const char* lhs_name = lhs_.is(a0) ? "_a0" : "_a1"; |
+ const char* rhs_name = rhs_.is(a0) ? "_a0" : "_a1"; |
+ |
+ const char* strict_name = ""; |
+ if (strict_ && (cc_ == eq || cc_ == ne)) { |
+ strict_name = "_STRICT"; |
+ } |
+ |
+ const char* never_nan_nan_name = ""; |
+ if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) { |
+ never_nan_nan_name = "_NO_NAN"; |
+ } |
+ |
+ const char* include_number_compare_name = ""; |
+ if (!include_number_compare_) { |
+ include_number_compare_name = "_NO_NUMBER"; |
+ } |
+ |
+ const char* include_smi_compare_name = ""; |
+ if (!include_smi_compare_) { |
+ include_smi_compare_name = "_NO_SMI"; |
+ } |
+ |
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength), |
+ "CompareStub_%s%s%s%s%s%s", |
+ cc_name, |
+ lhs_name, |
+ rhs_name, |
+ strict_name, |
+ never_nan_nan_name, |
+ include_number_compare_name, |
+ include_smi_compare_name); |
return name_; |
} |
int CompareStub::MinorKey() { |
- UNIMPLEMENTED_MIPS(); |
- return 0; |
+ // Encode the two parameters in a unique 16 bit value. |
+ ASSERT(static_cast<unsigned>(cc_) < (1 << 14)); |
+ ASSERT((lhs_.is(a0) && rhs_.is(a1)) || |
+ (lhs_.is(a1) && rhs_.is(a0))); |
+ return ConditionField::encode(static_cast<unsigned>(cc_)) |
+ | RegisterField::encode(lhs_.is(a0)) |
+ | StrictField::encode(strict_) |
+ | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) |
+ | IncludeSmiCompareField::encode(include_smi_compare_); |
} |
// StringCharCodeAtGenerator. |
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label flat_string; |
+ Label ascii_string; |
+ Label got_char_code; |
+ |
+ ASSERT(!t0.is(scratch_)); |
+ ASSERT(!t0.is(index_)); |
+ ASSERT(!t0.is(result_)); |
+ ASSERT(!t0.is(object_)); |
+ |
+ // If the receiver is a smi trigger the non-string case. |
+ __ JumpIfSmi(object_, receiver_not_string_); |
+ |
+ // Fetch the instance type of the receiver into result register. |
+ __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
+ __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
+ // If the receiver is not a string trigger the non-string case. |
+ __ And(t0, result_, Operand(kIsNotStringMask)); |
+ __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg)); |
+ |
+ // If the index is non-smi trigger the non-smi case. |
+ __ JumpIfNotSmi(index_, &index_not_smi_); |
+ |
+ // Put smi-tagged index into scratch register. |
+ __ mov(scratch_, index_); |
+ __ bind(&got_smi_index_); |
+ |
+ // Check for index out of range. |
+ __ lw(t0, FieldMemOperand(object_, String::kLengthOffset)); |
+ __ Branch(index_out_of_range_, ls, t0, Operand(scratch_)); |
+ |
+ // We need special handling for non-flat strings. |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ __ And(t0, result_, Operand(kStringRepresentationMask)); |
+ __ Branch(&flat_string, eq, t0, Operand(zero_reg)); |
+ |
+ // Handle non-flat strings. |
+ __ And(t0, result_, Operand(kIsConsStringMask)); |
+ __ Branch(&call_runtime_, eq, t0, Operand(zero_reg)); |
+ |
+ // ConsString. |
+ // Check whether the right hand side is the empty string (i.e. if |
+ // this is really a flat string in a cons string). If that is not |
+ // the case we would rather go to the runtime system now to flatten |
+ // the string. |
+ __ lw(result_, FieldMemOperand(object_, ConsString::kSecondOffset)); |
+ __ LoadRoot(t0, Heap::kEmptyStringRootIndex); |
+ __ Branch(&call_runtime_, ne, result_, Operand(t0)); |
+ |
+ // Get the first of the two strings and load its instance type. |
+ __ lw(object_, FieldMemOperand(object_, ConsString::kFirstOffset)); |
+ __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
+ __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
+ // If the first cons component is also non-flat, then go to runtime. |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ |
+ __ And(t0, result_, Operand(kStringRepresentationMask)); |
+ __ Branch(&call_runtime_, ne, t0, Operand(zero_reg)); |
+ |
+ // Check for 1-byte or 2-byte string. |
+ __ bind(&flat_string); |
+ STATIC_ASSERT(kAsciiStringTag != 0); |
+ __ And(t0, result_, Operand(kStringEncodingMask)); |
+ __ Branch(&ascii_string, ne, t0, Operand(zero_reg)); |
+ |
+ // 2-byte string. |
+ // Load the 2-byte character code into the result register. We can |
+ // add without shifting since the smi tag size is the log2 of the |
+ // number of bytes in a two-byte character. |
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0); |
+ __ Addu(scratch_, object_, Operand(scratch_)); |
+ __ lhu(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize)); |
+ __ Branch(&got_char_code); |
+ |
+ // ASCII string. |
+ // Load the byte into the result register. |
+ __ bind(&ascii_string); |
+ |
+ __ srl(t0, scratch_, kSmiTagSize); |
+ __ Addu(scratch_, object_, t0); |
+ |
+ __ lbu(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize)); |
+ |
+ __ bind(&got_char_code); |
+ __ sll(result_, result_, kSmiTagSize); |
+ __ bind(&exit_); |
} |
void StringCharCodeAtGenerator::GenerateSlow( |
MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
- UNIMPLEMENTED_MIPS(); |
+ __ Abort("Unexpected fallthrough to CharCodeAt slow case"); |
+ |
+ // Index is not a smi. |
+ __ bind(&index_not_smi_); |
+ // If index is a heap number, try converting it to an integer. |
+ __ CheckMap(index_, |
+ scratch_, |
+ Heap::kHeapNumberMapRootIndex, |
+ index_not_number_, |
+ true); |
+ call_helper.BeforeCall(masm); |
+ // Consumed by runtime conversion function: |
+ __ Push(object_, index_, index_); |
+ if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
+ __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
+ } else { |
+ ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
+ // NumberToSmi discards numbers that are not exact integers. |
+ __ CallRuntime(Runtime::kNumberToSmi, 1); |
+ } |
+ |
+ // Save the conversion result before the pop instructions below |
+ // have a chance to overwrite it. |
+ |
+ __ Move(scratch_, v0); |
+ |
+ __ pop(index_); |
+ __ pop(object_); |
+ // Reload the instance type. |
+ __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
+ __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
+ call_helper.AfterCall(masm); |
+ // If index is still not a smi, it must be out of range. |
+ __ JumpIfNotSmi(scratch_, index_out_of_range_); |
+ // Otherwise, return to the fast path. |
+ __ Branch(&got_smi_index_); |
+ |
+ // Call runtime. We get here when the receiver is a string and the |
+ // index is a number, but the code of getting the actual character |
+ // is too complex (e.g., when the string needs to be flattened). |
+ __ bind(&call_runtime_); |
+ call_helper.BeforeCall(masm); |
+ __ Push(object_, index_); |
+ __ CallRuntime(Runtime::kStringCharCodeAt, 2); |
+ |
+ __ Move(result_, v0); |
+ |
+ call_helper.AfterCall(masm); |
+ __ jmp(&exit_); |
+ |
+ __ Abort("Unexpected fallthrough from CharCodeAt slow case"); |
} |
@@ -593,13 +4895,46 @@ void StringCharCodeAtGenerator::GenerateSlow( |
// StringCharFromCodeGenerator |
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Fast case of Heap::LookupSingleCharacterStringFromCode. |
+ |
+ ASSERT(!t0.is(result_)); |
+ ASSERT(!t0.is(code_)); |
+ |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiShiftSize == 0); |
+ ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); |
+ __ And(t0, |
+ code_, |
+ Operand(kSmiTagMask | |
+ ((~String::kMaxAsciiCharCode) << kSmiTagSize))); |
+ __ Branch(&slow_case_, ne, t0, Operand(zero_reg)); |
+ |
+ __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
+ // At this point code register contains smi tagged ASCII char code. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize); |
+ __ Addu(result_, result_, t0); |
+ __ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); |
+ __ Branch(&slow_case_, eq, result_, Operand(t0)); |
+ __ bind(&exit_); |
} |
void StringCharFromCodeGenerator::GenerateSlow( |
MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
- UNIMPLEMENTED_MIPS(); |
+ __ Abort("Unexpected fallthrough to CharFromCode slow case"); |
+ |
+ __ bind(&slow_case_); |
+ call_helper.BeforeCall(masm); |
+ __ push(code_); |
+ __ CallRuntime(Runtime::kCharFromCode, 1); |
+ __ Move(result_, v0); |
+ |
+ call_helper.AfterCall(masm); |
+ __ Branch(&exit_); |
+ |
+ __ Abort("Unexpected fallthrough from CharFromCode slow case"); |
} |
@@ -607,13 +4942,15 @@ void StringCharFromCodeGenerator::GenerateSlow( |
// StringCharAtGenerator |
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ char_code_at_generator_.GenerateFast(masm); |
+ char_from_code_generator_.GenerateFast(masm); |
} |
void StringCharAtGenerator::GenerateSlow( |
MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
- UNIMPLEMENTED_MIPS(); |
+ char_code_at_generator_.GenerateSlow(masm, call_helper); |
+ char_from_code_generator_.GenerateSlow(masm, call_helper); |
} |
@@ -687,7 +5024,24 @@ void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
Register count, |
Register scratch, |
bool ascii) { |
- UNIMPLEMENTED_MIPS(); |
+ Label loop; |
+ Label done; |
+ // This loop just copies one character at a time, as it is only used for |
+ // very short strings. |
+ if (!ascii) { |
+ __ addu(count, count, count); |
+ } |
+ __ Branch(&done, eq, count, Operand(zero_reg)); |
+ __ addu(count, dest, count); // Count now points to the last dest byte. |
+ |
+ __ bind(&loop); |
+ __ lbu(scratch, MemOperand(src)); |
+ __ addiu(src, src, 1); |
+ __ sb(scratch, MemOperand(dest)); |
+ __ addiu(dest, dest, 1); |
+ __ Branch(&loop, lt, dest, Operand(count)); |
+ |
+ __ bind(&done); |
} |
@@ -707,7 +5061,105 @@ void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, |
Register scratch4, |
Register scratch5, |
int flags) { |
- UNIMPLEMENTED_MIPS(); |
+ bool ascii = (flags & COPY_ASCII) != 0; |
+ bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; |
+ |
+ if (dest_always_aligned && FLAG_debug_code) { |
+ // Check that destination is actually word aligned if the flag says |
+ // that it is. |
+ __ And(scratch4, dest, Operand(kPointerAlignmentMask)); |
+ __ Check(eq, |
+ "Destination of copy not aligned.", |
+ scratch4, |
+ Operand(zero_reg)); |
+ } |
+ |
+ const int kReadAlignment = 4; |
+ const int kReadAlignmentMask = kReadAlignment - 1; |
+ // Ensure that reading an entire aligned word containing the last character |
+ // of a string will not read outside the allocated area (because we pad up |
+ // to kObjectAlignment). |
+ STATIC_ASSERT(kObjectAlignment >= kReadAlignment); |
+ // Assumes word reads and writes are little endian. |
+ // Nothing to do for zero characters. |
+ Label done; |
+ |
+ if (!ascii) { |
+ __ addu(count, count, count); |
+ } |
+ __ Branch(&done, eq, count, Operand(zero_reg)); |
+ |
+ Label byte_loop; |
+ // Must copy at least eight bytes, otherwise just do it one byte at a time. |
+ __ Subu(scratch1, count, Operand(8)); |
+ __ Addu(count, dest, Operand(count)); |
+ Register limit = count; // Read until src equals this. |
+ __ Branch(&byte_loop, lt, scratch1, Operand(zero_reg)); |
+ |
+ if (!dest_always_aligned) { |
+ // Align dest by byte copying. Copies between zero and three bytes. |
+ __ And(scratch4, dest, Operand(kReadAlignmentMask)); |
+ Label dest_aligned; |
+ __ Branch(&dest_aligned, eq, scratch4, Operand(zero_reg)); |
+ Label aligned_loop; |
+ __ bind(&aligned_loop); |
+ __ lbu(scratch1, MemOperand(src)); |
+ __ addiu(src, src, 1); |
+ __ sb(scratch1, MemOperand(dest)); |
+ __ addiu(dest, dest, 1); |
+ __ addiu(scratch4, scratch4, 1); |
+ __ Branch(&aligned_loop, le, scratch4, Operand(kReadAlignmentMask)); |
+ __ bind(&dest_aligned); |
+ } |
+ |
+ Label simple_loop; |
+ |
+ __ And(scratch4, src, Operand(kReadAlignmentMask)); |
+ __ Branch(&simple_loop, eq, scratch4, Operand(zero_reg)); |
+ |
+ // Loop for src/dst that are not aligned the same way. |
+ // This loop uses lwl and lwr instructions. These instructions |
+ // depend on the endianness, and the implementation assumes little-endian. |
+ { |
+ Label loop; |
+ __ bind(&loop); |
+ __ lwr(scratch1, MemOperand(src)); |
+ __ Addu(src, src, Operand(kReadAlignment)); |
+ __ lwl(scratch1, MemOperand(src, -1)); |
+ __ sw(scratch1, MemOperand(dest)); |
+ __ Addu(dest, dest, Operand(kReadAlignment)); |
+ __ Subu(scratch2, limit, dest); |
+ __ Branch(&loop, ge, scratch2, Operand(kReadAlignment)); |
+ } |
+ |
+ __ Branch(&byte_loop); |
+ |
+ // Simple loop. |
+ // Copy words from src to dest, until less than four bytes left. |
+ // Both src and dest are word aligned. |
+ __ bind(&simple_loop); |
+ { |
+ Label loop; |
+ __ bind(&loop); |
+ __ lw(scratch1, MemOperand(src)); |
+ __ Addu(src, src, Operand(kReadAlignment)); |
+ __ sw(scratch1, MemOperand(dest)); |
+ __ Addu(dest, dest, Operand(kReadAlignment)); |
+ __ Subu(scratch2, limit, dest); |
+ __ Branch(&loop, ge, scratch2, Operand(kReadAlignment)); |
+ } |
+ |
+ // Copy bytes from src to dest until dest hits limit. |
+ __ bind(&byte_loop); |
+ // Test if dest has already reached the limit. |
+ __ Branch(&done, ge, dest, Operand(limit)); |
+ __ lbu(scratch1, MemOperand(src)); |
+ __ addiu(src, src, 1); |
+ __ sb(scratch1, MemOperand(dest)); |
+ __ addiu(dest, dest, 1); |
+ __ Branch(&byte_loop); |
+ |
+ __ bind(&done); |
} |
@@ -720,32 +5172,434 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, |
Register scratch4, |
Register scratch5, |
Label* not_found) { |
- UNIMPLEMENTED_MIPS(); |
+ // Register scratch3 is the general scratch register in this function. |
+ Register scratch = scratch3; |
+ |
+ // Make sure that both characters are not digits as such strings has a |
+ // different hash algorithm. Don't try to look for these in the symbol table. |
+ Label not_array_index; |
+ __ Subu(scratch, c1, Operand(static_cast<int>('0'))); |
+ __ Branch(¬_array_index, |
+ Ugreater, |
+ scratch, |
+ Operand(static_cast<int>('9' - '0'))); |
+ __ Subu(scratch, c2, Operand(static_cast<int>('0'))); |
+ |
+ // If check failed combine both characters into single halfword. |
+ // This is required by the contract of the method: code at the |
+ // not_found branch expects this combination in c1 register. |
+ Label tmp; |
+ __ sll(scratch1, c2, kBitsPerByte); |
+ __ Branch(&tmp, Ugreater, scratch, Operand(static_cast<int>('9' - '0'))); |
+ __ Or(c1, c1, scratch1); |
+ __ bind(&tmp); |
+ __ Branch(not_found, |
+ Uless_equal, |
+ scratch, |
+ Operand(static_cast<int>('9' - '0'))); |
+ |
+ __ bind(¬_array_index); |
+ // Calculate the two character string hash. |
+ Register hash = scratch1; |
+ StringHelper::GenerateHashInit(masm, hash, c1); |
+ StringHelper::GenerateHashAddCharacter(masm, hash, c2); |
+ StringHelper::GenerateHashGetHash(masm, hash); |
+ |
+ // Collect the two characters in a register. |
+ Register chars = c1; |
+ __ sll(scratch, c2, kBitsPerByte); |
+ __ Or(chars, chars, scratch); |
+ |
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
+ // hash: hash of two character string. |
+ |
+ // Load symbol table. |
+ // Load address of first element of the symbol table. |
+ Register symbol_table = c2; |
+ __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); |
+ |
+ Register undefined = scratch4; |
+ __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
+ |
+ // Calculate capacity mask from the symbol table capacity. |
+ Register mask = scratch2; |
+ __ lw(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); |
+ __ sra(mask, mask, 1); |
+ __ Addu(mask, mask, -1); |
+ |
+ // Calculate untagged address of the first element of the symbol table. |
+ Register first_symbol_table_element = symbol_table; |
+ __ Addu(first_symbol_table_element, symbol_table, |
+ Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); |
+ |
+ // Registers. |
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1. |
+ // hash: hash of two character string |
+ // mask: capacity mask |
+ // first_symbol_table_element: address of the first element of |
+ // the symbol table |
+ // undefined: the undefined object |
+ // scratch: - |
+ |
+ // Perform a number of probes in the symbol table. |
+ static const int kProbes = 4; |
+ Label found_in_symbol_table; |
+ Label next_probe[kProbes]; |
+ Register candidate = scratch5; // Scratch register contains candidate. |
+ for (int i = 0; i < kProbes; i++) { |
+ // Calculate entry in symbol table. |
+ if (i > 0) { |
+ __ Addu(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); |
+ } else { |
+ __ mov(candidate, hash); |
+ } |
+ |
+ __ And(candidate, candidate, Operand(mask)); |
+ |
+ // Load the entry from the symble table. |
+ STATIC_ASSERT(SymbolTable::kEntrySize == 1); |
+ __ sll(scratch, candidate, kPointerSizeLog2); |
+ __ Addu(scratch, scratch, first_symbol_table_element); |
+ __ lw(candidate, MemOperand(scratch)); |
+ |
+ // If entry is undefined no string with this hash can be found. |
+ Label is_string; |
+ __ GetObjectType(candidate, scratch, scratch); |
+ __ Branch(&is_string, ne, scratch, Operand(ODDBALL_TYPE)); |
+ |
+ __ Branch(not_found, eq, undefined, Operand(candidate)); |
+ // Must be null (deleted entry). |
+ if (FLAG_debug_code) { |
+ __ LoadRoot(scratch, Heap::kNullValueRootIndex); |
+ __ Assert(eq, "oddball in symbol table is not undefined or null", |
+ scratch, Operand(candidate)); |
+ } |
+ __ jmp(&next_probe[i]); |
+ |
+ __ bind(&is_string); |
+ |
+ // Check that the candidate is a non-external ASCII string. The instance |
+ // type is still in the scratch register from the CompareObjectType |
+ // operation. |
+ __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]); |
+ |
+ // If length is not 2 the string is not a candidate. |
+ __ lw(scratch, FieldMemOperand(candidate, String::kLengthOffset)); |
+ __ Branch(&next_probe[i], ne, scratch, Operand(Smi::FromInt(2))); |
+ |
+ // Check if the two characters match. |
+ // Assumes that word load is little endian. |
+ __ lhu(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize)); |
+ __ Branch(&found_in_symbol_table, eq, chars, Operand(scratch)); |
+ __ bind(&next_probe[i]); |
+ } |
+ |
+ // No matching 2 character string found by probing. |
+ __ jmp(not_found); |
+ |
+ // Scratch register contains result when we fall through to here. |
+ Register result = candidate; |
+ __ bind(&found_in_symbol_table); |
+ __ mov(v0, result); |
} |
void StringHelper::GenerateHashInit(MacroAssembler* masm, |
Register hash, |
Register character) { |
- UNIMPLEMENTED_MIPS(); |
+ // hash = character + (character << 10); |
+ __ sll(hash, character, 10); |
+ __ addu(hash, hash, character); |
+ // hash ^= hash >> 6; |
+ __ sra(at, hash, 6); |
+ __ xor_(hash, hash, at); |
} |
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
Register hash, |
Register character) { |
- UNIMPLEMENTED_MIPS(); |
+ // hash += character; |
+ __ addu(hash, hash, character); |
+ // hash += hash << 10; |
+ __ sll(at, hash, 10); |
+ __ addu(hash, hash, at); |
+ // hash ^= hash >> 6; |
+ __ sra(at, hash, 6); |
+ __ xor_(hash, hash, at); |
} |
void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
Register hash) { |
- UNIMPLEMENTED_MIPS(); |
+ // hash += hash << 3; |
+ __ sll(at, hash, 3); |
+ __ addu(hash, hash, at); |
+ // hash ^= hash >> 11; |
+ __ sra(at, hash, 11); |
+ __ xor_(hash, hash, at); |
+ // hash += hash << 15; |
+ __ sll(at, hash, 15); |
+ __ addu(hash, hash, at); |
+ |
+ // if (hash == 0) hash = 27; |
+ __ ori(at, zero_reg, 27); |
+ __ movz(hash, at, hash); |
} |
void SubStringStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label sub_string_runtime; |
+ // Stack frame on entry. |
+ // ra: return address |
+ // sp[0]: to |
+ // sp[4]: from |
+ // sp[8]: string |
+ |
+ // This stub is called from the native-call %_SubString(...), so |
+ // nothing can be assumed about the arguments. It is tested that: |
+ // "string" is a sequential string, |
+ // both "from" and "to" are smis, and |
+ // 0 <= from <= to <= string.length. |
+ // If any of these assumptions fail, we call the runtime system. |
+ |
+ static const int kToOffset = 0 * kPointerSize; |
+ static const int kFromOffset = 1 * kPointerSize; |
+ static const int kStringOffset = 2 * kPointerSize; |
+ |
+ Register to = t2; |
+ Register from = t3; |
+ |
+ // Check bounds and smi-ness. |
+ __ lw(to, MemOperand(sp, kToOffset)); |
+ __ lw(from, MemOperand(sp, kFromOffset)); |
+ STATIC_ASSERT(kFromOffset == kToOffset + 4); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); |
+ |
+ __ JumpIfNotSmi(from, &sub_string_runtime); |
+ __ JumpIfNotSmi(to, &sub_string_runtime); |
+ |
+ __ sra(a3, from, kSmiTagSize); // Remove smi tag. |
+ __ sra(t5, to, kSmiTagSize); // Remove smi tag. |
+ |
+ // a3: from index (untagged smi) |
+ // t5: to index (untagged smi) |
+ |
+ __ Branch(&sub_string_runtime, lt, a3, Operand(zero_reg)); // From < 0. |
+ |
+ __ subu(a2, t5, a3); |
+ __ Branch(&sub_string_runtime, gt, a3, Operand(t5)); // Fail if from > to. |
+ |
+ // Special handling of sub-strings of length 1 and 2. One character strings |
+ // are handled in the runtime system (looked up in the single character |
+ // cache). Two character strings are looked for in the symbol cache. |
+ __ Branch(&sub_string_runtime, lt, a2, Operand(2)); |
+ |
+ // Both to and from are smis. |
+ |
+ // a2: result string length |
+ // a3: from index (untagged smi) |
+ // t2: (a.k.a. to): to (smi) |
+ // t3: (a.k.a. from): from offset (smi) |
+ // t5: to index (untagged smi) |
+ |
+ // Make sure first argument is a sequential (or flat) string. |
+ __ lw(t1, MemOperand(sp, kStringOffset)); |
+ __ Branch(&sub_string_runtime, eq, t1, Operand(kSmiTagMask)); |
+ |
+ __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset)); |
+ __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset)); |
+ __ And(t4, a1, Operand(kIsNotStringMask)); |
+ |
+ __ Branch(&sub_string_runtime, ne, t4, Operand(zero_reg)); |
+ |
+ // a1: instance type |
+ // a2: result string length |
+ // a3: from index (untagged smi) |
+ // t1: string |
+ // t2: (a.k.a. to): to (smi) |
+ // t3: (a.k.a. from): from offset (smi) |
+ // t5: to index (untagged smi) |
+ |
+ Label seq_string; |
+ __ And(t0, a1, Operand(kStringRepresentationMask)); |
+ STATIC_ASSERT(kSeqStringTag < kConsStringTag); |
+ STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
+ |
+ // External strings go to runtime. |
+ __ Branch(&sub_string_runtime, gt, t0, Operand(kConsStringTag)); |
+ |
+ // Sequential strings are handled directly. |
+ __ Branch(&seq_string, lt, t0, Operand(kConsStringTag)); |
+ |
+ // Cons string. Try to recurse (once) on the first substring. |
+ // (This adds a little more generality than necessary to handle flattened |
+ // cons strings, but not much). |
+ __ lw(t1, FieldMemOperand(t1, ConsString::kFirstOffset)); |
+ __ lw(t0, FieldMemOperand(t1, HeapObject::kMapOffset)); |
+ __ lbu(a1, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ // Cons and External strings go to runtime. |
+ __ Branch(&sub_string_runtime, ne, a1, Operand(kStringRepresentationMask)); |
+ |
+ // Definitly a sequential string. |
+ __ bind(&seq_string); |
+ |
+ // a1: instance type |
+ // a2: result string length |
+ // a3: from index (untagged smi) |
+ // t1: string |
+ // t2: (a.k.a. to): to (smi) |
+ // t3: (a.k.a. from): from offset (smi) |
+ // t5: to index (untagged smi) |
+ |
+ __ lw(t0, FieldMemOperand(t1, String::kLengthOffset)); |
+ __ Branch(&sub_string_runtime, lt, t0, Operand(to)); // Fail if to > length. |
+ to = no_reg; |
+ |
+ // a1: instance type |
+ // a2: result string length |
+ // a3: from index (untagged smi) |
+ // t1: string |
+ // t3: (a.k.a. from): from offset (smi) |
+ // t5: to index (untagged smi) |
+ |
+ // Check for flat ASCII string. |
+ Label non_ascii_flat; |
+ STATIC_ASSERT(kTwoByteStringTag == 0); |
+ |
+ __ And(t4, a1, Operand(kStringEncodingMask)); |
+ __ Branch(&non_ascii_flat, eq, t4, Operand(zero_reg)); |
+ |
+ Label result_longer_than_two; |
+ __ Branch(&result_longer_than_two, gt, a2, Operand(2)); |
+ |
+ // Sub string of length 2 requested. |
+ // Get the two characters forming the sub string. |
+ __ Addu(t1, t1, Operand(a3)); |
+ __ lbu(a3, FieldMemOperand(t1, SeqAsciiString::kHeaderSize)); |
+ __ lbu(t0, FieldMemOperand(t1, SeqAsciiString::kHeaderSize + 1)); |
+ |
+ // Try to lookup two character string in symbol table. |
+ Label make_two_character_string; |
+ StringHelper::GenerateTwoCharacterSymbolTableProbe( |
+ masm, a3, t0, a1, t1, t2, t3, t4, &make_two_character_string); |
+ Counters* counters = masm->isolate()->counters(); |
+ __ IncrementCounter(counters->sub_string_native(), 1, a3, t0); |
+ __ Addu(sp, sp, Operand(3 * kPointerSize)); |
+ __ Ret(); |
+ |
+ |
+ // a2: result string length. |
+ // a3: two characters combined into halfword in little endian byte order. |
+ __ bind(&make_two_character_string); |
+ __ AllocateAsciiString(v0, a2, t0, t1, t4, &sub_string_runtime); |
+ __ sh(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize)); |
+ __ IncrementCounter(counters->sub_string_native(), 1, a3, t0); |
+ __ Addu(sp, sp, Operand(3 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&result_longer_than_two); |
+ |
+ // Allocate the result. |
+ __ AllocateAsciiString(v0, a2, t4, t0, a1, &sub_string_runtime); |
+ |
+ // v0: result string. |
+ // a2: result string length. |
+ // a3: from index (untagged smi) |
+ // t1: string. |
+ // t3: (a.k.a. from): from offset (smi) |
+ // Locate first character of result. |
+ __ Addu(a1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // Locate 'from' character of string. |
+ __ Addu(t1, t1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ __ Addu(t1, t1, Operand(a3)); |
+ |
+ // v0: result string. |
+ // a1: first character of result string. |
+ // a2: result string length. |
+ // t1: first character of sub string to copy. |
+ STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
+ StringHelper::GenerateCopyCharactersLong( |
+ masm, a1, t1, a2, a3, t0, t2, t3, t4, COPY_ASCII | DEST_ALWAYS_ALIGNED); |
+ __ IncrementCounter(counters->sub_string_native(), 1, a3, t0); |
+ __ Addu(sp, sp, Operand(3 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&non_ascii_flat); |
+ // a2: result string length. |
+ // t1: string. |
+ // t3: (a.k.a. from): from offset (smi) |
+ // Check for flat two byte string. |
+ |
+ // Allocate the result. |
+ __ AllocateTwoByteString(v0, a2, a1, a3, t0, &sub_string_runtime); |
+ |
+ // v0: result string. |
+ // a2: result string length. |
+ // t1: string. |
+ // Locate first character of result. |
+ __ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ // Locate 'from' character of string. |
+ __ Addu(t1, t1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ // As "from" is a smi it is 2 times the value which matches the size of a two |
+ // byte character. |
+ __ Addu(t1, t1, Operand(from)); |
+ from = no_reg; |
+ |
+ // v0: result string. |
+ // a1: first character of result. |
+ // a2: result length. |
+ // t1: first character of string to copy. |
+ STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
+ StringHelper::GenerateCopyCharactersLong( |
+ masm, a1, t1, a2, a3, t0, t2, t3, t4, DEST_ALWAYS_ALIGNED); |
+ __ IncrementCounter(counters->sub_string_native(), 1, a3, t0); |
+ __ Addu(sp, sp, Operand(3 * kPointerSize)); |
+ __ Ret(); |
+ |
+ // Just jump to runtime to create the sub string. |
+ __ bind(&sub_string_runtime); |
+ __ TailCallRuntime(Runtime::kSubString, 3, 1); |
+} |
+ |
+ |
+void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3) { |
+ Register length = scratch1; |
+ |
+ // Compare lengths. |
+ Label strings_not_equal, check_zero_length; |
+ __ lw(length, FieldMemOperand(left, String::kLengthOffset)); |
+ __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
+ __ Branch(&check_zero_length, eq, length, Operand(scratch2)); |
+ __ bind(&strings_not_equal); |
+ __ li(v0, Operand(Smi::FromInt(NOT_EQUAL))); |
+ __ Ret(); |
+ |
+ // Check if the length is zero. |
+ Label compare_chars; |
+ __ bind(&check_zero_length); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Branch(&compare_chars, ne, length, Operand(zero_reg)); |
+ __ li(v0, Operand(Smi::FromInt(EQUAL))); |
+ __ Ret(); |
+ |
+ // Compare characters. |
+ __ bind(&compare_chars); |
+ |
+ GenerateAsciiCharsCompareLoop(masm, |
+ left, right, length, scratch2, scratch3, v0, |
+ &strings_not_equal); |
+ |
+ // Characters are equal. |
+ __ li(v0, Operand(Smi::FromInt(EQUAL))); |
+ __ Ret(); |
} |
@@ -756,50 +5610,844 @@ void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
Register scratch2, |
Register scratch3, |
Register scratch4) { |
- UNIMPLEMENTED_MIPS(); |
+ Label result_not_equal, compare_lengths; |
+ // Find minimum length and length difference. |
+ __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
+ __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
+ __ Subu(scratch3, scratch1, Operand(scratch2)); |
+ Register length_delta = scratch3; |
+ __ slt(scratch4, scratch2, scratch1); |
+ __ movn(scratch1, scratch2, scratch4); |
+ Register min_length = scratch1; |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg)); |
+ |
+ // Compare loop. |
+ GenerateAsciiCharsCompareLoop(masm, |
+ left, right, min_length, scratch2, scratch4, v0, |
+ &result_not_equal); |
+ |
+ // Compare lengths - strings up to min-length are equal. |
+ __ bind(&compare_lengths); |
+ ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
+ // Use length_delta as result if it's zero. |
+ __ mov(scratch2, length_delta); |
+ __ mov(scratch4, zero_reg); |
+ __ mov(v0, zero_reg); |
+ |
+ __ bind(&result_not_equal); |
+ // Conditionally update the result based either on length_delta or |
+ // the last comparion performed in the loop above. |
+ Label ret; |
+ __ Branch(&ret, eq, scratch2, Operand(scratch4)); |
+ __ li(v0, Operand(Smi::FromInt(GREATER))); |
+ __ Branch(&ret, gt, scratch2, Operand(scratch4)); |
+ __ li(v0, Operand(Smi::FromInt(LESS))); |
+ __ bind(&ret); |
+ __ Ret(); |
+} |
+ |
+ |
+void StringCompareStub::GenerateAsciiCharsCompareLoop( |
+ MacroAssembler* masm, |
+ Register left, |
+ Register right, |
+ Register length, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Label* chars_not_equal) { |
+ // Change index to run from -length to -1 by adding length to string |
+ // start. This means that loop ends when index reaches zero, which |
+ // doesn't need an additional compare. |
+ __ SmiUntag(length); |
+ __ Addu(scratch1, length, |
+ Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ __ Addu(left, left, Operand(scratch1)); |
+ __ Addu(right, right, Operand(scratch1)); |
+ __ Subu(length, zero_reg, length); |
+ Register index = length; // index = -length; |
+ |
+ |
+ // Compare loop. |
+ Label loop; |
+ __ bind(&loop); |
+ __ Addu(scratch3, left, index); |
+ __ lbu(scratch1, MemOperand(scratch3)); |
+ __ Addu(scratch3, right, index); |
+ __ lbu(scratch2, MemOperand(scratch3)); |
+ __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2)); |
+ __ Addu(index, index, 1); |
+ __ Branch(&loop, ne, index, Operand(zero_reg)); |
} |
void StringCompareStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label runtime; |
+ |
+ Counters* counters = masm->isolate()->counters(); |
+ |
+ // Stack frame on entry. |
+ // sp[0]: right string |
+ // sp[4]: left string |
+ __ lw(a1, MemOperand(sp, 1 * kPointerSize)); // Left. |
+ __ lw(a0, MemOperand(sp, 0 * kPointerSize)); // Right. |
+ |
+ Label not_same; |
+ __ Branch(¬_same, ne, a0, Operand(a1)); |
+ STATIC_ASSERT(EQUAL == 0); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ li(v0, Operand(Smi::FromInt(EQUAL))); |
+ __ IncrementCounter(counters->string_compare_native(), 1, a1, a2); |
+ __ Addu(sp, sp, Operand(2 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(¬_same); |
+ |
+ // Check that both objects are sequential ASCII strings. |
+ __ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime); |
+ |
+ // Compare flat ASCII strings natively. Remove arguments from stack first. |
+ __ IncrementCounter(counters->string_compare_native(), 1, a2, a3); |
+ __ Addu(sp, sp, Operand(2 * kPointerSize)); |
+ GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, t0, t1); |
+ |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
} |
void StringAddStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ Label string_add_runtime, call_builtin; |
+ Builtins::JavaScript builtin_id = Builtins::ADD; |
+ |
+ Counters* counters = masm->isolate()->counters(); |
+ |
+ // Stack on entry: |
+ // sp[0]: second argument (right). |
+ // sp[4]: first argument (left). |
+ |
+ // Load the two arguments. |
+ __ lw(a0, MemOperand(sp, 1 * kPointerSize)); // First argument. |
+ __ lw(a1, MemOperand(sp, 0 * kPointerSize)); // Second argument. |
+ |
+ // Make sure that both arguments are strings if not known in advance. |
+ if (flags_ == NO_STRING_ADD_FLAGS) { |
+ __ JumpIfEitherSmi(a0, a1, &string_add_runtime); |
+ // Load instance types. |
+ __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); |
+ __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); |
+ __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
+ __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); |
+ STATIC_ASSERT(kStringTag == 0); |
+ // If either is not a string, go to runtime. |
+ __ Or(t4, t0, Operand(t1)); |
+ __ And(t4, t4, Operand(kIsNotStringMask)); |
+ __ Branch(&string_add_runtime, ne, t4, Operand(zero_reg)); |
+ } else { |
+ // Here at least one of the arguments is definitely a string. |
+ // We convert the one that is not known to be a string. |
+ if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { |
+ ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); |
+ GenerateConvertArgument( |
+ masm, 1 * kPointerSize, a0, a2, a3, t0, t1, &call_builtin); |
+ builtin_id = Builtins::STRING_ADD_RIGHT; |
+ } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { |
+ ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); |
+ GenerateConvertArgument( |
+ masm, 0 * kPointerSize, a1, a2, a3, t0, t1, &call_builtin); |
+ builtin_id = Builtins::STRING_ADD_LEFT; |
+ } |
+ } |
+ |
+ // Both arguments are strings. |
+ // a0: first string |
+ // a1: second string |
+ // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
+ // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
+ { |
+ Label strings_not_empty; |
+ // Check if either of the strings are empty. In that case return the other. |
+ // These tests use zero-length check on string-length whch is an Smi. |
+ // Assert that Smi::FromInt(0) is really 0. |
+ STATIC_ASSERT(kSmiTag == 0); |
+ ASSERT(Smi::FromInt(0) == 0); |
+ __ lw(a2, FieldMemOperand(a0, String::kLengthOffset)); |
+ __ lw(a3, FieldMemOperand(a1, String::kLengthOffset)); |
+ __ mov(v0, a0); // Assume we'll return first string (from a0). |
+ __ movz(v0, a1, a2); // If first is empty, return second (from a1). |
+ __ slt(t4, zero_reg, a2); // if (a2 > 0) t4 = 1. |
+ __ slt(t5, zero_reg, a3); // if (a3 > 0) t5 = 1. |
+ __ and_(t4, t4, t5); // Branch if both strings were non-empty. |
+ __ Branch(&strings_not_empty, ne, t4, Operand(zero_reg)); |
+ |
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
+ __ Addu(sp, sp, Operand(2 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&strings_not_empty); |
+ } |
+ |
+ // Untag both string-lengths. |
+ __ sra(a2, a2, kSmiTagSize); |
+ __ sra(a3, a3, kSmiTagSize); |
+ |
+ // Both strings are non-empty. |
+ // a0: first string |
+ // a1: second string |
+ // a2: length of first string |
+ // a3: length of second string |
+ // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
+ // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
+ // Look at the length of the result of adding the two strings. |
+ Label string_add_flat_result, longer_than_two; |
+ // Adding two lengths can't overflow. |
+ STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2); |
+ __ Addu(t2, a2, Operand(a3)); |
+ // Use the symbol table when adding two one character strings, as it |
+ // helps later optimizations to return a symbol here. |
+ __ Branch(&longer_than_two, ne, t2, Operand(2)); |
+ |
+ // Check that both strings are non-external ASCII strings. |
+ if (flags_ != NO_STRING_ADD_FLAGS) { |
+ __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); |
+ __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); |
+ __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
+ __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); |
+ } |
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii(t0, t1, t2, t3, |
+ &string_add_runtime); |
+ |
+ // Get the two characters forming the sub string. |
+ __ lbu(a2, FieldMemOperand(a0, SeqAsciiString::kHeaderSize)); |
+ __ lbu(a3, FieldMemOperand(a1, SeqAsciiString::kHeaderSize)); |
+ |
+ // Try to lookup two character string in symbol table. If it is not found |
+ // just allocate a new one. |
+ Label make_two_character_string; |
+ StringHelper::GenerateTwoCharacterSymbolTableProbe( |
+ masm, a2, a3, t2, t3, t0, t1, t4, &make_two_character_string); |
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
+ __ Addu(sp, sp, Operand(2 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&make_two_character_string); |
+ // Resulting string has length 2 and first chars of two strings |
+ // are combined into single halfword in a2 register. |
+ // So we can fill resulting string without two loops by a single |
+ // halfword store instruction (which assumes that processor is |
+ // in a little endian mode). |
+ __ li(t2, Operand(2)); |
+ __ AllocateAsciiString(v0, t2, t0, t1, t4, &string_add_runtime); |
+ __ sh(a2, FieldMemOperand(v0, SeqAsciiString::kHeaderSize)); |
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
+ __ Addu(sp, sp, Operand(2 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&longer_than_two); |
+ // Check if resulting string will be flat. |
+ __ Branch(&string_add_flat_result, lt, t2, |
+ Operand(String::kMinNonFlatLength)); |
+ // Handle exceptionally long strings in the runtime system. |
+ STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); |
+ ASSERT(IsPowerOf2(String::kMaxLength + 1)); |
+ // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. |
+ __ Branch(&string_add_runtime, hs, t2, Operand(String::kMaxLength + 1)); |
+ |
+ // If result is not supposed to be flat, allocate a cons string object. |
+ // If both strings are ASCII the result is an ASCII cons string. |
+ if (flags_ != NO_STRING_ADD_FLAGS) { |
+ __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); |
+ __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); |
+ __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
+ __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); |
+ } |
+ Label non_ascii, allocated, ascii_data; |
+ STATIC_ASSERT(kTwoByteStringTag == 0); |
+ // Branch to non_ascii if either string-encoding field is zero (non-ascii). |
+ __ And(t4, t0, Operand(t1)); |
+ __ And(t4, t4, Operand(kStringEncodingMask)); |
+ __ Branch(&non_ascii, eq, t4, Operand(zero_reg)); |
+ |
+ // Allocate an ASCII cons string. |
+ __ bind(&ascii_data); |
+ __ AllocateAsciiConsString(t3, t2, t0, t1, &string_add_runtime); |
+ __ bind(&allocated); |
+ // Fill the fields of the cons string. |
+ __ sw(a0, FieldMemOperand(t3, ConsString::kFirstOffset)); |
+ __ sw(a1, FieldMemOperand(t3, ConsString::kSecondOffset)); |
+ __ mov(v0, t3); |
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
+ __ Addu(sp, sp, Operand(2 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&non_ascii); |
+ // At least one of the strings is two-byte. Check whether it happens |
+ // to contain only ASCII characters. |
+ // t0: first instance type. |
+ // t1: second instance type. |
+ // Branch to if _both_ instances have kAsciiDataHintMask set. |
+ __ And(at, t0, Operand(kAsciiDataHintMask)); |
+ __ and_(at, at, t1); |
+ __ Branch(&ascii_data, ne, at, Operand(zero_reg)); |
+ |
+ __ xor_(t0, t0, t1); |
+ STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); |
+ __ And(t0, t0, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
+ __ Branch(&ascii_data, eq, t0, Operand(kAsciiStringTag | kAsciiDataHintTag)); |
+ |
+ // Allocate a two byte cons string. |
+ __ AllocateTwoByteConsString(t3, t2, t0, t1, &string_add_runtime); |
+ __ Branch(&allocated); |
+ |
+ // Handle creating a flat result. First check that both strings are |
+ // sequential and that they have the same encoding. |
+ // a0: first string |
+ // a1: second string |
+ // a2: length of first string |
+ // a3: length of second string |
+ // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
+ // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) |
+ // t2: sum of lengths. |
+ __ bind(&string_add_flat_result); |
+ if (flags_ != NO_STRING_ADD_FLAGS) { |
+ __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); |
+ __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); |
+ __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
+ __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); |
+ } |
+ // Check that both strings are sequential, meaning that we |
+ // branch to runtime if either string tag is non-zero. |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ __ Or(t4, t0, Operand(t1)); |
+ __ And(t4, t4, Operand(kStringRepresentationMask)); |
+ __ Branch(&string_add_runtime, ne, t4, Operand(zero_reg)); |
+ |
+ // Now check if both strings have the same encoding (ASCII/Two-byte). |
+ // a0: first string |
+ // a1: second string |
+ // a2: length of first string |
+ // a3: length of second string |
+ // t0: first string instance type |
+ // t1: second string instance type |
+ // t2: sum of lengths. |
+ Label non_ascii_string_add_flat_result; |
+ ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test. |
+ __ xor_(t3, t1, t0); |
+ __ And(t3, t3, Operand(kStringEncodingMask)); |
+ __ Branch(&string_add_runtime, ne, t3, Operand(zero_reg)); |
+ // And see if it's ASCII (0) or two-byte (1). |
+ __ And(t3, t0, Operand(kStringEncodingMask)); |
+ __ Branch(&non_ascii_string_add_flat_result, eq, t3, Operand(zero_reg)); |
+ |
+ // Both strings are sequential ASCII strings. We also know that they are |
+ // short (since the sum of the lengths is less than kMinNonFlatLength). |
+ // t2: length of resulting flat string |
+ __ AllocateAsciiString(t3, t2, t0, t1, t4, &string_add_runtime); |
+ // Locate first character of result. |
+ __ Addu(t2, t3, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // Locate first character of first argument. |
+ __ Addu(a0, a0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // a0: first character of first string. |
+ // a1: second string. |
+ // a2: length of first string. |
+ // a3: length of second string. |
+ // t2: first character of result. |
+ // t3: result string. |
+ StringHelper::GenerateCopyCharacters(masm, t2, a0, a2, t0, true); |
+ |
+ // Load second argument and locate first character. |
+ __ Addu(a1, a1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); |
+ // a1: first character of second string. |
+ // a3: length of second string. |
+ // t2: next character of result. |
+ // t3: result string. |
+ StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, true); |
+ __ mov(v0, t3); |
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
+ __ Addu(sp, sp, Operand(2 * kPointerSize)); |
+ __ Ret(); |
+ |
+ __ bind(&non_ascii_string_add_flat_result); |
+ // Both strings are sequential two byte strings. |
+ // a0: first string. |
+ // a1: second string. |
+ // a2: length of first string. |
+ // a3: length of second string. |
+ // t2: sum of length of strings. |
+ __ AllocateTwoByteString(t3, t2, t0, t1, t4, &string_add_runtime); |
+ // a0: first string. |
+ // a1: second string. |
+ // a2: length of first string. |
+ // a3: length of second string. |
+ // t3: result string. |
+ |
+ // Locate first character of result. |
+ __ Addu(t2, t3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ // Locate first character of first argument. |
+ __ Addu(a0, a0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ |
+ // a0: first character of first string. |
+ // a1: second string. |
+ // a2: length of first string. |
+ // a3: length of second string. |
+ // t2: first character of result. |
+ // t3: result string. |
+ StringHelper::GenerateCopyCharacters(masm, t2, a0, a2, t0, false); |
+ |
+ // Locate first character of second argument. |
+ __ Addu(a1, a1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
+ |
+ // a1: first character of second string. |
+ // a3: length of second string. |
+ // t2: next character of result (after copy of first string). |
+ // t3: result string. |
+ StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, false); |
+ |
+ __ mov(v0, t3); |
+ __ IncrementCounter(counters->string_add_native(), 1, a2, a3); |
+ __ Addu(sp, sp, Operand(2 * kPointerSize)); |
+ __ Ret(); |
+ |
+ // Just jump to runtime to add the two strings. |
+ __ bind(&string_add_runtime); |
+ __ TailCallRuntime(Runtime::kStringAdd, 2, 1); |
+ |
+ if (call_builtin.is_linked()) { |
+ __ bind(&call_builtin); |
+ __ InvokeBuiltin(builtin_id, JUMP_FUNCTION); |
+ } |
+} |
+ |
+ |
+void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, |
+ int stack_offset, |
+ Register arg, |
+ Register scratch1, |
+ Register scratch2, |
+ Register scratch3, |
+ Register scratch4, |
+ Label* slow) { |
+ // First check if the argument is already a string. |
+ Label not_string, done; |
+ __ JumpIfSmi(arg, ¬_string); |
+ __ GetObjectType(arg, scratch1, scratch1); |
+ __ Branch(&done, lt, scratch1, Operand(FIRST_NONSTRING_TYPE)); |
+ |
+ // Check the number to string cache. |
+ Label not_cached; |
+ __ bind(¬_string); |
+ // Puts the cached result into scratch1. |
+ NumberToStringStub::GenerateLookupNumberStringCache(masm, |
+ arg, |
+ scratch1, |
+ scratch2, |
+ scratch3, |
+ scratch4, |
+ false, |
+ ¬_cached); |
+ __ mov(arg, scratch1); |
+ __ sw(arg, MemOperand(sp, stack_offset)); |
+ __ jmp(&done); |
+ |
+ // Check if the argument is a safe string wrapper. |
+ __ bind(¬_cached); |
+ __ JumpIfSmi(arg, slow); |
+ __ GetObjectType(arg, scratch1, scratch2); // map -> scratch1. |
+ __ Branch(slow, ne, scratch2, Operand(JS_VALUE_TYPE)); |
+ __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset)); |
+ __ li(scratch4, 1 << Map::kStringWrapperSafeForDefaultValueOf); |
+ __ And(scratch2, scratch2, scratch4); |
+ __ Branch(slow, ne, scratch2, Operand(scratch4)); |
+ __ lw(arg, FieldMemOperand(arg, JSValue::kValueOffset)); |
+ __ sw(arg, MemOperand(sp, stack_offset)); |
+ |
+ __ bind(&done); |
} |
void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(state_ == CompareIC::SMIS); |
+ Label miss; |
+ __ Or(a2, a1, a0); |
+ __ JumpIfNotSmi(a2, &miss); |
+ |
+ if (GetCondition() == eq) { |
+ // For equality we do not care about the sign of the result. |
+ __ Subu(v0, a0, a1); |
+ } else { |
+ // Untag before subtracting to avoid handling overflow. |
+ __ SmiUntag(a1); |
+ __ SmiUntag(a0); |
+ __ Subu(v0, a1, a0); |
+ } |
+ __ Ret(); |
+ |
+ __ bind(&miss); |
+ GenerateMiss(masm); |
} |
void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(state_ == CompareIC::HEAP_NUMBERS); |
+ |
+ Label generic_stub; |
+ Label unordered; |
+ Label miss; |
+ __ And(a2, a1, Operand(a0)); |
+ __ JumpIfSmi(a2, &generic_stub); |
+ |
+ __ GetObjectType(a0, a2, a2); |
+ __ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE)); |
+ __ GetObjectType(a1, a2, a2); |
+ __ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE)); |
+ |
+ // Inlining the double comparison and falling back to the general compare |
+ // stub if NaN is involved or FPU is unsupported. |
+ if (CpuFeatures::IsSupported(FPU)) { |
+ CpuFeatures::Scope scope(FPU); |
+ |
+ // Load left and right operand. |
+ __ Subu(a2, a1, Operand(kHeapObjectTag)); |
+ __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset)); |
+ __ Subu(a2, a0, Operand(kHeapObjectTag)); |
+ __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset)); |
+ |
+ Label fpu_eq, fpu_lt, fpu_gt; |
+ // Compare operands (test if unordered). |
+ __ c(UN, D, f0, f2); |
+ // Don't base result on status bits when a NaN is involved. |
+ __ bc1t(&unordered); |
+ __ nop(); |
+ |
+ // Test if equal. |
+ __ c(EQ, D, f0, f2); |
+ __ bc1t(&fpu_eq); |
+ __ nop(); |
+ |
+ // Test if unordered or less (unordered case is already handled). |
+ __ c(ULT, D, f0, f2); |
+ __ bc1t(&fpu_lt); |
+ __ nop(); |
+ |
+ // Otherwise it's greater. |
+ __ bc1f(&fpu_gt); |
+ __ nop(); |
+ |
+ // Return a result of -1, 0, or 1. |
+ __ bind(&fpu_eq); |
+ __ li(v0, Operand(EQUAL)); |
+ __ Ret(); |
+ |
+ __ bind(&fpu_lt); |
+ __ li(v0, Operand(LESS)); |
+ __ Ret(); |
+ |
+ __ bind(&fpu_gt); |
+ __ li(v0, Operand(GREATER)); |
+ __ Ret(); |
+ |
+ __ bind(&unordered); |
+ } |
+ |
+ CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0); |
+ __ bind(&generic_stub); |
+ __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
+ |
+ __ bind(&miss); |
+ GenerateMiss(masm); |
} |
void ICCompareStub::GenerateSymbols(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
- } |
+ ASSERT(state_ == CompareIC::SYMBOLS); |
+ Label miss; |
+ |
+ // Registers containing left and right operands respectively. |
+ Register left = a1; |
+ Register right = a0; |
+ Register tmp1 = a2; |
+ Register tmp2 = a3; |
+ |
+ // Check that both operands are heap objects. |
+ __ JumpIfEitherSmi(left, right, &miss); |
+ |
+ // Check that both operands are symbols. |
+ __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
+ __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
+ __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
+ __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
+ STATIC_ASSERT(kSymbolTag != 0); |
+ __ And(tmp1, tmp1, Operand(tmp2)); |
+ __ And(tmp1, tmp1, kIsSymbolMask); |
+ __ Branch(&miss, eq, tmp1, Operand(zero_reg)); |
+ // Make sure a0 is non-zero. At this point input operands are |
+ // guaranteed to be non-zero. |
+ ASSERT(right.is(a0)); |
+ STATIC_ASSERT(EQUAL == 0); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ mov(v0, right); |
+ // Symbols are compared by identity. |
+ __ Ret(ne, left, Operand(right)); |
+ __ li(v0, Operand(Smi::FromInt(EQUAL))); |
+ __ Ret(); |
+ |
+ __ bind(&miss); |
+ GenerateMiss(masm); |
+} |
void ICCompareStub::GenerateStrings(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(state_ == CompareIC::STRINGS); |
+ Label miss; |
+ |
+ // Registers containing left and right operands respectively. |
+ Register left = a1; |
+ Register right = a0; |
+ Register tmp1 = a2; |
+ Register tmp2 = a3; |
+ Register tmp3 = t0; |
+ Register tmp4 = t1; |
+ Register tmp5 = t2; |
+ |
+ // Check that both operands are heap objects. |
+ __ JumpIfEitherSmi(left, right, &miss); |
+ |
+ // Check that both operands are strings. This leaves the instance |
+ // types loaded in tmp1 and tmp2. |
+ __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
+ __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
+ __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
+ __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
+ STATIC_ASSERT(kNotStringTag != 0); |
+ __ Or(tmp3, tmp1, tmp2); |
+ __ And(tmp5, tmp3, Operand(kIsNotStringMask)); |
+ __ Branch(&miss, ne, tmp5, Operand(zero_reg)); |
+ |
+ // Fast check for identical strings. |
+ Label left_ne_right; |
+ STATIC_ASSERT(EQUAL == 0); |
+ STATIC_ASSERT(kSmiTag == 0); |
+ __ Branch(&left_ne_right, ne, left, Operand(right), USE_DELAY_SLOT); |
+ __ mov(v0, zero_reg); // In the delay slot. |
+ __ Ret(); |
+ __ bind(&left_ne_right); |
+ |
+ // Handle not identical strings. |
+ |
+ // Check that both strings are symbols. If they are, we're done |
+ // because we already know they are not identical. |
+ ASSERT(GetCondition() == eq); |
+ STATIC_ASSERT(kSymbolTag != 0); |
+ __ And(tmp3, tmp1, Operand(tmp2)); |
+ __ And(tmp5, tmp3, Operand(kIsSymbolMask)); |
+ Label is_symbol; |
+ __ Branch(&is_symbol, eq, tmp5, Operand(zero_reg), USE_DELAY_SLOT); |
+ __ mov(v0, a0); // In the delay slot. |
+ // Make sure a0 is non-zero. At this point input operands are |
+ // guaranteed to be non-zero. |
+ ASSERT(right.is(a0)); |
+ __ Ret(); |
+ __ bind(&is_symbol); |
+ |
+ // Check that both strings are sequential ASCII. |
+ Label runtime; |
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii(tmp1, tmp2, tmp3, tmp4, |
+ &runtime); |
+ |
+ // Compare flat ASCII strings. Returns when done. |
+ StringCompareStub::GenerateFlatAsciiStringEquals( |
+ masm, left, right, tmp1, tmp2, tmp3); |
+ |
+ // Handle more complex cases in runtime. |
+ __ bind(&runtime); |
+ __ Push(left, right); |
+ __ TailCallRuntime(Runtime::kStringEquals, 2, 1); |
+ |
+ __ bind(&miss); |
+ GenerateMiss(masm); |
} |
void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ ASSERT(state_ == CompareIC::OBJECTS); |
+ Label miss; |
+ __ And(a2, a1, Operand(a0)); |
+ __ JumpIfSmi(a2, &miss); |
+ |
+ __ GetObjectType(a0, a2, a2); |
+ __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE)); |
+ __ GetObjectType(a1, a2, a2); |
+ __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE)); |
+ |
+ ASSERT(GetCondition() == eq); |
+ __ Subu(v0, a0, Operand(a1)); |
+ __ Ret(); |
+ |
+ __ bind(&miss); |
+ GenerateMiss(masm); |
} |
void ICCompareStub::GenerateMiss(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ __ Push(a1, a0); |
+ __ push(ra); |
+ |
+ // Call the runtime system in a fresh internal frame. |
+ ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), |
+ masm->isolate()); |
+ __ EnterInternalFrame(); |
+ __ Push(a1, a0); |
+ __ li(t0, Operand(Smi::FromInt(op_))); |
+ __ push(t0); |
+ __ CallExternalReference(miss, 3); |
+ __ LeaveInternalFrame(); |
+ // Compute the entry point of the rewritten stub. |
+ __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); |
+ // Restore registers. |
+ __ pop(ra); |
+ __ pop(a0); |
+ __ pop(a1); |
+ __ Jump(a2); |
+} |
+ |
+void DirectCEntryStub::Generate(MacroAssembler* masm) { |
+ // No need to pop or drop anything, LeaveExitFrame will restore the old |
+ // stack, thus dropping the allocated space for the return value. |
+ // The saved ra is after the reserved stack space for the 4 args. |
+ __ lw(t9, MemOperand(sp, kCArgsSlotsSize)); |
+ |
+ if (FLAG_debug_code && EnableSlowAsserts()) { |
+ // In case of an error the return address may point to a memory area |
+ // filled with kZapValue by the GC. |
+ // Dereference the address and check for this. |
+ __ lw(t0, MemOperand(t9)); |
+ __ Assert(ne, "Received invalid return address.", t0, |
+ Operand(reinterpret_cast<uint32_t>(kZapValue))); |
+ } |
+ __ Jump(t9); |
} |
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
+ ExternalReference function) { |
+ __ li(t9, Operand(function)); |
+ this->GenerateCall(masm, t9); |
+} |
+ |
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
+ Register target) { |
+ __ Move(t9, target); |
+ __ AssertStackIsAligned(); |
+ // Allocate space for arg slots. |
+ __ Subu(sp, sp, kCArgsSlotsSize); |
+ |
+ // Block the trampoline pool through the whole function to make sure the |
+ // number of generated instructions is constant. |
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); |
+ |
+ // We need to get the current 'pc' value, which is not available on MIPS. |
+ Label find_ra; |
+ masm->bal(&find_ra); // ra = pc + 8. |
+ masm->nop(); // Branch delay slot nop. |
+ masm->bind(&find_ra); |
+ |
+ const int kNumInstructionsToJump = 6; |
+ masm->addiu(ra, ra, kNumInstructionsToJump * kPointerSize); |
+ // Push return address (accessible to GC through exit frame pc). |
+ // This spot for ra was reserved in EnterExitFrame. |
+ masm->sw(ra, MemOperand(sp, kCArgsSlotsSize)); |
+ masm->li(ra, Operand(reinterpret_cast<intptr_t>(GetCode().location()), |
+ RelocInfo::CODE_TARGET), true); |
+ // Call the function. |
+ masm->Jump(t9); |
+ // Make sure the stored 'ra' points to this position. |
+ ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra)); |
+} |
+ |
+ |
+MaybeObject* StringDictionaryLookupStub::GenerateNegativeLookup( |
+ MacroAssembler* masm, |
+ Label* miss, |
+ Label* done, |
+ Register receiver, |
+ Register properties, |
+ String* name, |
+ Register scratch0) { |
+// If names of slots in range from 1 to kProbes - 1 for the hash value are |
+ // not equal to the name and kProbes-th slot is not used (its name is the |
+ // undefined value), it guarantees the hash table doesn't contain the |
+ // property. It's true even if some slots represent deleted properties |
+ // (their names are the null value). |
+ for (int i = 0; i < kInlinedProbes; i++) { |
+ // scratch0 points to properties hash. |
+ // Compute the masked index: (hash + i + i * i) & mask. |
+ Register index = scratch0; |
+ // Capacity is smi 2^n. |
+ __ lw(index, FieldMemOperand(properties, kCapacityOffset)); |
+ __ Subu(index, index, Operand(1)); |
+ __ And(index, index, Operand( |
+ Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i)))); |
+ |
+ // Scale the index by multiplying by the entry size. |
+ ASSERT(StringDictionary::kEntrySize == 3); |
+ // index *= 3. |
+ __ mov(at, index); |
+ __ sll(index, index, 1); |
+ __ Addu(index, index, at); |
+ |
+ Register entity_name = scratch0; |
+ // Having undefined at this place means the name is not contained. |
+ ASSERT_EQ(kSmiTagSize, 1); |
+ Register tmp = properties; |
+ |
+ __ sll(scratch0, index, 1); |
+ __ Addu(tmp, properties, scratch0); |
+ __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); |
+ |
+ ASSERT(!tmp.is(entity_name)); |
+ __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); |
+ __ Branch(done, eq, entity_name, Operand(tmp)); |
+ |
+ if (i != kInlinedProbes - 1) { |
+ // Stop if found the property. |
+ __ Branch(miss, eq, entity_name, Operand(Handle<String>(name))); |
+ |
+ // Check if the entry name is not a symbol. |
+ __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); |
+ __ lbu(entity_name, |
+ FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); |
+ __ And(scratch0, entity_name, Operand(kIsSymbolMask)); |
+ __ Branch(miss, eq, scratch0, Operand(zero_reg)); |
+ |
+ // Restore the properties. |
+ __ lw(properties, |
+ FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
+ } |
+ } |
+ |
+ const int spill_mask = |
+ (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() | |
+ a2.bit() | a1.bit() | a0.bit()); |
+ |
+ __ MultiPush(spill_mask); |
+ __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
+ __ li(a1, Operand(Handle<String>(name))); |
+ StringDictionaryLookupStub stub(NEGATIVE_LOOKUP); |
+ MaybeObject* result = masm->TryCallStub(&stub); |
+ if (result->IsFailure()) return result; |
+ __ MultiPop(spill_mask); |
+ |
+ __ Branch(done, eq, v0, Operand(zero_reg)); |
+ __ Branch(miss, ne, v0, Operand(zero_reg)); |
+ return result; |
+} |
+ |
+ |
+// Probe the string dictionary in the |elements| register. Jump to the |
+// |done| label if a property with the given name is found. Jump to |
+// the |miss| label otherwise. |
+// If lookup was successful |scratch2| will be equal to elements + 4 * index. |
void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, |
Label* miss, |
Label* done, |
@@ -807,12 +6455,156 @@ void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, |
Register name, |
Register scratch1, |
Register scratch2) { |
- UNIMPLEMENTED_MIPS(); |
+ // Assert that name contains a string. |
+ if (FLAG_debug_code) __ AbortIfNotString(name); |
+ |
+ // Compute the capacity mask. |
+ __ lw(scratch1, FieldMemOperand(elements, kCapacityOffset)); |
+ __ sra(scratch1, scratch1, kSmiTagSize); // convert smi to int |
+ __ Subu(scratch1, scratch1, Operand(1)); |
+ |
+ // Generate an unrolled loop that performs a few probes before |
+ // giving up. Measurements done on Gmail indicate that 2 probes |
+ // cover ~93% of loads from dictionaries. |
+ for (int i = 0; i < kInlinedProbes; i++) { |
+ // Compute the masked index: (hash + i + i * i) & mask. |
+ __ lw(scratch2, FieldMemOperand(name, String::kHashFieldOffset)); |
+ if (i > 0) { |
+ // Add the probe offset (i + i * i) left shifted to avoid right shifting |
+ // the hash in a separate instruction. The value hash + i + i * i is right |
+ // shifted in the following and instruction. |
+ ASSERT(StringDictionary::GetProbeOffset(i) < |
+ 1 << (32 - String::kHashFieldOffset)); |
+ __ Addu(scratch2, scratch2, Operand( |
+ StringDictionary::GetProbeOffset(i) << String::kHashShift)); |
+ } |
+ __ srl(scratch2, scratch2, String::kHashShift); |
+ __ And(scratch2, scratch1, scratch2); |
+ |
+ // Scale the index by multiplying by the element size. |
+ ASSERT(StringDictionary::kEntrySize == 3); |
+ // scratch2 = scratch2 * 3. |
+ |
+ __ mov(at, scratch2); |
+ __ sll(scratch2, scratch2, 1); |
+ __ Addu(scratch2, scratch2, at); |
+ |
+ // Check if the key is identical to the name. |
+ __ sll(at, scratch2, 2); |
+ __ Addu(scratch2, elements, at); |
+ __ lw(at, FieldMemOperand(scratch2, kElementsStartOffset)); |
+ __ Branch(done, eq, name, Operand(at)); |
+ } |
+ |
+ const int spill_mask = |
+ (ra.bit() | t2.bit() | t1.bit() | t0.bit() | |
+ a3.bit() | a2.bit() | a1.bit() | a0.bit()) & |
+ ~(scratch1.bit() | scratch2.bit()); |
+ |
+ __ MultiPush(spill_mask); |
+ __ Move(a0, elements); |
+ __ Move(a1, name); |
+ StringDictionaryLookupStub stub(POSITIVE_LOOKUP); |
+ __ CallStub(&stub); |
+ __ mov(scratch2, a2); |
+ __ MultiPop(spill_mask); |
+ |
+ __ Branch(done, ne, v0, Operand(zero_reg)); |
+ __ Branch(miss, eq, v0, Operand(zero_reg)); |
} |
void StringDictionaryLookupStub::Generate(MacroAssembler* masm) { |
- UNIMPLEMENTED_MIPS(); |
+ // Registers: |
+ // result: StringDictionary to probe |
+ // a1: key |
+ // : StringDictionary to probe. |
+ // index_: will hold an index of entry if lookup is successful. |
+ // might alias with result_. |
+ // Returns: |
+ // result_ is zero if lookup failed, non zero otherwise. |
+ |
+ Register result = v0; |
+ Register dictionary = a0; |
+ Register key = a1; |
+ Register index = a2; |
+ Register mask = a3; |
+ Register hash = t0; |
+ Register undefined = t1; |
+ Register entry_key = t2; |
+ |
+ Label in_dictionary, maybe_in_dictionary, not_in_dictionary; |
+ |
+ __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset)); |
+ __ sra(mask, mask, kSmiTagSize); |
+ __ Subu(mask, mask, Operand(1)); |
+ |
+ __ lw(hash, FieldMemOperand(key, String::kHashFieldOffset)); |
+ |
+ __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
+ |
+ for (int i = kInlinedProbes; i < kTotalProbes; i++) { |
+ // Compute the masked index: (hash + i + i * i) & mask. |
+ // Capacity is smi 2^n. |
+ if (i > 0) { |
+ // Add the probe offset (i + i * i) left shifted to avoid right shifting |
+ // the hash in a separate instruction. The value hash + i + i * i is right |
+ // shifted in the following and instruction. |
+ ASSERT(StringDictionary::GetProbeOffset(i) < |
+ 1 << (32 - String::kHashFieldOffset)); |
+ __ Addu(index, hash, Operand( |
+ StringDictionary::GetProbeOffset(i) << String::kHashShift)); |
+ } else { |
+ __ mov(index, hash); |
+ } |
+ __ srl(index, index, String::kHashShift); |
+ __ And(index, mask, index); |
+ |
+ // Scale the index by multiplying by the entry size. |
+ ASSERT(StringDictionary::kEntrySize == 3); |
+ // index *= 3. |
+ __ mov(at, index); |
+ __ sll(index, index, 1); |
+ __ Addu(index, index, at); |
+ |
+ |
+ ASSERT_EQ(kSmiTagSize, 1); |
+ __ sll(index, index, 2); |
+ __ Addu(index, index, dictionary); |
+ __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset)); |
+ |
+ // Having undefined at this place means the name is not contained. |
+ __ Branch(¬_in_dictionary, eq, entry_key, Operand(undefined)); |
+ |
+ // Stop if found the property. |
+ __ Branch(&in_dictionary, eq, entry_key, Operand(key)); |
+ |
+ if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { |
+ // Check if the entry name is not a symbol. |
+ __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); |
+ __ lbu(entry_key, |
+ FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); |
+ __ And(result, entry_key, Operand(kIsSymbolMask)); |
+ __ Branch(&maybe_in_dictionary, eq, result, Operand(zero_reg)); |
+ } |
+ } |
+ |
+ __ bind(&maybe_in_dictionary); |
+ // If we are doing negative lookup then probing failure should be |
+ // treated as a lookup success. For positive lookup probing failure |
+ // should be treated as lookup failure. |
+ if (mode_ == POSITIVE_LOOKUP) { |
+ __ mov(result, zero_reg); |
+ __ Ret(); |
+ } |
+ |
+ __ bind(&in_dictionary); |
+ __ li(result, 1); |
+ __ Ret(); |
+ |
+ __ bind(¬_in_dictionary); |
+ __ mov(result, zero_reg); |
+ __ Ret(); |
} |