Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(5)

Side by Side Diff: src/mips/builtins-mips.cc

Issue 7013031: Submit builtins-mips.cc. (Closed) Base URL: http://github.com/v8/v8.git@bleeding_edge
Patch Set: Created 9 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « no previous file | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2011 the V8 project authors. All rights reserved. 1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 29 matching lines...) Expand all
40 namespace v8 { 40 namespace v8 {
41 namespace internal { 41 namespace internal {
42 42
43 43
44 #define __ ACCESS_MASM(masm) 44 #define __ ACCESS_MASM(masm)
45 45
46 46
47 void Builtins::Generate_Adaptor(MacroAssembler* masm, 47 void Builtins::Generate_Adaptor(MacroAssembler* masm,
48 CFunctionId id, 48 CFunctionId id,
49 BuiltinExtraArguments extra_args) { 49 BuiltinExtraArguments extra_args) {
50 UNIMPLEMENTED_MIPS(); 50 // ----------- S t a t e -------------
51 // -- a0 : number of arguments excluding receiver
52 // -- a1 : called function (only guaranteed when
53 // -- extra_args requires it)
54 // -- cp : context
55 // -- sp[0] : last argument
56 // -- ...
57 // -- sp[4 * (argc - 1)] : first argument
58 // -- sp[4 * agrc] : receiver
59 // -----------------------------------
60
61 // Insert extra arguments.
62 int num_extra_args = 0;
63 if (extra_args == NEEDS_CALLED_FUNCTION) {
64 num_extra_args = 1;
65 __ push(a1);
66 } else {
67 ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
68 }
69
70 // JumpToExternalReference expects a0 to contain the number of arguments
71 // including the receiver and the extra arguments.
72 __ Addu(a0, a0, Operand(num_extra_args + 1));
73 __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
74 }
75
76
77 // Load the built-in Array function from the current context.
78 static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
79 // Load the global context.
80
81 __ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
82 __ lw(result,
83 FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
84 // Load the Array function from the global context.
85 __ lw(result,
86 MemOperand(result,
87 Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
88 }
89
90
91 // This constant has the same value as JSArray::kPreallocatedArrayElements and
92 // if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding
93 // below should be reconsidered.
94 static const int kLoopUnfoldLimit = 4;
95
96
97 // Allocate an empty JSArray. The allocated array is put into the result
98 // register. An elements backing store is allocated with size initial_capacity
99 // and filled with the hole values.
100 static void AllocateEmptyJSArray(MacroAssembler* masm,
101 Register array_function,
102 Register result,
103 Register scratch1,
104 Register scratch2,
105 Register scratch3,
106 int initial_capacity,
107 Label* gc_required) {
108 ASSERT(initial_capacity > 0);
109 // Load the initial map from the array function.
110 __ lw(scratch1, FieldMemOperand(array_function,
111 JSFunction::kPrototypeOrInitialMapOffset));
112
113 // Allocate the JSArray object together with space for a fixed array with the
114 // requested elements.
115 int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity);
116 __ AllocateInNewSpace(size,
117 result,
118 scratch2,
119 scratch3,
120 gc_required,
121 TAG_OBJECT);
122 // Allocated the JSArray. Now initialize the fields except for the elements
123 // array.
124 // result: JSObject
125 // scratch1: initial map
126 // scratch2: start of next object
127 __ sw(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
128 __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
129 __ sw(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
130 // Field JSArray::kElementsOffset is initialized later.
131 __ mov(scratch3, zero_reg);
132 __ sw(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
133
134 // Calculate the location of the elements array and set elements array member
135 // of the JSArray.
136 // result: JSObject
137 // scratch2: start of next object
138 __ Addu(scratch1, result, Operand(JSArray::kSize));
139 __ sw(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
140
141 // Clear the heap tag on the elements array.
142 __ And(scratch1, scratch1, Operand(~kHeapObjectTagMask));
143
144 // Initialize the FixedArray and fill it with holes. FixedArray length is
145 // stored as a smi.
146 // result: JSObject
147 // scratch1: elements array (untagged)
148 // scratch2: start of next object
149 __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
150 ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
151 __ sw(scratch3, MemOperand(scratch1));
152 __ Addu(scratch1, scratch1, kPointerSize);
153 __ li(scratch3, Operand(Smi::FromInt(initial_capacity)));
154 ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
155 __ sw(scratch3, MemOperand(scratch1));
156 __ Addu(scratch1, scratch1, kPointerSize);
157
158 // Fill the FixedArray with the hole value.
159 ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
160 ASSERT(initial_capacity <= kLoopUnfoldLimit);
161 __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
162 for (int i = 0; i < initial_capacity; i++) {
163 __ sw(scratch3, MemOperand(scratch1));
164 __ Addu(scratch1, scratch1, kPointerSize);
165 }
166 }
167
168
169 // Allocate a JSArray with the number of elements stored in a register. The
170 // register array_function holds the built-in Array function and the register
171 // array_size holds the size of the array as a smi. The allocated array is put
172 // into the result register and beginning and end of the FixedArray elements
173 // storage is put into registers elements_array_storage and elements_array_end
174 // (see below for when that is not the case). If the parameter fill_with_holes
175 // is true the allocated elements backing store is filled with the hole values
176 // otherwise it is left uninitialized. When the backing store is filled the
177 // register elements_array_storage is scratched.
178 static void AllocateJSArray(MacroAssembler* masm,
179 Register array_function, // Array function.
180 Register array_size, // As a smi.
181 Register result,
182 Register elements_array_storage,
183 Register elements_array_end,
184 Register scratch1,
185 Register scratch2,
186 bool fill_with_hole,
187 Label* gc_required) {
188 Label not_empty, allocated;
189
190 // Load the initial map from the array function.
191 __ lw(elements_array_storage,
192 FieldMemOperand(array_function,
193 JSFunction::kPrototypeOrInitialMapOffset));
194
195 // Check whether an empty sized array is requested.
196 __ Branch(&not_empty, ne, array_size, Operand(zero_reg));
197
198 // If an empty array is requested allocate a small elements array anyway. This
199 // keeps the code below free of special casing for the empty array.
200 int size = JSArray::kSize +
201 FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
202 __ AllocateInNewSpace(size,
203 result,
204 elements_array_end,
205 scratch1,
206 gc_required,
207 TAG_OBJECT);
208 __ Branch(&allocated);
209
210 // Allocate the JSArray object together with space for a FixedArray with the
211 // requested number of elements.
212 __ bind(&not_empty);
213 ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
214 __ li(elements_array_end,
215 (JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize);
216 __ sra(scratch1, array_size, kSmiTagSize);
217 __ Addu(elements_array_end, elements_array_end, scratch1);
218 __ AllocateInNewSpace(
219 elements_array_end,
220 result,
221 scratch1,
222 scratch2,
223 gc_required,
224 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
225
226 // Allocated the JSArray. Now initialize the fields except for the elements
227 // array.
228 // result: JSObject
229 // elements_array_storage: initial map
230 // array_size: size of array (smi)
231 __ bind(&allocated);
232 __ sw(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
233 __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
234 __ sw(elements_array_storage,
235 FieldMemOperand(result, JSArray::kPropertiesOffset));
236 // Field JSArray::kElementsOffset is initialized later.
237 __ sw(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
238
239 // Calculate the location of the elements array and set elements array member
240 // of the JSArray.
241 // result: JSObject
242 // array_size: size of array (smi)
243 __ Addu(elements_array_storage, result, Operand(JSArray::kSize));
244 __ sw(elements_array_storage,
245 FieldMemOperand(result, JSArray::kElementsOffset));
246
247 // Clear the heap tag on the elements array.
248 __ And(elements_array_storage,
249 elements_array_storage,
250 Operand(~kHeapObjectTagMask));
251 // Initialize the fixed array and fill it with holes. FixedArray length is
252 // stored as a smi.
253 // result: JSObject
254 // elements_array_storage: elements array (untagged)
255 // array_size: size of array (smi)
256 __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
257 ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
258 __ sw(scratch1, MemOperand(elements_array_storage));
259 __ Addu(elements_array_storage, elements_array_storage, kPointerSize);
260
261 // Length of the FixedArray is the number of pre-allocated elements if
262 // the actual JSArray has length 0 and the size of the JSArray for non-empty
263 // JSArrays. The length of a FixedArray is stored as a smi.
264 ASSERT(kSmiTag == 0);
265 __ li(at, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)));
266 __ movz(array_size, at, array_size);
267
268 ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
269 __ sw(array_size, MemOperand(elements_array_storage));
270 __ Addu(elements_array_storage, elements_array_storage, kPointerSize);
271
272 // Calculate elements array and elements array end.
273 // result: JSObject
274 // elements_array_storage: elements array element storage
275 // array_size: smi-tagged size of elements array
276 ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
277 __ sll(elements_array_end, array_size, kPointerSizeLog2 - kSmiTagSize);
278 __ Addu(elements_array_end, elements_array_storage, elements_array_end);
279
280 // Fill the allocated FixedArray with the hole value if requested.
281 // result: JSObject
282 // elements_array_storage: elements array element storage
283 // elements_array_end: start of next object
284 if (fill_with_hole) {
285 Label loop, entry;
286 __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
287 __ Branch(&entry);
288 __ bind(&loop);
289 __ sw(scratch1, MemOperand(elements_array_storage));
290 __ Addu(elements_array_storage, elements_array_storage, kPointerSize);
291
292 __ bind(&entry);
293 __ Branch(&loop, lt, elements_array_storage, Operand(elements_array_end));
294 }
295 }
296
297
298 // Create a new array for the built-in Array function. This function allocates
299 // the JSArray object and the FixedArray elements array and initializes these.
300 // If the Array cannot be constructed in native code the runtime is called. This
301 // function assumes the following state:
302 // a0: argc
303 // a1: constructor (built-in Array function)
304 // ra: return address
305 // sp[0]: last argument
306 // This function is used for both construct and normal calls of Array. The only
307 // difference between handling a construct call and a normal call is that for a
308 // construct call the constructor function in a1 needs to be preserved for
309 // entering the generic code. In both cases argc in a0 needs to be preserved.
310 // Both registers are preserved by this code so no need to differentiate between
311 // construct call and normal call.
312 static void ArrayNativeCode(MacroAssembler* masm,
313 Label* call_generic_code) {
314 Counters* counters = masm->isolate()->counters();
315 Label argc_one_or_more, argc_two_or_more;
316
317 // Check for array construction with zero arguments or one.
318 __ Branch(&argc_one_or_more, ne, a0, Operand(zero_reg));
319 // Handle construction of an empty array.
320 AllocateEmptyJSArray(masm,
321 a1,
322 a2,
323 a3,
324 t0,
325 t1,
326 JSArray::kPreallocatedArrayElements,
327 call_generic_code);
328 __ IncrementCounter(counters->array_function_native(), 1, a3, t0);
329 // Setup return value, remove receiver from stack and return.
330 __ mov(v0, a2);
331 __ Addu(sp, sp, Operand(kPointerSize));
332 __ Ret();
333
334 // Check for one argument. Bail out if argument is not smi or if it is
335 // negative.
336 __ bind(&argc_one_or_more);
337 __ Branch(&argc_two_or_more, ne, a0, Operand(1));
338
339 ASSERT(kSmiTag == 0);
340 __ lw(a2, MemOperand(sp)); // Get the argument from the stack.
341 __ And(a3, a2, Operand(kIntptrSignBit | kSmiTagMask));
342 __ Branch(call_generic_code, eq, a3, Operand(zero_reg));
343
344 // Handle construction of an empty array of a certain size. Bail out if size
345 // is too large to actually allocate an elements array.
346 ASSERT(kSmiTag == 0);
347 __ Branch(call_generic_code, ge, a2,
348 Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
349
350 // a0: argc
351 // a1: constructor
352 // a2: array_size (smi)
353 // sp[0]: argument
354 AllocateJSArray(masm,
355 a1,
356 a2,
357 a3,
358 t0,
359 t1,
360 t2,
361 t3,
362 true,
363 call_generic_code);
364 __ IncrementCounter(counters->array_function_native(), 1, a2, t0);
365
366 // Setup return value, remove receiver and argument from stack and return.
367 __ mov(v0, a3);
368 __ Addu(sp, sp, Operand(2 * kPointerSize));
369 __ Ret();
370
371 // Handle construction of an array from a list of arguments.
372 __ bind(&argc_two_or_more);
373 __ sll(a2, a0, kSmiTagSize); // Convert argc to a smi.
374
375 // a0: argc
376 // a1: constructor
377 // a2: array_size (smi)
378 // sp[0]: last argument
379 AllocateJSArray(masm,
380 a1,
381 a2,
382 a3,
383 t0,
384 t1,
385 t2,
386 t3,
387 false,
388 call_generic_code);
389 __ IncrementCounter(counters->array_function_native(), 1, a2, t2);
390
391 // Fill arguments as array elements. Copy from the top of the stack (last
392 // element) to the array backing store filling it backwards. Note:
393 // elements_array_end points after the backing store.
394 // a0: argc
395 // a3: JSArray
396 // t0: elements_array storage start (untagged)
397 // t1: elements_array_end (untagged)
398 // sp[0]: last argument
399
400 Label loop, entry;
401 __ Branch(&entry);
402 __ bind(&loop);
403 __ pop(a2);
404 __ Addu(t1, t1, -kPointerSize);
405 __ sw(a2, MemOperand(t1));
406 __ bind(&entry);
407 __ Branch(&loop, lt, t0, Operand(t1));
408
409 // Remove caller arguments and receiver from the stack, setup return value and
410 // return.
411 // a0: argc
412 // a3: JSArray
413 // sp[0]: receiver
414 __ Addu(sp, sp, Operand(kPointerSize));
415 __ mov(v0, a3);
416 __ Ret();
51 } 417 }
52 418
53 419
54 void Builtins::Generate_ArrayCode(MacroAssembler* masm) { 420 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
55 UNIMPLEMENTED_MIPS(); 421 // ----------- S t a t e -------------
422 // -- a0 : number of arguments
423 // -- ra : return address
424 // -- sp[...]: constructor arguments
425 // -----------------------------------
426 Label generic_array_code;
427
428 // Get the Array function.
429 GenerateLoadArrayFunction(masm, a1);
430
431 if (FLAG_debug_code) {
432 // Initial map for the builtin Array functions should be maps.
433 __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
434 __ And(t0, a2, Operand(kSmiTagMask));
435 __ Assert(ne, "Unexpected initial map for Array function (1)",
436 t0, Operand(zero_reg));
437 __ GetObjectType(a2, a3, t0);
438 __ Assert(eq, "Unexpected initial map for Array function (2)",
439 t0, Operand(MAP_TYPE));
440 }
441
442 // Run the native code for the Array function called as a normal function.
443 ArrayNativeCode(masm, &generic_array_code);
444
445 // Jump to the generic array code if the specialized code cannot handle
446 // the construction.
447 __ bind(&generic_array_code);
448
449 Handle<Code> array_code =
450 masm->isolate()->builtins()->ArrayCodeGeneric();
451 __ Jump(array_code, RelocInfo::CODE_TARGET);
56 } 452 }
57 453
58 454
59 void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { 455 void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
60 UNIMPLEMENTED_MIPS(); 456 // ----------- S t a t e -------------
457 // -- a0 : number of arguments
458 // -- a1 : constructor function
459 // -- ra : return address
460 // -- sp[...]: constructor arguments
461 // -----------------------------------
462 Label generic_constructor;
463
464 if (FLAG_debug_code) {
465 // The array construct code is only set for the builtin and internal
466 // Array functions which always have a map.
467 // Initial map for the builtin Array function should be a map.
468 __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
469 __ And(t0, a2, Operand(kSmiTagMask));
470 __ Assert(ne, "Unexpected initial map for Array function (3)",
471 t0, Operand(zero_reg));
472 __ GetObjectType(a2, a3, t0);
473 __ Assert(eq, "Unexpected initial map for Array function (4)",
474 t0, Operand(MAP_TYPE));
475 }
476
477 // Run the native code for the Array function called as a constructor.
478 ArrayNativeCode(masm, &generic_constructor);
479
480 // Jump to the generic construct code in case the specialized code cannot
481 // handle the construction.
482 __ bind(&generic_constructor);
483
484 Handle<Code> generic_construct_stub =
485 masm->isolate()->builtins()->JSConstructStubGeneric();
486 __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
61 } 487 }
62 488
63 489
64 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { 490 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
65 UNIMPLEMENTED_MIPS(); 491 // ----------- S t a t e -------------
492 // -- a0 : number of arguments
493 // -- a1 : constructor function
494 // -- ra : return address
495 // -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
496 // -- sp[argc * 4] : receiver
497 // -----------------------------------
498 Counters* counters = masm->isolate()->counters();
499 __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
500
501 Register function = a1;
502 if (FLAG_debug_code) {
503 __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
504 __ Assert(eq, "Unexpected String function", function, Operand(a2));
505 }
506
507 // Load the first arguments in a0 and get rid of the rest.
508 Label no_arguments;
509 __ Branch(&no_arguments, eq, a0, Operand(zero_reg));
510 // First args = sp[(argc - 1) * 4].
511 __ Subu(a0, a0, Operand(1));
512 __ sll(a0, a0, kPointerSizeLog2);
513 __ Addu(sp, a0, sp);
514 __ lw(a0, MemOperand(sp));
515 // sp now point to args[0], drop args[0] + receiver.
516 __ Drop(2);
517
518 Register argument = a2;
519 Label not_cached, argument_is_string;
520 NumberToStringStub::GenerateLookupNumberStringCache(
521 masm,
522 a0, // Input.
523 argument, // Result.
524 a3, // Scratch.
525 t0, // Scratch.
526 t1, // Scratch.
527 false, // Is it a Smi?
528 &not_cached);
529 __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0);
530 __ bind(&argument_is_string);
531
532 // ----------- S t a t e -------------
533 // -- a2 : argument converted to string
534 // -- a1 : constructor function
535 // -- ra : return address
536 // -----------------------------------
537
538 Label gc_required;
539 __ AllocateInNewSpace(JSValue::kSize,
540 v0, // Result.
541 a3, // Scratch.
542 t0, // Scratch.
543 &gc_required,
544 TAG_OBJECT);
545
546 // Initialising the String Object.
547 Register map = a3;
548 __ LoadGlobalFunctionInitialMap(function, map, t0);
549 if (FLAG_debug_code) {
550 __ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset));
551 __ Assert(eq, "Unexpected string wrapper instance size",
552 t0, Operand(JSValue::kSize >> kPointerSizeLog2));
553 __ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
554 __ Assert(eq, "Unexpected unused properties of string wrapper",
555 t0, Operand(zero_reg));
556 }
557 __ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset));
558
559 __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
560 __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
561 __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
562
563 __ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset));
564
565 // Ensure the object is fully initialized.
566 STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
567
568 __ Ret();
569
570 // The argument was not found in the number to string cache. Check
571 // if it's a string already before calling the conversion builtin.
572 Label convert_argument;
573 __ bind(&not_cached);
574 __ JumpIfSmi(a0, &convert_argument);
575
576 // Is it a String?
577 __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
578 __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
579 ASSERT(kNotStringTag != 0);
580 __ And(t0, a3, Operand(kIsNotStringMask));
581 __ Branch(&convert_argument, ne, t0, Operand(zero_reg));
582 __ mov(argument, a0);
583 __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
584 __ Branch(&argument_is_string);
585
586 // Invoke the conversion builtin and put the result into a2.
587 __ bind(&convert_argument);
588 __ push(function); // Preserve the function.
589 __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
590 __ EnterInternalFrame();
591 __ push(v0);
592 __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
593 __ LeaveInternalFrame();
594 __ pop(function);
595 __ mov(argument, v0);
596 __ Branch(&argument_is_string);
597
598 // Load the empty string into a2, remove the receiver from the
599 // stack, and jump back to the case where the argument is a string.
600 __ bind(&no_arguments);
601 __ LoadRoot(argument, Heap::kEmptyStringRootIndex);
602 __ Drop(1);
603 __ Branch(&argument_is_string);
604
605 // At this point the argument is already a string. Call runtime to
606 // create a string wrapper.
607 __ bind(&gc_required);
608 __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0);
609 __ EnterInternalFrame();
610 __ push(argument);
611 __ CallRuntime(Runtime::kNewStringWrapper, 1);
612 __ LeaveInternalFrame();
613 __ Ret();
66 } 614 }
67 615
68 616
69 void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { 617 void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
70 UNIMPLEMENTED_MIPS(); 618 // ----------- S t a t e -------------
619 // -- a0 : number of arguments
620 // -- a1 : constructor function
621 // -- ra : return address
622 // -- sp[...]: constructor arguments
623 // -----------------------------------
624
625 Label non_function_call;
626 // Check that the function is not a smi.
627 __ And(t0, a1, Operand(kSmiTagMask));
628 __ Branch(&non_function_call, eq, t0, Operand(zero_reg));
629 // Check that the function is a JSFunction.
630 __ GetObjectType(a1, a2, a2);
631 __ Branch(&non_function_call, ne, a2, Operand(JS_FUNCTION_TYPE));
632
633 // Jump to the function-specific construct stub.
634 __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
635 __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kConstructStubOffset));
636 __ Addu(t9, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
637 __ Jump(Operand(t9));
638
639 // a0: number of arguments
640 // a1: called object
641 __ bind(&non_function_call);
642 // CALL_NON_FUNCTION expects the non-function constructor as receiver
643 // (instead of the original receiver from the call site). The receiver is
644 // stack element argc.
645 // Set expected number of arguments to zero (not changing a0).
646 __ mov(a2, zero_reg);
647 __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
648 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
649 RelocInfo::CODE_TARGET);
650 }
651
652
653 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
654 bool is_api_function,
655 bool count_constructions) {
656 // Should never count constructions for api objects.
657 ASSERT(!is_api_function || !count_constructions);
658
659 Isolate* isolate = masm->isolate();
660
661 // ----------- S t a t e -------------
662 // -- a0 : number of arguments
663 // -- a1 : constructor function
664 // -- ra : return address
665 // -- sp[...]: constructor arguments
666 // -----------------------------------
667
668 // Enter a construct frame.
669 __ EnterConstructFrame();
670
671 // Preserve the two incoming parameters on the stack.
672 __ sll(a0, a0, kSmiTagSize); // Tag arguments count.
673 __ MultiPushReversed(a0.bit() | a1.bit());
674
675 // Use t7 to hold undefined, which is used in several places below.
676 __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
677
678 Label rt_call, allocated;
679 // Try to allocate the object without transitioning into C code. If any of the
680 // preconditions is not met, the code bails out to the runtime call.
681 if (FLAG_inline_new) {
682 Label undo_allocation;
683 #ifdef ENABLE_DEBUGGER_SUPPORT
684 ExternalReference debug_step_in_fp =
685 ExternalReference::debug_step_in_fp_address(isolate);
686 __ li(a2, Operand(debug_step_in_fp));
687 __ lw(a2, MemOperand(a2));
688 __ Branch(&rt_call, ne, a2, Operand(zero_reg));
689 #endif
690
691 // Load the initial map and verify that it is in fact a map.
692 // a1: constructor function
693 __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
694 __ And(t0, a2, Operand(kSmiTagMask));
695 __ Branch(&rt_call, eq, t0, Operand(zero_reg));
696 __ GetObjectType(a2, a3, t4);
697 __ Branch(&rt_call, ne, t4, Operand(MAP_TYPE));
698
699 // Check that the constructor is not constructing a JSFunction (see comments
700 // in Runtime_NewObject in runtime.cc). In which case the initial map's
701 // instance type would be JS_FUNCTION_TYPE.
702 // a1: constructor function
703 // a2: initial map
704 __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
705 __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE));
706
707 if (count_constructions) {
708 Label allocate;
709 // Decrease generous allocation count.
710 __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
711 MemOperand constructor_count =
712 FieldMemOperand(a3, SharedFunctionInfo::kConstructionCountOffset);
713 __ lbu(t0, constructor_count);
714 __ Subu(t0, t0, Operand(1));
715 __ sb(t0, constructor_count);
716 __ Branch(&allocate, ne, t0, Operand(zero_reg));
717
718 __ Push(a1, a2);
719
720 __ push(a1); // Constructor.
721 // The call will replace the stub, so the countdown is only done once.
722 __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
723
724 __ pop(a2);
725 __ pop(a1);
726
727 __ bind(&allocate);
728 }
729
730 // Now allocate the JSObject on the heap.
731 // a1: constructor function
732 // a2: initial map
733 __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
734 __ AllocateInNewSpace(a3, t4, t5, t6, &rt_call, SIZE_IN_WORDS);
735
736 // Allocated the JSObject, now initialize the fields. Map is set to initial
737 // map and properties and elements are set to empty fixed array.
738 // a1: constructor function
739 // a2: initial map
740 // a3: object size
741 // t4: JSObject (not tagged)
742 __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex);
743 __ mov(t5, t4);
744 __ sw(a2, MemOperand(t5, JSObject::kMapOffset));
745 __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset));
746 __ sw(t6, MemOperand(t5, JSObject::kElementsOffset));
747 __ Addu(t5, t5, Operand(3*kPointerSize));
748 ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
749 ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
750 ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
751
752 // Fill all the in-object properties with appropriate filler.
753 // a1: constructor function
754 // a2: initial map
755 // a3: object size (in words)
756 // t4: JSObject (not tagged)
757 // t5: First in-object property of JSObject (not tagged)
758 __ sll(t0, a3, kPointerSizeLog2);
759 __ addu(t6, t4, t0); // End of object.
760 ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
761 { Label loop, entry;
762 if (count_constructions) {
763 // To allow for truncation.
764 __ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex);
765 } else {
766 __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
767 }
768 __ jmp(&entry);
769 __ bind(&loop);
770 __ sw(t7, MemOperand(t5, 0));
771 __ addiu(t5, t5, kPointerSize);
772 __ bind(&entry);
773 __ Branch(&loop, Uless, t5, Operand(t6));
774 }
775
776 // Add the object tag to make the JSObject real, so that we can continue and
777 // jump into the continuation code at any time from now on. Any failures
778 // need to undo the allocation, so that the heap is in a consistent state
779 // and verifiable.
780 __ Addu(t4, t4, Operand(kHeapObjectTag));
781
782 // Check if a non-empty properties array is needed. Continue with allocated
783 // object if not fall through to runtime call if it is.
784 // a1: constructor function
785 // t4: JSObject
786 // t5: start of next object (not tagged)
787 __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
788 // The field instance sizes contains both pre-allocated property fields and
789 // in-object properties.
790 __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
791 __ And(t6,
792 a0,
793 Operand(0x000000FF << Map::kPreAllocatedPropertyFieldsByte * 8));
794 __ srl(t0, t6, Map::kPreAllocatedPropertyFieldsByte * 8);
795 __ Addu(a3, a3, Operand(t0));
796 __ And(t6, a0, Operand(0x000000FF << Map::kInObjectPropertiesByte * 8));
797 __ srl(t0, t6, Map::kInObjectPropertiesByte * 8);
798 __ subu(a3, a3, t0);
799
800 // Done if no extra properties are to be allocated.
801 __ Branch(&allocated, eq, a3, Operand(zero_reg));
802 __ Assert(greater_equal, "Property allocation count failed.",
803 a3, Operand(zero_reg));
804
805 // Scale the number of elements by pointer size and add the header for
806 // FixedArrays to the start of the next object calculation from above.
807 // a1: constructor
808 // a3: number of elements in properties array
809 // t4: JSObject
810 // t5: start of next object
811 __ Addu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize));
812 __ AllocateInNewSpace(
813 a0,
814 t5,
815 t6,
816 a2,
817 &undo_allocation,
818 static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
819
820 // Initialize the FixedArray.
821 // a1: constructor
822 // a3: number of elements in properties array (un-tagged)
823 // t4: JSObject
824 // t5: start of next object
825 __ LoadRoot(t6, Heap::kFixedArrayMapRootIndex);
826 __ mov(a2, t5);
827 __ sw(t6, MemOperand(a2, JSObject::kMapOffset));
828 __ sll(a0, a3, kSmiTagSize);
829 __ sw(a0, MemOperand(a2, FixedArray::kLengthOffset));
830 __ Addu(a2, a2, Operand(2 * kPointerSize));
831
832 ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
833 ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
834
835 // Initialize the fields to undefined.
836 // a1: constructor
837 // a2: First element of FixedArray (not tagged)
838 // a3: number of elements in properties array
839 // t4: JSObject
840 // t5: FixedArray (not tagged)
841 __ sll(t3, a3, kPointerSizeLog2);
842 __ addu(t6, a2, t3); // End of object.
843 ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
844 { Label loop, entry;
845 if (count_constructions) {
846 __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
847 } else if (FLAG_debug_code) {
848 __ LoadRoot(t8, Heap::kUndefinedValueRootIndex);
849 __ Assert(eq, "Undefined value not loaded.", t7, Operand(t8));
850 }
851 __ jmp(&entry);
852 __ bind(&loop);
853 __ sw(t7, MemOperand(a2));
854 __ addiu(a2, a2, kPointerSize);
855 __ bind(&entry);
856 __ Branch(&loop, less, a2, Operand(t6));
857 }
858
859 // Store the initialized FixedArray into the properties field of
860 // the JSObject.
861 // a1: constructor function
862 // t4: JSObject
863 // t5: FixedArray (not tagged)
864 __ Addu(t5, t5, Operand(kHeapObjectTag)); // Add the heap tag.
865 __ sw(t5, FieldMemOperand(t4, JSObject::kPropertiesOffset));
866
867 // Continue with JSObject being successfully allocated.
868 // a1: constructor function
869 // a4: JSObject
870 __ jmp(&allocated);
871
872 // Undo the setting of the new top so that the heap is verifiable. For
873 // example, the map's unused properties potentially do not match the
874 // allocated objects unused properties.
875 // t4: JSObject (previous new top)
876 __ bind(&undo_allocation);
877 __ UndoAllocationInNewSpace(t4, t5);
878 }
879
880 __ bind(&rt_call);
881 // Allocate the new receiver object using the runtime call.
882 // a1: constructor function
883 __ push(a1); // Argument for Runtime_NewObject.
884 __ CallRuntime(Runtime::kNewObject, 1);
885 __ mov(t4, v0);
886
887 // Receiver for constructor call allocated.
888 // t4: JSObject
889 __ bind(&allocated);
890 __ push(t4);
891
892 // Push the function and the allocated receiver from the stack.
893 // sp[0]: receiver (newly allocated object)
894 // sp[1]: constructor function
895 // sp[2]: number of arguments (smi-tagged)
896 __ lw(a1, MemOperand(sp, kPointerSize));
897 __ MultiPushReversed(a1.bit() | t4.bit());
898
899 // Reload the number of arguments from the stack.
900 // a1: constructor function
901 // sp[0]: receiver
902 // sp[1]: constructor function
903 // sp[2]: receiver
904 // sp[3]: constructor function
905 // sp[4]: number of arguments (smi-tagged)
906 __ lw(a3, MemOperand(sp, 4 * kPointerSize));
907
908 // Setup pointer to last argument.
909 __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
910
911 // Setup number of arguments for function call below.
912 __ srl(a0, a3, kSmiTagSize);
913
914 // Copy arguments and receiver to the expression stack.
915 // a0: number of arguments
916 // a1: constructor function
917 // a2: address of last argument (caller sp)
918 // a3: number of arguments (smi-tagged)
919 // sp[0]: receiver
920 // sp[1]: constructor function
921 // sp[2]: receiver
922 // sp[3]: constructor function
923 // sp[4]: number of arguments (smi-tagged)
924 Label loop, entry;
925 __ jmp(&entry);
926 __ bind(&loop);
927 __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
928 __ Addu(t0, a2, Operand(t0));
929 __ lw(t1, MemOperand(t0));
930 __ push(t1);
931 __ bind(&entry);
932 __ Addu(a3, a3, Operand(-2));
933 __ Branch(&loop, greater_equal, a3, Operand(zero_reg));
934
935 // Call the function.
936 // a0: number of arguments
937 // a1: constructor function
938 if (is_api_function) {
939 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
940 Handle<Code> code =
941 masm->isolate()->builtins()->HandleApiCallConstruct();
942 ParameterCount expected(0);
943 __ InvokeCode(code, expected, expected,
944 RelocInfo::CODE_TARGET, CALL_FUNCTION);
945 } else {
946 ParameterCount actual(a0);
947 __ InvokeFunction(a1, actual, CALL_FUNCTION);
948 }
949
950 // Pop the function from the stack.
951 // v0: result
952 // sp[0]: constructor function
953 // sp[2]: receiver
954 // sp[3]: constructor function
955 // sp[4]: number of arguments (smi-tagged)
956 __ Pop();
957
958 // Restore context from the frame.
959 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
960
961 // If the result is an object (in the ECMA sense), we should get rid
962 // of the receiver and use the result; see ECMA-262 section 13.2.2-7
963 // on page 74.
964 Label use_receiver, exit;
965
966 // If the result is a smi, it is *not* an object in the ECMA sense.
967 // v0: result
968 // sp[0]: receiver (newly allocated object)
969 // sp[1]: constructor function
970 // sp[2]: number of arguments (smi-tagged)
971 __ And(t0, v0, Operand(kSmiTagMask));
972 __ Branch(&use_receiver, eq, t0, Operand(zero_reg));
973
974 // If the type of the result (stored in its map) is less than
975 // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
976 __ GetObjectType(v0, a3, a3);
977 __ Branch(&exit, greater_equal, a3, Operand(FIRST_JS_OBJECT_TYPE));
978
979 // Throw away the result of the constructor invocation and use the
980 // on-stack receiver as the result.
981 __ bind(&use_receiver);
982 __ lw(v0, MemOperand(sp));
983
984 // Remove receiver from the stack, remove caller arguments, and
985 // return.
986 __ bind(&exit);
987 // v0: result
988 // sp[0]: receiver (newly allocated object)
989 // sp[1]: constructor function
990 // sp[2]: number of arguments (smi-tagged)
991 __ lw(a1, MemOperand(sp, 2 * kPointerSize));
992 __ LeaveConstructFrame();
993 __ sll(t0, a1, kPointerSizeLog2 - 1);
994 __ Addu(sp, sp, t0);
995 __ Addu(sp, sp, kPointerSize);
996 __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
997 __ Ret();
71 } 998 }
72 999
73 1000
74 void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { 1001 void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
75 UNIMPLEMENTED_MIPS(); 1002 Generate_JSConstructStubHelper(masm, false, true);
76 } 1003 }
77 1004
78 1005
79 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { 1006 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
80 UNIMPLEMENTED_MIPS(); 1007 Generate_JSConstructStubHelper(masm, false, false);
81 } 1008 }
82 1009
83 1010
84 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { 1011 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
85 UNIMPLEMENTED_MIPS(); 1012 Generate_JSConstructStubHelper(masm, true, false);
1013 }
1014
1015
1016 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
1017 bool is_construct) {
1018 // Called from JSEntryStub::GenerateBody
1019
1020 // ----------- S t a t e -------------
1021 // -- a0: code entry
1022 // -- a1: function
1023 // -- a2: reveiver_pointer
1024 // -- a3: argc
1025 // -- s0: argv
1026 // -----------------------------------
1027
1028 // Clear the context before we push it when entering the JS frame.
1029 __ mov(cp, zero_reg);
1030
1031 // Enter an internal frame.
1032 __ EnterInternalFrame();
1033
1034 // Set up the context from the function argument.
1035 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1036
1037 // Set up the roots register.
1038 ExternalReference roots_address =
1039 ExternalReference::roots_address(masm->isolate());
1040 __ li(s6, Operand(roots_address));
1041
1042 // Push the function and the receiver onto the stack.
1043 __ Push(a1, a2);
1044
1045 // Copy arguments to the stack in a loop.
1046 // a3: argc
1047 // s0: argv, ie points to first arg
1048 Label loop, entry;
1049 __ sll(t0, a3, kPointerSizeLog2);
1050 __ addu(t2, s0, t0);
1051 __ b(&entry);
1052 __ nop(); // Branch delay slot nop.
1053 // t2 points past last arg.
1054 __ bind(&loop);
1055 __ lw(t0, MemOperand(s0)); // Read next parameter.
1056 __ addiu(s0, s0, kPointerSize);
1057 __ lw(t0, MemOperand(t0)); // Dereference handle.
1058 __ push(t0); // Push parameter.
1059 __ bind(&entry);
1060 __ Branch(&loop, ne, s0, Operand(t2));
1061
1062 // Initialize all JavaScript callee-saved registers, since they will be seen
1063 // by the garbage collector as part of handlers.
1064 __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
1065 __ mov(s1, t0);
1066 __ mov(s2, t0);
1067 __ mov(s3, t0);
1068 __ mov(s4, t0);
1069 __ mov(s5, t0);
1070 // s6 holds the root address. Do not clobber.
1071 // s7 is cp. Do not init.
1072
1073 // Invoke the code and pass argc as a0.
1074 __ mov(a0, a3);
1075 if (is_construct) {
1076 __ Call(masm->isolate()->builtins()->JSConstructCall(),
1077 RelocInfo::CODE_TARGET);
1078 } else {
1079 ParameterCount actual(a0);
1080 __ InvokeFunction(a1, actual, CALL_FUNCTION);
1081 }
1082
1083 __ LeaveInternalFrame();
1084
1085 __ Jump(ra);
86 } 1086 }
87 1087
88 1088
89 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { 1089 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
90 UNIMPLEMENTED_MIPS(); 1090 Generate_JSEntryTrampolineHelper(masm, false);
91 } 1091 }
92 1092
93 1093
94 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { 1094 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
95 UNIMPLEMENTED_MIPS(); 1095 Generate_JSEntryTrampolineHelper(masm, true);
96 } 1096 }
97 1097
98 1098
99 void Builtins::Generate_LazyCompile(MacroAssembler* masm) { 1099 void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
100 UNIMPLEMENTED_MIPS(); 1100 // Enter an internal frame.
1101 __ EnterInternalFrame();
1102
1103 // Preserve the function.
1104 __ push(a1);
1105
1106 // Push the function on the stack as the argument to the runtime function.
1107 __ push(a1);
1108 // Call the runtime function.
1109 __ CallRuntime(Runtime::kLazyCompile, 1);
1110 // Calculate the entry point.
1111 __ addiu(t9, v0, Code::kHeaderSize - kHeapObjectTag);
1112 // Restore saved function.
1113 __ pop(a1);
1114
1115 // Tear down temporary frame.
1116 __ LeaveInternalFrame();
1117
1118 // Do a tail-call of the compiled function.
1119 __ Jump(t9);
101 } 1120 }
102 1121
103 1122
104 void Builtins::Generate_LazyRecompile(MacroAssembler* masm) { 1123 void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
105 UNIMPLEMENTED_MIPS(); 1124 // Enter an internal frame.
106 } 1125 __ EnterInternalFrame();
107 1126
108 1127 // Preserve the function.
1128 __ push(a1);
1129
1130 // Push the function on the stack as the argument to the runtime function.
1131 __ push(a1);
1132 __ CallRuntime(Runtime::kLazyRecompile, 1);
1133 // Calculate the entry point.
1134 __ Addu(t9, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
1135 // Restore saved function.
1136 __ pop(a1);
1137
1138 // Tear down temporary frame.
1139 __ LeaveInternalFrame();
1140
1141 // Do a tail-call of the compiled function.
1142 __ Jump(t9);
1143 }
1144
1145
1146 // These functions are called from C++ but cannot be used in live code.
109 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { 1147 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
110 UNIMPLEMENTED_MIPS(); 1148 __ Abort("Call to unimplemented function in builtins-mips.cc");
111 } 1149 }
112 1150
113 1151
114 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { 1152 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
115 UNIMPLEMENTED_MIPS(); 1153 __ Abort("Call to unimplemented function in builtins-mips.cc");
116 } 1154 }
117 1155
118 1156
119 void Builtins::Generate_NotifyOSR(MacroAssembler* masm) { 1157 void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
120 UNIMPLEMENTED_MIPS(); 1158 __ Abort("Call to unimplemented function in builtins-mips.cc");
121 } 1159 }
122 1160
123 1161
124 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { 1162 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
125 UNIMPLEMENTED_MIPS(); 1163 __ Abort("Call to unimplemented function in builtins-mips.cc");
126 } 1164 }
127 1165
128 1166
129 void Builtins::Generate_FunctionCall(MacroAssembler* masm) { 1167 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
130 UNIMPLEMENTED_MIPS(); 1168 // 1. Make sure we have at least one argument.
1169 // a0: actual number of arguments
1170 { Label done;
1171 __ Branch(&done, ne, a0, Operand(zero_reg));
1172 __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
1173 __ push(t2);
1174 __ Addu(a0, a0, Operand(1));
1175 __ bind(&done);
1176 }
1177
1178 // 2. Get the function to call (passed as receiver) from the stack, check
1179 // if it is a function.
1180 // a0: actual number of arguments
1181 Label non_function;
1182 __ sll(at, a0, kPointerSizeLog2);
1183 __ addu(at, sp, at);
1184 __ lw(a1, MemOperand(at));
1185 __ And(at, a1, Operand(kSmiTagMask));
1186 __ Branch(&non_function, eq, at, Operand(zero_reg));
1187 __ GetObjectType(a1, a2, a2);
1188 __ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_TYPE));
1189
1190 // 3a. Patch the first argument if necessary when calling a function.
1191 // a0: actual number of arguments
1192 // a1: function
1193 Label shift_arguments;
1194 { Label convert_to_object, use_global_receiver, patch_receiver;
1195 // Change context eagerly in case we need the global receiver.
1196 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1197
1198 // Do not transform the receiver for strict mode functions.
1199 __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1200 __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
1201 __ And(t0, a3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1202 kSmiTagSize)));
1203 __ Branch(&shift_arguments, ne, t0, Operand(zero_reg));
1204
1205 // Do not transform the receiver for native (shared already in r2).
1206 __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kScriptOffset));
1207 __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
1208 __ Branch(&shift_arguments, eq, a2, Operand(a3));
1209 __ lw(a2, FieldMemOperand(a2, Script::kTypeOffset));
1210 __ sra(a2, a2, kSmiTagSize);
1211 __ Branch(&shift_arguments, eq, a2, Operand(Script::TYPE_NATIVE));
1212
1213 // Compute the receiver in non-strict mode.
1214 // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2).
1215 __ sll(at, a0, kPointerSizeLog2);
1216 __ addu(a2, sp, at);
1217 __ lw(a2, MemOperand(a2, -kPointerSize));
1218 // a0: actual number of arguments
1219 // a1: function
1220 // a2: first argument
1221 __ JumpIfSmi(a2, &convert_to_object, t2);
1222
1223 // Heap::kUndefinedValueRootIndex is already in a3.
1224 __ Branch(&use_global_receiver, eq, a2, Operand(a3));
1225 __ LoadRoot(a3, Heap::kNullValueRootIndex);
1226 __ Branch(&use_global_receiver, eq, a2, Operand(a3));
1227
1228 __ GetObjectType(a2, a3, a3);
1229 __ Branch(&convert_to_object, lt, a3, Operand(FIRST_JS_OBJECT_TYPE));
1230 __ Branch(&shift_arguments, le, a3, Operand(LAST_JS_OBJECT_TYPE));
1231
1232 __ bind(&convert_to_object);
1233 __ EnterInternalFrame(); // In order to preserve argument count.
1234 __ sll(a0, a0, kSmiTagSize); // Smi tagged.
1235 __ push(a0);
1236
1237 __ push(a2);
1238 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1239 __ mov(a2, v0);
1240
1241 __ pop(a0);
1242 __ sra(a0, a0, kSmiTagSize); // Un-tag.
1243 __ LeaveInternalFrame();
1244 // Restore the function to a1.
1245 __ sll(at, a0, kPointerSizeLog2);
1246 __ addu(at, sp, at);
1247 __ lw(a1, MemOperand(at));
1248 __ Branch(&patch_receiver);
1249
1250 // Use the global receiver object from the called function as the
1251 // receiver.
1252 __ bind(&use_global_receiver);
1253 const int kGlobalIndex =
1254 Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1255 __ lw(a2, FieldMemOperand(cp, kGlobalIndex));
1256 __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
1257 __ lw(a2, FieldMemOperand(a2, kGlobalIndex));
1258 __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset));
1259
1260 __ bind(&patch_receiver);
1261 __ sll(at, a0, kPointerSizeLog2);
1262 __ addu(a3, sp, at);
1263 __ sw(a2, MemOperand(a3, -kPointerSize));
1264
1265 __ Branch(&shift_arguments);
1266 }
1267
1268 // 3b. Patch the first argument when calling a non-function. The
1269 // CALL_NON_FUNCTION builtin expects the non-function callee as
1270 // receiver, so overwrite the first argument which will ultimately
1271 // become the receiver.
1272 // a0: actual number of arguments
1273 // a1: function
1274 __ bind(&non_function);
1275 // Restore the function in case it has been modified.
1276 __ sll(at, a0, kPointerSizeLog2);
1277 __ addu(a2, sp, at);
1278 __ sw(a1, MemOperand(a2, -kPointerSize));
1279 // Clear a1 to indicate a non-function being called.
1280 __ mov(a1, zero_reg);
1281
1282 // 4. Shift arguments and return address one slot down on the stack
1283 // (overwriting the original receiver). Adjust argument count to make
1284 // the original first argument the new receiver.
1285 // a0: actual number of arguments
1286 // a1: function
1287 __ bind(&shift_arguments);
1288 { Label loop;
1289 // Calculate the copy start address (destination). Copy end address is sp.
1290 __ sll(at, a0, kPointerSizeLog2);
1291 __ addu(a2, sp, at);
1292
1293 __ bind(&loop);
1294 __ lw(at, MemOperand(a2, -kPointerSize));
1295 __ sw(at, MemOperand(a2));
1296 __ Subu(a2, a2, Operand(kPointerSize));
1297 __ Branch(&loop, ne, a2, Operand(sp));
1298 // Adjust the actual number of arguments and remove the top element
1299 // (which is a copy of the last argument).
1300 __ Subu(a0, a0, Operand(1));
1301 __ Pop();
1302 }
1303
1304 // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
1305 // a0: actual number of arguments
1306 // a1: function
1307 { Label function;
1308 __ Branch(&function, ne, a1, Operand(zero_reg));
1309 __ mov(a2, zero_reg); // expected arguments is 0 for CALL_NON_FUNCTION
1310 __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION);
1311 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1312 RelocInfo::CODE_TARGET);
1313 __ bind(&function);
1314 }
1315
1316 // 5b. Get the code to call from the function and check that the number of
1317 // expected arguments matches what we're providing. If so, jump
1318 // (tail-call) to the code in register edx without checking arguments.
1319 // a0: actual number of arguments
1320 // a1: function
1321 __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1322 __ lw(a2,
1323 FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
1324 __ sra(a2, a2, kSmiTagSize);
1325 __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1326 // Check formal and actual parameter counts.
1327 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1328 RelocInfo::CODE_TARGET, ne, a2, Operand(a0));
1329
1330 ParameterCount expected(0);
1331 __ InvokeCode(a3, expected, expected, JUMP_FUNCTION);
131 } 1332 }
132 1333
133 1334
134 void Builtins::Generate_FunctionApply(MacroAssembler* masm) { 1335 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
135 UNIMPLEMENTED_MIPS(); 1336 const int kIndexOffset = -5 * kPointerSize;
1337 const int kLimitOffset = -4 * kPointerSize;
1338 const int kArgsOffset = 2 * kPointerSize;
1339 const int kRecvOffset = 3 * kPointerSize;
1340 const int kFunctionOffset = 4 * kPointerSize;
1341
1342 __ EnterInternalFrame();
1343
1344 __ lw(a0, MemOperand(fp, kFunctionOffset)); // Get the function.
1345 __ push(a0);
1346 __ lw(a0, MemOperand(fp, kArgsOffset)); // Get the args array.
1347 __ push(a0);
1348 // Returns (in v0) number of arguments to copy to stack as Smi.
1349 __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
1350
1351 // Check the stack for overflow. We are not trying need to catch
1352 // interruptions (e.g. debug break and preemption) here, so the "real stack
1353 // limit" is checked.
1354 Label okay;
1355 __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
1356 // Make a2 the space we have left. The stack might already be overflowed
1357 // here which will cause a2 to become negative.
1358 __ subu(a2, sp, a2);
1359 // Check if the arguments will overflow the stack.
1360 __ sll(t0, v0, kPointerSizeLog2 - kSmiTagSize);
1361 __ Branch(&okay, gt, a2, Operand(t0)); // Signed comparison.
1362
1363 // Out of stack space.
1364 __ lw(a1, MemOperand(fp, kFunctionOffset));
1365 __ push(a1);
1366 __ push(v0);
1367 __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
1368 // End of stack check.
1369
1370 // Push current limit and index.
1371 __ bind(&okay);
1372 __ push(v0); // Limit.
1373 __ mov(a1, zero_reg); // Initial index.
1374 __ push(a1);
1375
1376 // Change context eagerly to get the right global object if necessary.
1377 __ lw(a0, MemOperand(fp, kFunctionOffset));
1378 __ lw(cp, FieldMemOperand(a0, JSFunction::kContextOffset));
1379 // Load the shared function info while the function is still in a0.
1380 __ lw(a1, FieldMemOperand(a0, JSFunction::kSharedFunctionInfoOffset));
1381
1382 // Compute the receiver.
1383 Label call_to_object, use_global_receiver, push_receiver;
1384 __ lw(a0, MemOperand(fp, kRecvOffset));
1385
1386 // Do not transform the receiver for strict mode functions.
1387 __ lw(a2, FieldMemOperand(a1, SharedFunctionInfo::kCompilerHintsOffset));
1388 __ And(t0, a2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1389 kSmiTagSize)));
1390 __ Branch(&push_receiver, ne, t0, Operand(zero_reg));
1391
1392 // Do not transform the receiver for native (shared already in a1).
1393 __ lw(a1, FieldMemOperand(a1, SharedFunctionInfo::kScriptOffset));
1394 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1395 __ Branch(&push_receiver, eq, a1, Operand(a2));
1396 __ lw(a1, FieldMemOperand(a1, Script::kTypeOffset));
1397 __ sra(a1, a1, kSmiTagSize);
1398 __ Branch(&push_receiver, eq, a1, Operand(Script::TYPE_NATIVE));
1399
1400 // Compute the receiver in non-strict mode.
1401 __ And(t0, a0, Operand(kSmiTagMask));
1402 __ Branch(&call_to_object, eq, t0, Operand(zero_reg));
1403 __ LoadRoot(a1, Heap::kNullValueRootIndex);
1404 __ Branch(&use_global_receiver, eq, a0, Operand(a1));
1405 // Heap::kUndefinedValueRootIndex is already in a2.
1406 __ Branch(&use_global_receiver, eq, a0, Operand(a2));
1407
1408 // Check if the receiver is already a JavaScript object.
1409 // a0: receiver
1410 __ GetObjectType(a0, a1, a1);
1411 __ Branch(&call_to_object, lt, a1, Operand(FIRST_JS_OBJECT_TYPE));
1412 __ Branch(&push_receiver, le, a1, Operand(LAST_JS_OBJECT_TYPE));
1413
1414 // Convert the receiver to a regular object.
1415 // a0: receiver
1416 __ bind(&call_to_object);
1417 __ push(a0);
1418 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1419 __ mov(a0, v0); // Put object in a0 to match other paths to push_receiver.
1420 __ Branch(&push_receiver);
1421
1422 // Use the current global receiver object as the receiver.
1423 __ bind(&use_global_receiver);
1424 const int kGlobalOffset =
1425 Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1426 __ lw(a0, FieldMemOperand(cp, kGlobalOffset));
1427 __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset));
1428 __ lw(a0, FieldMemOperand(a0, kGlobalOffset));
1429 __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset));
1430
1431 // Push the receiver.
1432 // a0: receiver
1433 __ bind(&push_receiver);
1434 __ push(a0);
1435
1436 // Copy all arguments from the array to the stack.
1437 Label entry, loop;
1438 __ lw(a0, MemOperand(fp, kIndexOffset));
1439 __ Branch(&entry);
1440
1441 // Load the current argument from the arguments array and push it to the
1442 // stack.
1443 // a0: current argument index
1444 __ bind(&loop);
1445 __ lw(a1, MemOperand(fp, kArgsOffset));
1446 __ push(a1);
1447 __ push(a0);
1448
1449 // Call the runtime to access the property in the arguments array.
1450 __ CallRuntime(Runtime::kGetProperty, 2);
1451 __ push(v0);
1452
1453 // Use inline caching to access the arguments.
1454 __ lw(a0, MemOperand(fp, kIndexOffset));
1455 __ Addu(a0, a0, Operand(1 << kSmiTagSize));
1456 __ sw(a0, MemOperand(fp, kIndexOffset));
1457
1458 // Test if the copy loop has finished copying all the elements from the
1459 // arguments object.
1460 __ bind(&entry);
1461 __ lw(a1, MemOperand(fp, kLimitOffset));
1462 __ Branch(&loop, ne, a0, Operand(a1));
1463 // Invoke the function.
1464 ParameterCount actual(a0);
1465 __ sra(a0, a0, kSmiTagSize);
1466 __ lw(a1, MemOperand(fp, kFunctionOffset));
1467 __ InvokeFunction(a1, actual, CALL_FUNCTION);
1468
1469 // Tear down the internal frame and remove function, receiver and args.
1470 __ LeaveInternalFrame();
1471 __ Addu(sp, sp, Operand(3 * kPointerSize));
1472 __ Ret();
1473 }
1474
1475
1476 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1477 __ sll(a0, a0, kSmiTagSize);
1478 __ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1479 __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit());
1480 __ Addu(fp, sp, Operand(3 * kPointerSize));
1481 }
1482
1483
1484 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1485 // ----------- S t a t e -------------
1486 // -- v0 : result being passed through
1487 // -----------------------------------
1488 // Get the number of arguments passed (as a smi), tear down the frame and
1489 // then tear down the parameters.
1490 __ lw(a1, MemOperand(fp, -3 * kPointerSize));
1491 __ mov(sp, fp);
1492 __ MultiPop(fp.bit() | ra.bit());
1493 __ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize);
1494 __ Addu(sp, sp, t0);
1495 // Adjust for the receiver.
1496 __ Addu(sp, sp, Operand(kPointerSize));
136 } 1497 }
137 1498
138 1499
139 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { 1500 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
140 UNIMPLEMENTED_MIPS(); 1501 // State setup as expected by MacroAssembler::InvokePrologue.
141 } 1502 // ----------- S t a t e -------------
142 1503 // -- a0: actual arguments count
143 1504 // -- a1: function (passed through to callee)
1505 // -- a2: expected arguments count
1506 // -- a3: callee code entry
1507 // -----------------------------------
1508
1509 Label invoke, dont_adapt_arguments;
1510
1511 Label enough, too_few;
1512 __ Branch(&dont_adapt_arguments, eq,
1513 a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1514 // We use Uless as the number of argument should always be greater than 0.
1515 __ Branch(&too_few, Uless, a0, Operand(a2));
1516
1517 { // Enough parameters: actual >= expected.
1518 // a0: actual number of arguments as a smi
1519 // a1: function
1520 // a2: expected number of arguments
1521 // a3: code entry to call
1522 __ bind(&enough);
1523 EnterArgumentsAdaptorFrame(masm);
1524
1525 // Calculate copy start address into a0 and copy end address into a2.
1526 __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
1527 __ Addu(a0, fp, a0);
1528 // Adjust for return address and receiver.
1529 __ Addu(a0, a0, Operand(2 * kPointerSize));
1530 // Compute copy end address.
1531 __ sll(a2, a2, kPointerSizeLog2);
1532 __ subu(a2, a0, a2);
1533
1534 // Copy the arguments (including the receiver) to the new stack frame.
1535 // a0: copy start address
1536 // a1: function
1537 // a2: copy end address
1538 // a3: code entry to call
1539
1540 Label copy;
1541 __ bind(&copy);
1542 __ lw(t0, MemOperand(a0));
1543 __ push(t0);
1544 __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a2));
1545 __ addiu(a0, a0, -kPointerSize); // In delay slot.
1546
1547 __ jmp(&invoke);
1548 }
1549
1550 { // Too few parameters: Actual < expected.
1551 __ bind(&too_few);
1552 EnterArgumentsAdaptorFrame(masm);
1553
1554 // TODO(MIPS): Optimize these loops.
1555
1556 // Calculate copy start address into a0 and copy end address is fp.
1557 // a0: actual number of arguments as a smi
1558 // a1: function
1559 // a2: expected number of arguments
1560 // a3: code entry to call
1561 __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
1562 __ Addu(a0, fp, a0);
1563 // Adjust for return address and receiver.
1564 __ Addu(a0, a0, Operand(2 * kPointerSize));
1565 // Compute copy end address. Also adjust for return address.
1566 __ Addu(t1, fp, kPointerSize);
1567
1568 // Copy the arguments (including the receiver) to the new stack frame.
1569 // a0: copy start address
1570 // a1: function
1571 // a2: expected number of arguments
1572 // a3: code entry to call
1573 // t1: copy end address
1574 Label copy;
1575 __ bind(&copy);
1576 __ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver.
1577 __ push(t0);
1578 __ Subu(a0, a0, kPointerSize);
1579 __ Branch(&copy, ne, a0, Operand(t1));
1580
1581 // Fill the remaining expected arguments with undefined.
1582 // a1: function
1583 // a2: expected number of arguments
1584 // a3: code entry to call
1585 __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
1586 __ sll(t2, a2, kPointerSizeLog2);
1587 __ Subu(a2, fp, Operand(t2));
1588 __ Addu(a2, a2, Operand(-4 * kPointerSize)); // Adjust for frame.
1589
1590 Label fill;
1591 __ bind(&fill);
1592 __ push(t0);
1593 __ Branch(&fill, ne, sp, Operand(a2));
1594 }
1595
1596 // Call the entry point.
1597 __ bind(&invoke);
1598
1599 __ Call(a3);
1600
1601 // Exit frame and return.
1602 LeaveArgumentsAdaptorFrame(masm);
1603 __ Ret();
1604
1605
1606 // -------------------------------------------
1607 // Don't adapt arguments.
1608 // -------------------------------------------
1609 __ bind(&dont_adapt_arguments);
1610 __ Jump(a3);
1611 }
1612
1613
144 #undef __ 1614 #undef __
145 1615
146 } } // namespace v8::internal 1616 } } // namespace v8::internal
147 1617
148 #endif // V8_TARGET_ARCH_MIPS 1618 #endif // V8_TARGET_ARCH_MIPS
OLDNEW
« no previous file with comments | « no previous file | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698